
Copenhagen Business School
Copenhagen, Spring 2022

Deparadoxifying Strategic Decisions:

An Integrated Approach Utilizing

Machine Learning and Natural

Language Processing
Analyzing strategic decision making within the UN security council by

applying the BERT model and inferential statistics

Birgitte Ramm Bergo and Elias Bjørne-Larsen

Student numbers: 141271, 14882, contract no: 22745

Supervisor: Steffen Blaschke

Character count: 229,434

Normal page count: 119

Master thesis, Business Administration and Data Science

COPENHAGEN BUSINESS SCHOOL

Acknowledgements
We would like to thank our supervisor, Steffen Blaschke, for his excellent advice and

guidance as we explored the unfamiliar territory of paradoxes. We express our sincerest

gratitude for the level of support he has shown us throughout the project.

We would also like to thank Morten Lantow, our mentor at EY Denmark, which saw the

exciting potential in this project and lent us his wisdom time after time. His council was

greatly appreciated.

Our friends and family has shown us tremendous support throughout the writing of this

thesis, for which we are ever grateful.

Copenhagen Business School

Copenhagen, 16 May 2022

Birgitte Ramm Bergo Elias Bjørne-Larsen

i

ii

Abstract
The purpose of this paper is to answer the call for empirical research on deparadoxification

by demonstrating a new approach which utilize the rapid technological developments that

has taken place since Luhmann introduced the concept of deparadoxificaiton. In doing

so, the paper seeks to combine two academic fields which not yet have been connected,

namely deparadoxification and machine learning. The paper demonstrates a feature-based

approach with BERT and random forest, to classify the paragraphs in the United Nations

Security (UNSC) meeting minutes into deparadoxification strategies. The contextual

model will be compared with a non-contextual model (using TF-IDF) to investigate

whether deparadoxification is context dependent or not. Due to the lack of existing

labeled data, the authors constructs their own training dataset through iterative manual

labeling using active learning with least confidence sampling. The model will be used

to uncover the distribution of deparadoxification strategies and provide classified data

for the regression analysis to investigate whether the strategies affect resolution voting

outcome. The model reached 0.53 accuracy and 0.44 F1 macro after five iterations of

labeling, followed by hyperparameter tuning. The non-contextual model reached 0.47

accuracy and 0.35 F1 macro. Both models outperformed ZeroR and the uniform dummy

classifier (UDC) by a large margin. Both the labeled and predicted distribution suggested

that the strategies does not follow a uniform distribution, but are rather imbalanced.

The regression analysis suggested that the strategies (only based on occurrences) does

not explain any of the variation in the voting outcome. We argue that this is due to the

majority of resolution votes being unanimous. We believe, however, that as this merging

of fields gets more attention, larger datasets, sufficient in size to train complex models,

will be made available, which might lead to different results. While the regression analysis

did not show significant results, the fact that both models outperformed ZeroR and UDC

proves that they were in fact able to pick up on a pattern, demonstrating that it is possible

to detect and measure deparadoxification through machine learning.

Source code is available at https://github.com/birgitterb/Master_thesis.git

Keywords – Deparadoxification, Machine Learning, Natural Language Processing, BERT,

Active Learning, United Nations, Organizational Decision Making

Contents iii

Contents
1 Introduction 1

1.1 Research Questions . 2
1.1.1 Topic Delimitation . 3

1.2 Thesis Structure . 4

2 Conceptual Framework 5

2.1 Social Systems Theory . 5
2.2 Organizational decision-making . 7
2.3 Deparadoxification . 8

2.3.1 Introduction to Paradox . 8
2.3.2 The Paradoxy of Decisions . 10
2.3.3 Deparadoxification Strategies . 11

2.3.3.1 Temporal . 13
2.3.3.2 Social . 14
2.3.3.3 Factual . 15

2.4 Quantitative Research Context . 17
2.5 Conceptual Framework Conclusion . 18

3 Technical Background 20

3.1 Embedding . 20
3.2 Term Frequency-Inverse Document Frequency 21
3.3 Introduction to BERT . 22

3.3.1 Attention and the Transformer 23
3.3.2 BERT . 25

3.4 Random Forest . 26
3.5 Active Learning . 27
3.6 Evaluation . 28
3.7 Technical Background Conclusion . 31

4 United Nations Security Council 32

5 Methodology 35

5.1 Introduction to Methodology . 35
5.2 Data Understanding . 38

5.2.1 Data Context . 38
5.2.2 Data Collection . 40
5.2.3 Data Description . 40

5.2.3.1 Schönfeld et al. (2021) dataset 40
5.2.3.2 Blaschke (2019) dataset 43

5.3 Data Labeling . 44
5.3.1 Unitizing . 46
5.3.2 Labeling instructions . 47

5.3.2.1 Qualification list for oracles 49
5.3.2.2 Operational category description 49
5.3.2.3 Data Labeling Tool . 53

5.4 Machine Learning Pipeline . 54

iv Contents

5.5 Data Selection and Initial Labeling . 57
5.6 Preprocessing . 58

5.6.1 TF-IDF Specific Preprocessing . 58
5.6.2 BERT Specific Preprocessing . 60

5.7 Modeling . 62
5.7.1 TF-IDF Embeddings . 62
5.7.2 BERT Embeddings . 63
5.7.3 Random Forest . 65

5.7.3.1 Validation, Overfitting & Underfitting 66
5.7.3.2 Training . 69

5.7.4 Active Learning . 69
5.7.5 Hyperparameter Tuning . 74
5.7.6 Regression Analysis . 78

6 Results 82

6.1 Active Learning Iterations . 82
6.1.1 Data Labeling . 82
6.1.2 Change in performance . 85

6.2 Hyperparameter Tuning . 85
6.3 Model Evaluation . 86

6.3.1 Classification Report . 86
6.3.2 Confusion Matrix . 87

6.4 Predicted Distribution . 88
6.5 Regression Results . 89
6.6 Word Clouds . 90

7 Findings and Discussion 93

7.1 Answering the Research Questions . 93
7.1.1 Active Learning Influence on Classifier Performance 93
7.1.2 Contextual vs. Non-Contextual Embeddings 95
7.1.3 Deparadoxification Distribution and Underlying Causes 99
7.1.4 Effect of Strategies on Voting Outcome 102

7.2 Limitations . 105
7.3 Future Research . 108

8 Conclusion 111

References 113

Appendix 120

A1 Data Descriptions . 120
A2 Labeling instructions . 122
A3 Runtimes & Specifications . 124
A4 Additional OLS Regression Results . 124

List of Figures v

List of Figures
2.1 A form of decision . 8
2.2 A form of re-entry, adopted by Andersen (2003) 12
3.1 The Transformer - model architecture (Vaswani et al., 2017). 24
5.1 CRISP-DM model, adopted by Shearer (2000) 36
5.2 Methodology Outline . 38
5.3 No of speeches per year from 1995 to 2020 42
5.4 Top 15 meeting topics, 1995-2020 . 43
5.5 Content Analysis Framework inspired and adopted by (Krippendorff, 2004) 45
5.6 Factual Labeling Instructions . 51
5.7 TF-IDF Preprocessing . 59
5.8 BERT Preprocessing . 61
5.9 TF-IDF Embeddings Extraction . 62
5.10 BERT Embeddings Extraction . 64
5.11 Cross Validation Illustration (k = 5) . 68
5.12 0th Iteration of labeling . 72
5.13 Hyperparameter Tuning Process . 75
5.14 Regression Dataset Construction Steps 79
5.15 Regression Dataset Points Distribution 80
6.1 0th Labeling Distribution . 83
6.2 1-4 Labeling Distributions . 84
6.3 0th (left) and Aggregated Labeling Distributions 84
6.4 Confusion Matrices - BERT-RF (left) & TFIDF-RF 87
6.5 Predicted Distribution . 88
6.6 Partial Regression Plot . 90
6.7 Temporal Word Clouds . 91
6.8 Social Word Clouds . 91
6.9 Factual Word Clouds . 91
6.10 Not-relevant Word Clouds . 91
6.11 All classes Word Clouds . 92
A2.1 Temporal Labeling Instructions . 122
A2.2 Social Labeling Instructions . 123
A2.3 Not-relevant Labeling Instructions . 123
A2.4 Mixed Labeling Instructions . 124

vi List of Tables

List of Tables
3.1 Confusion Matrix - Example . 29
5.1 CRISP-DM Chapter Overview . 37
5.2 Overview of docs_raw . 41
5.3 Descriptive statistics for meta_speeches 42
5.4 Descriptive statistics for Blaschke (2019) episodes 44
5.5 Machine Learning Pipeline - Classes Overview 56
5.6 Hyperparameter Description & Search Span 77
5.7 Regression Dataset Description . 80
6.1 Labeling Iterations . 82
6.2 BERT-RF Performance over Labeling Iterations 85
6.3 Hyperparameter Tuning Results - BERT-RF 85
6.4 Model Comparison - Cross Validation . 86
6.5 Classification Report - BERT-RF Tuned 87
6.6 Labeled and Predicted Distributions . 88
6.7 OLS Regression Results 1/2 . 89
6.8 OLS Regression Results 2/2 . 89
A1.1 Columns in meta_speeches . 120
A1.2 Columns in meta_meetings . 120
A1.3 Columns in episodes . 121
A3.1 Runtimes & Specifications . 124
A4.1 Additional OLS Regression Results . 124

Acronyms vii

Acronyms
AL active learning.

BERT Bidirectional Encoder Representations from Transformers.

BERT-RF Bidirectional Encoder Representations from Transformers - Random Forest.

CRISP-DM Cross Industry Standard Process for Data Mining.

CV coefficient of variation.

DBN dynamic Bayesian network.

FN false negative.

FP false positive.

GRU gated recurrent unit.

IDF inverse document frequency.

LC least confidence.

LSTM long short-term memory.

ML machine learning.

MLM masked language modelling.

NSP next sentence prediction.

OLS ordinary least square.

OOP object-oriented programming.

RF random forest.

RNN recurrent neural network.

TF term frequency.

TF-IDF term frequency-inverse document frequency.

TFIDF-RF term frequency-inverse document frequency - random forest.

TN true negative.

TP true positive.

TSS theory of social systems.

UDC uniform dummy classifier.

UNSC United Nations Security Council.

1

1 Introduction
For thousands of years, social systems have been an integral part of humanity. To tackle

the continuous struggle for adaptation to the ever-changing environments that we find

ourselves in, humanity has sought to master coordination and cooperation as means of

survival. In modern times, this quest has taken the shape of longing for mastering one of

modern society’s foundational pillars, the organization. While the struggle for individual

survival has been overcome, adaptation has become crucial for organizational survival

and growth. The rapid changes in the technical, cultural, political, and economical

environments necessitate the desire for organizational change and adaptation. Within this

domain, decision making naturally becomes the center of attention. Our understanding

of organizational decision making bears implications for how our modern society

function. Modern technologies allow for new approaches to research how we humans

interact and make decisions within organizations. However, the academic application of

modern technologies in analyzing organizational decision making does not match the

unprecedented speed of which new technologies emerge. To explore this sea of potential

discoveries, this paper targets a field which until now has been neglected by domains

outside of organizational and managerial studies: Deparadoxification. As Heinz von

Foerster (2003) famously said, "only those questions that are in principle undecidable, we

can decide.” Following his lead, Luhmann (2006) offers three deparadoxification strategies:

temporal, factual, and social deparadoxification.

While Luhmann’s strategies have received some anecdotal empirical analysis (e.g., Andersen

(2003)), there is to date no attempt to classify large data sets of decisions into any of

these three strategies. Given the advancements in language representation, specifically

embeddings, there has never been better opportunities to answer the call for empirical

studies on deparadoxification, as expressed by Andersen (2003) and Knudsen (2006),

through an applied statistical approach, namely machine learning (ML). By using a

state-of-the-art language representation model, BERT, the authors wish to investigate

whether and how Luhmann’s deparadoxification strategies manifests themselves in the real

world. The non-existence of similar studies poses both exciting potentials for contribution

and obstacles that need to be overcome, the main one being the lack of data. Because

2 1.1 Research Questions

there exists no labeled dataset on deparadoxification strategies, the authors of this paper

are constructing their own. In doing so, the paper demonstrates an approach to merging

previously untouched organizational fields with supervised ML. The United Nations

Security Council (UNSC) was chosen as the case study due to its highly structured

meeting minutes, frequent discussions and decision making, and that the voting outcome

of resolutions can be used to investigate the impact of deparadoxificaiton strategies.

1.1 Research Questions

We set out to remedy the shortcoming of empirical research on deparadoxificaiton

by using BERT embeddings extracted from the UNSC meetings minutes to train a

supervised ML model, random forest (RF), to classify the meeting minutes paragraphs

into deparadoxification strategies. In order to do so, a training set will be created by

manually labeling paragraphs, using a set of labeling instructions based on our conceptual

framework. Due to the resource intensive labor of labeling paragraphs, which might

be a barrier for researchers to approach deparadoxification with supervised ML, active

learning (AL) will be used to iteratively increase the size of the training set, with the

purpose of investigating approaches to make the labeling process more efficient. When the

training set is complete, the model will be compared to a non-contextual model to explore

whether deparadoxification strategies are contextually dependent or not. Furthermore,

the distribution of strategies within the UNSC will be predicted and discussed, and finally,

a regression analysis will be performed to determine whether deparadoxification strategies

affect voting outcome or not. The purpose of the paper is to contribute to answering the

call for empirical studies on deparadoxification. Based on this, we seek to answering the

following four research questions (RQs):

RQ1: To what extent does the chosen NLP model respond to active learning when classifying

deparadoxification strategies?

RQ2: Do contextual embeddings outperform non-contextual embeddings and do they respond

differently to hyperparameter tuning?

With an NLP model for the classification of deparadoxification strategies in place, we

continue to find answers specifically for deparadoxification strategies used in the political

communication of the UNSC:

1.1 Research Questions 3

RQ3: Is there a uniform or otherwise distribution of deparadoxification strategies and

what could be the underlying causes for this distribution?

RQ4: Does the use of any of the three strategies affect the voting outcome of resolutions?

In addition to answering these questions, we will suggest and discuss possible underlying

causes that seem plausible. By answering the research questions, we hope to demonstrate

a possible approach to merging the fields of deparadoxification and ML, hopefully inspiring

future research.

1.1.1 Topic Delimitation

In relation to RQ1, the paper does not seek to compare multiple active learning approaches

to conclude which one works best. Only least confidence (LC) sampling will be used, after

the initial labeling using random sampling. The paper goes on to discuss other types of

sampling techniques for active learning that might yield different results. Regarding RQ2,

the paper will only compare two models; one using contextual embeddings and the other

non-contextual embeddings. In doing so, we suggest that the results have implications

for contextual vs. non-contextual embeddings in general when it comes to detecting

deparadoxification, but the results are not meant to be conclusive for all embedding

models. For RQ3, the main goal of the researchers is to uncover the distribution, while

the underlying causes are of secondary priority. The potential underlying causes will not

be analyzed using inferential statistics, but rather suggested and discussed based on the

conceptual framework, case, and descriptive statistics. To investigate whether the use of

any of the strategies affect voting outcome, a regression analysis will be applied. The

results of the regression analysis only suggest whether the independent variables explain

variation in the dependent variable. It does not take into account the timeline, or how the

different strategies are connected. Hence, RQ4 is not meant to yield a decisive conclusion

for whether deparadoxification has affect on decision making, but rather whether the

occurrences of different strategies, as classified by our model, independent of time and

each other, can explain variation in the voting outcome. The data used to answer the

RQs are limited to the period of 1995 to 2020. Furthermore, given the intricacies of

deparadoxification strategies, it is important to note that the paper only investiagte the

occurences of the strategies, as opposed to how they are related to time or each other.

4 1.2 Thesis Structure

1.2 Thesis Structure

This chapter aims to outline the paper to assist the reader by providing a brief description

of the topics covered in the following chapters.

Chapter 2 - Conceptual Framework: Explains central theoretical concepts of

existing literature within social systems theory, organizational decision-making, and

deparadoxification. This chapter lays the foundation of the theory applied in this paper

by constructing an understanding of decision making, how paradoxes appear within

decision-making and how to avoid paralyzation of decision-making.

Chapter 3 - Technical Background: The chapter presents essential underlying technical

concepts of the thesis. This includes the concepts of embeddings, TF-IDF, BERT, RF,

evaluation metrics, and AL. The purpose is to give the reader a conceptual understanding

of how the applied models work and a technical introduction to the most vital techniques.

Chapter 4 - The United Nation Security Council: Describes the United Nations

Security Council as an organization, including its purpose and how they make decisions.

In addition, the chapter will further elaborate on the reason for choosing this specific

organization for analyzing deparadoxification through ML.

Chapter 5 - Methodology: Presents and explains the methods and techniques

applied in the thesis, from data understanding and labeling, to preprocessing, modelling,

hyperparameter tuning, active learning, and regression analysis.

Chapter 6 - Results: Presents the results and performance of the models presented

in Chapter 5. Specifically, AL iterations, hyperparameter tuning, model evaluation, the

predicted distribution, regression analysis, and word clouds.

Chapter 7 - Finding and Discussion: Discusses the findings from Chapter 6 and

correspondingly answer the research questions before presenting the limitations and future

research.

Chapter 8 - Conclusion: Summarizes the result and findings and then concludes on

the presented research questions.

5

2 Conceptual Framework
As this thesis is an interdisciplinary study of social science and data science, focusing on

deparadoxification and its strategies combined with a ML approach, it is necessary to

first understand the phenomenon of interest, deparadoxification. Therefore, this chapter

will present and explain the theory of deparadoxification, in the context of social systems,

organizational decision-making, and previous quantitative research.

2.1 Social Systems Theory

Andersen’s (2003) description of decisions as a communication-theoretical systems theory

phenomenon is predominantly based on Niklas Luhmann’s theory of social systems (TSS)

(Luhmann, 1995). According to Luhmann, a social system is a system that can reproduce

itself through communications, and Luhmann categorizes three types of social systems:

society, organization, and interaction (Seidl and Becker, 2006a). The theory has its roots

in general systems theory, a transdisciplinary field of study seeking to explain behavior

found in complex and organized systems (Whitchurch and Constantine, 1993). This

is apparent in how Luhmann emphasizes that any social operation is part of a system

(Luhmann, 1995).Nassehi (2005) explains the term system as referring to “a holistic

structure that controls all constituent phenomena, with each and every particular in

subordination to the general structure of the encompassing system” (p. 179-180). TSS

stresses that social systems construct their problems in addition to the related functional

solutions utilizing their resources (Nassehi, 2005).

There are primarily two concepts of TSS that are essential to understanding Andersen’s

(2003) description of decisions and deparadoxification, which is communication and

observation. Communication is crucial to understand deparadoxification, while observation

is, in essence, the core of TSS, and important in order to understand communication

(Andersen, 2003). Observation refers to Luhmann’s perspective on Spencer-Brown’s

(1969) theory about observations as operations of differentiation and his calculus of form.

As described by Seidl and Becker (2006a): “An observation is any type of operation

that makes a distinction in order to indicate either side of the distinction” (p. 408).

6 2.1 Social Systems Theory

Distinctions can also be looked at as a selection between options. By the same token,

an observation can be considered as an indication within the scope of a distinction. A

distinction has two sides: An inner and outer side, while the observer does not see the

space from which the observation is made. The inner side is marked, and the outer side is

unmarked. When something is indicated, e.g., slow bureaucracy, the observation of slow

bureaucracy cannot observe the space from which slow bureaucracy was observed. The

unity of this distinction is what constitutes the form of observation. Furthermore, the

unity is what constitutes the observation’s blind spot.

According to Luhmann (1995), communication is a unity between selecting information,

utterance, and understanding. In the classical notion of communication, information

refers to what is being communicated. In other words, it refers to moving information

from a transmitter to a recipient. Utterance refers to how the information is being

communicated and why the communication takes place. Understanding is how the

information is supposed to be understood, and it is the distinction between utterance

and information (Luhmann, 2006). Understanding can also be viewed at as how

following communication might link up with previous communication. This implies that

communication happens retrospectively, because there must be a reply to define it as

communication. This excludes, e.g., monologues from being communicated. It also implies

many possible connections to all communication, allowing for different interpretations and

interactions even though the information stays the same. This entails that the connecting

communication is the deciding force for whether the communication takes place and how

it takes place. As Andersen (2003) explains, understanding is the selecting of a connection

from the pool of possible connections. Another way of looking at communication is as a

flow of selection between these three elements; information, utterance, and understanding,

constantly linking itself to prior communication in a retrospective manner (Andersen,

2003).

Based on communication’s threefold unity and the flow of selection, decisions are not

first made and then communicated, but the decision itself is communication. There are

two types of communication: Ordinary communication, which communicates already

2.2 Organizational decision-making 7

selected content, and decisions, which communicates that a selection has been made,

implying that other alternatives were not selected. This further implies that even though

decisions are communication, it is still possible to communicate about decisions without

that communication is a decision in itself (Schoeneborn, 2011).

2.2 Organizational decision-making

Organizations are driven by a constant need to carry out selections in the form of

decisions (Luhmann, 1988; Schoeneborn, 2011). In addition, the organizations serve as

both the producer and product of decision necessities. This distinguishes an organization

from other social systems, such as interactions (Seidl and Becker, 2006b), when past

decisions become the premise for future decisions. To observe decisions as communicative

observations, rather than individual choices, Andersen (2003) suggests observing decisions

as a form of observation. This entails that a decision is “not an object that one looks at

but a specific distinction that one looks through” (p. 7).

Andersen (2003) proposes that the organizational form of communication in which

decisions take place in the form of all communication, referring to both ordinary

communication and decisions. Therefore, decisions as a form of communication involve

consideration of social expectations. These expectations are Luhmann’s conceptualization

of social structures in social systems (Seidl and Becker, 2006a). This entails that

expectations are, in reality, the communication of expectations that occur based on the

situation. If an expectation is met, it is confirmed and will likely continue to function

as a social structure. If not, the expectation might be changed. All decisions are solely

directed at the social expectations inherent to the organization. Therefore, a decision can

be defined as communication that involves consideration of social expectations. With this

view, decisions only create and fill existing expectations among the organization members

and do not determine the future. By filling expectations about what will happen in the

organization, expectations of future decisions arise, which is why decisions create further

social expectations and following decisions.

8 2.3 Deparadoxification

Fixed Contingency Open Contingency

Decision

Figure 2.1: A form of decision

Decisions generate further social expectations and decisions by installing a boundary in

the communication, separating it into “before” and “after” a decision is made. The “before”

is not established until after the decision, as a decision has to be made to claim that

there ever was a “before”. Therefore, the “before” becomes the point of open contingency.

Contingency is the status of propositions that are neither necessarily true nor false.

During open contingency, there are multiple different solutions available. This contingency

becomes fixed after reaching a decision, implying that only one alternative was selected

while the others were not. Every organizational decision shapes this distinction between

open and fixed contingency concerning the social expectations (Andersen, 2003).

The distinction between open and fixed contingency can be illustrated using notation

from Spencer-Brown (1969), as seen in Figure 2.1. It is the unity of this distinction

that a decision represents. By looking through the distinction, the contingency appears

to be both open and fixed simultaneously. This implies that a decision fulfills social

expectations and generates insecurity by communicating that other alternatives could

have been selected. Given that a decision is the unity of that which it divides, a paradox

is installed.

2.3 Deparadoxification

2.3.1 Introduction to Paradox

In the last couple of decades of organizational and managerial studies, the recognition of

paradoxes has increased (Cunha and Putnam, 2019). Research in innovation, change,

communication, and rhetoric was sparked by paradoxical discussions in the late 1980s

(Smith & Lewis, 2011). According to Putnam et al. (2016) review, over 850 publications

2.3 Deparadoxification 9

were identified to focus on related topics of organizational paradox. A possible explanation

of the emerging research interest could be the change in corporate environments. The

corporate environment have become more global, dynamic, and competitive, resulting

many of paradoxicalities (Smith and Lewis, 2011). Organizational and managerial studies

explain the reality of organizational environments by definitions, but it is assumed to

be highly complex, reflecting the reality. Researchers have expressed a need to confront

present paradoxes found in organizations to understand and explore organizations

(Braathen, 2016). Earlier research has shown the difficulties of transferring formalization,

e.g., applied in mathematics, to other research fields, e.g., organizational and sociological

studies, due to the need of uncover social conditions and formal structures to handle

these as values in a formalized format (Luhmann, 1995). Paradox studies examine how

organizations might simultaneously meet opposing needs. A paradox viewpoint suggests

that long-term sustainability necessitates ongoing attempts to fulfill numerous different

needs (Smith & Lewis, 2011).

A paradox exists when the criteria for an operation’s possibility are also the conditions for

its impossibility (Seidl et al., 2021). In Luhmann’s organizational theory, the paradox of

decisions is central, as if the decision is communicating real alternatives for the decision,

the decision made will not be recognized as it has been decided (Seidl et al., 2021).

A formal definition is that paradoxes are re-entry of a distinction into itself, meaning

that outside of the distinction is entering its inside (Seidl et al., 2021). Consequently,

the inside of the distinction is both inside and outside of the distinction. Due to this

fluctuation, there is no apparent connection for future operations, leading to paralysis.

An example of a paradox within the notion of Luhmann’s work is form. Form has no

reference other than itself, meaning that form contains an inherent paradox (Andersen,

2003). In order to unfold the paradox, the observer’s blind spot needs to be transferred to

a "less disturbing place" (Luhmann, 2006), which will be explained in Chapter 2.3.3.

The term paradox is derived from the Greek word paradoxos, which means beyond or

outside (para) and to think (dokein) (Braathen, 2016). In other words, a paradox is a

statement that is opposed or contradictory to common sense and yet is true. An example

10 2.3 Deparadoxification

from ancient Greek is the liar paradox presented by Chrysippus (Braathen, 2016). The

paradox is as follows: “A Cretan sail to Greece and says to some Greek men that All

Cretans are liars.”. However, this is a paradox as the Cretan says that all Cretans are

liars, but then the question is, is he lying or telling the truth? Common assumptions

are 1) that a liar always tells lies and the antonym of liar, a truth-teller, always tells

the truth, 2) If the Cretan is not a liar, then the Cretan would be a truth-teller. The

third assumption is that the Cretan is not the only Cretan. Therefore, this is a paradox

as it seems impossible to solve if the statement is true or not, and if he is lying, then

the statement would not be accurate. Either way, the statement cannot be confirmed

with the known assumptions, and it is the same with decisions. Every decision is, in fact,

paradoxical (Luhmann, 1995). This will be elaborated on in the next section.

2.3.2 The Paradoxy of Decisions

According to Luhmann (2006), a decision is a result of attribution, and if an organization

could be observed as a network of decisions, then decision-making would be what

differentiated organizations from each other. Furthermore, as Luhmann stated, all

decisions are paradoxical. The form of decisions is self-defined, meaning that decisions

must turn inward and only devote themselves to themselves, which is the paradox of

decisions. Andersen (2003) is using the term paradoxy of decisions to describe the

inherently paradoxical nature of decisions.

As an extension to the paradoxy of decisions, Andersen (2003) presents a threefold

paradoxy of decisions, meaning that decisions are paradoxical in three different ways.

Firstly, Andersen (2003) states that only fundamentally undecidable questions can

be resolved, meaning that decisions cannot be reached as they will always have the

effect of creating potentially new decisions. Therefore, forced freedom is a paradox.

Luhmann uses the Heinz von Foerster (1992, p. 14) quote to explain how decisions

are, in fact, a paradox as they are undecidable, “Only those questions that are in

principle undecidable, we can decide” (Knudsen, 2006). If the question can be resolved

through a calculation, it is not a decision. As Knudsen (2006) describes, for a decision

to be valid, the options presented need to be assumed to be of the same weight; if

not, the options would not have been recognized as valid options to choose. Therefore,

2.3 Deparadoxification 11

the given alternatives are equally valid; there are no better or worse alternatives –

otherwise, these would not be authentic alternatives. If the alternatives were of different

value (in which case they would not be real alternatives), there would be no need

to decide between them anymore, as the decision situation would have already been decided.

Secondly, as noted earlier, decisions fulfill social expectations of the future, but the

decisions are always reached retrospectively. Therefore, it is impossible to determine

whether: 1) the decision was resolved, 2) the expectations were fulfilled, or 3) the

contingency was fixed or not. The argument is that the following potential decision seizes

the essence of the decision. In other words, decisions continually determine whether

previous interactions may be considered decisions and can be utilized as a foundation for

future decisions(Andersen, 2003). To summarize, decisions create new decisions. It is a

paradox as the decision is not valid before it is confirmed as a decision hypothesis, making

decisions determined by other decisions and not by itself as an individual decision.

The third part of the paradox is that deciding whether a decision was made is a decision

in itself, meaning that it may not be evident even in retrospect. The exception is a

new decision deciding if the previous decision was a decision. Therefore, a decision must

decide whether it is a decision, which is basing the definition of a decision on a paradox.

For an organization, this means that the organization must make decisions and decide

what a decision within the organization is. Therefore, there are several measures that an

organization needs to address when deciding on a decision, e.g., organization and context,

and due to the paradox, these measures can only be partially fixed, which is visualized as

Figure 2.2 (Andersen, 2003).

2.3.3 Deparadoxification Strategies

As earlier stated, decisions are a communicative form, and according to Andersen (2003),

any communication introduces a degree of contradiction into the conversation. When a

communication encounters its contradiction, it becomes paralyzed by the realization of

it being unable to decide. Therefore, the decisions need to avoid a collision with their

paradox and avoid being perceived as boundless. In order to do so, deparadoxification

12 2.3 Deparadoxification

Fixed Contingency

Decision

Open Contingency

Fixed Contingency

Decision

Open Contingency

Figure 2.2: A form of re-entry, adopted by Andersen (2003)

must be applied. Deparadoxification is a phenomenon described by several researchers,

under different but similar terms, e.g., deparadoxization, and de-paradoxify (Seidl and

Becker, 2006a; Knudsen, 2006; Sohn, 2021).

The practicality of Luhmann’s TSS for empirical research was demonstrated by Knudsen

(2006) by examining modernization processes whereby decision-making within the Danish

public sector, explicitly analyzing Frederiksborg County Health Authority. Following

the Frederiksborg County Health Authority for approximately 20 years, Knudsen (2006)

showed that the Frederiksborg County Health Authority emerged within referencing to

itself and at the same time handling the paradoxy of decisions by deparadoxification.

An empirical example, the county created two hospital plans in 1980 and another one

in 1997; both plans communicate the decisions made and legitimize the decisions by

self-referencing, e.g., §11, subsection in law number 324 and the county health committee

(Knudsen, 2006). From 1980 to 1997, Frederiksborg County Health Authority effectively

defined itself as an organization by creating connected decisions and decision premises

(Knudsen, 2006). The establishment of decision premises is part of the deparadoxification

strategies. The County Health Authority displaced contingency related to all the

mentioned deparadoxification strategies; temporal, social, and factual.

Deparadoxification is the term for moving the paradoxy of a decision out of sight to prevent

paralyzing the decision-making (Seidl, 2006). There are three distinct types for strategies of

deparadoxification of decisions: temporal, social, and factual deparadoxification (Luhmann,

2006; Andersen, 2003). The strategies are related to the dimensions of meaning in

2.3 Deparadoxification 13

communication, and they lay the foundation for avoiding the paralyzation of decision-

making. Whether and how these theoretical concepts manifest themselves in practice will

be elaborated on in chapter 7. The following paragraphs will explain the three types of

deparadoxification, termed deparadoxification strategies.

2.3.3.1 Temporal

A temporal deparadoxification strategy can be perceived as a reaction to the urgency of

the moment (Andersen, 2013). Temporal deparadoxification refers to a strategy related to

a time momentum, and these tensions are created by communicating expectations within

the time horizon and the field of experience. As Derrida (1992) states, to encounter the

paradoxy of decision, the decision must appear as the decision is required immediately,

“right away”, to be valid. In addition, it must furnish itself with infinite information and

complete knowledge of conditions, rules, or hypothetical imperatives that could justify it.

As Derrida argues, despite how much time the decision would need to meet the condition,

the moment of decision will always be finite of urgency (Derrida, 1992). The strategy

makes it appear that the decision-making cannot be postponed any further, and therefore

a decision has been made without immobilization of the threefold paradox (Andersen,

2013). Typical phrases associated with temporal are “time is ripe” and “the time has

come", referring to the moment of making the decisions and urging for a decision to be

made.

As Andersen (2003) describes, the undecidability of the decision is minimized by splitting

the decision, meaning that parts of the decision can be mature for a decision. An example

of this is when considering significant decisions, e.g., building a bridge or a tunnel, which

may be too significant to decide. The temporal deparadoxification strategy is constructing

more feasible decisions by splitting the main decision into smaller and more feasible

ones, e.g., location, design, or technical choices. Consequently, the decision premises are

changing over time, and appear more manageable, but also creating future sequences

of decisions, like in a construction plan; future scenarios are created once the decision

of building a bridge is divided. By dividing the decision, future scenarios are created,

which is part of temporal deparadoxification. The intention of creating the future is

to change “what can still be changed” to “what cannot be changed”, as it would make

14 2.3 Deparadoxification

the decision appear as a choice made at present. Andersen(2003) also argues that some

future scenarios are staged as more agreeable than others with different decision premises,

making it appear as if some decisions are appealing long term despite what could be

presented as a short-term advantage.

Temporal deparadoxification strategy has been identified by Knudsen (2006) in practice,

and during an interview in 1999, an officer manager that was making a draft expressed

the following:

"The closer we get to the finishing line the less clear the papers become in order for
people to connect to them. It is a well-known situation; it is often like that. It
doesn’t make it any easier for the rest of us when we have to follow up on the
decisions with the unions – for what exactly have they agreed to?” (Knudsen
2006,p.121-122).

The quote describes what happens in decision-making when a decision emerges. As

the office manager expressed, the contingency concerning the decision is masked.

The contingency is shifted to the future, making it possible to perform decisions.

The construction of moving the contingency for the future is typical for temporal

deparadoxification.

2.3.3.2 Social

When a decision appears as if it has already been made and the only thing necessary to

complete it is formal requirements, it is called social deparadoxification (Andersen, 2003).

Social deparadoxification is about using central players for a decision and assigning these

players traits, e.g., power, interests, and actions, and communicating that the decision has

already been made. Applying this technique avoids the paradox of a decision as it seems

that the decision is already decided. When a decision appears as if it has already been

made and the only thing necessary to complete it is formal requirements, it is called social

deparadoxification (Andersen, 2003). The social deparadoxification differentiates itself as

a strategy, as the expectation of the decision is addressed towards the communicator of

«them», «me», and «us». As Andersen (2003) states, no social space can be constructed

2.3 Deparadoxification 15

with “us” without having an existence of “them” and that the social space is created every

time this tension occurs.

The decision premises that create a paradox are solved when applying social

deparadoxification. For example, if it appears that the CEO is following a strategy of

deciding on the alternatives with the lowest costs. As it seems that the CEO follows this

strategy, the decision on the different options is already decided before it takes place

(Seidl,2021). The decision, then, is no more or less than a resolution of the parties to

accept or lead towards the oblivious result, in other words, a formalization. In other

words, when deciding upon a decision what is in the CEO’s strategy is constructing that

the decision appears to be already taken.

An empirical example of social deparadoxification strategy was identified in the works

of Knudsen (2006), a decision-proposal regarding a general plan for the county. A

decision-proposal were sent for hearings within the organization, and as Knudsen (2006)

argues, hearings can be recognized as testing virtual decisions, which involve committees,

stakeholders, and related groups. After hearings, the proposal is adjusted, and a report of

a hearing response contains a significant number of pages from more than 80 respondents.

Then the decision is finally confirmed. The contingency is displaced by assigning the

decision to a person or an institution. In this case, it was achieved by connecting the

decision to the institution through hearings, a social actor.

2.3.3.3 Factual

Factual as a deparadoxification strategy is best described supplying the decision-maker

options to choose from or between different options (Luhmann, 2006). Factual

deparadoxification moves the paradoxy of a decision out of sight, by creating alternatives

for the decision maker to choose from (Andersen, 2003). When using factual

deparadoxification, the decisions appear as results of the circumstances, enabling the

decision-maker to decide upon a decision. The alternatives in a decision-making situation

are also a decision, and the reason for this is that it decides on what grounds the decision

will be decided on. The factual deparadoxification strategy is typical as decisions are

16 2.3 Deparadoxification

usually perceived as choices between alternatives. As Andersen (2003) describes, by

referring to the circumstances of the decision, e.g., “environment”, “market”, “globalization”

or “economy”, these circumstances are shaped like a “someone” or “something” that

determines whether a decision should be executed. Part of the strategy is the decision

to communicate themes and objects, whereas themes and objects are defined as the

distinction of “being-one-thing-and-not-another” (Andersen, 2003).

Factual deparadoxification can also be perceived as creating decision rules is one of the

ways of moving the paradoxy of decision out of the situation, which can allow different

ordered alternatives, e.g., "choose the option that has the lowest financial costs" or

"choose the option that is the most pragmatic one" (Seidl et al., 2021). The paradoxy

of decision is still present, but by choosing a selection of decision rules, the decision

is not paralyzed as the paradox is shifted to which decision rule the decision-maker

should decide. Therefore, the situation is undecidable, and by moving the paradox out of

the situation, the delay in determining the paradox constructs that it will never be resolved.

An example is when a CEO states that a new business strategy has been decided, the

CEO also needs to communicate the existence of other alternatives. Otherwise, the

decision would not exist as there would be nothing to decide (Seidl et al., 2021). The

more the other alternatives are communicated as valid options, the more the audience

will question the decision. Moreover, constructing that the decision may be undecided,

and for this reason, the CEO is facing a paradox where it is necessary to convince

the audience that there was a definite decision with alternatives, but that the other

options should not be considered as the decision has been made (Seidl et al., 2021).

The mentioned example is hypothetical and not empirically shown, but an empirical

example of factual deparadoxification is presented in the next paragraph of Knudsen (2006).

A real example of factual deparadoxification, described by Knudsen (2006), is proposal by

the Danish health authorities which states that there should be independent management

for the entire health service. The memorandum lists more than 30 purposes and positive

effects of the suggestion, which implies contingency. There are many purposes, meaning

2.4 Quantitative Research Context 17

that the connectivity to the decision proposal cannot be taken as decided (Knudsen,

2006). However, the decision’s contingency is shifted to the purposes, and the purposes’

contingency is shifted between the purposes (Knudsen, 2006). Consequently, the reader

cannot examine the substantial number of chains.

2.4 Quantitative Research Context

The Luhmannian way of conceptualizing deparadoxification is acknowledged and

recognized by researchers within managerial and organizational studies (Andersen, 2003;

Knudsen, 2006; Smith& Lewis, 2011). Nevertheless, there is still a demand for further

research within this field. As both Andersen (2003) and Knudsen (2006) have recognized,

there is a need for empirical studies, such as quantitative analyses (Seidl et al., 2021).

Moreover, as Andersen (2003) argues, there are different ways organizations can apply

deparadoxification strategies within decision-making, which makes further empirical

examinations necessary.

Cohen et al. (1972) translated organizational decision-making to a simulation model,

known as the garbage can model, and demonstrated possible applications of using such

models. Even though the garbage can model is ineffectively solving the tasks it was designed

for, it showed how decision-making theory could be used in practice with a quantitative

approach (Cohen et al., 1972). Furthermore, the study provided an understanding that

organizational design and decision-making can recognize the existence of the garbage can

model. Finally, the model exemplified how organizational theory can use data science.

Ever since the model was developed in FORTRAN during the 1970s, there has been an

unprecedented development in the field of data science, implying the potential for better

models combining data science and organizational studies. This remarkable technological

development, combined with the call for empirical studies of deparadoxification to fill the

research gap, motivates the quantitative approach chosen by this paper: applying modern

machine learning algorithms to detect and analyze deparadoxification strategies.

18 2.5 Conceptual Framework Conclusion

2.5 Conceptual Framework Conclusion

This chapter has presented and explained the conceptual framework for this research

paper. The theory of deparadoxification relies on Luhmann’s theory of social systems.

As Luhmann states, a social system is a system that can reproduce itself, and an

organization is a type of social system which reproduces itself by decisions. According to

Luhmann, organizations are based on decisions, meaning that decisions are moving the

organization onward. Decisions are a type of communication that inherent a boundary in

its communication, separating before and after a decision. Before a decision is made,

there are multiple alternatives, meaning that it is an open contingency, while after a

decision is made has a fixed contingency. The "before" of a decision is not confirmed

before the "after" of the decision. In other words, as open and fixed contingency occurs

simultaneously, it is a paradox. Therefore decisions are inherently a paradox, and as

paradoxes cannot be solved, the paradox has to be moved to "out of sight" to avoid

paralyzation of decision-making.

The concept of shifting the paradox is termed deparadoxification, and there are

three specific strategies: temporal, social, and factual deparadoxification. Andersen

(2003) further developed these strategies established by Luhmann (1993). Temporal

deparadoxification is regarded as a reaction to the immediacy of the situation (Andersen,

2003). Social deparadoxification masks the paradox of the decision by providing alternatives

for the decision-maker to consider (Andersen, 2003). Another way of shifting the paradox

is by constructing alternatives for the decision-maker to choose from (Andersen, 2003).

Researchers within the area, e.g., Andersen (2003) and Knudsen (2006), call for more

empirical research within the research area of deparadoxification. Research conducted

by Cohen et al. (1972) applied data science techniques to decision-making. The research

results were ineffective, but as data science has advanced rapidly over the years, modeling

decision-making could be more successful. This is what constitutes the main purpose of

this paper: To fill the research gap of empirical studies on deparadoxification. The authors

have chosen a approach which to their knowledge has not been tried before. Namely,

combining the field of machine learning and deparadoxification, with the goal of improving

our understanding of how organizations make decisions and how deparadoxificaiton can

2.5 Conceptual Framework Conclusion 19

be analyzed following a quantitative approach. While this chapter has explained the

deparadoxification component of the paper, the next chapter, Technical Background

(Chapter 3), will explain the machine learning component.

20

3 Technical Background
Given the advancements in language representation, especially within embeddings,

there have never been better opportunities to answer the call for empirical studies on

deparadoxification,as expressed by Andersen (2003) and Knudsen (2006), through an

applied statistical approach, namely ML. Using a recently developed state-of-the-art

language representation model, the authors wish to investigate whether and how

Luhmann’s deparadoxification strategies, as explained by the conceptual framework,

manifest themselves in the real world. This will be done using three key ML methods:

embeddings, classification, and AL. All will be explained in this chapters. The goal is to

see whether a ML model can learn to recognize deparadoxification strategies by analyzing

the patterns found in the meeting minutes of the UNSC in order to answer the research

questions, which can be found in chapter 1.1.

This chapter will introduce essential ML concepts to the reader. While it is not necessary to

have a an expert understanding of these concepts in order to understand the methodology,

it is recommended that the reader has a conceptual understanding of how the models

work. In addition, to interpret the results correctly and grasp how the models were tuned,

having a technical understanding of the evaluation metrics is also recommended. As a

prerequisite, the reader should have a general understanding of ML. Fundamental concepts,

such as the difference between supervised and unsupervised ML, or what a neural network

is, will not be explained in detail. In addition, it is assumed that the reader is familiar

with regression analysis, which will be used to answer RQ4.

3.1 Embedding

Within NLP, sequence modeling and transduction problems such as language modeling

are prominent subfields (Chowdhary, 2020). Language modeling is a set of statistical and

probabilistic techniques for determining the probability distributions of linguistic units,

for example, words or sentences (Rosenfeld, 2000). Some of these techniques concern

embedding the data, which is an integral part of modern NLP approaches. Embeddings

are distributed representations trying to capture the syntactic and semantic properties

3.2 Term Frequency-Inverse Document Frequency 21

of the linguistic data (Turian et al., 2010). To illustrate, by embedding a set of words,

each word is represented by a real-valued vector, called the embeddings. This is why

embedding is sometimes referred to as vectorization or feature extraction because the

method extracts features from the text in the form of vectors. Embedding linguistic data

allows it to be used by ML algorithms, which can only read numerical data. Consequently,

traditional ML tasks, such as classification, can be performed on linguistic data if it is first

embedded. The two embedding techniques which will be used to represent the meeting

minutes are the term frequency-inverse document frequency (TF-IDF), which will be used

as the primary benchmark model, and the Bidirectional Encoder Representations from

Transformers (BERT).

3.2 Term Frequency-Inverse Document Frequency

An embedding technique common to baseline models is TF-IDF (Aizawa, 2003). The

technique is used to find the meaning of documents, normally sentences, based on the

words they contain. In this context, each paragraph from the meeting minutes constitutes

a document. TF-IDF is constructed in such a way that it assigns a weight to each word

based on the calculated relevance. The idea behind TF-IDF is to solve the problem of

former embedding techniques, such as bag of words, which only considers word frequency

but fails to recognize word importance. This is partly why TF-IDF is the baseline

embedding technique, as it is designed to consider relevance, but fails to account for

sequential order and synonyms. In other words, TF-IDF is both non-contextual and

non-semantic. Comparing TF-IDF to BERT, investigates whether using a contextual

(and therefore also semantic) embedding technique, like BERT, is beneficial when trying

to extract and transform deparadoxification strategies into feature vectors. Furthermore,

TF-IDF is proven to be an effective vectorization method with broad applicability, and it

is substantially cheaper than BERT in terms of computational resources. Suppose TF-IDF

was to outperform BERT, or nearly match its results. In that case, one could argue

that context is less important when determining what constitutes a deparadoxification

strategy, instead of which words are used independently of each other.

The weight assigned to each word using TF-IDF is a product of two different statistics.

22 3.3 Introduction to BERT

The first one is term frequency (TF). TF is similar to bag of words in the sense that

it refers to how often each word occurs in a given document, which is calculated using

Equation 3.1.

TF (w, d) =
Number of occurrences of word w in document d

Number of words in document d
(3.1)

The second statistic, inverse document frequency (IDF) is what makes TF-IDF pay

attention to relevance. IDF measures how significant a word is for the whole corpus. It

does so by offsetting frequently occurring words in many of the documents, hence making

them less relevant. This counteracts the inflated valuation of a word that TF might cause.

It is calculated using Equation 3.2. Combining these two metrics by multiplication leaves

us with TF-IDF, as defined by Equation 3.3.

IDF (w) = log (
Number of documents

Number of documents with word w
) (3.2)

TF -IDF (w, d) = TF (w, d) ⇤ IDF (w) (3.3)

The numerical representation of a specific word, which TF-IDF yields, does not provide

much information on its own, but when comparing the TF-IDF weights of two different

words, the one with the highest value has the highest relevance for the document it is

contained in. Training a supervised ML model, such as RF, with TF-IDF weights allows

it to learn and recognize patterns and differentiate between the documents, depending on

the quality and variability of the training data provided.

3.3 Introduction to BERT

There are many different types of neural networks applied within different domains and

for different ML problems. One of these types is called recurrent neural networks (RNNs).

RNNs were designed to persist information by making every input dependent on each other,

providing each data point with a context. This was especially useful for sequence-related

tasks such as language modeling. While impressive at their time, they suffered from

short-term memory, having difficulties maintaining information over long sequences. This

3.3 Introduction to BERT 23

is known as the vanishing gradient problem. As a result, long short-term memory (LSTM)

and gated recurrent unit (GRU) models, both being a type of RNNs, were introduced

to solve this issue. Their key features are the memory cell and their gates. LSTMs and

GRUs were considered state-of-the-art approaches to language modeling for a long time

(Vaswani et al., 2017). In 2014, the encoder-decoder model for RNNs was introduced to

push further the boundaries of LSTMs and GRUs (Cho et al., 2014; Sutskever et al., 2014).

The encoder consists of stacks of RNN cells, e.g., LSTM cells. Its purpose is to convert

the input data into the required format, known as the hidden state. For example, in the

context of the UN dataset, the encoder would convert a paragraph into a two-dimensional

vector, the hidden state, which tries to capture the context and sequential dependencies

between the words. Finally,the decoder tries to convert the vector to the desired output

sequence.

3.3.1 Attention and the Transformer

In 2016, the attention mechanism, an extension to the encoder-decoder model, was

introduced to make it easier for the model to deal with longer sequences (Bahdanau

et al., 2015). The general idea of the attention mechanism is to allow the decoder to

use the most relevant pieces of the input sequence in a flexible approach. It uses the

weighted sum of all the hidden states as a context vector to focus the decoder’s attention.

While encoder-decoder models improved language modeling, they still struggled with

long-term dependencies, and their architecture prohibited parallelization. To deal with

these problems, the transformer model was introduced by Google Brain (Vaswani et al.,

2017).

24 3.3 Introduction to BERT

Figure 3.1: The Transformer - model architecture (Vaswani et al., 2017).

The transformer is designed as an encoder-decoder model for handling long-term

dependencies (Figure 3.1). In contrast to LSTM and GRU encoder-decoder models,

the transformer relies entirely on self-attention to compute representations of the inputs

and outputs without using sequence-aligned RNNs. As opposed to a regular attention

mechanism, self-attention allows the inputs to interact with each other. The main intention

is to handle the dependencies between the inputs and outputs entirely with attention

mechanisms and recurrence. As illustrated by Figure 3.1, the transformer mainly consists

of two blocks: The encoder and the decoder. The encoder contains a multi-head attention

layer and a regular feed forward neural network layer. The attention layer is referred to

as multi-head attention because it computes the self-attention multiple times in parallel,

and the outputs are concatenated and linearly transformed. The decoder has a similar

structure, except that it has, in addition, a masked multi-head attention layer at the

beginning.

3.3 Introduction to BERT 25

3.3.2 BERT

In 2018, Google released a language model based on the transformer: BERT (Devlin et al.,

2019). BERT applies bidirectional training of the transformer to language modeling. The

transformer consists of an encoder and decoder, which is useful, e.g., machine translation.

However, BERT only requires the encoder part (left side of Figure 3.1) since its goal

is to generate a language model, instead of predicting sequential outputs. Hence, no

decoding is necessary. Furthermore, BERT utilizes transfer learning, a ML method where

a pre-trained model is used as a starting point for specific task-oriented training. In other

words, the model is trained on one task and then repurposed for another. Hence, BERT

is trained in two phases: Pre-training and fine-tuning.

The pre-training consists of two unsupervised prediction tasks, the first one being masked

language modelling (MLM), and the second one being next sentence prediction (NSP)next

sentence prediction (NSP). Google has released two pre-trained versions of the model:

BERT base, which contains 12 stacked transformer encoder layers, and BERT large,

containing 24 layers. BERT base, which will be used in this paper, has 768 hidden layers

and 110M parameters. The reason for choosing BERT base is that it requires significantly

fewer resources than BERT large. Both models were pre-trained on the whole English

Wikipedia and the Brown corpus. During the first pre-training phase, MLM, the model

randomly masks a set of the input tokens before trying to predict them based on their

context. The purpose of MLM is for BERT to understand the relationship between words.

During NSP, BERT performs a binary classification task: Given two sentences A and B,

is B the actual next sentence after A, or is B just a completely random sentence from

the dataset. This phase allows BERT to understand the relationship between sentences.

While there are considerably more details and technicalities that allow BERT to function,

this brief introduction is sufficient in providing an idea of how BERT learns to understand

language during pre-training.

There are two distinct approaches BERT can be used to solve ML problems: Fine-tuning

and feature-based. Fine-tuning entails adding an extra output layer at the end of the model,

before further training the model for the specific task. The feature-based approach entails

26 3.4 Random Forest

using BERT only to extract the embeddings from the task relevant data, before using a

different ML model to actually perform the task. As BERT’s authors state, the incentive

to use the feature-based approach is the major computational benefit of only using BERT

once to retrieve all the embeddings and then run experiments on the embeddings with

cheaper models (Devlin et al., 2019).This major cut in computational resources and

processing time is the main reason why this thesis project uses the feature-based approach.

A cheaper model allows the authors to run more experiments with different data subsets

and hyperparameters. Ultimately, this leads to a more thorough investigation of how

deparadoxification strategies can be detected using ML. The model chosen to be used on

top of the BERT embeddings is RF. To summarize, BERT will be used to transform the

textual data into numerical data, called the embeddings, and RF will be trained on the

embeddings to perform the classification. This model combination of BERT and RF will

be referred to as BERT-RF. RF will also be used on top of the TF-IDF embeddings to

compare it with BERT. This model will be referred to as TFIDF-RF.

3.4 Random Forest

RF is a supervised ensemble learning algorithm used to solve classification and regression

problems. It has broad applicability, and despite being around for over 27 years, it is still

one of the most popular machine algorithms (Ho, 1995; Ray, 2019). An ensemble learning

algorithm aggregates the predictions of a group of independent predictors. In the case of

RF, these predictors are decision trees. A decision tree consists of three elements: a root

node, decision nodes, and leaf nodes (Géron, 2017). Each tree works by letting the data

sample flow from the top (root node) to the bottom (leaf nodes), splitting the sample

at each decision node based on some parameter. The leaf nodes of trees designed for

classification tasks have categorical outcomes. For example, in the context of classifying

deparadoxification strategies, each tree contains four types of leaf nodes, each representing

one class: Factual, social, temporal, and not relevant. The amount of decision nodes

depends on the hyperparameters chosen for the model.

The concept of hyperparameters and how they were chosen during this study is explained

in detail in Chapter 5.7.5. The decision nodes split the sample by asking Boolean questions

3.5 Active Learning 27

regarding the features of the sample. These questions are generated based on a chosen

criterion, e.g., entropy or gini, which are both functions to measure the quality of the

split based on statistical dispersion. RF typically combines hundreds or thousands of

trees, training them using the bagging method. By using this method, each tree is trained

using randomly selected, with replacement, samples from the data. By doing this, the

overall variance when aggregating the trees are lower compared to that of a single tree. In

addition, even though using a sample dataset for training the trees, instead of the whole

dataset, increase each tree’s bias, the overall bias is barely affected when aggregating the

trees (Daumeé, 2017). The reason for choosing RF specifically as the classifier is that

even though it is a fairly cheap model that takes less time to train than, e.g., a deep

neural network, it is good at avoiding overfitting, and it handles higher dimensions and

large datasets well (Sun et al., 2020). It also has a good classification and generalization

ability (Li et al., 2010). In addition, RF is a non-parametric model, which entails that

the complexity increase as the number of training examples increase, implying that the

model is quite flexible and needs less training data than parametric models. This was

beneficial to the project because even though it was unknown how extensive the training

dataset would be or how the data was distributed, it was expected that the size of the

training data would be rather small.

3.5 Active Learning

Because no labeled deparadoxification data exists, to the authors’ knowledge, the training

data, in this case, the UNSC meeting minutes, must be manually labeled before it can be

used for supervised ML. AL will be used to boost this labeling process. AL is a subfield

within ML that aims to make and labeling processes more economical by allowing the

algorithms to influence the acquisition of the training data (Settles, 2011). In other words,

AL is computing the statistically optimal way of selecting training data (Cohn et al.,

1996). This is useful when the dataset is unlabeled, which is true for the UNSC dataset,

and when labeling the data is resource-demanding. In addition, it is well established that

using AL can lead to higher accuracy models with fewer annotated instances. Considering

the labor-intensive activity of reading and evaluating hundreds of paragraphs of political

speeches, applying AL ensures a more efficient labeling process and possibly a better

model, and hence fits well with the purpose of this paper.

28 3.6 Evaluation

There are different approaches to AL, depending on the purpose and context of the

project. This paper use pool-based sampling, a method suitable when there is a large

pool of unlabeled data from which you want to draw out the most informative instances

(Wang, 2014). All instances, or subsets, of the data are assigned a confidence score based

on how informative each instance is. Then the most informative instances are selected

to be labeled by the annotators, termed oracles. To illustrate, in a scenario where a

linear classifier is used, the most informative instances would be the ones closest to the

decision boundary. Labeling one of these instances and then re-training the model would

likely move the decision boundary more than if an instance far away from the decision

boundary was labeled. In other words, the most informative instances are the ones in

which the model is the most uncertain of. However, there are different ways how evaluating

informativeness. The strategy of choosing which data examples to label next is called

the query strategy. The strategy chosen for this paper, least confidence sampling, will be

elaborated on in the AL chapter (Chapter 5.7.4).

3.6 Evaluation

Choosing the right metrics to evaluate the model plays an important role in achieving

the optimal classifier. The evaluation metrics function as feedback based on how well

the model performs, which is especially helpful during hyperparameter tuning. This

chapter will describe the most fundamental evaluation metrics chosen to iteratively

evaluate the model, and how they function. The metrics that will be described are the

confusion matrix, accuracy, precision, recall, F1-score, and the difference between micro

and macro measures. While these are not the only evaluation metrics that will be used,

these are the most fundamental ones that the reader should understand well (Skansi, 2018).

Accuracy shows the ratio of correct predictions over the total number of evaluated instances

(M and M.N, 2015). In other words, it shows the fraction of predictions that were correct.

It does so by adding the true positive (TP) and the true negative (TN), before dividing

the sum with the total number of instances, including the TP, false positive (FP), TN,

and false negative (FN) (Equation 3.4).

3.6 Evaluation 29

Accuracy =
TP + TN

TP + FP + TN + FN
(3.4)

Precision indicates how well the classifier avoids FPs by dividing the TPs with the sum of

the TPs and FPs (Equation 3.5). Recall indicates how many possible TPs the classifier

managed to classify correctly. It is calculated by dividing the number of TPs with the sum

of TPs and FNs (Equation 3.6). In other words, recall shows how many class instances

the model managed to classify correctly. Precision and recall are competitive metrics,

because increasing precision will lower the recall, and the other way around. For instance,

if the model would predict that every paragraph is of the class temporal, then the recall

for temporal would be 100% because the model successfully detected every instance of the

recall class. However, the accuracy would likely be far off, as the model predicted that all

data instances in the dataset are temporal.

Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + TN
(3.6)

A confusion matrix shows the true values for each class, displayed in the rows of the

matrix. The columns show the values that the chosen model predicted. Because this

paper investigate four different classes (not-relevant, factual, social and temporal), the

matrix will contain four rows and four columns. Investigating the confusion matrix values

can give insights into how well the model distinguishes the different classes.

Table 3.1: Confusion Matrix - Example

Predicted Positive Class True Positive (TP) False Negative (FN)
Predicted Negative Class False Positive (FP) True Negative (TN)

True Positive Class True Negative Class

The F1-score shows the harmonic mean of precision and recall (Takahashi et al., 2022).

In other words, it combines the two metrics. This is especially useful when the goal

30 3.6 Evaluation

is to maximize precision and recall, which otherwise are competitive metrics. The F1-

score is normally used when FPs and FNs are more or less equally undesirable. This

makes it suitable to be used as the main metric for evaluating the models in this paper,

considering that the goal is to maximize precision and recall. In addition, FPs and FNs are

equally undesirable. It is worth to note that the micro averaged F1-score for multi-class

classification when each data point can only be assigned to exactly one class, is the same

as accuracy. The concept of micro averaging will be elaborated on in the next paragraph.

The F1-score is also quite useful when the classes are imbalanced, which might be the

case for the deparadoxification strategies, but this remains to be seen. The F1-score is

calculated using Equation 3.7. F1 is also a good choice when comparing different models,

which this paper will do by comparing a contextual language model (BERT-RF) with a

non-contextual model (TFIDF-RF).

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
(3.7)

Because this paper deals with a multi-class classification problem, averaging different

metrics will be relevant for the model tuning and evaluation. There are several ways to do

this, but the two most relevant are micro and macro averaging. These different techniques

provide different perspectives on the model, each insightful in their own way, hence both

of them will be used during evaluation. In short, macro averaging does not take data

distribution into account, while micro averaging does. Macro averaging computes the

given metric, e.g., F1, for each class independent of each other, before averaging the

scores. Hence, the Macro F1-score treats all the classes equally, assigning just as much

importance to, e.g., factual as not-relevant. On the other hand, micro averaging considers

the contribution of each class by being biased by the class frequency. It does so by

calculating the averages globally instead of first considering each class independently. This

is relevant when one wishes to investigate how well a classifier performs on an unbalanced

data distribution when taking the distribution into account. If the distribution is perfectly

uniform, micro and macro averaging yields the same results. See Sklearn’s documentation

on metrics and scoring for further reading (Sklearn, 2022).

3.7 Technical Background Conclusion 31

3.7 Technical Background Conclusion

This chapter has introduced the essential models, techniques, and evaluation metrics that

will be used throughout this paper. To summarize, to investigate the deparadoxification

strategies, the three main ML concepts that will be applied are embedding, classification,

and AL. First, each paragraph in the dataset set will be embedded, which entail

transforming the textual data into numerical vector representations. Two embedding

approaches will be applied, BERT and TF-IDF. These approaches will be compared to

each other to investigate whether a contextual and complex model, such as BERT, is

better for extracting the patterns of deparadoxification than a simple non-contextual

model, such as TF-IDF. In order to use the embeddings to answer the research questions,

a RF classifier model will be trained using the embeddings as training data. This will

result in two models, BERT-RF and TFIDF-RF, whereas TFIDF-RF will function as the

main benchmark model. The goal of these models is to predict which deparadoxification

strategy each data point belongs to. The data points are the embeddings, and each

embedding represents a paragraph in the UNSC meeting minutes. The deparadoxification

strategies will be represented using four classes: Not-relevant, factual, social and temporal.

Because there is a complete lack of available training data on deparadoxification strategies,

the data must be manually labeled. In order to make this process more efficient, AL will

be applied. AL is a technique for letting the model decide which data points should be

labeled next to maximize the learning based on a query strategy. Different evaluation

metrics will be used to evaluate and tune the models, both with and without micro and

macro averaging. These metrics are mainly precision, accuracy, recall, and the F1-score,

in addition to the confusion matrix. The F1 micro score will be the main choice of metric.

In the context of non-multi-label classification, F1 micro is the exact same metric as

accuracy.

n

32

4 United Nations Security Council
This chapter introduces the organization chosen as the case study for analyzing

deparadoxification through ML, namely the UNSC. The purpose of the chapter is to give

the reader an understanding of why the UNSC was chosen for this project, in addition to

a basic understanding of the UNSC’s purpose and how they function.

There are four main reasons why the UNSC, precisely its meeting minutes, was chosen for

this project. Firstly, the UNSC has highly structured and consistent meeting minutes.

Considering the complexity and intricacies of NLP and ML, especially when combining

it with deparadoxification theory, having a well-structured and consistent dataset is of

high priority. This will make it easier to process the data and train the model, possibly

allowing higher predictive performance. Furthermore, it allows for more time to be

invested in model building and analysis, instead of data cleaning and data preparation.

Secondly, because the core activity of the UNSC is to decide upon resolutions, the dataset

consists fundamentally of different social actors discussing and making decisions. This fits

perfectly with training a model that looks for patterns of deparadoxification. Thirdly,

because the dataset contains the voter outcome of resolutions, it is possible to investigate

relationships between deparadoxification strategies and decision outcomes. Because of

this reason, not only does the dataset allow for the training of a classifier, but it makes it

possible to explore whether and how deparadoxification strategies affect decisions. Lastly,

because the UNSC is arguably one of the most important peacekeeping organizations,

understanding of their communication and decision-making further expands society’s

knowledge base for successful peacekeeping solutions.

The UNSC is considered the centerpiece of the UN, with all 193 UN member states

accepting its decisions as binding, despite criticism regarding its undemocratic character

(Luck, 2006). The purpose of the council is to maintain international peace and security.

However, it has no direct obligation to take responsibility for every international security

crisis (Bellamy and Dunne, 2016). The UN charter allows the UNSC to define most of

its own agenda and adopt whatever course of action. Enforcement measures such as

33

economic sanctions, ceasefire directives, or collective military action might be initiated if

a dispute cannot be settled by those involved. Due to limited resources, the council’s

decisions often anticipate cooperation with regional organizations (Malone and Malone,

2004).

The council consists of 10 non-permanent members, elected for a two-year term, and five

permanent members: the USA, China, Russia, France, and the UK (Basu, 2004). The

members take turns in holding the presidency on every month. The president calls and

conducts the meetings and approves the provisional agenda (Security Council Report,

2019). While some of the meetings are held in private, the large majority are public, in

the sense that the meeting minutes are published (Sievers and Daws, 2014). In addition,

non-members may be invited to a meeting if their input is needed. The provisional agenda

of each meeting is constructed by the UNSC’s Affairs Division and then approved by the

Secretary-General. There are six official languages of the UNSC, of which all meetings shall

be translated to, however, any representative may speak in any language they prefer, as

long as they provide interpretation into at least one of the official languages (Report, 2019).

The president calls the meetings at any time he deems necessary, in addition to periodic

meetings, those requested by either a UNSC member of the General Assembly or if any UN

member state brings a situation that might threaten international peace and security to the

attention of the council (UN, 1983). The meetings typically follow the same structure, as

specified by the Provisional Rules of Procedure (Sievers and Daws, 2014). The provisional

agenda is circulated to all the member states at least 21 days before any period meeting and

three days for non-periodic meetings. Urgent circumstances, however, allow for exemptions.

The meetings start with the adoption of the agenda. The president then calls upon the

representatives to speak in the order they have signified their desire. Next, proposed

resolutions, amendments, and substantive motions are presented in written form to all

representatives. A resolution constitutes a formal decision made by the council. While

any UN member state can submit proposals, only UNSC members can request that a vote

be held (Security Council Report, 2019). There are two main types of decisions: Votes

34

on procedural matters and those on substantive matters. A procedural matter requires

nine affirmative votes, while substantive matters require, in addition, an affirmative vote

from all the permanent members (Security Council Report, 2019). If a draft resolution

receives the required votes, normally obtained by a show of hands, it is adopted and is

given a resolution number. The resolution numbers are especially important for tracking

decisions for the regression analysis in Chapter (5.7.6).

35

5 Methodology

5.1 Introduction to Methodology

The following chapter will present and describe the methods and techniques used in

this study and how they were applied. The purpose is to connect the research purpose,

conceptual framework, technical background, and the research process. The Cross

Industry Standard Process for Data Mining (CRISP-DM) model was applied as a guide

for the methodology and will therefore be explained initially. CRISP-DM will also

visualize how the different applied techniques and research activities fits together to

answer the research questions. In addition, a methodology outline based on CRISP-DM

will be presented.

CRISP-DM was developed by practitioners who contributed with their knowledge and

real-world data mining experience as a blueprint for data mining (Shearer, 2000). The

purpose of the CRISP-DM model is to provide generic guidance on data mining across

industries (Shearer, 2000). Even though the paper was published over two decades ago and

research within this field has emerged, the model has not been revised (Martínez-Plumed

et al., 2019). It is common tool used within data science; it is still highly relevant to

apply as it breaks down a data mining project into six specific phases. Data mining

is the process of extraction and exploration of patterns in data sets using approaches

from machine learning, statistics, and database systems. The study is applying machine

learning and statistics, and for this reason the CRISP-DM framework is highly suitable

for this research domain.

36 5.1 Introduction to Methodology

Figure 5.1: CRISP-DM model, adopted by Shearer (2000)

Figure 5.1 shows the different phases of CRISP-DM, which are: 1) business understanding,

2) data understanding, 3) data preparation, 4) modeling, 5) evaluation, and 6) deployment.

As Figure 5.1 visualizes, the CRISP-DM model has frequent dependencies between the

phases and is iterative by nature, meaning that the users have to go both back and forth

to achieve set goals.

To illustrate where each stage of CRISP-DM can be found in this paper, Table 5.1 provides

an overview of CRISP-DM with the relevant chapters of each stage. The first step is

business understanding, which for this paper consists of understanding deparadoxification

and its different strategies, how the UNSC function, and how the research questions should

be approached. The second stage is data understanding, which not only concerns data

understanding itself (Chapter 5.2), but also how it should be labeled (Chapter 5.3). Data

preparation focus on preprocessing (Chapter 5.6) and labeling, in addition to setting up

the machine learning pipeline (Chapter 5.4). Modeling (Chapter 5.7) entails building and

training the different models and improving them through AL and hyperparameter tuning

(Chapter 5.7.5). Through iterative evaluation, the models will be improved, before finally

being tested on the test set. The results from the final evaluation (deployment) will be

presented in Chapter 6 and discussed in Chapter 7. At the center of the model is the

5.1 Introduction to Methodology 37

data, which for this paper is the UNSC meeting minutes.

Table 5.1: CRISP-DM Chapter Overview

CRISP-DM Stage Chapter
Name Number

Business Understanding Conceptual Framework 2
United Nations Security Council 4

Data Understanding Data Understanding 5.2
Data Labeling 5.3

Data Preparation Data Labeling 5.3
ML Pipeline 5.4
Preprocessing 5.6

Modelling Modelling 5.7
Active Learning 5.7.4
Hyperparameter Tuning 5.7.5

Evaluation Active Learning 5.7.4
Hyperparameter Tuning 5.7.5

Deployment Results 6
Findings and Discussion 7

Even though the CRISP-DM framework is used as a guide, there are still some shortcomings

of the framework (Martínez-Plumed et al., 2019). According to Martínez-Plumed et al.

(2019), the CRISP-DM framework work well with goal-oriented or process-driven projects,

but as highlighted the framework lack of flexibility for exploratory or data management

projects. CRISP-DM still fit the purpose for data science projects. As this paper has

both social science, exploratory, and technical elements that may be challenging to follow,

the authors has created a more suitable outline for parts of the methodology specifically

for data understanding, data preparation, modeling and evaluation (Figure 5.2). The

figure shows a high level outline of the different steps from data selection to results and

how they are connected.

38 5.2 Data Understanding

Figure 5.2: Methodology Outline

5.2 Data Understanding

This chapter will explain the setting and context of the data. This includes considerations

of processing data related to natural persons, data collection, and data description. Data

exploration and descriptive statistics will also be presented. The labeling of the data will

be explained in its own Chapter (Chapter 5.3)

5.2.1 Data Context

In the context of deparadoxification, the literal language used by the representatives

is of absolute importance. Considering that any of the six official languages can be

used, there always exists a natural possibility of interpretation error or ambiguity.

But more importantly, the diplomatic setting must be considered given its significant

5.2 Data Understanding 39

implications regarding how the representatives are formulating their messages. Diplomacy,

and therefore diplomatic language, is the activity of managing international relations,

according to Press (2022). It differs from regular day-to-day language in the sense that it

focuses on presentation and convincing, while trying to transcend cultural boundaries.

Normally formalized, it also requires a high degree of situational understanding and

political context (Kurbalija and Slavik, 2001). It should rather be understood as an

instrument of soft power as opposed to merely means of communication (Jungblut,

2017). Language wise, diplomats tend to use words that are precise yet elastic enough to

suggest alternative meanings to please multiple stakeholders (Constantinou et al., 2016).

In addition, policy rhetoric tends to be bureaucratic and programmatic (Wodak and

Krzyżanowski, 2008). All these factors might influence how evident the deparadoxification

strategies are in the meeting minutes, and how the strategies are used as compared to an

organization that is not based on diplomatic communication.

When studying diplomacy communication and meetings minutes, there may be personal

data, such as names, that are being processed. As the data contain personal data, and

when processing such data, cf. Art. 4 (1) the General Data Protection Regulation applies.

For this case, the personal data processed is the names of the participants, who are natural

persons, written in the meeting minutes. According to regulation, it is required to have a

valid lawful basis, and for this research, the lawful basis is identified as legitimate interest,

cf. Art. 5 (1)(b). The data is publicly available by the UNSC, and the UNSC has specific

rules for publications of meeting minutes, such as provisional rules of procedure Chapter

IX, which are known to the participants. To justify the legitimate interest, purpose has

to be clear, it needs to be necessary and do not override The purpose is to research of

deparadoxification as a phenomenon, and it is necessary to be processed as one of the

strategies is regarding social actors (natural persons). As the data is already made publicly

available by the UNSC and is compliant with the rules of the UNSC, which the member

state and participants are aware of. Additionally, the natural persons in the data are

public persons, and it is likely to believe that the individual interests do not override the

interest of this research.

40 5.2 Data Understanding

5.2.2 Data Collection

According to CRISP-DM, data collection is the initial part of data understanding. The

data for the research project was collected through two existing datasets. The first dataset,

created by Schönfeld et al. (2021), was publicly available through Harvard Dataverse. This

will be referred to as the Schönfeld et al. (2021) dataset. The second dataset, attained

from Steffen Blaschke, will be referred to as the Blaschke (2019) dataset. Both datasets

contain the public meeting minutes from the UNSC, from almost the same period. Both

dataset have had extensive cleaning steps, and they are consider to be of high quality by

the authors.

5.2.3 Data Description

Figure 5.2 presents the methodology outline, but also an overview of the datasets from

Schönfeld et al. (2021) and Blaschke (2019) and their composition of subdatasets, which

will be referred to as dataframes. The Schönfeld et al. (2021) dataset contains three

dataframes: raw_docs, meta_speeches, and meta_meetings. The Blaschke (2019) dataset

contains two dataframes: episodes and edges. To construct the paragraph dataset, which

will be used for classification, only raw_docs was used. To construct the regression dataset,

which will be used for the regression analysis, a combination of meta_meetings, episodes,

and the classification results was used.

5.2.3.1 Schönfeld et al. (2021) dataset

Raw_docs The raw_docs dataframe contains two columns (doc_id and text), and

82,165 rows, each representing a speech. The dataframe contains all public meetings during

the time period 1995 to 2020. Table 5.2 shows an overview of its contents. The text column

contains the raw text data from the meeting minutes, in the form of speeches, which will

be used as training data after going through a series of preprocessing and labeling steps. A

speech is defined as taking place from the moment a representative starts talking, until she

or he stops (indicated by another representative starting to talk or the meeting ending).

The doc_id identifies each individual speech by combining the "S/PV"-meeting record

identifier and the numbering of the speeches within a given meeting (Schönfeld et al., 2021).

5.2 Data Understanding 41

Table 5.2: Overview of docs_raw

Metrics Columns
doc_id text

count 82,165 82,165
unique 82,165 73,946

frequency 1 92

Table 5.2 shows that all values in doc_id are unique. However, not all of the speeches

are unique. In fact, 10% of the speeches are duplicates. This is due to the share of

communication associated with meeting etiquette and formalities, such as welcoming

statements from the President or presentations of the voting outcome. The frequency

shows how often the most common value occurs. This imply that the most frequent

speech appears 92 times in the data. This specific speech is "The President: I now give

the floor to(...)".

Meta_speeches The meta_speeches dataframe contains 18 columns and 82,165

rows, each representing a speech. The purpose of the dataframe is to present a deeper

understanding of raw_docs and the context of the speech.The dataframe contain columns

such as date of the speech, the speaker, speaker nationality and role in the UN, meeting

number, overall topics, and number of types, tokens and sentences. The full columns

description can be found in Appendix A1.1. Table 5.3 shows the descriptive statistics.

The average speech had 261.43 types, 636.66 tokens and 22.33 sentences. The types are

the number of unique tokens in each meeting. Moreover, the standard deviation is almost

the same as the mean, meaning that the speeches have high variation in terms of number

of types, tokens, and sentences.

Figure 5.3 shows that there has been an increasing number of meetings per year from

1995 until 2020. Additionally, the average number of speeches per meeting has doubled

during the same period. In 1995, the number of meetings was 136, and the average

number of speeches per meeting was 10, resulting in 1,374 speeches for that year. In 2020,

the average amount of speeches was 18 per meeting, and the number of meetings was

300, resulting in a steep increase in the number of speeches since 1995, total in 82,165.

However, by comparing 2019 and 2020, the number of speeches decreased by 30%. It is

42 5.2 Data Understanding

Table 5.3: Descriptive statistics for meta_speeches

Metrics Columns
types tokens sentences

mean 261.43 636.66 22.33
std 208.61 610.09 21.84
min 6 6 1
25% 37 48 3
50% 274 601 20
75% 390 936 33
max 2,380 13,569 661

a decrease both in the number of meetings per year but also the average number of speeches.

Figure 5.3: No of speeches per year from 1995 to 2020

It is likely that the number of speeches and meetings are affected by large-scale conflicts.

The year 2017, which is the year with the most meetings, is also the year of e.g.,

the civil war in South Sudan. As shown in Figure 5.3, there are more than 2500

speeches annually in the period from 2000 to 2004, which is 1000 more annually than in

1999. During this period, there were ongoing wars in Iraq and Afghanistan. Another

5.2 Data Understanding 43

observation is that the top five nationalities amongst the speakers are the P5 countries,

which is not surprising as they consequently participate in all meetings. Furthermore,

each speech’s percentage of P5 nationality is seemingly consistent in the given period,

which is interesting considering that the P5 countries are often not the center of the debate.

Meta_meetings The meta_meetings dataframe consists of nine columns and 5,748

rows, each representing a meeting. The list of columns and its description can be found in

Appendix A1.2. According to descriptive statistics, the average meeting had 14 speeches

for the period 1995 to 2020. The shortest meeting during this period had 0 speeches,

while the longest had 178 speeches. For the 5748 meetings, there were 541 different topic

discussed. On average a topic is discussed in more than 10 meetings, but with a standard

deviation on 20.56. The minimum number of times a topic was discussed is one, while the

maximum is 178.

Figure 5.4 shows the top most 15 discussed topic per meeting. The is clear, the most

discussed topic per meeting is the situation the Middle East both with or with the

Palestinian question. The figure in combination with descriptive statistics says something

about the topics within in the UNSC, and there are very many topics that only frequently

reoccur and that it is the same topics discussed as they might not have solved it.

Figure 5.4: Top 15 meeting topics, 1995-2020

5.2.3.2 Blaschke (2019) dataset

The Blaschke (2019) dataset contains two dataframes: episodes and edges. The episodes

dataframe was extracted from the meeting minutes, while edges was constructed using

44 5.3 Data Labeling

data in the meeting minutes to create a network of nodes consisting of meetings and

resolutions. As only episodes are used for this paper, edges will not be discussed.

Episodes The episodes dataframe contains eight columns and 4,820 rows, each

representing a meeting (Table M:tab:episodes). The meetings are observed during the

period of 1. of June 1944 to the 31. of December 2016. The columns as described in

Appendix A1.3. Especially noteworthy is the meetingrecord, vote, and resolution column,

which will be used for the regression analysis. Vote will be normalized and used as the

dependent variable, while meetingrecord and resolution will be used to locate the relevant

paragraphs in the paragraph dataset (which obtains its data from splitting the speeches in

raw_docs).

Table 5.4: Descriptive statistics for Blaschke (2019) episodes

Meeting record speakers duration

count 4820 4312 3807
mean 2410.50 9. 69.48
std 1391.56 11.05 92.44
min 1 1 0
25% 1205.75 1 5
50% 2410.50 3 25
75% 3615.25 16 120
max 4820 86 750

5.3 Data Labeling

As part of the data understanding phase, labeling the data is essential for data modeling.

Data labeling is defined as adding a label denoted to a data point. The label ascribe

a high-level fact of particular interest, in this case a deparadoxification strategy, to a

data point. Labeling data is in general assumed to be costly and challenging due to the

involvement of human labor. The content analysis framework by Krippendorff (2004)

was applied for the data labeling to make valid inferences from the meeting minutes to

the context of deparadoxification. The framework, consists of six essential components:

1) text, which is available for the author, 2) research question, which the author should

answer by analyzing the text, 3) context, which is a choice made by the author on how

to interpret the text, 4) analytical composition that establishes what the author has

5.3 Data Labeling 45

interpreted about the text, 5) reasoning that is meaning to answer the posed research

question, and then at last 6) validation of evidence (Krippendorff, 2004).

Figure 5.5: Content Analysis Framework inspired and adopted by (Krippendorff, 2004)

Figure 5.5 highlights the most essential part of the content analysis. The model is

constructed as follows; the ellipse and its content represent the first three components.

The context, visualized as the ellipse, is the author’s understanding, and the context

contains three nodes elements named as texts, research question and answers to the

research questions. Both elements are visualized in the ellipse to highlight that they

need to be interpreted within the context. Finally, the content analysis assumes some

correlation between the understanding and the potential answers to the research question,

representing the last three components of the framework. The rectangle represents the

correlation on the right-hand side, which includes the following steps: unitizing and

sampling the text data suitable for understanding, followed by the transformed units

used for the resulting are either coded manually or automatically (Krippendorff, 2004).

Then the answer to the research question is deduced from the findings of the analysis,

represented by pointing back at the context, precisely the answer.

As with any empirical research, content analysis starts with data. In common with most

content analyses, and this case, the data analyzed is not indented to be analyzed for a

specific purpose, e.g., research question (Krippendorff, 2004). Although the text is meant

to be interpreted explicitly, that may not always be the case. As Krippendorff (2004)

46 5.3 Data Labeling

argues, the text is meant to be read by other than the authors, meaning that the readers

may decompose the text into units to recognize compelling structures (Krippendorff, 2004).

However, as Krippendorff (2004) states, there must be an assumption that authors would

be able to be understood by others. Furthermore, as part of the framework, the data will

be decomposed into units made by the authors that are more sensible for the analysis and

understanding. In this case, the meeting minutes were the original text data, unitized as

speeches in the data set created by (Schönfeld et al., 2021). In this case, the data was

decomposed into smaller unit sizes, explained in the following subchapter.

5.3.1 Unitizing

As the research question and context are already set by Chapter 1-4, the next step in the

content analysis is unitizing. Unitizing is about systematically recognizing segments of

data relevant to the analysis, unit of analysis. When deciding on unit of analysis, the

human annotators needs to be taken into considerations, and for this study a human

annotator is referred to as a oracle. A oracle refers to the human expert(s) or labeling

source that provides the correct labels, which in this research are human annotators.

There are three types of units: sampling, coding, and context units. Sampling units

define units by selected and included data in the analysis (Krippendorff, 2004). Meaning

the sampling unit for this study is the UNSC meeting minutes from 1995 to 2020. It

could be argued that issues of newspapers are not independent because of events unfold

in time and are connected to previous publications. It is the same for the meeting

minutes from the UNSC. Even though the meeting minutes are highly connected to the

resolutions, as the text often refers to resolutions, it is not relevant for the research.

Therefore, there are no connections that seem to be necessary to include other than

the meeting minutes, but by not including older meeting minutes than 1995, there may

be a bias. However, the connections of the meeting minutes are not the focus of the research.

Then the coding units are defined as separated units for the purpose of labeling and

transcription. As coding units are a part of the sampling units, a coding unit will, by

definition, never exceed a sampling unit. Krippendorff (2004) highlighted that a coding

5.3 Data Labeling 47

unit is preferably significantly smaller than the sampling units as the sampling units

generally contain too much data, which can make it complicated to describe accurately.

In the guide by Krippendorff (2004), it is not decided on how large or small a coding

unit can be as it is up to authors to settle within the context of the study. In this paper,

paragraphs have been decided as the coding units, and is the unit size to be labeled. Any

limitations regarding this decision will be discussed in Chapter 7.

Last but not least, the context units are units that limit the quantity of data that can be

considered by coding units (Krippendorff, 2004). In other words, to identify the meaning

behind a coding unit, e.g., a word from a list of dictionary entries, it is necessary to

examine the context of the coding unit. In this study the context unit and coding unit are

of the same size. The best practice of deciding on context units is as large as meaningful

and as small as feasible (Krippendorff, 2004). For example, a speech includes multiple

paragraphs, and could be a good suggestion for a context unit. At the same time, as a

speech may consist of many paragraphs, and the reliability goes down. Consequently,

it would be more difficult for the oracle(s) to label the correct category for a speech.

However, it would be the same trade-off if the context and coding unit were a sentence. As

of this research, the coding units are paragraphs that include enough context to identify

if there are any deparadoxification strategies identified. The concrete examples presented

by Knudsen (2006) have in common that the examples do not exceed a paragraph, which

can justify the use of paragraphs as both coding and context unit. Paragraphs appear to

include enough context without resulting in too much lower reliability.

Meaning that the unit of analysis, is paragraphs of the UNSC meeting minutes given the

period of 1995 to 2020. As the unit of analysis is decided, there is was a need for creating

labeling instructions before starting with the initial data labeling. The next chapter will

present the chosen labeling instructions for this study.

5.3.2 Labeling instructions

As highlighted by Krippendorff (2004), to be consistent with scientific standards, it was

necessary to create clear instructions for labeling to achieve results that could be replicated.

The labeling instructions, inspired by Krippendorf’s (2004) framework, which was created

48 5.3 Data Labeling

to accurately label the deparadoxification strategies contains three components: The first

1: Qualification list for oracles

2: Practical descriptions of the units and how to distinguish them, practical
description of the syntax, and semantics of the data language, meaning the
categories which the oracles will apply when data labeling.

3 : Explanation of the tool applied for data labeling.

part of constructing the data labeling instructions was to decide on the qualification list

for the oracles, and whom should be the oracles.The authors of this paper has labeled

the data, and during this process the authors are referred to as the oracles. There are

especially two critical factors for oracles to qualify: cognitive abilities and appropriate

background (Krippendorff, 2004). Data labeling needs consistency and is a repetitive task

which requires cognitive abilities such as attention to detail and being able to focus over

time. Furthermore, the oracles need to have the appropriate background for ensuring

high reliability of the labeling. It must be explicitly described so that other authors with

similar research propositions can find suitable oracles comparable to the ones used for this

research paper. As Krippendorff (2004) applies the term appropriate background, it is

related to similar involvement with texts, education, and social sensitivities. Additionally,

it is stated that familiarity with the phenomena under consideration is another essential

part of the appropriate background (Krippendorff, 2004). For this paper, knowledge of

deparadoxification was highly valued. Therefore, it makes sense that the oracles have

similarities in either cultural, educational, or professional backgrounds. For this paper,

the oracles have good cognitive abilities and similar educational and cultural backgrounds.

In addition, the oracles have an adequate understanding of deparadoxification and TSS.

It is important to note that the qualification criteria must not be too narrow as enough

potential oracles should be available within the population, in order to ensure that the

study is replicable.

5.3 Data Labeling 49

5.3.2.1 Qualification list for oracles

Based on the discussed qualification evaluations, the following criteria were set for the

oracles: Preferably, the roles of oracles and researchers should be separated. The

1: Good cognitive skills, especially in terms of attention.

2: Familiar with the phenomenon of deparadoxification and Luhmann’s TSS.

3: The group of oracles should have similarities in either cultural, educational or
professional backgrounds. The more similar background, the better.

researchers may have obtained an unspoken understanding of which new oracles will

not posses (Krippendorff, 2004). This puts constraints on other scholars wanting to use

the instructions. The authors of this paper are well-aware of this limitation of being

authors and oracles, but due to resource restrictions, such as sufficient time to find and

train suitable oracles that fulfills the qualifications list, it was necessary. However, by

applying cross-checking as a criteria for the labeling, the negative implications of having

the authors assume the roles of oracles are alleviated to some degree. The limitation will

be further discussed in Chapter 7.

5.3.2.2 Operational category description

The second component of constructing labeling instructions is to define operational

category descriptions. There are two requirements for data labeling when defining a set of

categories. Firstly, the categories needed to be exhaustive, meaning that the categories

should represent all possible coding units. Secondly, the categories have to be mutually

exclusive; in other words, it has to be non-overlapping categories for representing the

phenomena of deparadoxification. All the four categories together represent the all

possible coding units outcome .The first three categories represents the different strategies

of deparadoxification: factual, social, and temporal. However, these three strategies do

not represent all the possible outcomes of communicational categories. Hence, there is

a need for two additional categories; mixed and not-relevant. By adding the category

mixed, which will be discussed and justified later in this paragraph, the categories do

overlap, meaning that the categories do not accurately reflect the text.

50 5.3 Data Labeling

Then, creating the labeling instructions, and the initial step, for creating labeling

instructions, was to obtain deep knowledge of the conceptual framework, presented in

Chapter 2. Then decide on a strategy, which was to utilize available literature and

theories within deparadoxification, based on the works of, inter alia, Luhmann (1995) and

Andersen (2003). The purpose of choosing this strategy was to ensure a higher reliability

and replicability (Krippendorff, 2004) The operational descriptions were created through

an iterative process of discussing the research questions, context, and the goal of the

labeling. The process started with definitions from Andersen (2003) on temporal, social,

and factual deparadoxification. These were used to construct not-relevant as a negation of

Andersen’s (2003) definitions. In addition, the operational description contained a list of

examples, including specific words, which was created for each category. The words and

phrases were listed to help navigate the oracles to identify the appropriately categorize

the coding units. However, the definitions, as obtained from the relevant literature, are

the main source of guidance for labeling. This is because deparadoxification strategies are

assumed to depend on context, not just a single word or phrase.

Moreover, the labeling instructions were tested before applied in the initial labeling

iteration, to ensure its functionality. This was done by conducting two workshops with

the purpose of testing the labeling instructions to ensure conceptual alignment and to test

whether the instructions needed further adjustments. These workshops were performed

by providing each participant with a spreadsheet of 25 randomly samples paragraphs to

be labeled without communicating with the other participants. The first workshop was

conducted with three participants, whereas the results showed that 44% of the labeling

was perfectly aligned (unanimous agreement), while 52% were partially aligned (one

participant disagreed). As a result, the workshop lead to further development of the

labeling instructions, before another workshop was conducted to repeat the process. As a

result of these workshops, a few improvements to the labeling instructions were made: 1)

Examples from earlier studies were added, namely from the works of Knudsen (2006) and

Ask et al. (2007). 2) Examples from the paragraph dataset were added. 3) Assumptions,

as a means of guidance in interpretation of the literature, were added. 4) The categories

mixed and not-relevant were added.

5.3 Data Labeling 51

Table 5.6, shows the table labeling instructions created for the category, factual. Labeling

instructions are found in the Appendix for A2.1, social A2.2, not-relevant A2.3 and mixed

A2.4.

Figure 5.6: Factual Labeling Instructions

Mixed As it is possible to communicate several deparadoxification strategies within a

single paragraph, the category mixed had to be added. The example below shows how a

mixed paragraph contains multiple strategies. This is a perfect example of how intertwined

the strategies can be in some cases. By having the mixed category, the authors alleviate

potential wrongly labeled paragraphs which is likely to occur if the oracles are forced to

52 5.3 Data Labeling

put a clearly mixed paragraph into a discrete category.

"Ultimately, however, it is only the Government of Croatia and the local Serb party
that can breathe life into the Basic Agreement and make it a success. It is therefore
right that the draft resolution before the Council stresses the need for them to
cooperate fully on the basis of the Agreement and to refrain from any measures
that might hinder its implementation. This also holds true for the Government of
the Federal Republic of Yugoslavia. On 9 November, the International Criminal
Tribunal for the former Yugoslavia charged three officers of the Yugoslav National
Army from a Belgrade-based brigade with the mass killing of non-Serb men, who,
after the month-long siege and eventual conquest of Vukovar four years ago, were
forcibly removed from the Vukovar hospital. This is, in our View, a painful but
appropriate reminder of the responsibility that the Federal Republic of Yugoslavia
continues to bear for the unresolved situation in Eastern Slavonia. Consequently,
the leadership in Belgrade must help actively to settle this question."

The first sentence of the coding unit reflects a social deparadoxification strategy as the

decision ascribed points to one specific actor that can make an action. In other words, it

is pointing at the Government of Croatia and the local Serb party as the social actors

and places responsibility on these actors. The second sentence highlight that there is a

need for a decision to be made. It constructs urgency a need for reaction to the gravity of

the moment and, therefore, temporal deparadoxification) by communicating that there

may be hinders to implementation, referring to the implementation as a future event. The

communicator then describes a previous mass killing event, which substantiate the sense

of urgency. The last two sentences demonstrate communication that places responsibility,

again, on two social actors; the Federal Republic of Yugoslavia and the leadership in

Belgrade. In the last sentence, the decision is communicated as it has already been decided.

There are only formalities left on what leadership role the leadership of Belgrade will take

in this decision.

It is arguable that due to how the strategies might be intertwined, as illustrated in the

mixed example, multi-labeling should be applied. However, considering the already high

level of complexity of the categories that the classification models will try to learn, having

multi-labeling would likely confuse the models. This is especially true given the limited

sample size that will be used as training data. Hence, it makes more sense to rather

include mixed as a possible category. Considering that the research questions focus on

5.3 Data Labeling 53

distinct strategies, as opposed to overlapping ones, employing multi-labeling would not

be in the best interest of answering the research questions. The application of mixed

category is elaborated on in Chapter 5.6.

Not-relevant The not-relevant category does not represent coding units that are

decisively not relevant to this paper, but rather all coding units that does not fit in any of

the informative categories. The machine learning models would also benefit from having

this category because it ensures that the oracles are not forced to label coding units as

deparadoxification strategies, when they in fact are not. If this was the case, the training

data would consists of significant noise, making it impossible to train a well performing

model. In addition, the last requirement for a set of categories, exhaustiveness, is fulfilled

by having a not-relevant category.

5.3.2.3 Data Labeling Tool

For deciding on the labeling tool, the authors had a set of criteria: 1) The tool must be

easy to use for the oracles. 2) It should be designed to minimize the number of mistakes

to achieve adequate data quality. 3) It should allow for easy cross-checking. The selected

tool, created by Lantow (2022), was obtained through the authors’ collaboration with

EY Denmark. By working with Lantow, the the tool was made available online, using

PythonAnywhere as the web hosting service. A few design adjustments were first made to

make the tool fit with the intent of labeling paragraphs as deparadoxification strategies.

One of the main reasons for choosing this tool, was the direct access to the tool’s source

code and database, enabling the authors to tailor the tool to this research project in

collaboration with Lantow (2022).

The labeling tool has a front-page where the oracles can log into their account with a

username and password. Then for the next view, a randomly selected coding unit to

be labeled would appear. The categories are represented with buttons on the side of

the coding unit. When an oracle clicks on a category, the coding unit is labeled as that

category. The information is then stored in a database before the next coding unit appears.

If an oracle makes a mistake, there is a button to return to the previous coding unit,

54 5.4 Machine Learning Pipeline

allowing for re-labeling. The tool included a review page used for cross-checking. The

review page provides the oracles with the alternatives of "correct" and "not-correct" when

going through the coding units labeled by the other oracle. The tool was both used for

the initial data labeling iteration and the AL iterations, which are explained in Chapter

5.7.4. All the labels were cross-checked to improve validity and minimize errors.

From Data Labeling to Machine Learning In Chapter 5.3, the oracle qualification

list, the labeling instructions, and the labeling tool has been described. These prerequisites

allow for the methodology to move on to ML. While ML mainly refers to the actual

model building and training, there are a number of activites that first needs to be carried

out, namely data selection, data cleaning, initial labeling, and preprocessing. During

the initial labeling, the labeling tool will be applied by the oracles, while following the

labeling instructions, to label the coding units according to the chosen categories. The

initial labeling phase creates the first training dataset which will be used to train the

classification model. After the first iteration of training, AL will be used to iteratively

increase the size of the training data by labeling more coding units. The following chapter

will explain the machine learning pipeline, which is the overall architecture for the machine

learning related activities related to answering the reasearch questions.

5.4 Machine Learning Pipeline

While machine learning as a term often refers to a single application of a machine

learning algorithm conducted on a chosen dataset, a pipeline represents an end-to-end

structure that can take training data as input and produce a viable result (Polyzotis

et al., 2017). The purpose of this paper is not to create a fully automated pipeline

ready to be put into production, but because different models, embeddings, and

datasets will be used, creating a pipeline unlocks several benefits. For instance,

it allows for more reusability, modularity, and variety (Hapke and Nelson, 2020).

Because this paper investigates different models, embeddings, and preprocessing, in

addition to doing multiple iterations of training, constructing a pipeline was beneficial

as opposed to having many different scripts and code redundancy. In addition, if

future research is to be conducted, e.g., to test other models, the same pipeline can be used.

5.4 Machine Learning Pipeline 55

The pipeline was constructed using object-oriented programming (OOP). There are

several reasons for why OOP was chosen for this task, namely how OOP allows for

better structure, encapsulation, and customization (Lutz, 2010). Structure wise, OOP

combines logic and data, avoiding redundancy while making it easier to deal with the

different code components. This was important considering that different techniques,

such as embedding, was used while handling different datasets and classifiers. In terms

of encapsulation, OOP allows for changing method implementation without disrupting

the users. For instance, changes to the Embedding class (not to be confused with the

deparadoxification classes) could be done without erasing or altering already declared

instances of the class. Customization was especially important as it was expected that the

project would change over time based on the revelation of technical issues and solutions

that was not apparent from the beginning. Customization allows for instance classes to

be extended, and new subclasses to be added, without breaking code that already works

well (Lutz, 2010).

A total of five classes were used in the pipeline (Table 5.5). A class in Python can be

considered a template for creating objects (Lutz, 2010). The objects are instances of

the classes, e.g., a specific person can be an instance of the class Student. An object

is, in simple terms, a collection of data and associated behaviors (Phillips, 2010). The

classes constructed for this project were Data, Embedding, Classification, ActiveLearning,

UpdateDB, and Visualize. For each class a set of functions, called methods, were

constructed, in addition to rules for inheritance. A total of 28 methods were defined.

56 5.4 Machine Learning Pipeline

Table 5.5: Machine Learning Pipeline - Classes Overview

OOP Class Composition
Methods Main Activities

Data read_data(self) Loading, sampling, and
visualize_data_hist(self) preprocessing the data
concat_prod(self, df_list)
preprocessing(self)
get_sample(self)
data_encoding(self)

Embedding load_model(self, model) Extracting the
text_embedding(self, text) embeddings to be used
get_embeddings_from_row(self) for classification
get_X(self)

Classification load_classifier(self, classifier) Splitting the dataset,
split_dataset(self, X, y) model training,
fitting(self) predictions,
classify(self) hyperparameter tuning,
get_proba(self, pred_prob_X) evaluation
cross_val(self)
grid_search(self, params)
randomized_grid_search(self, r_params)

Visualize plot_results(self, y_test, y_pred) Gathering and plotting
plot_label_dist(self, df_list) the results
precision_rec(self, clf, X_test, y_test, y_score)
plot_roc_curve(self, clf, X_test, y_test, y_score)
gather_results(self)
gather_aggregated(self)

ActiveLearning merge_probas(self, df, arr) Preparing next iteration
prep_sample(self) of samples to be labeled
get_sample(self) by the oracles
transform_to_prod(self)

Note. OOP classes should not be confused with the models’ classes derived from the

deparadoxification strategies.

Class inheritance allows for a class to inherit the properties of another class, called the

parent class. The class that inherits the properties is called the child class (Phillips, 2010;

Taivalsaari, 1996). Because all classes directly follow each other and each is dependent on

the implementation of the preceding class, they were all set to inherit from the preceding

class. For instance, Data is the parent class of all the other classes, while Embedding is

the child class of Data but also the parent class of the succeeding classes, and so on. For

an overview of the different classes and their methods, see Table 5.5 which also shows

which chapters that cover the processes happening in which class.

5.5 Data Selection and Initial Labeling 57

5.5 Data Selection and Initial Labeling

As earlier mentioned, the dataframes selected for this paper is raw_docs, meta_meetings,

and episodes. From raw_docs, all the columns were selected and further cleaning steps

were performed. An important part of data preparation is data cleaning, especially when

the labeling is depending on the coding units, in this context a paragraph. The first

part of the data preparation was to split the speeches in raw_docs into paragraphs.

This was done by splitting each speech whenever there was whitespace in between

two pieces of text. The newly acquired paragraphs were stored in a new file under

paragraph_text together with the doc_id and an added paragraph counter for each

meeting, called paragraph_number. This file contained 600,624 rows, each representing a

paragraph. In order to speed up computational time and make the data easier to work

with, 50,000 paragraphs were randomly sampled to constitute the regression dataset. It

was discovered there there were some paragraphs in the regression dataset which did

not contain any valuable information, e.g., just a single word or short sentence. For this

reason, all the paragraphs containing less than 30 characters were dropped from the

dataset, resulting in a new row count of 49,946. As visualized in the methodology outline

(Figure 5.2), creating the paragraph dataset was the last step before the initial data labeling.

During the initial labeling, 921 data points (referring to the paragraphs) were labeled.

The data points were randomly sampled from the paragraph dataset. Then, the labels

were cross-checked by the oracles, resulting in 810 data points which the oracles agreed

upon. These 810 labels were added to the paragraph dataset under a new column named

correct_annotation. Hence the paragraph dataset now contained four columns; doc_id,

paragraph_number, paragraph_text, and correct_annotation. For the paragraphs that had

not yet been labeled, the correct_annotation column contained no value. The paragraph

dataset was now ready to be used for the next step leading, as visualized in the outline

(Figure 5.2), namely preprocessing.

58 5.6 Preprocessing

5.6 Preprocessing

The main preprocessing steps that will be completed before the data can be used for

modeling, are the crucial activities of tokenization and normalization (Bird et al., 2009).

Tokenization, which is especially fundamental, is the process of decomposing linguistic

data into smaller units of text, called a sequence of tokens (Song et al., 2021). It is

also normally one of the earliest steps in data transformation during a NLP project

(Grefenstette, 1999). A token is the technical term for a sequence of characters (Bird et al.,

2009). A type is the class of all tokens containing the same sequence of characters (Wetzel,

2018). The vocabulary of specific linguistic data is the set of tokens that the data contains,

entailing that duplicates are not included (Bird et al., 2009). The reason for tokenization

is that most NLP tasks happens at token level, for instance document classification,

part-of-speech tagging, and stop words removal are all dependent on tokenization (Bird

et al., 2009). In general, having fewer tokens and a small vocabulary size speeds up

computation, but it also gives the algorithms less information to work with (?)(Chen et

al., 2019). There are different types of tokenization methods to choose from, depending on

the needs of the task to be performed. As is the case with this study; TF-IDF and BERT

prefer different kinds of tokenizers before extracting the embeddings. Therefore, two

tokenization processes were conducted independent of each other, one for each embedding

technique. Normalization refers to the practice of trying to standardize the text in order

to reduce unnecessary information and thereby improving the efficiency of the algorithms

(Bird et al., 2009). A simple example is reducing all letters to lower-case. There are also

slightly more advanced techniques, such as lemmatization, which will be discussed later in

this chapter. The following sections will discuss how the tokenization and normalization

were conducted, first specifically to TF-IDF and then BERT.

5.6.1 TF-IDF Specific Preprocessing

TF-IDF uses one of the most common form of tokenization, namely splitting the text

by spaces. This is done by enumerating through all the labelled paragraphs, splitting

them into lists of words using whitespace as the separator. All special signs were removed

from the paragraphs using regular expressions. This was done to avoid having special

characters attached to the tokens which in this case is meant to only represent words.

5.6 Preprocessing 59

The next step was case folding, a normalization technique which ensures that all letters

are in lower case. The reason for this is to make it easier for TF-IDF to pick up on

the relevance of words without needing to deal with how upper-case letters are used. In

general, upper-case letters do not have a large effect on the meaning of words and can

therefore be transformed to the benefit of how well TF-IDF attributes the right weights

to each word. After case folding, the stop words were removed. Stop words are highly

frequent words that does not bear significant meaning on their own, such as articles and

pronouns. Stop words removal can be used to ensure that TF-IDF focus on meaning

bearing words of importance. However, it is noteworthy that because TF-IDF is designed

to assign smaller weights to frequent words, stop words removal does not guarantee that

TF-IDF’s performance actually improve. However, to further substantiate that TF-IDF

should focus on specific meaning bearing words, as opposed to context, stop words were

removed as part of the TF-IDF specific preprocessing.

Paragraph

Allow me, Mr. President, to
extend, through you, my warmest

congratulations to Ambassador Richard...

Remove special characters

Allow me Mr President to
extend through you my warmest

congratulations to Ambassador Richard

Case folding & tokenization

[’allow’, ’me’, ’mr’, ’president’, ’to’,
’extend’, ’through’, ’you’, ’my’, ’warmest’,

’congratulations’, ’to’, ’ambassador’, ’richard’]

Stopwords removal

[’allow’, ’mr’, ’president’, ’extend’, ’warmest’,
’congratulations’, ’ambassador’, ’richard’]

Lemmatization

[’allow’, ’mr’, ’president’, ’extend’, ’warmest’,
’congratulation’, ’ambassador’, ’richard’]

Rejoin paragraph

allow mr president extend warmest
congratulation ambassador richard

Figure 5.7: TF-IDF Preprocessing

The next step in the TF-IDF preprocessing stage was lemmatization, a normalization

60 5.6 Preprocessing

technique designed to reduce the forms of the text to a common base form (Manning

et al., 2008). The WordNet lemmatizer from the NLTK package was used for this task.

WordNet is a vast and well known lexical database containing words and semantic relations

(University, 2022). This lemmatizer removes affixes only when the resulting word is in

its dictionary (Bird et al., 2009). Affixes are word elements that alter the meaning or

form of a word. After lemmatization, the tokenization and normalization preprocessing

for TF-IDF was complete. Figure 5.7 shows an example of how the different activities

altered the text. The example sentence is derived from the dataset.

5.6.2 BERT Specific Preprocessing

The tokenization and normalization for BERT is quite different from that of TF-IDF.

This is because BERT is a context based embedding model, as opposed to TF-IDF, and

is therefore capable of learning the semantic relations between words. Therefore, it is not

suitable to remove stop words for BERT as the stop words adds context to the intention

of the communication(Dai and Callan, 2019). As Dai and Callan (2019) highlighted,

contextual models achieves a deeper understanding when not removing stop words, due

to that stop words provide essential evidence regarding the relevance of the text. All

stop words are retained to offer sufficient context information, such as negation words

(not, nor, never). This implies that for BERT preprocessing, we wish to retain as much

information as possible, while for TF-IDF, a more standardized format is preferable.

In addition to not removing stop words, there are two key differences between BERT

preprocessing and TF-IDF preprocessing, namely that for BERT, no direct normalization

techniques are applied, except for case folding. In addition, BERT uses a special type of

tokenizer called the WordPiece tokenizer.

The WordPiece tokenizer, specifically the modified BERT tokenizer from the Transformers

package by Hugging Face (Face, 2022), does not split the input strings based on

whitespace, but on subwords. This technique is called subword tokenization. The

purpose is to maintain a reasonable vocabulary size while also being able to learn

context-independent representations (Song et al., 2021). WordPiece works by using the

maximum matching approach: Iteratively pick the longest prefix (an affix at the beginning

of a word) of the remaining text that matches a vocabulary token until the entire word is

5.6 Preprocessing 61

segmented (Song et al., 2021). If a word cannot be tokenized at all, it is replaced with the

unknown token [UNK]. The suffixes (affixes at the end of a word) are denoted with a

double hash sign at the beginning of the token. What this effectively does is allowing

BERT to recognize shared meaning between different words that contain similar word

pieces. For instance, the terms skateboarding and snowboarding are different words, but

by using the WordPiece tokenizer, BERT can draw similarities between them because

each word contains the term boarding.

In addition to tokenizing the words using the WordPiece approach, certain special tokens

required by the BERT architecture needs to be put in place. These are [CLS] and [SEP].

[CLS] is at the beginning of each sequence (in this case a paragraph) and it is used for

classification tasks. It is also the last hidden state of BERT corresponding to the specific

token h[CLS], where h = hidden state. The [SEP] token is used to separate the inputs

from each other, as BERT only takes in a single long sequence. [SEP] is only relevant for

tasks that require multiple inputs, such as question answering tasks, and is therefore not

relevant for this project. However, due to the nature of BERT’s architecture, it is still

necessary to implement the token at the end of each sequence (Devlin et al., 2019). Figure

5.8 shows an example of how the BERT specific preprocessing transform a paragraph into

tokens.

Paragraph

Only if we see a significant improvement
in mutual cooperation among the States...

Tokenized paragraph

[’[CLS]’,’only’, ’if’, ’we’, ’see’, ’a’,
’significant’, ’improvement’, ’in’, ’mutual’,

’cooperation’, ’among’, ’the’, ’states’, ’[SEP]’]

Figure 5.8: BERT Preprocessing

While the example in Figure 5.8 illustrates how the paragraph texts are tokenized before

being fed into BERT, it fails to show how the BERT inputs are actually comprised of three

arrays: Token embeddings, segment embeddings, and position embeddings (Devlin et al.,

2019). The token embeddings are the actual word tokens as visualized in Figure 5.8. The

segment embeddings represents whether the token is before or after the [SEP] in the given

62 5.7 Modeling

sequence. In this case, all the tokens in the segment embeddings are considered to be

before [SEP], because the only need for sequence separation is separating the paragraphs

from each other. The position embeddings simply represent the position of a token within

the current sequence.

5.7 Modeling

This model explains how BERT-RF and TFIDF-RF were build. The first step was to use

BERT and TF-IDF to extract the embeddings which was used to train the classification

models.

5.7.1 TF-IDF Embeddings

The TF-IDF embeddings were extracted from the lemmatized data where stop words and

special characters had been removed. This was done by using the TF-IDF vectorizer from

Sklearn’s feature extraction module to calculate the TF-IDF weights. This submodule

converts a collection of raw texts, in this case the preprocessed paragraphs, to a matrix

of TF-IDF features (Pedregosa et al., 2011). Each paragraph, independent of character

length, is transformed into a vector of floats in the form of a NumPy array. Each number

is a 32-bit float. The length of the array depends on how many features the vectorizer

finds. Keep in mind that each paragraph has already been preprocessed as described in

Chapter 5.6. Extracting the TF-IDF embeddings only from the labeled paragraphs is a

quick computational task taking less than a second. See Appendix A3 for all the runtimes

and computer specifications.

Preprocessed paragraph

allow mr president extend warmest
congratulation ambassador richard...

Extract TF-IDF Embeddings

[0.0, ... 0.0, 0.09367406, 0.0, 0.0,
0.20683138, 0.08818786, ... 0.0]

array length: 4,393

Figure 5.9: TF-IDF Embeddings Extraction

The final list of embeddings contained one array for each paragraph, each with a length of

5.7 Modeling 63

4,393. An example embedding can be seen in Figure 5.9. The reason for only extracting

embeddings from the labeled paragraphs, as opposed to the whole dataset, was that only

the BERT embeddings will be used for the AL part (Chapter 5.7.4). Hence, the TF-IDF

embeddings for the whole dataset is not needed.

5.7.2 BERT Embeddings

Since its inception, BERT has sparked numerous BERT based or inspired models

(Koroteev, 2021). However, due to BERT’s broad applications and well established

and documented implementations, the original BERT model was chosen for this

project. Applying other BERT-based models in further research on machine learning

in deparadoxification strategies will be discussed in Chapter 7.3. The original BERT

model is in actuality two different models with very similar architecture: BERT base

and BERT large (Devlin et al., 2019). Both models performed substantially better

than the state-of-the-art NLP models at the time on a wide range of tasks, with BERT

large yielding better results than BERT base on all of the tasks. While BERT base

has a similar size of OpenAI’s famous GPT model, BERT large has 340M parameters,

which is over three times as many as BERT base, which has 110M (Devlin et al., 2019).

The reason for choosing BERT base over BERT large was the significant reduction in

computational power needed for the embeddings extraction, both in terms of memory

and speed, but also storage (Devlin et al., 2019). In addition to choosing between BERT

base and large, there exists cased and uncased versions of both. The difference between

these is that the uncased version is not designed to treat cased letter any different from

uncased ones. In addition, it discards accent marks. By choosing the uncased model, the

authors assume that casing and accent marks does not have a significant impact on the

deparadoxification strategies. The reasoning for the choice is that the uncased version is

known to perform better than the cased version in scenarios where casing and accents

do not matter (?)(Ardimento Mele, 2020). If the cased version had been chosen, the

preprocessing in Chapter 5.6 would have to be slightly altered for the choice to make

sense. The change would have been to remove the case folding step.

The chosen model, bert-base-uncased, was loaded from Transformers. This BERT model

has been pre-trained on a large corpus of raw text in a self-supervised manner (Devlin

64 5.7 Modeling

et al., 2019). See Chapter 3.3 for more details on how BERT was pre-trained. The

model consists of 12 layers, with 12 self-attention heads and a hidden size of 768,

meaning that each layer has 768 neurons. Even though random forest when used

as a classifier can only be trained on labeled data (Skansi, 2018), the embeddings

from all the paragraphs were needed for the AL, which is why embeddings from

all the paragraphs (referring to the sample of 49,946) were extracted. The following

paragraphs will explain how this was done. Figure 5.10 illustrates the different steps taken.

Preprocessed paragraph

[’[CLS]’,’only’, ’if’, ’we’, ’see’, ’a’,
’significant’, ’improvement’, ’in’, ’mutual’,

’cooperation’, ’among’, ’the’, ’states’, ’[SEP]’]

Convert to tensor with IDs

tensor([[101, 101, 101, 2069, 2065, 2057,
2156, 1037, 3278, 7620, 1999, 8203,

6792, 2426, 1996, 2163, 102, 102, 102]])

Feed tensor to bert-base-uncased

Average the second to last hidden layer

tensor([-1.8204e-01, 4.7560e-
02, 2.3808e-01, ... -2.3672e-01])

tensor length: 768

Store tensor in array

Figure 5.10: BERT Embeddings Extraction

Before the embeddings were extracted, the preprocessed tokens were converted to IDs.

Then, they went through a series of steps, one by one. First, they were converted to

tensors, which are PyTorch’s version of arrays designed to run on either CPU or GPU

(Paszke et al., 2019). Second, the BERT model was called for each tensor with its

tokens_tensor and the segment_ids tensor, which represents the segment embeddings.

Then, the hidden states from BERT’s 12 layers were collected. With these hidden states,

there are 13 vectors representing each paragraph. The reason that it is 13 vectors and

not 12 (as the number of hidden states implies), is that the first vectors is the input

embeddings (Paszke et al., 2019). The length of these vectors is 768, as mentioned in

5.7 Modeling 65

Chapter 3. To make the embeddings usable for training random forest, a single vector for

each paragraph is needed. To achieve this, a pooling strategy had to be applied. These

types of strategies are all different techniques for extracting single vectors from BERT’s

hidden layers. The most simplistic approach would be to only take the first or last hidden

layer as the single vector. The original BERT paper compared different pooling strategies,

concluding that different strategies is likely to yield different results depending on the

task. Hence, there are no objectively best strategy in all scenarios. The one chosen for

this paper was the second-to-last hidden layer strategy, which performed well in the

original paper (Devlin et al., 2019).

After the embeddings of a specific paragraph was extracted using the pooling strategy,

the final tensor was appended to an array. When all the paragraphs had gone through

this series of steps, the array contained one embeddings vector for each paragraph. The

embeddings were now ready to be used for the supervised machine learning stage of this

paper. Namely, training random forest to classify the deparadoxification strategies, now

contained within the embeddings. The indexes of these embeddings were later used to

map them to the correct deparadoxification labels in a dataframe in order to create the

training and testing sets. Extracting the embeddings had a runtime of 450m 20s, see

Appendix A3 for all the runtimes and specifications.

5.7.3 Random Forest

This chapter explains class encoding, classifier validation, and training for BERT-RF.

All the techniques mentioned in this chapter were applied in the same manner for

the TFIDF-RF model, but for the sake of avoiding redundancy, only BERT-RF

will be discussed in this chapter. However, there is one crucial difference between

how BERT-RF and TFIDF-RF were optimized: Even tough they were trained on

the same data, only BERT-RF was used for obtaining the training data through

AL. The purpose of only using BERT-RF for this was to avoid dedicating half

the time to label datapoints specifically for TFIDF-RF, effectively cutting BERT-

RF’s training data in half. Furthermore, by using AL for both models, it would be

more difficult to compare the models, as they would have been trained on different datasets.

66 5.7 Modeling

While the textual data has up until now been preprocessed and transformed to embeddings,

the actual data labels, as provided by the oracles, have not yet been preprocessed. Up until

this point, the list of labels has consisted of textual data, namely not-Relevant, factual,

social and temporal, while mixed was dropped during preprocessing. However, machine

learning models can not understand language, which is why these classes needs to be

transformed into numerical data, similar to the motivation of transforming the paragraphs

into embeddings (Vanderplas, 2017). In the case of deparadoxification strategies, using

discrete numerical values to represent the classes was appropriate, considering that

the deparadoxification strategies themselves are labeled and investigated as discrete

elements. Therefore, the classes got renamed in the following manner: (0, 1, 2, 3) =

(not-relevant, factual, social, temporal).

5.7.3.1 Validation, Overfitting & Underfitting

When training supervised machine learning models, such as random forest, there is always

a risk of overfitting and underfitting (Daumeé, 2017; Ying, 2019a). Overfitting is an

umbrella term used to describe certain unwanted performance drops in machine learning

models (Roelofs et al., 2019). In general, the term refers to the case of a model not

generalizing well from the observed data to the unseen data (Ying, 2019). This normally

happens when the model is too complex and too flexible, resulting in high variance, and

therefore learns the irrelevant information, termed noise, within the dataset (IBM, 2021).

On the other hand, underfitting often occurs when the model is too simple, or the data is

not significant enough to capture the relationship between observed data and its labels.

This typically happens when the model has low variance and high bias, implying that

it makes strong assumptions about the data (Ghojogh and Crowley, 2019). Overfitting

and underfitting is directly linked with the trade-off between variance and bias (Ying, 2019).

In the context of this paper, the observed data is all the UNSC meeting minutes

paragraphs that was labeled by the oracles, while the unseen data is all the unlabeled

paragraphs. To put it in perspective; at the end of the project, 1,610 out of 616,969

paragraphs were labeled in total. The labeled dataset is considered both small and noisy

by the authors. In terms of size, it is difficult to determine prior to a machine learning

project what constitutes an appropriate amount of data. However, by looking at other

5.7 Modeling 67

studies such as Dang et al. (2020) comparative sentiment analysis study, we can get an

intuition by analogy. Dang et al.’s (2020) study compared sentiment analysis papers that

analyzed relatively short and simple text, such as social media posts and movie reviews,

using inter alia TF-IDF embeddings with LSTMs. While achieving good results, most

of the datasets consisted of more than 10,000 labeled examples, all the way up to 1.6

million examples. By comparison, the labeled UNSC dataset had 1,610 examples in total

after five iterations of labeling (Chapter 5.7.4). The authors assume that classifying

deparadoxification strategies in meeting minutes is a relatively hard task to perform

compared to sentiment analysis on social media data. Therefore, it is assumed that

having 1,610 labeled examples implies that it will be challenging to achieve good results.

The authors assume that there will be a great deal of noise in the dataset, which poses

both underfitting and overfitting challenges. This assumption comes from the initial

testing of data labeling, where the oracles discovered the difficulties in distinguishing the

deparadoxification strategies not only from each other but also from irrelevant information

inherent in the text. Having noisy data and a limited dataset size might result in

underfitting, as the model might struggle with capturing the relationships between the

data and the labels. On the other hand, overfitting is also a risk, as the model might

memorize the noise if it is too flexible. Kumar et al. (2020) specifically investigates

how BERT responds to noisy data, concluding that BERT’s performance on benchmark

datasets when performing primary NLP tasks, e.g., sentiment analysis, significantly

drops. However, Kumar et al. (2020) mainly investigates noise due to spelling errors,

while the BERT-RF model needs to deal with noise in the sense of irrelevant words and

sentences. To counteract overfitting and underfitting when training the model, three

specific techniques will be utilized: Splitting the data into a training and test set, cross

validation, and regularization. Regularization will be discussed in Chapter 5.7.5, while

the first two will be explained in the current chapter. In addition to these techniques,

acquiring more training data, as done through AL, and hyperparameter tuning also helps

with preventing overfitting and underfitting (Daumeé, 2017; Ying, 2019)(Daumeé, 2017;

Ying, 2019a). Moreover, random forest itself is a classifier suitable to deal with overfitting,

as it help decrease variance while maintaing a low bias (Ghojogh and Crowley, 2019),

which makes it particulary stuitable for this case.

68 5.7 Modeling

Train Test Split For each training iteration during AL, the dataset was split into

a training set and a test set. The training set represents the observed data, which will

be used to train the model, while the test set represents the unseen data, which will

be used to validate the model’s performance. The size of the test set was set to 20 %,

which is five percentage points lower than sklearn’s train_test_split default value. The

reason for this choice comes from the works of Kuhn & Johnson (2013), which explains

that with small datasets, the model is likely to need as many data points as possible

to adequately determine its parameters. Hence, the test set size was set smaller than

Sklearn’s default size (to increase the size of the training set). Another issue with having

a small dataset, as Kuhn and Johnson (2013) points out, is that different test sets might

yield different results, due to the uncertainty of test sets in small datasets. For this reason,

cross validation was used both during AL, hyperparameter tuning, and the final evaluation.

Cross validation Cross validation is a resampling technique for assessing how well a

model generalize to unseen data (Ghojogh and Crowley, 2019). It’s basic form, which this

paper will use, is called k-fold cross validation () (Refaeilzadeh et al., 2016). In k-fold

cross validation, the chosen dataset, in this case the training set, is shuffled randomly

before being split into k subsets. Then each subset is sequentially selected as the test

set, while the remaining subsets are the training set. For each selection, the model is

retrained, and the performance scores are stored. When all the subsets have been used as

test set exactly once, the cross validation is over. By averaging the test scores, one can

assess how well the model will generalize, without regard to the uncertainty of test sets in

small datasets. See Figure 5.11 for an illustration of cross validation.

 � Total Number of Dataset �!
Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Training

Validation

Figure 5.11: Cross Validation Illustration (k = 5)

5.7 Modeling 69

According to Kuhn & Johnson (2013), resampling methods, such as cross validation, can

produce reasonable predictions of how well the model generalize. For small datasets they

recommend setting using 10-fold cross validation, implying setting k to 10. The small size

of the labeled dataset in this thesis project is what led to the decision of following Kuhn

& Johnson’s (2013) recommendations. By only using cross validation on the training set,

and not the full labeled dataset when e.g., tuning the hyperparameters, we can provide

an unbiased evaluation of the final model by testing it on the test set. However, due to

the insecurities associated with test sets in smaller datasets, cross validation will also be

used as a part of the final evaluation (Kuhn& Johnson, 2013). The final evaluation takes

place when both AL and hyperparameter tuning has been carried out.

5.7.3.2 Training

The model was trained over two different stages which will be explained in the following

chapters, namely AL and hyperparameter tuning (Chapter 5.7.5). In the first stage,

the model went through a series of labeling iterations in order to add more training

data and improve the model’s performance. During this stage, only the default

hyperparameter values of Sklearn’s RandomForestClassifier was used. The reason for not

doing hyperparameter tuning for each labeling iteration, and rather wait until after the

AL was finished, was to limit the increase in bias the model obtains for each iteration of

labeling. If the model is perfectly tuned to for example the dataset obtained from the

first iteration of labeling, then the second iteration of data labeling will be more biased

towards the model. By not doing hyperparameter tuning for each iteration, the bias is

decreased, allowing for a final model that generalize better.

During the second stage of the model training, hyperparameter tuning was conducted

using various techniques that will be explained in Chapter 5.7.5. The outcome of the

tuning constitutes what will be the final model of this paper. The results of both the AL

and hyperparameter tuning will be explained the Chapter 6.

5.7.4 Active Learning

In addition to hyperparameter tuning, AL was used to improve upon the initial results of

the BERT-RF model. This was done by iteratively labeling more examples and retraining

70 5.7 Modeling

the model. For a brief introduction and motivation behind AL, see Chapter 3.5. For

a description of how the oracles labeled the data, see Chapter 5.3. The project drew

inspiration from the works of Agrawal et al. (2021) and their general AL algorithm, see

Algorithm 1, as an overall approach.

Algorithm 1 General steps in AL algorithm (Agrawal et al., 2021)
1: Initially, select few seed data instances randomly from unlabeled train set U
2: Oracle labels the selected data instances and place it in labeled dataset L
3: Train classifier C using labeled dataset L
4: For each data instances in unlabeled train set U use trained classifier C to predict

probability for each label
5: Select the most informative data instances from unlabeled train set U using query

sampling strategy
6: If stop criteria not reached then go to Step 2 else stop

Where:

U = Unlabeled dataset

L = Labeled dataset

C = Classifier

While the general algorithm that this project follows is the same as that of Agrawal et al., (2021),

there are especially two hidden intricacies that are worth to note:

1. U and L are both in the same dataset, but the absence of labels in U allows us to distinguish

them. See Equation 5.1-5.3 for details.

U = {p | p is not labeled} (5.1)

L = {p | p is labeled} (5.2)

{U,L} ✓ FD (5.3)

Where:

FD = Full dataset

p = Paragraph

2. For step 2-5, both U and L are actually referring to the BERT embeddings and not the

paragraphs. However, the paragraphs are still needed in order for the oracles to label

5.7 Modeling 71

them correctly in step 2. This is solved by having a mapping function which maps each

paragraph p in FD to an embedding e in E = Embeddings (Equation 5.4). This type of

mapping is called bijective, because each element in each set is paired with exactly one

element in the other set. The function maps FD onto E by using the indexes of the Pandas

dataframe containing the full dataset and the indexes of the NumPy array containing the

embeddings. For the sake of simplicity, U and L will be used to describe how the AL was

carried out, but take note that these are not merely paragraphs, but also references to the

embeddings.

f : FD ! E (5.4)

AL Algorithm

This subchapter goes through Agrawal et al.’s (2021) Algorithm 1 step by step, to show precisely

what actions were taken.

Step 1: “Initially, select few seed data instances randomly from unlabeled train set U .” The first

seed data instances, referring to unlabeled paragraphs, were selected by first randomly sampling

from the full dataset. This amounted to 49,946 examples of meeting minutes paragraphs. Then,

instead of selecting which of these instances should be labeled, all instances were shuffled, and

labeling goals was set based on how many instances of each class was desirable. The original

goal was labelling enough examples so that L contained approximately 100 instances, or more, of

each class. The reason for setting a labelling goal, as opposed to simply selecting a sample to be

labeled, was that at this point it was impossible to tell whether the dataset was unbalanced or

not. Having a sampling goal allowed for the representation of minority classes, in case of imbalance.

Step 2: ”Oracle labels the selected data instances and place it in labeled set L." This first

labeling iteration resulted in the distribution seen in Figure 5.12. The iteration is called the 0th

iteration because the data points were sampled randomly and no AL has yet been conducted.

72 5.7 Modeling

Figure 5.12: 0th Iteration of labeling

The initial labeling resulted in 810 total labelled examples, whereas 364 were not-relevant, 184

social, 158 factual, 104 temporal, and 35 mixed. It was clear that L was imbalanced, heavily

favoring the majority class not-relevant. A total of 5 iterations of labeling were conducted (4 of

them using AL), increasing the size of L each time.

Step 3: “Train the classifier C using labeled set L.” For this step, BERT-RF was retrained

during each iteration using the Classification class (Chapter 5.4), the same way as it was

trained during the first iteration. The default hyperparameters were used as a measure

to alleviate bias towards the individual labeling iterations, as opposed to perfectly tuning

the model every time. Hence, the tuning was conducted after the AL was finished (Chapter 5.7.5).

Step 4: “For each data instances in unlabeled train set U use trained classifier C to predict

probability for each label”. During step 4, BERT-RF was used to predict the class of each

example in U . In addition, the probabilities of BERT-RF’s predictions were stored to be used

in the next step. The size of U decreased incrementally from 49,946, as more examples were

labeled and hence transferred from U to L. The probabilities of BERT-RF’s predictions were

retrieved using Scikit-learn’s predict_proba(X) method, where X was replaced with U . Because

each decision tree in random forest only decides on a single class, random forest computes its

class probabilities by taking the mean predicted class of all the trees. For instance, the predicted

probability of factual for a specific paragraph is calculated using Equation 5.5.

5.7 Modeling 73

P (factual) =
number of trees predicting factual

total amount of trees in the forest
(5.5)

Each iterations of step 4 resulted in an array of the same length as number of paragraphs

in U , containing decimal numbers between 0 and 1. These numbers, representing the class

probabilities, are what will determine the data instances selection in the next step.

Step 5: “Select most informative data instances from unlabeled train set U using query sampling

strategy.” In step 5, there are many different possible approaches to take. The goal is to select

the most informative paragraphs from U . How informative a data instance is, is based on how

much it can reduce the uncertainty of a statistical model. In other words, it is how much a

classifier can learn from the data instance. In this case it would be how much the embedding

of a specific paragraph can reduce the uncertainty of BERT-RF. How the informative data

instances are selected is called the query strategy. Having a query strategy, as opposed to simply

randomly sampling the data instances, in which case calculating the probabilities in the previous

step would be unnecessary, is shown to yield better results (Lewis & Catlett, 1994). There

exist multiple such strategies, but the one chosen for this project is called least confidence (LC)

sampling. LC sampling is an uncertainty-based sampling approach where the data instances

to be sampled are the ones which the classifier had the least confidence in while labeling. To

illustrate, in step 4, each paragraph in U is assigned four probabilities, one for each class. The

highest of these four probabilities represents that class that BERT-RF assigns to a specific

paragraph. The most informative paragraphs, according to LC sampling, are the ones where the

predicted class has a very low probability. They are the most informative because these are the

ones BERT-RF is the most uncertain of. Hence, labeling these paragraphs and retraining the

model would reduce BERT-RF’s uncertainty more than when labeling paragraphs with a higher

predicted probability.

A problem with LC sampling is that due to its definition, it is not very optimal for imbalanced

datasets (Aggarwal et al., 2020). Because the majority class might be favored, the initial

imbalance might be reinforced, hence reducing the efficiency of the AL. As stated in step 2,

the labeled dataset L is already imbalanced, favoring not-relevant. To combat reinforcing the

imbalance, a modified version of LC sampling was used, drawing inspiration from the concept of

oversampling, a technique used for changing the training data distribution to better represent the

minority classes (Han et al., 2012). In oversampling, data instances are artificially constructed

74 5.7 Modeling

by replicating the already existing labeled data instances using algorithms such as SMOTE or

ADASYN (Chawla et al., 2002; He et al., 2008). Instead of synthetically generating new data

points, LC was modified to improve class balance by having a purpose driven approach to the

sampling. This was done by sorting the paragraphs in U based on predicted probabilities, as

with regular LC sampling, but instead of simply selecting a set of the paragraphs with the lowest

class probability (highest uncertainty), the 100 instances with lowest probability of each of the

four classes were selected. This approach was partly inspired by Aggarwal et al., (2020) who

demonstrated improving class imbalance while querying by preferring the minority class. This

was done using Algorithm 2.

Algorithm 2 Modified Least Confidence Sampling
1: Sort the data instances in U based on each data instance’s highest predicted

probability, from lowest to highest
2: Select the 100 first occurrences of each predicted class in U

By following Algorithm 2, the query strategy successfully sampled the most informative data

points, while at the same time alleviating both the class imbalance inherent in the dataset and

the potential reinforcement of class imbalance which is associated with using traditional LC

sampling. To reiterate the context, Algorithm 2 can be put in place of step 5 in Algorithm 1.

Step 6: “If stop criteria not reached then go to Step 2 else stop”. There are multiple ways a

stopping criterion may be selected. For instance, the AL algorithm can be stopped when there

does not seem to be any improvement in the model with more iterations (Agrawal et al., 2021).

Another approach is setting a minimum performance criterion based on a specific metric, such as

the F1-score. Based on the scope of this project, demonstrating how the model can be optimized

through AL is more important than reaching the perfectly optimized model. Therefore, the

stopping criterion was set in the form of number of iterations. Based on the time it took to finish

the 0th iteration, the authors set the goal of conducting five labeling iterations in total. The

results of the AL, in terms of both performance and final label distribution will be presented in

Chapter 6.

5.7.5 Hyperparameter Tuning

Hyperparameters are used configure the different settings of a machine learning algorithm

and they can have very varied effects on the model’s performance (Claesen& De Moor, 2015).

5.7 Modeling 75

Deciding upon the right hyperparameters normally happens by either searching manually, by

grid, or automatically. A key consideration when chosen hyperparameters is handling the model’s

complexity. A high level of complexity is likely to result in overfitting, which is when the model

learns the data very well, but generalize poorly (Claesen and De Moor, 2015). On the other

hand, having too low complexity might result in underfitting, which is when the model fails

to capture the underlying patterns inherit in the data. A very complex model exhibits large

variance, while a non-complex one is easily strongly biased. Balancing variance and bias are

often referred to as the bias-variance trade-off (Vanderplas, 2017). This trade-off is controlled by

correctly tuning the hyperparameters (Claesen& De Moor, 2015). The most common methods

for hyperparameter tuning are grid search, randomized search, and manual search (Bergstra and

Bengio, 2012; Claesen and De Moor, 2015). Grid search evaluates all possible combinations of a

set of hyperparameters and their values, which can be costly, but works well if the search space

is small and researchers wish to try out every single combination (Géron, 2017). Randomized

search evaluates samples of random combinations of hyperparameters for a specified number of

iterations. This is beneficial when the search space is large, as random search does not evaluate

every possible combination, and thereby saves a lot of time and computational power (Géron,

2017). Manual searching entails selecting hyperparameters for a single iteration of training

which is known to be the slowest approach and is easily outperformed by automated approaches

(Claesen& De Moor, 2015). To obtain the benefits of both randomized search and grid search,

both methods were applied. Figure 5.13 shows an ordered list of how the hyperparameter tuning

was conducted.

Step 1: Train model with default hyperparameters (baseline model).

Step 2: Preform wide randomized search using values in Table 5.6.

Step 3: Preform grid search to narrow down search span around
the best hyperparameters found in Step 2.

Step 4: Preform second grid search to narrow down search span
around best hyperparameters found in Step 3.

Figure 5.13: Hyperparameter Tuning Process

The hyperparameter tuning was conducted using both cross validation on the training set. As

Elgeldawi et al. (2021) notes, in addition to using hyperparameter optimization strategies,

76 5.7 Modeling

choosing the default values which are recommended by software package, in this case Sklearn,

is often a relatively safe option as these are carefully based on the literature and experience.

However, there is always a risk that the default values does not work well for a certain

dataset (Elgeldawi et al., 2021). Taking this into consideration, together with the fact that

optimizing all the 18 hyperparameters available to Sklearn’s RandomForestClassifier would be

too computationally demanding, only seven handpicked hyperparameters will be tuned, while

the rest will maintain their default values. The chosen hyperparameters are mainly based on the

works of Probst et al. (2019), which considers some of the most influential hyperparameters

for random forest as: the number of trees, splitting criterion, sample size, node size, and mtry

(number of drawn candidate variables in each split). The splitting criterion decides how the data

is split into different nodes as it traverse down each tree. Sklearn provides two splitting criterions

to choose from; gini impurity and entropy (based on information gain). Equation 5.6-5.8 shows

how these are calculated. See Table 5.6 for an overview of the chosen hyperparameters and their

search spans. Sklearn’s hyperparameter names will be used for the rest of this paper.

Entropy = �
nX

i=1

pi log2 pi (5.6)

Information Gain = 1� Entropy (5.7)

Gini Impurity = 1�
nX

i=1

p2i (5.8)

5.7 Modeling 77

Table 5.6: Hyperparameter Description & Search Span

Hyperparameter Description & Tuning
Description Total Search Span (A) Sample Size

n_estimators Number of estimators/trees An_estimators = {x | 10 x 10, 000, x 2 N} 1,000
criterion Splitting Criterion Acriterion = {gini, entropy} All (2)
max_samples Percentage of samples from the training data used Amax_samples = {x | 0.1 x 1, x 2 R} 10

to train each estimator (if bootstrap = True)
min_samples_leaf The minimum number of samples Amin_samples_leaf = {x | 1 x 20, x 2 N} 10

required to a leaf node
max_features Size of subset of features to be considered when Amax_features = {auto, sqrt, log2} All (3)

splitting a node, relative to the number of features
max_depth Maximum depth of each tree Amax_depth = {x | 1 x 50, x 2 N} 10
bootstrap Whether to draw samples from the training Abootstrap = {True, False} All (2)

data with or without replacement

Note. Sklearn’s notation is used for the hyperparameter names. The sample size represents how
many values from the total search span were tried. The values were sampled using an uniform

distribution.

An important aspect of choosing the right hyperparameter tuning is regularization (Zhu et al.,

2018). Regularization is the concept of adding constraints on a model in order to prevent it from

overfitting. As previously discussed, having a limited data set and noisy data increase the risk

of overfitting (Tian and Zhang, 2022). By accurately tweaking the correct hyperparameters,

overfitting can be, in varying degree, mitigated. For random forest, this tweaking would entail

reducing complexity, such as putting constraints on tree growth (Probst et al., 2019). For

instance, setting a lower min_samples_leaf leads to larger depth. As Segal (2004) demonstrated,

setting smaller tree depth by increasing min_samples_leaf can in some cases be more suitable

for noisy data. The max_features is also important for making sure that the model does not

overfit. Therefore, in addition to choosing the hyperparameters discussed by Probst et al. (2019),

max_depths will also be tuned, as it is one of the main hyperparameters for controlling tree

growth, as noted by Sklearn’s own description of their RandomForestClassifier (Buitinck et al.,

2013). Bootstrap will also be tuned, as it is important for controlling variance by choosing

whether or not to use the whole dataset when building trees (Buitinck et al., 2013).

In the first step of Figure 5.13, the RandomForestClassifier from Sklearn, with its default

hyperparameter values, was trained to be later used as a baseline model. Having a baseline model

allows for measuring whether the hyperparameter tuning positively affected the performance of

the model or not. In step 2, randomized search was used to cover a large span of hyperparameters

and hyperparameter values, while in step 3 the search was narrowed down by using grid search.

In step 4, another grid search was conducted to investigate whether the results of step 3 could be

78 5.7 Modeling

further improved. For all the tuning activities, the micro F1 score was used as the main metric

of evaluation. See Chapter 3.6 for the motivation behind using the micro F1 score. The results

of the hyperparameter tuning will be represented in Chapter 6.

5.7.6 Regression Analysis

To investigate whether the deparadoxification strategies have had any affect on the voting

outcome, the ordinary least square (OLS) model from the Statsmodels package was applied with

voting outcome as the dependent variable and the deparadoxification strategies as the independent

variables. This was done by letting the independent variables be the sum of occurrences of each

strategy leading up to a resolution vote within a given topic. To achieve this, BERT-RF was used

to classify the relevant paragraphs. Because the paragraphs labeled for the classification model

were partly randomly sampled and partly obtained through AL (49,946 out of 600,614), they

could not be used for the regression analysis. This is because the regression analysis necessitate

that the paragraphs are actually relevant for the votes that are held. Sampling random votes and

random paragraphs would not make sense. Hence, a new dataset had to be created solely for

the regression analysis (the regression dataset), using BERT-RF for the classification task. This

was done using the resolution column in the Blaschke (2019) dataset to locate which paragraphs

in Schönfeld et al. (2021) dataset should be included and how. The dependent variable (voting

outcome) was retrieved from the vote column in the Blaschke (2019) dataset. The outcome

comes in the format of in favor-against-abstaining, e.g., 14-1-2, where 14 members voted in favor,

one against, and two abstaining from voting. In order to use these outcomes for regression, they

were transformed to continuous values between 0 and 1. This was done by using Equation 5.9.

The series of steps taken in constructing the regression dataset is described in Figure 5.14.

in favor ⇤ 2� against ⇤ 2 + abstaining

30
(5.9)

5.7 Modeling 79

Step 1: Left join topic from the Shoenfeld dataset on the Blaschke dataset using
the meeting id (transformed using RegEx to have the same format), hence assigning
a topic to each meeting.

Step 2: Group rows by topic (e.g., "The situation in Afghanistan", "The situation
in Cyprus", etc.)

Step 3: Out of all groups containing at least one resolution vote, randomly sample
50 groups (the regression dataset).

Step 4: Left join paragraph_text from the Shoenfeld dataset onto the regression
dataset.

Step 5: Use the Embedding class to retrieve and store embeddings for all the
paragraphs (see Chapter 5.4 for the ML pipeline).

Step 6: Predict deparadoxification strategy for each paragraph (using BERT-RF),
add predictions to new column predicted_class.

Step 7: Sort by [topic, date, meeting_id, paragraph_number]

Step 8: For each topic, find the index of each paragraph which is the last one where
a unique resolution vote was held, store index in index list.

Step 9: For each index in index list, sum the occurrences of the different
deparadoxification strategies in predicted_class leading up to that index from the
preceding index (or the beginning of the topic). Store these sums in new columns;
sum_NN, sum_F, sum_S, and sum_T for each index in index list.

Step 10: Only keep relevant rows (retrieved with indexes from index list),
transform vote to continuous values using Formula 5.9, store in new column points.

Step 11: Preform regression analysis using sum_NN, sum_F, sum_S, and sum_T
as independent variables and points as the dependent variable.

Figure 5.14: Regression Dataset Construction Steps

After going through the first 10 steps in Figure 5.14, the regression dataset contained five columns

(sum_NN, sum_F, sum_S, sum_T, and points) and 103 rows, where each row represents a

unique resolution vote. A total of 402 unique meetings, containing 57,067 paragraphs of 50

different topics lead up to these votes. Due to four rows having faulty voting values, these were

dropped, changing the row count to 99. Extracting the embeddings of the paragraphs had a

runtime of 530m 46s, see Appendix A3 for all runtimes and computer specifications.

80 5.7 Modeling

Table 5.7: Regression Dataset Description

Metric Variables
sum_NN sum_F sum_S sum_T points

count 99.00 99.00 99.00 99.00 99.00
mean 213.42 79.60 114.05 7.26 0.98
std 314.62 228.07 156.30 13.65 0.05
min 7.00 0.00 0.00 0.00 0.63
25% 41.50 2.00 20.00 0.00 1.00
50% 128.00 16.00 60.00 2.00 1.00
75% 265.50 50.50 139.00 7.50 1.00
max 2040.00 1547.00 851.00 87.00 1.00

Table 5.7 display descriptions of the different columns (called variables for the regression analysis)

of the regression dataset. To iterate, points (the normalized voting outcome) is the dependent

variable, while the other four are the independent variables. There are a few interesting

observations to be made from Table 5.7. First, points has a mean of 0.98 and a standard

deviation of 0.05, resulting in a coefficient of variation (CV) of approximately 5.1%. This

indicates a very low dispersion around the mean, which entails a low variance in how the different

UNSC members vote on resolutions. In fact, around 95% (two standard deviations) lays within

0.93 points. This distribution is visualized in Figure 5.15.

Figure 5.15: Regression Dataset Points Distribution

Furthermore, all the independent variables have very high levels of dispersion by looking at both

the CV. Based on this, in combination with the low dispersion of points, it was assumed that it

5.7 Modeling 81

was unlikely that the regression model would find any correlations between independent variables

and the dependent variable, but this remains to be seen. The results of the regression analysis

(step 11 in Figure 5.14) will be presented in Chapter 6.

82

6 Results
The purpose of this chapter is to display the results obtained by following the methodology

as described in Chapter 5. First, the class distribution obtained through the labeling

iterations will be presented, followed by the change in performance over each iteration.

Then, the effects of hyperparameter tuning will be presented, followed by the evaluation

of the model’s performance. Following the evaluation, the predicted distribution and

regression analysis results are displayed. The findings and their implications will be

discussed in Chapter 7. The last part of the chapter includes the partial regression plot

and word clouds for both the labeled and predicted distributions.

Then the predicted distribution will be presented, and lastly, the regression analysis.

Finally, the results will be discussed in Chapter 7.

6.1 Active Learning Iterations

6.1.1 Data Labeling

A total of 1,610 paragraphs were labeled over five iterations. During the 0th iteration, 810

paragraphs were labeled from random sampling, while 800 additional paragraphs were

labeled through active learning from the 1st to 4th iteration (Table 6.1).

Table 6.1: Labeling Iterations

Iteration Labeled Paragraphs
Non-Cumulative Cumulative

0 810 810
1 200 1,010
2 200 1,210
3 200 1,410
4 200 1,610

Note. The 0th iteration was conducted using random
sampling, while rest used active learning.

Figure 6.1 shows the class distribution after the 0th labeling iteration. It is clear that the

dataset is imbalanced. Nearly half of the paragraphs (0.47%) were considered not-relevant.

6.1 Active Learning Iterations 83

Factual and social are relatively similar in size, while temporal is the least represented

strategy. Mixed consisted of only 35 paragraphs.

Figure 6.1: 0th Labeling Distribution

Figure 6.2 shows the class distribution over the four iterations of active learning.

Interestingly the two first iterations are relatively similar but different from the last

two iterations, which are also similar themselves. Factual stayed proportionally constant,

while not-relevant decreased for each iteration. Social increased for each iteration, while

temporal decreased. Mixed increased for the first three iterations, but dipped slightly in

the last.

84 6.1 Active Learning Iterations

Figure 6.2: 1-4 Labeling Distributions

Figure 6.3 displays a side-by-side comparison of the 0th labeling iteration and the final

dataset, with all the labeling iterations aggregated. Again,the distributions are relatively

similar, however not-relevant noteworthy decreased proportionally.

Figure 6.3: 0th (left) and Aggregated Labeling Distributions

6.2 Hyperparameter Tuning 85

6.1.2 Change in performance

Micro F1 will be the main choice of metric for evaluating the models. See Chapter 3.6 for

explanations and motivations regarding the different evaluation metrics.

Table 6.2: BERT-RF Performance over Labeling Iterations

Iteration F1 Scores
Macro Micro

0 0.47 0.60
1 0.44 0.55
2 0.41 0.51
3 0.41 0.50
4 0.41 0.49

Table 6.2 shows the change in BERT-RF’s performance over the labeling iterations. At

first sight, it looks like the performance went down for each iteration. Both macro and

micro F1 decreased overall by six and 11 percentage points, respectively. The implications

of these numbers will be discussed in Chapter 7.

6.2 Hyperparameter Tuning

Table 6.3 displays the result of the hyperparameter tuning. A total of seven different

hyperparameters were tuned, see Table 5.6 in Chapter 5.7.5 for the search spans. The

random forest baseline contains the default hyperparameters as set by Sklearn. The

only hyperparameter were BERT-RF and TFIDF-RF ended up with the same value was

max_features.

Table 6.3: Hyperparameter Tuning Results - BERT-RF

Model Hyperparameters
n_estimators criterion max_samples MSL max_features max_depth bootstrap

RF Baseline 100 gini None 1 auto None True
BERT-RF Tuned 2900 entropy disabled 1 auto 39 False
TFIDF-RF Tuned 3780 entropy None 3 auto 44 True

Note. MSL = min_samples_leaf.

The performance of BERT-RF and TFIDF-RF, both with and without tuning, are

86 6.3 Model Evaluation

displayed in Table 6.4. Two additional benchmark models were also used, the ZeroR

classifier and the uniform dummy classifier (UDC). ZeroR predicts only the majority

class, while UDC guesses the predictions based on a uniform distribution. BERT-RF

Tuned performed best with a macro F1 score of 0.44 and a micro F1 score of 0.53. The

second was the TFIDF-RF Untuned model with 0.35 macro F1 and 0.47 micro F1.

Table 6.4: Model Comparison - Cross Validation

Model F1 Scores
Macro Micro

BERT-RF Untuned 0.41 0.49
BERT-RF Tuned 0.44 0.53
TFIDF-RF Untuned 0.35 0.47
TFDF-RF Tuned 0.33 0.47
ZeroR Classifier 0.13 0.36
Uniform Dummy Classifier 0.23 0.24

6.3 Model Evaluation

6.3.1 Classification Report

The classification report displays all the chosen performance metrics for the best performing

model, BERT-RF Tuned, when preforming predictions on the test set (Table 6.5). The

support column display the test set’s class distribution. Not-relevant had the highest F1

score (0.72), followed by social (0.54), factual (0.42), and lastly temporal (0.19). The

reason F1 macro and micro in the classification report are different from the values in

Table 6.4 is that cross validation was used for the comparison in Table 6.4, while the

classification report only shows the performance on the test set.

6.3 Model Evaluation 87

Table 6.5: Classification Report - BERT-RF Tuned

Class Metrics
Precision Recall F1 Score Support

Not-relevant 0.66 0.79 0.72 102
Factual 0.51 0.35 0.42 68
Social 0.46 0.65 0.54 86
Temporal 0.43 0.12 0.19 48

micro avg 0.55 304
macro avg 0.52 0.48 0.47 304
weighted avg 0.54 0.55 0.52 304

6.3.2 Confusion Matrix

The confusion matrix displays a side-by-side comparison of the best BERT-RF and TFIDF-

RF models. The color intensity signals the number of predictions for each cell. The

diagonal pattern in BERT-RF’s confusion matrix, from the top left corner to the bottom

right, follows the correct predictions. As seen in the TFIDF-RF matrix, the model failed

to a larger extent to make correct predictions, especially regarding temporal which did

not receive a single correct prediction.

N 81
66%

3
6%

18
15%

0
0%

F 13
11%

24
51%

28
23%

3
21%

S 15
12%

10
21%

56
46%

5
36%

T 13
11%

10
21%

19
16%

6
43%

Tr
ue

C
la

ss

Predicted Class

N 76
47%

6
11%

20
22%

0
0%

F 26
16%

23
43%

19
21%

0
0%

S 35
22%

16
30%

34
38%

1
100%

T 23
14%

8
15%

17
19%

0
0%

Tr
ue

C
la

ss

Predicted Class

Figure 6.4: Confusion Matrices - BERT-RF (left) & TFIDF-RF
Note. The X-axis contains the strategies in the following order: (N, F, S, T). E.g., the bottom

left corner of both matrices are (N,N).

88 6.4 Predicted Distribution

6.4 Predicted Distribution

The predicted distribution shows the class distribution of the 49,496 samples as predicted

by BERT-RF (Figure 6.5). It is noteworthy that the model was trained on only 1,810

labeled examples, called the labeled distribution, and that mixed was not included during

training and hence not in the predictions. Table 6.6 shows the exact numbers for each

class.

Figure 6.5: Predicted Distribution

Perhaps most interestingly, compared to the labeled distribution, as visualized in Figure

6.3, temporal is considerably smaller in size, constituting only 2.4% of the predicted

distribution compared to 13.5% of the labeled distribution. Not-relevant on the other

hand, grew from 35.5% to 51.7%. The implications of the distributions will be discussed

in Chapter 7.

Table 6.6: Labeled and Predicted Distributions

Distribution Classes
Not-Relevant Factual Social Temporal Mixed Sum

Labeled (Aggregated) 608 (36%) 333 (19%) 411 (24%) 232 (14%) 125 (7%) 1,709 (100%)
Predicted 25,853 (52%) 8,820 (18%) 14,040 (28%) 1,233 (2%) Not Considered (0%) 49,946 (100%)

6.5 Regression Results 89

6.5 Regression Results

The regression dataset consisted of 99 data points, containing the occurrences of

deparadoxification strategies in approximately 57,000 paragraphs, in addition the the

normalized voting outcome. The independent variables are the sum of occurrences of

deparadoxification strategies (including not-releveant) leading up to a resolution vote

within a given topic (sum_NN, sum_F, sum_S, sum_T). The dependent variable is the

normalized voting outcome (points). The results of the regression models are displayed in

Table 6.7 and 6.8. The most important metrics to note are the r-squared, adj. r-squared,

prob (f-statistic), the coefficients and P >| t |. These are all highlighted in Table 6.7

and 6.8. The implications of their values will be discussed in Chapter 7. For additional

metrics (which will not be discussed in Chapter 7), such as kurtosis and Durbin-Watson,

see Appendix A4.

Table 6.7: OLS Regression Results 1/2

Model: OLS Adj. R-squared: -0.024

Dependent Variable: points AIC: -317.2797
BIC: -304.3041

No. Observations: 99 Log-Likelihood: 163.64
Df Model: 4 F-statistic: 0.4175
Df Residuals: 94 Prob (F-statistic): 0.796

R-squared: 0.017 Scale: 0.0022611

Table 6.8: OLS Regression Results 2/2

Variable Metrics
Coef. Std.Err. t P> |t| [0.025 0.975]

const 0.9826 0.0062 158.5162 0.0000 0.9703 0.9949
sum_NN -0.0000 0.0000 -0.0687 0.9454 -0.0001 0.0001
sum_F 0.0000 0.0000 0.3212 0.7488 -0.0001 0.0001
sum_S -0.0000 0.0001 -0.3834 0.7023 -0.0002 0.0001
sum_T 0.0006 0.0005 1.0609 0.2914 -0.0005 0.0016

The partial regression plot (Figure 6.6) is a set of regression plots showing the effect of

each independent variable when the other independent variables are eliminated. In other

words, it displays the bivariate relationship between each independent variable and points.

The implications of Figure 6.6 will be explained in Chapter 7.

90 6.6 Word Clouds

Figure 6.6: Partial Regression Plot

6.6 Word Clouds

The word cloud plots visualizes the 200 most frequent words for each class for both

the labeled and predicted distribution (Figure 6.7-6.11). Stop words from the NLTK

package was applied to remove stop words. In addition, a few highly frequent words were

removed in order to give the reader a stronger impression of the differences: "United

Nations", "Security Council", "Council", "United", "Nations", "security", "will", "peace",

and "must". The word clouds will not be used in the discussion, except for Figure

(not-relevant), but are rather meant to give the reader a visual intuition of the data before

going into discussion.

6.6 Word Clouds 91

(a) Labeled Distribution (b) Predicted Distribution

Figure 6.7: Temporal Word Clouds

(a) Labeled Distribution (b) Predicted Distribution

Figure 6.8: Social Word Clouds

(a) Labeled Distribution (b) Predicted Distribution

Figure 6.9: Factual Word Clouds

(a) Labeled Distribution (b) Predicted Distribution

Figure 6.10: Not-relevant Word Clouds

92 6.6 Word Clouds

(a) Labeled Distribution (b) Predicted Distribution

Figure 6.11: All classes Word Clouds

93

7 Findings and Discussion

7.1 Answering the Research Questions

7.1.1 Active Learning Influence on Classifier Performance

RQ1: To what extent does the chosen NLP model respond to active learning when

classifying deparadoxification strategies?

Initially, 810 samples were labeled based on random sampling, while 488 were later

labeled through active learning. It is clear from Figure 6.3 that the label distribution did

not substantially change after going through four iterations of active learning, despite

the apparent distribution differences in Figure 6.2. The only noteworthy change is that

the proportion of Not-Relevant decreased by nine percentage points. These findings

have two important implications: Firstly, the oracles have been fairly consistent in their

labeling, implying that the labeling instructions were adequately precise and that the

labeling process was well designed and executed. Secondly, due to the design of the active

learning algorithm (Algorithm 1), the oracles succeeded in making the distribution more

balanced by sampling 100 uncertainty cases of each class for each iteration, as opposed

to random sampling. As discussed earlier, a more balanced dataset is favorable to the

model’s performance.

The immediate impression of Table 6.2 suggests that the model’s performance got

worse from increasing the training data size through active learning. However, this

interpretation is not necessarily correct. The authors suggest two reasons, each with their

own implications, for the overall decrease in the F1 scores. Firstly, because the dataset of

the 0th iteration is substantially smaller than that of the 4th, the chance of overfitting is

naturally higher (Ying, 2019). For each iteration, the size of the test set increases, which

gives the F1 scores more credibility. Hence, the decreasing F1 scores do not necessitate

that the model performs worse. It might simply indicate that the model became less

overfitted for each iteration. In addition, the high level of noise further increases the

chance of overfitting, which again can be mitigated by expanding the training data (Ng,

94 7.1 Answering the Research Questions

2018; Ying, 2019).

While it is plausible that the later iterations mitigated some of the overfittings, hence the

decreasing slope, the authors also believe it is plausible that the model’s performance did,

in fact, not improve over time. The authors hypothesize that the model was initially (0th

iteration) heavily underfitted. Having only 810 examples was not enough for the model to

learn the underlying patterns of the deparadoxification strategies. This was likely due

to the high level of noise and the inherent complexities in detecting deparadoxification.

Furthermore, as the oracles experienced; it was often the case that large parts of the text,

both at the paragraph level and sentence level, did not directly imply deparadoxification,

especially when looking at the parts separately from each other. This made it especially

difficult for the model to learn the underlying patterns. Hence, the model was underfit

after the 0th iteration. The authors further propose that using the LC sampling technique,

as opposed to random sampling, lead to the model querying the outliers before it had

established a firm understanding of each class, hence increasing the variance too early. In

other words, the model was underfit to begin with. Instead of giving the model time to

learn to underlying patterns by increasing the training data through random sampling,

the query strategy feed the model the outliers it was the most uncertain about. Hence,

the model started overfitting by trying to learn the outliers, which it was fed through

each iteration. This resulted in the model becoming partly underfit and overfit at the

same time. In short, the model failed to learn the underlying patterns properly, hence

underfit, while also being too flexible towards the outliers and noise which it was fed,

hence overfit (Ying, 2019) (Ying, 2019). For further reading on simultaneous overfitting

and underfitting, the authors recommend the works of Ng (2018). Measures that can be

taken to prevent this will be discussed in Chapter 7.3.

In conclusion of RQ1, while it is clear that BERT-RF did respond to active learning,

whether and to which degree it had a positive or negative impact calls for a nuanced answer.

The apparent decrease in performance can be partly attributed to the model suffering

from overfitting at the 0th iteration, however, the authors hypothesize that the model

simultaneously suffered from early underfitting (implying high variance and high bias at

7.1 Answering the Research Questions 95

the same time). This entails that the model was not able to properly learn the underlying

patterns in the 0th iteration, and hence the uncertainty-based query strategy resulted

in the model adapting to outliers before it had established a firm understanding of the

different deparadoxification strategies. From these observations, the authors conclude that

in order for active learning to be suitable for training a model to classify deparadoxification

strategies without pre-labeled data, a few adjustments must be made. If enough time and

resources are invested into labeling, e.g., increasing the number of iterations twentyfold,

random sampling can be used for multiple iterations before transitioning into LC sampling.

This would allow the model to learn the fundamentals of each class before being exposed

to outliers. It is also possible that LC sampling is not suitable for classes as complex as

deparadoxification and that random sampling or some other query strategy should be

used instead. Examples of other query strategies are suggested in Chapter 7.3.

7.1.2 Contextual vs. Non-Contextual Embeddings

RQ2: Do contextual embeddings outperform non-contextual embeddings and do they

respond differently to hyperparameter tuning?

In terms of hyperparameter tuning, the BERT-RF responded positively in terms of both

macro and micro F1 (Table 6.4). Macro F1 increased by three percentage points, and

micro F1 by four. Given that the model went through a relatively vast randomized

search span, in addition to two grid searches, the authors find it unlikely that the model’s

performance would increase significantly through further tuning. The tuning resulted

in increasing the number of trees from 100 to 2900, implying that adding complexity

was favorable to the model’s performance. This might be attributed to the complex

patterns that make up deparadoxification. Interestingly, the model preferred a decrease

in maximum tree depth from None (trees expand until all leaves are pure or all leaves

contain less than min_samples_split samples (Buitinck et al., 2013)) to 39, which lowers

the model’s variance. Such a regularization implies that the model puts constraints on

itself to avoid overfitting. This, in combination with the significant increase in trees and

the relatively low overall performance, is a sign that overfitting is causing problems for

the model.

96 7.1 Answering the Research Questions

The tuning also resulted in changing the splitting criterion from gini to entropy, but

considering how similar these criteria are, it does not provide any significant insight into

how the model learns the classes (Hastie et al., 2008). The last change from the default

Sklearn hyperparameters to those of tuned BERT-RF, was that bootstrap was set to

False, entailing that the main source of variation of the model comes from the random

subset of features that are used on each split, which was set to auto =
p
n_features.

This resulted in subset sizes of 27 = [
p
768]. Interestingly, the TFIDF-RF model was

not able to improve through tuning, hence the untuned TFIDF-RF with the default

hyperparameter values was superior, making the preferred hyperparameters quite different

from that of BERT-RF. One of the main differences is that untuned TFIDF-RF contains

96.6% less trees than tuned BERT-RF, implying that the best TFIDF-RF model is less

complex than BERT-RF. However, untuned TF-IDF has no maximum tree depth, which

increases the variance. Nevertheless, based on these observations it is plausible that

because the BERT embeddings are significantly more complex than those of TF-IDF, a

simpler random forest model is preferred for TF-IDF.

To compare BERT-RF and TFIDF-RF, their F1 scores are plotted in Table 6.4 together

with two benchmark models complementary to TFIDF-RF. Those benchmark models’

scores are as expected: ZeroR performs better in terms of micro F1 because micro F1 is

more suitable in imbalanced cases, and ZeroR only predicts the majority class. UDC

performs better in terms of macro F1 because macro F1 works better for balanced

data, and UDC acts as if the data is perfectly balanced by having a uniform prediction

distribution. Because the dataset is imbalanced and micro F1 is the main choice of metric,

ZeroR will function as the main benchmark model (complementing TFIDF-RF). Both

BERT-RF and TFIDF-RF significantly outperformed ZeroR. This implied that BERT-RF

and TFIDF-RF are able to pick up an existing pattern, hence the deparadoxification

strategies can be detected and quantified using machine learning.

Nevertheless whether these patterns are that complex and context dependent that

a contextual model is better than a non-contextual model is yet to be answered:

Looking at both macro and micro F1 for the tuned and untuned versions, BERT-RF

7.1 Answering the Research Questions 97

outperforms TFIDF-RF every time. It is a six percentage point micro F1 difference

between tuned BERT-RF and untuned TFIDF-RF. This shows that the contextual

model is better, implying that deparadoxification is more complex than simply assessing

which words are used, but rather partly inherent in the context. However, the fact that

TFIDF-RF managed to achieve a micro F1 score of 0.47 shows that a substantial part

of deparadoxification directly manifests itself in the literal words used, which can be

detected with disregard for the context. Yet, to achieve a near perfect F1 micro score,

through e.g., experiments with substantially more labeled data, the authors assume that

considering the context is necessary.

Regarding the performance of BERT-RF, the authors has drawn these conclusions from

the classification report: Firstly, the reason not-relevant has the highest F1 score (Table

6.5) is due to the natural distinguishability between meeting formalities/etiquette and

language where actual problems and decisions are discussed. As the oracles experienced,

not-relevant was the easiest class to label, which is reflected by the model’s performance

on that class. Social had the highest F1 score out of the three strategies (0.54). This

is likely due to both the fact that social was the majority strategy in the training

data and that the paragraphs in general contained very clear wording implying social

deparadoxification, especially when responsibility was attributed to a social actor. Factual

comes second with a F1 score of 0.42. It was apparent during the labeling that factual

was the most context dependent class, hence likely posed challenges for TFIDF-RF. It

was often the case that it was not before reading the whole paragraph that it became

obvious that it should be factual. Hence, learning the underlying patterns of such a class

can be quite difficult for a machine learning model. In addition, with the large amount of

noise that the model has to circumvent, it is not surprising that factual has a relatively

low F1 score, especially considering the limited training data. Lastly, temporal had the

lowest F1 score of 0.19. While this is somewhat surprising given that temporal paragraphs

often stood out by using a set of distinct time oriented words, as described in Chapter

5.3, it is however the least represented class in the data distribution (Table 6.6) and the

test set (Table 6.5), which helps explaining the low F1 score.

98 7.1 Answering the Research Questions

The confusion matrix (Figure 6.4) further illustrates differences in BERT-RF’s and

TFIDF-RF’s perception of the deparadoxification strategies. Both models experienced

temporal and social to be the most overlapping classes. This likely comes from the models

getting confused by paragraphs where a speaker creates some sense of urgency for a social

actor to take responsibility for a specific situation. For TFIDF-RF it was particularly

extreme: The model only made a single prediction of temporal, which happened to be for

a paragraph labeled social. The fact that TFIDF-RF only predicted one data point as

temporal while BERT-RF did it 14 times, six of them successfully, suggest that temporal

is more dependent on context than the other strategies. Interestingly, there are only two

classes which BERT-RF never conflicted, namely not-relevant and temporal. This implies

that not-relevant is closer to factual and social than temporal.

In conclusion of RQ2, it is clear that contextual embeddings outperform non-contextual

embeddings in this particular case. However, the difference in performance was not

large enough to conclude that non-contextual models are obsolete when it comes to

deparadoxification. TFIDF-RF preformed surprisingly well compared to BERT-RF. It is

apparent that the ratio between the importance of context versus the individual words

is not as large as the authors originally assumed. Yet, it is clear that the context does

play a role in deparadoxification. With a larger training dataset, the difference between

the contextual model and non-contextual model will likely become more evident, as

contextual embeddings are proven to outperform non-contextual embeddings when it

comes to language containing complex structure (Arora et al., 2020). In addition, using

contextual embeddings increase the need for model complexity, which in turn increase

the need for more data to improve performance (Ying, 2019). This fact is plausibly why

TFIDF-RF performed surprisingly well: Because its embeddings are so simple compared

to those of BERT’s, that having a small data sample plays to TF-IDF’s advantage. In

terms of model tuning, only BERT-RF preferred a change of hyperparameters, imposing

constraints on itself through regularization by lowering max_depth. In addition, the

tuning led to increasing the number of trees, hence reducing variance. These two factors

indicate that BERT-RF was more prone to overfitting, as TFIDF-RF did not prefer any

regularization. TFIDF-RF kept its baseline parameters, preferring a simpler model in

terms of trees, but with higher variance in terms of maximum tree depth. Considering

7.1 Answering the Research Questions 99

that BERT contains contextual knowledge of millions of sentences (due to pre-training)

and TF-IDF only has knowledge of the paragraphs of which it was build, TF-IDF has a far

simpler space for possible combinations to be found, which might explain why TFIDF-RF

preferred the simpler random forest model.

7.1.3 Deparadoxification Distribution and Underlying Causes

RQ3: Is there a uniform or otherwise distribution of deparadoxification strategies, and

what could be the underlying causes for this distribution?

Both the labeled distribution (Figure 6.3) and the predicted distribution (Figure 6.5)

shows that the classes does not follow a uniform distribution. There is a clear majority

class, not-relevant, in both distributions. The predicted distribution will be the focus

of RQ3. For this distribution, not-relevant (52%) is followed by social (28%), factual

(18%), and lastly temporal (2%). The distribution suggests that approximately half of

the communication that takes place in the UNSC meetings is ordinary communication

and not decisions. This imply that half the communication is communicating decisions

that has already taken place (Schoeneborn, 2011). The authors partially attribute this

to the UNSC’s natural use of meeting etiquette, formalities, and bureaucratic language,

as stated by (Wodak and Krzyżanowski, 2008), and experienced by the oracles in their

labeling of not-relevant. As seen in Figure 6.10, many of the most frequent words, both

for the predicted and labeled distribution, are commonplace meeting etiquette, such as

"president", "secretary general", "member", and "representative".

Social had the highest frequency of the three deparadoxification strategies, representing

28% of the total distribution and 58% of the actual strategies. This means that the

majority of the non-ordinary communication, as defined by (Schoeneborn, 2011), is

making it seem like decisions has already been made and only the formalization is left

(Andersen, 2003). Hence, the tension of "us" and "them", which constructs the social

space, appears quite frequently in the meeting minutes. It also implies that assigning

traits or powers to central social actors is a large part of the communication that takes

place. This is likely due to that which the UNSC function in large part by delegating

100 7.1 Answering the Research Questions

responsibility to either governments in the form of e.g., ceasefire directives or military

action, or regional organizations. In addition, the UNSC has no direct obligation to

take responsibility themselves over every security crisis (Bellamy and Dunne, 2016). As

discussed previously, there are very few empirical studies on deparadoxification. To the

authors’ knowledge, the largest one conducted was done by Ask et al. (2007), where the

researchers interviewed 25 large Swedish organizations, investigating deparadoxification

within IT governance. The study found that social was the most common strategy, by a

large margin, which is consistent with the UNSC deparadoxification distribution. Even

though our study uses a very different case, the domain remains the same. Considering

the lack of empirical studies, it is worth to compare our results with this single study. The

fact that social was also the largest strategy for Ask et al. (2007), might imply that social

is in general a more frequent strategy in large organizations than the other two. However,

more empirical research within this field is necessary to make any such generalizations.

Factual deparadoxification was the second most frequent strategy, representing 18% of

the total distribution, and 37% of the strategies. According to Luhmann (1995), factual

deparadoxification is the most straightforward one out of the three strategies. This makes

it somewhat surprising to see that it is 21 percentage points behind factual when only

looking at the strategy classes. This might be due to the UNSC being more concerned

about the responsibility of social actors, as apposed to different alternatives of action.

This implies that the member states are e.g., more likely to point out other member

states as responsible and demand that they take action. Or, it might be the case that

they prefer to take on responsibility themselves, as opposed to presenting alternatives

to the other members. One might assume that the UNSC meetings mainly consists of

discussing course of action, but based on the distribution, that does not seem to be the

case. Another plausible explanation is that there are studies suggesting that most of the

decisions actually take place during informal meetings, where alternatives are presented

Eckhard et al. (2021). This will be elaborated on in RQ4.

Temporal deparadoxification is the least frequent strategy in both distributions (excluding

mixed). For the predicted one, temporal represents only 2% of the whole distribution,

7.1 Answering the Research Questions 101

and 5% of the strategies. While this might seem surprising giving how the UNSC often

deals with seemingly urgent humanitarian crisis in areas heavily affected by conflict,

the duration of these conflicts and the time span it takes to reach decisions (voting

on resolutions) makes it plausible that temporal deparadoxification is not occurring

as frequent as social or factual deparadoxification. However, by looking at the third

quartile, we see that 75% of the topics (e.g., "The situation in the Middle East") contains

six or less meetings. Based on this, it seems plausible that a sense of urgency should

be commonplace in the meetings. However, when taking the outliers into account,

e.g., looking at the 30 most frequent topics out of the total 541 topics (derived from

meta_meetings, see Chapter 5.2.3), they contain 51% of the total meetings, resulting

in an average of 98 meetings per topic. Hence the UNSC spends half their meetings

on long-lasting issues, which helps explain the low frequency of temporal. It is however

important to note that temporal was the class BERT-RF struggled the most with, as

discussed in RQ2. This likely had a significant impact on temporal’s predicted frequency,

which explains why the class is more frequent in the labeled distribution.

Regarding Mixed, which was not included in training BERT-RF, grew in proportion to the

other classes during the active learning iterations (except for the 4th iteration, where it

dipped slightly (Figure (6.2). This is implies that while BERT-RF queried the paragraphs

it was the most uncertain about, using LC sampling, the oracles naturally became more

uncertain about how they should label them. The fact that for 3rd and 4th iteration,

mixed was more frequent than temporal and not-relevant is a clear sign of the frequency

of overlap between the deparadoxification strategies within the paragraphs. This fits well

with the previously mentioned works of Constantinou et al. (2016) which argue that

diplomats tend to use words that are purposefully elastic, in order to suggest alternative

meanings to please multiple stakeholders at once. For instance, both suggesting and

not suggesting responsibility for e.g., a humanitarian disaster at the same time. This

observation carries implications for how difficult it is to train a classifier to predict these

intricate and sometimes intertwining patterns of deparadoxification, especially given the

lack of sizable training data.

102 7.1 Answering the Research Questions

In conclusion of RQ3, it is clear that the deparadoxification strategies does not follow

a uniform distribution. This is also true when looking at the ML classes (taking not-

relevant into consideration). Both the predicted distribution (Figure 6.5) and the labeled

distribution (Figure 6.3) are heavily imbalanced. The authors suggests a number of

reasons for the distribution. Firstly, that the high frequency of not-relevant can be

partially explained by the UNSC’s natural use of meeting etiquette and bureaucratic

language. Secondly, social being the most frequent of the strategies can be caused by the

extensive use of delegation of responsibility to governments and regional organizations.

The authors goes on to compare the frequency with the works of Bellamy & Dunne (2016),

which also found social to have the highest frequency. Thirdly, factual might have lower

frequency due to alternatives and course of action being discussed more often during

informal meetings, as opposed to the public ones. RQ4 will elaborate on this. Fourthly,

the authors suggest that the low frequency of temporal is due to the UNSC using half

their meetings on long lasting conflicts, which does not tend to create a sense of urgency.

Lastly, the surprisingly large frequency of mixed in the labeled distribution is plausibly

due to a mix of the inherent intricacies in detecting the strategies and the ambiguousness

of political language. To iterate an important remark, these observations are based on

the predictions of BERT-RF, which entails that the uncertainties of the model makes it

impossible to make any decisive conclusions about the class distribution.

7.1.4 Effect of Strategies on Voting Outcome

RQ4: Does the use of any of the three strategies affect the voting outcome of resolutions?

H0 :
4X

n=1

|�n| = 0

H1 :
4X

n=1

|�n| 6= 0

(7.1)

To investigate whether any of the deparadoxification strategies affect voting outcome, we

use the F-test of overall significance in regression with an alpha value of 0.10. The null

hypothesis (H0) states that the regression coefficients of all independent variables (the

deparadoxification strategies) are equal to zero. This entails that any unit change in any

7.1 Answering the Research Questions 103

of the strategies does not affect the dependent variable (voting outcome). The alternative

hypothesis (H1) states that at least one of the coefficients are not equal to zero, implying

that at least one independent variable explain some of the variation the dependent

variable. If the p value of the F-statistic is below alpha, we reject H0, suggesting that the

deparadoxification strategies explain some of the variation in voting outcome.

There are five metrics that are especially relevant for assessing this case; r-squared,

adj. r-squared, prob (f-statistic), the coefficients, and (P >| t |). These can be found

in Table 6.7 and 6.8. R-squared, which indicates what percentage of the dependent

variable’s variance that is explained by the independent variables, is 0.017 indicates that

the independent variables (occurrences of different deparadoxification strategies) explain

0.17% of the variation in voting outcome. Adj. r-squared, which adjusts for the number

of variables by penalization, had a value of -0.024, implying that the residual sum of

squares is close to the total sum of squares. This further substantiate how limited the

independent variables are in explaining the variation in the dependent variable. The

regression coefficients for all independent variables, except sum_T are 0. This means

that for an one-unit shift in either sum_NN, sum_F, or sum_S, the mean of points will

not change (given that the other independent variables are constant). Sum_T had a

coefficient of 0.0006, which implies a minuscule positive expected increase in points when

sum_T increase. The partial regression plot 6.6 visualize these minuscule or non-existent

coefficients by drawing almost perfectly straight lines for each independent variable. One

of the most important metrics is the p values from the T-tests. Using an alpha value of

0.10, we fail to reject H0 of the T-test for each independent variable. This suggest that

the results are insignificant, meaning that the individual independent variables explain no

variation in the dependent variable.

Finally, by assessing the the prob (f-statistic) (the p value from the F-test) we can asses

the joint effects of all the independent variables together, hence performing the F-test of

overall significance in regression (Equation 7.1). With an alpha value of 0.10, we fail to

reject H0, given the prob (f-statistic) value of 0.80. This implies that we retain the null

hypothesis, which states that sum_NN, sum_F, sum_S, and sum_T does not explain

104 7.1 Answering the Research Questions

any of the variation in points. Hence, given how the deparadoxification strategies are

represented as the independent variables and how the voting outcome is represented

as the dependent variable, we conclude that deparadoxification does not affect voting

outcome based on the regression analysis.

One of the possible explanations for not finding significant results is the lack of voting

outcome spread. As described in the methodology, points had a mean of 0.98 and a

standard deviation of 0.05, resulting in a CV of 5.1%. Out of the 99 instances of voting

in the regression dataset, 79 of them were unanimous (15-0-0). While 10 of them (the

second most common result) had 1 vote deviating from voting in favor of the resolution.

Intuitively, having an organization that agree most of the time makes it difficult to detect

the affects of deparadoxification. However, it could have been the case that on those

rare occasions where the outcome was not unanimous, there was a noticeable increase or

decline in any of the strategies. However, this turned out not to be the case, based on the

statistically insignificant results.

Another possible explanation is that the UNSC wait with initiating a vote until it is

clear that all or most stakeholders are satisfied with the contents of the draft resolution.

Alternatively, it might be the case that drafted resolutions are in general in the best

interest of all stakeholders when it comes to maintaining global peace and security. It is

also possible that due to the nature of diplomacy, the representatives already know which

side they should take in any conflict of interest, hence the meetings does not necessarily

affect how they choose to vote. It might rather be external factors that dictate the voting

outcome, as opposed to deparadoxification that takes place within the meetings. As

stated by Eckhard et al. (2021), there are multiple researchers arguing that decisions

does not actually take place within the UNSC meetings, but rather during informal

meetings. Based on this view, the UNSC is simply a talking shop. If that is the case,

then the organization is as a means of legitimizing already made decisions, as opposed

to making them. Arguably, from a high-level perspective, most of the communication in

the UNSC is social deparadoxification according to Andersen’s (2003) definition, because

most decisions appears as they have already been made and the only thing left to do

is formalize the decision. This could explain why approximately 80% of the sampled

7.2 Limitations 105

decisions are unanimous.

In conclusion of RQ4, with an alpha value of 0.10, we fail to reject H0 of the F-test of

overall significance in regression, implying that all the regression coefficients are zero,

which suggests that the deparadoxification strategies does not explain any of the variation

in the voting outcome. Based on this, we conclude that the strategies, in the form of

their occurrences, independent of time and each other, does not affect voting, given the

delimitations of this paper and how the strategies and voting outcome are represented in

the variables. The lack of statistical significant results might be attributed to a number

of reasons, including the lack of voting outcome dispersion, the organization might wait

with initiating voting until all or most parties agree, most resolutions might be in the best

interest of all parties, or finally, the representatives might have already made up their

mind, independent of the actual meetings. If the latter is true, one can argue that all

meetings consists of social deparadoxification, as their decisions appear as if they have

already been made and formalization is the only thing that is left to do. Even though

the F-test resulted in failing to reject H0, it is important to reiterate that this test was

constructed based on the delimitation and set of assumptions of this paper. The outcome

of the test only suggest that deparadoxification does not affect voting outcome. Not taking

the assumptions into consideration would paint a false image of how deparadoxification

affects decision making in the UNSC. Not only is it assumed that the independent variables

adequately captures the usage of deparadoxification strategies and that the dependent

variable adequately captures voting outcome, but in addition it is assumed that BERT-RF

adequately classified the paragraphs used for the regression analysis. As discussed in RQ1

and RQ2, BERT-RF did in fact perform rather poorly, with an micro F1-score of 0.53

from cross validation and 0.55 on the test set. By alleviating some of these assumptions,

there are numerous ways, yet to be discovered, that deparadoxification can affect voting

outcome. This will be elaborated on in Chapter 7.3.

7.2 Limitations

The authors have identified two limitation categories of the paper which should be taken

into consideration when evaluating the findings: data limitations and oracle labeling

limitations. Attempting to alleviate some of these limitations in future research projects

106 7.2 Limitations

might yield improved results.

Data Limitations The oracles labeled 1,520 paragraphs in total, which were all

cross-checked. While this is a substantial amount given the time intensive labor of labeling

paragraphs as deparadoxification strategies, the authors suggest that the classification

models’ performance can be significantly improved if larger amounts of training data is

provided. It is the authors’ perspective that the size of the labeled dataset was insufficient

to satisfactory train any supervised machine learning model for this specific task. Having

twenty or thirty times as much data would expectedly result in a significant increase in

performance. Increasing the data size would have allowed the model to establish a firmer

understanding of the underlying patterns before querying the paragraphs it was the most

uncertain about. Furthermore, the level of noise likely have a significant negative impact

on the models’ performance, as empirical studies have shown (Gupta & Gupta, 2019).

This further increased the negative impact of the small training data size.

For the regression model, there are also noteworthy data limitations. Firstly, the ration

between resolutions and paragraphs. Because the dataset that had been used up until the

regression analysis had been acquired through random sampling and active learning, it

could not be used for regression because it did not contain all relevant paragraphs for

each resolution vote. When adjusting the sampling method to what was appropriate

for the regression analysis, as explained in Chapter 5.7.6, evaluating 57,067 paragraphs

resulted in only 99 resolution data points which could be used in the regression analysis

(Table 5.7). This sparsity and lack of resolutions puts heavy constraints on the regression

analysis (the UNSC adapts on average around 35 resolutions each year (UN, 2022)).

While it is possible to evaluate all the paragraphs in the dataset, it would require running

BERT for approximately 100 hours to retrieve the embeddings (based on the runtime of

running on 57,067 examples, see Appendix A3). While it could potentially increase the

number of resolutions to 1,418 (based on the episodes dataframe), the regression analysis

would still be limited by the inconvenience (from a machine learning perspective) that

the UNSC tends to agree during voting, as elaborated on in RQ4. This fact limits the

possibilities of finding any significant regression coefficients. In addition, it is crucial

7.2 Limitations 107

to note that, as discussed in RQ4, the data representing the independent variables in

the regression analysis were in fact obtained by using BERT-RF, a classifier which only

obtained a micro F1-score of 0.53 during cross validation. Hence, the regression dataset is

not necessarily a fair representation of the occurrences of the strategies leading up to a

vote. In addition, the independent variables only captures the occurrences (as classified

by BERT-RF) and takes no other factors into consideration. As a result, it is impossible

to decisively conclude that deparadoxification does not affect voting outcome in any way.

Oracle Labeling Limitations While the size of the training data is a limitation in

itself, there are also a set of limitations associated with how the data was obtained,

namely through oracle labeling. The first one address the fact that the oracles also

happen to be the authors of the paper, entailing that both created the labeling

instructions and conducted the labeling. This puts constraints on how easy it is to

replicate the study as the authors might have obtained an unspoken understanding of the

categories (Krippendorff (2004). Such an understanding is not included in the labeling

instructions, which can limit their applicability in future studies. However, the authors

did apply measures in effort to partly alleviate this limitation, as discussed in Chapter (5.3).

Due to the oracles being human, there is a natural limitation in how they interpret

information differently and inconsistently. As Kahneman et al. (2016) states, factors

external to the study, such as the oracle’s current mood, cognitive abilities, and ability

to concentrate over time, may have a significant impact on their assessment of the

information that is presented to them. This chance of variability in information assessment

is termed as noise (Kahneman et al., 2016). Accordingly, noise is a limitation of the

oracle data labeling, which influences the classifier and hence the results. While this kind

of noise is difficult to spot, the authors made the design choice of having the oracles

cross-check every labeled coding unit in an effort to alleviate the noise. However, the

authors find it unlikely that this design choice alone ensured a noise free dataset.

The last limitations are related to bias. Arguably, by including the labelling category

mixed, the authors added bias by simplifying a describable phenomenon (Krippendorff,

108 7.3 Future Research

2004). This implies that the author might have uncertainties about the phenomena

of deparadoxification. However, it is also arguable that including mixed as category

was necessary because a mixed deparadoxification strategies actually occur within the

paragraphs. Hence, the inclusion of mixed does not necessitate an unclear understanding

of deparadoxification. Furthermore, while the labeling conducted by the oracles are

prone to e.g., noise and other errors, it is important to note the labeling are based on

the assumption that the labeling instructions adequately captures Luhmann’s concept

of deparadoxification. Hence, the authors understanding and ability to formulate the

different strategies are in itself a limitation, as the authors are also prone to human error

in how they interpret information differently.

7.3 Future Research

The authors of this paper wish to highlight five potential bases for future research that

they believe can result in valuable findings, further bridging the gap between data science

and deparadoxification. These bases consider data labeling, variations of BERT, unit of

analysis, and dynamic Bayesian networks (DBNs).

Data labeling As the results and discussion has shown, while both BERT-RF and

TFIDF-RF outperformed the benchmark models by a large margin, active learning and

hyperparameter tuning alone was not enough to sufficiently train the classifiers. The

authors believe that the micro F1-score of BERT-RF (0.53) can be greatly improved with

a substantially larger labeled dataset. To do so, the labeling can be outsourced using

crowdsourcing platforms such as Amazon Mechanical Turk to achieve the desired volume.

Furthermore, the authors suggest doing multiple iterations of random sampling before

using an active learning technique to see how the model responds. In addition, while

the LC technique is one of the most popular query strategies due to its computational

efficiency and simplicity (Konyushkova et al., 2017), the authors suggest trying other query

strategies such as query-by-committee (Seung et al., 1992) or multiple-instance learning

(Settles et al., 2008) to investigate whether changing the query strategy significantly

impacts the results.

Variations of BERT The pooling strategy chosen in relation to BERT was

concatenating the last four hidden layers, which is the strategy that yielded the best

7.3 Future Research 109

results in the original BERT paper (Devlin et al., 2019). However, as Devlin et al. 2019

demonstrates, there are numerous different strategies to choose from, which is likely to

yield different results based on the task. We therefore recommend to experiment with

different pooling strategies, such as second-to-last hidden or weighted sum all 12 layers,

to investigate how it might change the results. Furthermore, while this paper has utilized

the feature-based approach with BERT, there is improvement potential in using the

fine-tuning approach instead. It is however noteworthy that this approach would require

substantially more computational power (Devlin et al., 2019), especially in regards to

active learning and hyperparameter tuning (all the embeddings have to be calculated

for each iteration). Lastly, after BERT was released, multiple BERT inspired models

have shown promising results such as RoBERTa, StructBERT (Wang et al., 2019) and

DeBERTa (He et al., 2020). We encourage experimenting with these models to see whether

they can yield improved results to further bridge the gap between machine learning and

deparadoxification.

Unit of Analysis The unit of analysis, termed the coding units for labeling, of this

paper was the paragraphs. As argued in Chapter , using a paragraph as the unit of analysis

is a suitable trade-off between having enough textual context to find deparadoxification,

meaning validity, and performing feasible data labeling with oracles, meaning reliability.

Paragraphs as the unit of analysis seem to match the trade-off of validity and reliability

and do not prefer either validity or reliability over the other. However, as previously

stated, the strategies are sometimes intertwined within single paragraphs, hence the mixed

category. For this reason, the authors suggest that experimenting with a different unit of

analysis might yield interesting results. Furthermore, multi-label classification (as opposed

to multi-class) might improve the results found in this paper, given that enough training

data is provided. With this approach, the mixed category would be unnecessary, as the

oracles would be able to label a single paragraph as multiple strategies.

Dynamic Bayesian Networks The authors suggest using DBNs as an approach

for further analyzing deparadoxification within the UNSC after improved classification

results have been achieved. DBNs are Bayesian networks which relates different variables

to each other over time. DBNs have been applied to a wide span of research fields,

including voting behaviour (Costa et al., 2021), but we have not been able to locate a

110 7.3 Future Research

paper analyzing how UNSC resolutions are connected and influence each other over time.

The different paragraphs that makes up the meetings often refer to former resolutions,

which are shaped in earlier meetings which also refer to other resolutions. We propose

mapping out all the resolutions and meetings in a DBN where each node represents either

a resolution or meeting and the edges between them represents the casual relationship

established by one node referring to another. The meetings can be assigned values based

on the deparadoxification that takes place within each meeting using a classification

model, as demonstrated in this paper. This would allow the investigation of conditional

deparadoxification dependencies, how deparadoxification impact decisions over time, and

how those decisions create and impact future decisions.

111

8 Conclusion
This paper aimed to contribute to the call for empirical studies on deparadoxification

and help bridge the gap between organizational decision-making theory and ML. While

deparadoxification has been considered mostly theoretical, the authors sought to

investigate how it manifests itself in the real world by training a supervised ML model

to recognize the different strategies and measure their impact on decision making. The

non-existence of labeled data or earlier studies on this intersection specifically addressing

deparadoxification and ML prompted the authors to pick a case study suitable for manual

labeling of the strategies, namely the UNSC. By using the BERT model for extracting

the embeddings and random forest as the classifier, the authors iteratively labeled 1,610

UNSC meeting minutes paragraphs through active learning with LC sampling. By

investigating the use of active learning, the researchers help uncover possible paths to the

merging deparadoxificaiton and ML, which suffers from the lack of labeled data.

BERT-RF responded to active learning with a decline in performance from a micro

F1-score of 0.60 to 0.49. It is argued that the immediate decline is due to early overfitting

being mitigated by increasing the sample size. Yet, the authors hypothesized that the LC

sampling technique did confuse the model by feeding it outliers before it had established a

firm understanding of the underlying patterns of deparadoxification, hindering BERT-RF

in improving its performance. To investigate whether contextual embeddings outperform

non-contextual embeddings, BERT-RF was compared with TFIDF-RF. While BERT-RF

evidently performed better than TFIDF-RF, TFIDF-RF performed surprisingly similar to

BERT-RF, implying that either deparadoxification is not as context dependent as expected,

or that BERT-RF did not have enough training data needed for contextual models to

adequately learn the contextual patterns. In terms of hyperparameter tuning, TFIDF-RF

kept its default values, while BERT-RF preferred imposing constraints on itself through

regularization in addition to increasing the number of trees, which indicates that BERT-RF

was more prone to overfitting than TFIDF-RF, which is natural given the high complexity

of BERT embeddings. Two additional benchmark model were used, ZeroR and UDC,

which performed significantly worse than BERT-RF and TFIDF-RF, implying that both

BERT-RF and TFIDF-RF did manage to learn the underlying patterns to a certain degree.

112

The deparadoxification strategies did not follow a uniform distribution. On the contrary,

both the labeled and predicted distribution were heavily imbalanced, with the differences

being especially prevalent in the predicted one: Not-relevant (51.7%), factual (17.6%),

social (28.1%), and temporal (2.4%). The authors suggest a number of reasons for this

distribution, including the UNSC’s use of meeting etiquette, extensive delegation of

responsibility, long lasting conflicts and ambiguous diplomatic language. To investigate

whether the strategies affect the voting outcome, the F-test of overall significance

in regression was used with an alpha value of 0.10. The test resulted in failing to

reject the null hypothesis, suggesting that the independent variables do not explain

any of the variation in the dependent variable. This suggests that the occurrences of

deparadoxification strategies, independent of time and each other and in the way they

are classified by BERT-RF, does not affect voting outcome. The authors suggest that

this is due to most voting results being unanimous. It is also hypothesized that the

UNSC meetings are in effect, simply a medium for communicating decisions essentially

pre-determined, as opposed to making them. This could, to some degree, help explain the

lack of significant results in the regression analysis.

The authors suggest that if future studies manage to make up for the significant

uncertainties of BERT-RF by training a model on a substantially larger training set,

unknown patterns of deparadoxification and their impacts might be discovered. Specifically,

the authors recommend increasing the training set size, preferably without the LC sampling

technique. Furthermore, trying other variations of BERT, such as RoBERTA (Liu et al.,

2019), experiment with other units of analysis, and lastly, using DBNs to investigate how

conditional deparadoxification dependencies over time impact decision making. The fact

that BERT-RF performed substantially better than ZeroR and UDC proves that it is

possible to detect and measure deparadoxification through machine learning, assuming

that the labeling instructions and the way in which the oracles execute them, adheres to

Luhmann’s descriptions. The paper has successfully demonstrated an approach for bringing

the otherwise separated fields together, ML and deparadoxification, hence fulfilling its

purpose by contributing to answering the call for empirical research on deparadoxification.

References 113

References
Aggarwal, U., Popescu, A., and Hudelot, C. (2020). Active Learning for Imbalanced

Datasets. In 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1417–1426, Snowmass Village, CO, USA. IEEE.

Agrawal, A., Tripathi, S., and Vardhan, M. (2021). Active learning approach using a
modified least confidence sampling strategy for named entity recognition. Progress in
Artificial Intelligence, 10(2):113–128.

Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information
Processing & Management, 39(1):45–65.

Andersen, N. (2013). Managing Intensity and Play at Work. Edward Elgar Publishing.

Andersen, N. (2003). The Undecidability of Decision. In T. Hernes & T. Bakken
(Eds.), Autopoietic organization theory: Drawing on Niklas Luhmann’s social systems
perspective, (12):235–258.

Arora, S., May, A., Zhang, J., and Ré, C. (2020). Contextual Embeddings: When Are
They Worth It? arXiv:2005.09117 [cs]. arXiv: 2005.09117.

Ask, U., Bjornsson, H., Johansson, M., Magnusson, J., and Nilsson, A. (2007). IT
Governance in the Light of Paradox–A Social Systems Theory Perspective. In 2007
40th Annual Hawaii International Conference on System Sciences (HICSS’07), pages
234a–234a. ISSN: 1530-1605.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv:1409.0473 [cs, stat]. arXiv: 1409.0473.

Basu, R. (2004). The United Nations: Structure & Functions Of An International
Organisation. Sterling Publishers Pvt. Ltd. Google-Books-ID: IjWMX9nCa0sC.

Bellamy, A. and Dunne, T. (2016). The Oxford Handbook of the Responsibility to Protect.
Oxford University Press. Google-Books-ID: McaSDAAAQBAJ.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.
page 25.

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python.

Blaschke, M. (2019). The UN Security Council Meeting Records. Type: dataset.

Braathen, P. (2016). Paradox in organizations seen as social complex systems. Emergence:
Complexity & Organization, 18(2):1–14.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A., Holt,
B., and Varoquaux, G. (2013). API design for machine learning software: experiences
from the scikit-learn project. arXiv:1309.0238 [cs]. arXiv: 1309.0238.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research,
16:321–357.

114 References

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. arXiv:1406.1078 [cs, stat]. arXiv: 1406.1078.

Claesen, M. and De Moor, B. (2015). Hyperparameter Search in Machine Learning.
arXiv:1502.02127 [cs, stat]. arXiv: 1502.02127.

Cohen, M. D., March, J. G., and Olsen, J. P. (1972). A Garbage Can Model of
Organizational Choice. Administrative Science Quarterly, 17(1):1–25. Publisher: [Sage
Publications, Inc., Johnson Graduate School of Management, Cornell University].

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active Learning with Statistical
Models. Journal of Artificial Intelligence Research, 4:129–145.

Constantinou, C. M., Kerr, P., and Sharp, P. (2016). The SAGE Handbook of Diplomacy.
SAGE. Google-Books-ID: PLfeDAAAQBAJ.

Costa, P., Nogueira, A., and Gama, J. (2021). Modelling Voting Behaviour During a
General Election Campaign Using Dynamic Bayesian Networks | SpringerLink.

Cunha, M. P. e. and Putnam, L. L. (2019). Paradox theory and the paradox of success.
Strategic organization, 17(1):95–106. ISBN: 1476-1270 Publisher: SAGE Publications
Sage UK: London, England.

Dai, Z. and Callan, J. (2019). Deeper text understanding for IR with contextual neural
language modeling. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 985–988.

Dang, N. C., Moreno-García, M. N., and De la Prieta, F. (2020). Sentiment Analysis Based
on Deep Learning: A Comparative Study. Electronics, 9(3):483. arXiv: 2006.03541.

Daumeé, H. (2017). A Course in Machine Learning.

Derrida, J. (1992). Force of Law: The "Mystical Foundation og Authority". In
Deconstructing and The Possibility of Justice, pages 3–67. Routledge, New York:.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs].
arXiv: 1810.04805 version: 2.

Eckhard, S., Patz, R., Schönfeld, M., and Meegdenburg, H. v. (2021). International
bureaucrats in the UN Security Council debates: A speaker-topic network analysis.
Journal of European Public Policy, pages 1–20.

Elgeldawi, E., Sayed, A., Galal, A. R., and Zaki, A. M. (2021). Hyperparameter Tuning
for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics,
8(4):79. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

Face, H. (2022). Hugging Face – The AI community building the future.

Ghojogh, B. and Crowley, M. (2019). The Theory Behind Overfitting, Cross Validation,
Regularization, Bagging, and Boosting: Tutorial. arXiv:1905.12787 [cs, stat]. arXiv:
1905.12787.

Grefenstette, G. (1999). Tokenization. In van Halteren, H., editor, Syntactic Wordclass
Tagging, pages 117–133. Springer Netherlands, Dordrecht.

References 115

Géron, A. (2017). HML-Hands-On Machine Learning with Scikit-Learn - TensorFlow.pdf.

Hapke, H. and Nelson, C. (2020). Building Machine Learning Pipelines. "O’Reilly Media,
Inc.". Google-Books-ID: H6_wDwAAQBAJ.

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning
- Data Mining, Inference, and Prediction.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). ADASYN: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pages 1322–
1328. ISSN: 2161-4407.

He, P., Liu, X., Gao, J., and Chen, W. (2020). DeBERTa: Decoding-enhanced BERT
with Disentangled Attention.

IBM (2021). What is Overfitting?

Jungblut, M. (2017). Between sealed borders and welcome culture: Analyzing mediated
public diplomacy during the European migrant crisis. Journal of Communication
Management, 21(4):384–398. Publisher: Emerald Publishing Limited.

Kahneman, D., Rosenfield, A. M., Gandhi, L., and Blaser, T. (2016). Noise: How to
Overcome the High, Hidden Cost of Inconsistent Decision Making. Harvard Business
Review. Section: Decision making and problem solving.

Knudsen, M. (2006). Displacing the Paradox of Decision Making: The Management of
contingency in the modernization of a Danish county. Niklas Luhmann and Organization
Studies, pages 107–126. Publisher: Liber.

Konyushkova, K., Sznitman, R., and Fua, P. (2017). Learning Active Learning from Data.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.

Koroteev, M. V. (2021). BERT: A Review of Applications in Natural Language Processing
and Understanding. arXiv:2103.11943 [cs]. arXiv: 2103.11943.

Krippendorff, K. (2004). Content Analysis.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer, New York, 1st
ed. 2013, corr. 2nd printing 2018 edition edition.

Kumar, A., Makhija, P., and Gupta, A. (2020). Noisy Text Data: Achilles’ Heel of BERT.
In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020),
pages 16–21, Online. Association for Computational Linguistics.

Kurbalija, J. and Slavik, H. (2001). Language and Diplomacy. Diplo Foundation. Google-
Books-ID: yKcHHU2DaPoC.

Li, H. B., Wang, W., Ding, H. W., and Dong, J. (2010). Trees Weighting Random Forest
Method for Classifying High-Dimensional Noisy Data. In 2010 IEEE 7th International
Conference on E-Business Engineering, pages 160–163.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv:1907.11692 [cs]. arXiv: 1907.11692.

116 References

Luck, E. C. (2006). UN Security Council: Practice and Promise. Psychology Press.
Google-Books-ID: zyvyR8BsHH4C.

Luhmann, N. (1995). Social Systems. Stanford University Press, Stanford.

Luhmann, N. (2006). The Paradox of Decision Making. In Niklas Luhmann and
Organization Studies. CBS Press and the authors 2006.

Lutz, M. (2010). Programming Python: Powerful Object-Oriented Programming. "O’Reilly
Media, Inc.". Google-Books-ID: qtdkAgAAQBAJ.

M, H. and M.N, S. (2015). A Review on Evaluation Metrics for Data Classification
Evaluations. International Journal of Data Mining & Knowledge Management Process,
5(2):01–11.

Malone, D. and Malone, R. D. M. (2004). The UN Security Council: From the Cold War
to the 21st Century. Lynne Rienner Publishers. Google-Books-ID: iww8h3E8MBMC.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Orallo, J. H., Kull, M., Lachiche,
N., Quintana, M. J. R., and Flach, P. A. (2019). CRISP-DM twenty years later: From
data mining processes to data science trajectories. IEEE Transactions on Knowledge
and Data Engineering. ISBN: 1041-4347 Publisher: IEEE.

Nassehi, A. (2005). Organizations as Decision Machines: Niklas Luhmann’s Theory of
Organized Social Systems. The Sociological Review, 53(1_suppl):178–191. Publisher:
SAGE Publications Ltd.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library.
arXiv:1912.01703 [cs, stat]. arXiv: 1912.01703.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(85):2825–2830.

Phillips, D. (2010). Python 3 Object Oriented Programming. Packt Publishing Ltd.
Google-Books-ID: mAy_CffZSDgC.

Polyzotis, N., Roy, S., Whang, S. E., and Zinkevich, M. (2017). Data Management
Challenges in Production Machine Learning. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 1723–1726, Chicago Illinois
USA. ACM.

Press, O. U. (2022). diplomacy.

Probst, P., Wright, M. N., and Boulesteix, A.-L. (2019). Hyperparameters and tuning
strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1301.

References 117

Report, S. C. (2019). The UN Security Council Handbook. Security Council Report, page
120.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt,
L. (2019). A Meta-Analysis of Overfitting in Machine Learning. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

Rosenfeld, R. (2000). Two decades of statistical language modeling: where do we go from
here? Proceedings of the IEEE, 88(8):1270–1278.

Schoeneborn, D. (2011). Organization as Communication: A Luhmannian Perspective.
Management Communication Quarterly, 25(4):663–689. Publisher: SAGE Publications
Inc.

Schönfeld, M., Eckhard, S., Patz, R., Meegdenburg, H. v., and Pires, A. (2021). The UN
Security Council Debates. Publisher: Harvard Dataverse Type: dataset.

Segal, M. R. (2004). Machine Learning Benchmarks and Random Forest Regression.

Seidl, D. and Becker, K. H. (2006a). Niklas Luhmann and Organization Studies.
Samfundslitteratur, Frederiksberg, DENMARK.

Seidl, D. and Becker, K. H. (2006b). Organizations as Distinction Generating
and Processing Systems: Niklas Luhmann’s Contribution to Organization Studies.
Organization, 13(1):9–35. Publisher: SAGE Publications Ltd.

Seidl, D., Lê, J., and Jarzabkowski, P. (2021). The Generative Potential of Luhmann’s
Theorizing for Paradox Research: Decision Paradox and Deparadoxization. In Bednarek,
R., Pina e Cunha, M., Schad, J., and K. Smith, W., editors, Interdisciplinary Dialogues
on Organizational Paradox: Investigating Social Structures and Human Expression,
Part B, volume 73b of Research in the Sociology of Organizations, pages 49–64. Emerald
Publishing Limited.

Settles, B., Craven, M., and Ray, S. (2008). Multiple-Instance Active Learning.

Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by committee. In Proceedings
of the fifth annual workshop on Computational learning theory, COLT ’92, pages 287–294,
New York, NY, USA. Association for Computing Machinery.

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal
of data warehousing, 5:13–22.

Sievers, L. and Daws, S. (2014). The Procedure of the UN Security Council. OUP Oxford.
Google-Books-ID: BstLBAAAQBAJ.

Skansi, S. (2018). Introduction to Deep Learning - From Logical Calculus to Artificial
Intelligence.

Sklearn (2022). 3.3. Metrics and scoring: quantifying the quality of predictions.

Smith, W. K. and Lewis, M. W. (2011). Toward a Theory of Paradox: A Dynamic
equilibrium Model of Organizing. Academy of Management Review, 36(2):381–403.
Publisher: Academy of Management.

Sohn, Y. (2021). Four pillars of Luhmann’s analytical apparatus: Applications for

118 References

communication research. Studies in Communication Sciences, 21(2):207–224. Number:
2.

Song, X., Salcianu, A., Song, Y., Dopson, D., and Zhou, D. (2021). Fast WordPiece
Tokenization. arXiv:2012.15524 [cs]. arXiv: 2012.15524.

Sun, D., Wen, H., Wang, D., and Xu, J. (2020). A random forest model of landslide
susceptibility mapping based on hyperparameter optimization using Bayes algorithm.
Geomorphology, 362:107201.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks. arXiv:1409.3215 [cs]. arXiv: 1409.3215.

Taivalsaari, A. (1996). On the notion of inheritance. ACM Computing Surveys, 28(3):438–
479.

Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama, T. (2022). Confidence interval for
micro-averaged F1 and macro-averaged F1 scores. Applied Intelligence, 52(5):4961–4972.

Tian, Y. and Zhang, Y. (2022). A comprehensive survey on regularization strategies in
machine learning. Information Fusion, 80:146–166.

Turian, J., Ratinov, L.-A., and Bengio, Y. (2010). Word Representations: A Simple
and General Method for Semi-Supervised Learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 384–394, Uppsala,
Sweden. Association for Computational Linguistics.

UN (1983). Provisional Rules of Procedure (S/96/Rev.7) | United Nations Security
Council.

University, P. (2022). WordNet | A Lexical Database for English.

Vanderplas, J. (2017). Python Data Science Handbook. O’Reilly.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention Is All You Need. arXiv:1706.03762 [cs]. arXiv:
1706.03762.

Wang, L. (2014). Active Learning via Query Synthesis and Nearest Neighbour Search.
page 10.

Wang, W., Bi, B., Yan, M., Wu, C., Bao, Z., Xia, J., Peng, L., and Si, L. (2019).
StructBERT: Incorporating Language Structures into Pre-training for Deep Language
Understanding. arXiv:1908.04577 [cs]. arXiv: 1908.04577.

Wetzel, L. (2018). Types and Tokens. In Zalta, E. N., editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, fall 2018 edition.

Whitchurch, G. G. and Constantine, L. L. (1993). Systems Theory. In Boss, P., Doherty,
W. J., LaRossa, R., Schumm, W. R., and Steinmetz, S. K., editors, Sourcebook of
Family Theories and Methods: A Contextual Approach, pages 325–355. Springer US,
Boston, MA.

Wodak, R. and Krzyżanowski, M. (2008). Qualitative Discourse Analysis in the
Social Sciences. Macmillan International Higher Education. Google-Books-ID:
PQAdBQAAQBAJ.

References 119

Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics:
Conference Series, 1168:022022.

Zhu, D., Cai, C., Yang, T., and Zhou, X. (2018). A Machine Learning Approach for Air
Quality Prediction: Model Regularization and Optimization. Big Data and Cognitive
Computing, 2(1):5. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

120

Appendix

A1 Data Descriptions

Table A1.1: Columns in meta_speeches

Column Column Description

Country The speaker’s nation
Speaker The speaker’s name
Participanttype The speaker’s type of participant
Role_in_un The speaker’s role in the UN
SPV Meeting number
Basename ID for the meeting
Topic Overall topic for the speech
Date Date format D Month, Yr
Filename Equal to doc_id
Types No. of types in speech
Tokens No. of tokens in speech
Sentences No. of sentences in speech
Topic 2 The second topic for the speech
Subtopic Subtopic of the speech
Agenda_item1 First agenda item
Agenda_item2 Second agenda item
Agenda_item3 Third agenda item
Decision Applicable when a decision has been made

Table A1.2: Columns in meta_meetings

Column Column Description

Basename ID for the meeting
Date Date format D Month, Yr
No. of speeches No. of speeches for each meeting
Topic Overall topic for the speech
pressrelease Link to pressrelease, if available
Outcome Link to meeting outcome
Year YYYY format
Month MM format
Day DD format

A1 Data Descriptions 121

Table A1.3: Columns in episodes

Column Column Description

Meetingrecord Id created by the UNSC
date YYYY-MM-DD
Topic Overall topic for the meeting
Resolution Id created by the UNSC, only present when voting
Vote Voting outcome, e.g., 15-0-0
Text Id for the meeting
Speaker No. of speakers per meeting
Duration No. of minutes

122 A2 Labeling instructions

A2 Labeling instructions

Figure A2.1: Temporal Labeling Instructions

A2 Labeling instructions 123

Figure A2.2: Social Labeling Instructions

Figure A2.3: Not-relevant Labeling Instructions

124 A3 Runtimes & Specifications

Figure A2.4: Mixed Labeling Instructions

A3 Runtimes & Specifications

Table A3.1: Runtimes & Specifications

Activity Description & Runtime
Description Runtime

Extracting BERT embeddings for BERT-RF Random sample: 50,000 paragraphs 450m 20s
Extracting TF-IDF embeddings for TFIDF-RF 1,520 paragraphs (labeled) 0m 0.1s
Extracting BERT embeddings for regression model Selected sample: 57,067 paragraphs 530m 46s
Randomized Search BERT-RF 321m 10s
Randomized Search TFIDF-RF 218m 32s
Grid Search 1 BERT-RF 286m 07s
Grid Search 1 TFIDF-RF 205m 59s
Grid Search 2 BERT-RF 61m 12s
Grid Search 2 TFIDF-RF 29m 17s
Training BERT-RF Model 3m 2s
Training TFIDF-RF Model 0m 01s

Note. Processor: Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz 2.30 GHz.
Installed RAM: 32,0 GB (31,7 GB usable).

A4 Additional OLS Regression Results

Table A4.1: Additional OLS Regression Results

Omnibus: 139.240 Durbin-Watson: 2.082
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4387.182
Skew: -4.988 Prob(JB): 0.000
Kurtosis: 34.049 Condition No.: 605

