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Abstract 

 

Background: Around the world, cancer is a leading cause of death, and in Denmark, lung cancer is the most 

deadly type of cancer. Early detection can increase survivability. As the early stages of lung cancer are often 

asymptomatic, a lung cancer screening program could be a means for early detection. Several randomized 

clinical trials have been conducted to evaluate the effectiveness of the lung cancer screening program. 

However, there is no study conducted in Denmark evaluating the program's cost-effectiveness. 

 

Objective: Conduct a cost-utility analysis to determine the cost-effectiveness of a low-dose computed 

tomography lung cancer screening program for a specified risk group, applying Danish costs. 

 

Methods: A cost-utility analysis is conducted using Danish costs from a healthcare payer perspective, and 

quality-adjusted life-years gathered through the standard gamble method. The cohort includes heavy former 

or current smokers with a ≥30 smoking history between ages 55 and 74. The output was illustrated through a 

decision tree and created two cohort Markov models, with 15 one-year cycles. The first Markov model included 

the current standard clinical diagnosis pathway, and the second one included diagnosis through an annual low-

dose computed tomography lung cancer screening program. The output is measured as costs, quality-adjusted 

life-years, and total diagnosed and dead. Data and parameters used in the Markov model were gathered from 

current literature and research. Deterministic sensitivity analysis was conducted. 

 

Results: The base case result is cost-effective and expressed through the incremental cost-effectiveness ratio 

of 721,101 DKK/quality-adjusted life-years below the Swedish threshold of 881,316 DKK/quality-adjusted 

life-years. The epidemiological results showed more individuals diagnosed and fewer dead patients in the 

screening cohort versus the current clinical pathway cohort. The deterministic sensitivity analysis showed 

robustness against several parameters but not all. 

 

Conclusion: Introducing a low-dose computed tomography lung cancer screening program in Denmark could 

be effective for the defined risk group but more costly than the current clinical care. 
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1. Introduction 

Healthcare costs are rising worldwide, and at the same time, patients' expectations are increasing (Topol, 2015). 

Health service managers face challenges in delivering and implementing innovations for healthcare because 

of shrinking budgets and complex systems with several stakeholder views and agendas to consider (Davey et 

al., 2011). This predicament leads to a growing need to evaluate and demonstrate value for healthcare (Davey 

et al., 2011). 

 

Value in health care is the measured improvement in a patient's health outcomes for the cost of achieving that 

improvement (Porter, 2022). A paradox has formed where healthcare costs rise, services are restricted, 

standards of care lag behind benchmarks and best practices are slow to spread (Porter, 2022). As a result, 

patients cannot see value in the care they receive. Addressing these issues can be achieved through introducing 

innovations to improve efficiencies and benefits in the delivery and consumption of healthcare. Discovering 

the relevance and potential benefits of innovations can be challenging due to the overwhelming volume 

produced (Singhal et al., 2021). Decision-makers require guidance to maximize the benefits of their resource 

allocation and ensure these benefits are felt downstream by patients.  

 

Decision-makers in a Beveridge healthcare system have to allocate a health budget and choose between 

different diseases, healthcare innovations, and interventions. There are different approaches to clarifying 

problems and guiding decision-makers. These can, for example, be through a Health Technology Assessment 

(HTA), a quality-assurance project, clinical guidelines, traditional expert opinions, stakeholder-based 

committee work, systematic literature reviews, economic analysis, and so on (Kristensen & Sigmund, 2008). 

Around the world, larger economies are requesting HTAs which is becoming a common method to evaluate 

health technologies (Mudili, 2022). 

 

The European Council states that "Health technology assessment (HTA) is a scientific evidence-based process 

that allows competent authorities to determine the relative effectiveness of new or existing health technologies" 

(The European Parliament and the Council of the European Union, 2021). They acknowledge the added value 

of health technology articulated through HTA and how it acts as a vehicle for comparing technologies. Shortly, 

one can say that a HTA is preferred when making decisions regarding the use of technology at all healthcare 

system levels. Economic evaluations (EE) are, according to Chen (2022), one of the backbones of HTA, 

assessing the cost-effectiveness of health technology. It balances the costs and health benefits of new health 

technologies and aims to meet the needs of the decision-makers. Furthermore, within the EE, the decision-

analytic methodology framework meets all the needed requirements for a decision-making context (Sculpher 

et al., 2006). 
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The relevance of EEs has emerged out of the difficulties in allocating resources between different interventions 

and how resources are best utilized (Drummond et al., 2015). The goal is for using health care resources 

efficiently so the most health benefits are achieved. The EE is a framework that can evaluate and organize 

clinical evidence to consider the effects and costs of alternative interventions (Drummond et al., 2015). There 

are several methods for EE; the most common is cost-utility analysis (CUA). Since EEs can evaluate any health 

technology, identifying relevant areas has to be a step in the evaluation process. One way to identify areas or 

diseases which would benefit from innovative and cost-effective technologies is to identify the most common 

deadly diseases worldwide. 

 

The World Health Organization (WHO, 2020) identified cancer as a leading cause of death worldwide. In 2020 

there were nearly 10 million cancer deaths worldwide, of which lung cancer was the most deadly cancer type, 

accounting for 1.8 million deaths with a current 5-year survival rate of <20% (World Health Organization, 

2020). To reduce the cancer incidence burden, the WHO (2022) states that 30 to 50% of cancers can be 

prevented by avoiding risk factors and implementing evidence-based prevention strategies. Furthermore, early 

detection and appropriate treatment can reduce cancer mortality. Together, this leads to identifying the problem 

statement and the following section.  

1.1 Problem Statement and Motivation 

To reduce lung cancer mortality, the WHO explains two main approches: early diagnosis and screening. Early 

diagnosis requires the disease to have symptoms and the patients or clinicians to be aware of those symptoms. 

This method is not preferred for diagnosing lung cancer in early stages, as these patients are often 

asymptomatic or with mild or ambiguous lung cancer symptoms (Yang et al., 2019). At the same time the 

patient’s prognosis worsens when lung cancer is diagnosed in later, more symptomatic stages (Snowsill et al., 

2018). Late-stage detection leads to advanced diagnoses and limits treatment options. The American Lung 

Association (2020) reports that the current 5-year prognosis for all- stage lung cancer has an 80% mortality 

rate. Table 1 below illustrates survivability estimates in different lung cancer stages and these numbers 

illustrate the relevance of screening programs (Snowsill et al., 2018).  

 

Screening is a pathway to early-stage lung cancer identification, diagnosis, staging, and treatment without 

placing responsibility on the patients or clinicians to identify ambiguous symptoms of the disease, currently 

being an issue (Woodard et al., 2016). Screening is said to lower lung cancer mortality or improve oncological 

outcomes (EUnetHTA, 2020). This could be due to the early diagnosis since for instance stage I patients have 

an 82% survival rate over 5-years with surgery compared to stage IV with 17%, clearly presenting the 

relevance.  
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Table 1. Lung Cancer Survivability 

 

Note. American Lung Association, 2020 

 

Despite the relevance of early diagnosis of lung cancer, no European country is yet to implement a screening 

program in 2022, even though technologies are readily available. Denmark has the third highest mortality rate 

for lung cancer in Europe (OECD, n.d.). Between 2005 and 2007, the one-year relative survival for all stages 

of lung cancer in Denmark was 35% compared to Sweden at 44% (Coleman et al., 2011). Guldbrandt et al. 

(2015) explain that a late-stage detection and diagnosis could explain this, along with increased waiting time 

and diagnostic delay. It could also be explained by lung cancer awareness among patients or by the correlation 

between lung cancer and smoking (European Respiratory Society, n.d.). In 2020 there were 21% of men, and 

15% of women smoked amongst the Danish population (Statista, 2021b). 

 

Even though Denmark has a high lung cancer death rate, despite the large smoking population, and other 

screening programs for cancer in place, there is no LCSP in 2022. Previous studies in Denmark have identified 

the increased cost when introducing a LCSP in Denmark (Rasmussen et al., 2014) but have not put the cost in 

relation to the health benefits. There is presently no EE conducted on screening tools for lung cancer in 

Denmark, which makes it difficult for decision-makers to decide whether to consider a LCSP. 

 

Based on these facts, this thesis will identify potential new value-based screening innovations that have 

currently not been used to detect all stages of lung cancer. It will attempt to follow the HTA and EE 

methodology to guide decision-makers on evidence-based foundations to assess relevant evidence regarding 

the consequences and circumstances in the evaluation of the innovation. The following section will further 

explain the objective of the thesis and present the research question. 

1.2 Objective and Research Question 

This thesis aims to conduct a CUA to determine if a LCSP should be considered in Denmark, primarily by 

assessing the cost-effectiveness of a screening innovation. Being the most common EE, the CUA will be 
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conducted using the current treatment costs for lung cancer in Denmark. The potential costs for introducing a 

LDCT screening program will be added to the treatment costs to evaluate the chosen screening innovation. 

Furthermore, the health benefits or outcomes will be measured in quality-adjusted life-year (QALY) taken 

from the literature, as Denmark does not have QALY data on LCSP or lung cancer in general as of 2022. The 

objective is therefore mainly to conduct an EE but other epidemiological results on diagnosis rate and mortality 

will also be sought after, as well as an analysis of the feasibility of introducing a LCSP in the Danish context. 

This thesis therefore aims to answer the following research question: 

Why should the Danish Ministry of Health consider a lung cancer screening program 

for detecting lung cancer among a heavy-smoking population aged 55-74 years? 

1.3 Delimitation 

This project's scope was determined with the researcher's supervisor, Benjamin Serena, to create a realistic 

research goal within the limited time frame, which fulfilled the academic requirements set by Copenhagen 

Business School and the academic goals set by the researchers. There are several delimitations within this 

thesis: 

1. The thesis is limited to only exploring screening programs for lung cancer within a Danish setting. 

2. The only screening program technique that is evaluated with the comparator is a low-dose computed 

tomography (LDCT). 

3. The study focuses on the pre-diagnostic disease progression of non-small cell lung cancer (NSCLC), 

then its treatment, mortality, and associated costs. 

4. The choice of EE is a CUA and does not include post-diagnosis disease progression, aftercare or 

palliative care. 

Another delimitation within this study is the absence of empirical research or data collection. The researchers 

could not conduct clinical trials within the field of lung cancer screening due to limited resources. Therefore, 

all data for this thesis was obtained through literature searches from randomized control trials (RCT) and 

experts within the field. Furthermore, the methodological choices were guided by the available and applicable 

data obtained during the research process. The only primary data obtained was via informal interviews with 

experts within cancer and epidemiology, used to reinforce choices made within the model. Having outlined 

the boundaries for the thesis, the following section will describe the methodological decisions when writing 

the thesis. 

1.4 Philosophy of Science 

The methodology for answering the research question should be structured and organized (Saunders et al., 

2022). Saunders et al. (2022) present a model that aims to explain the different stages of writing a thesis in an 
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organized way. Illustrated in Figure 1 is one of many models that can be used to understand various 

methodological decisions. The research onion effectively ensures that the method used matches the aim of the 

research (Saunders et al., 2022). It allows the researchers to draw valid and trustworthy conclusions. The model 

consists of six layers, the first being the Philosophy of Science. 

 

Figure 1. Research Onion 

 

Note: Saunders et al., 2022 

 

The philosophy of science refers to the researcher's perceptions, understandings, or worldviews from which 

the research is conducted and is usually studied in terms of epistemology and ontology (Kragh, 2007). 

Epistemology refers to the valid information required and how to obtain this information for the research 

conducted. At the same time, ontology refers to the authenticity of this information and understanding it. There 

are five main philosophical approaches for business and management according to Saundlers et al. (2022); 

positivism, realism, interpretivism, post-modernism, and pragmatism. 

 

This thesis will employ a pragmatism stance since it is suitable for the objective and nature of the research 

question. This study aims to create a model and gather data on cost and health effects that can be used in the 

created economic model to arrive at a conclusion where decision-makers can be guided in their choices on 

allocating the healthcare budget between interventions. This goes in line with the pragmatist's research that 

starts with a problem and aims to formulate practical solutions to inform future practice (Saunders et al., 2022). 

The only relevant concepts support action (Keleman & Rumens, 2008). The most important determinant for 
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the strategy and research design for this research is to address the research problem and research question, and 

this is just what a pragmatist would want it to be (Saunders et al., 2022). A pragmatist would also recognize 

that one can interpret the world differently and that multiple methods can be used for multiple realities. 

However, a pragmatist does not always have to use all the multiple methods available but is the most credible, 

reliable, and well-founded with the most relevant data for the research (Kelemen & Rumens, 2008). This thesis 

will further explain the gathering of data and aim to be the most credible and relevant. 

 

The researchers would prefer to stance from a positivism philosophy. However, this was not possible because 

the gathering of QALY data used in the study could not be seen as credible and meaningful since it comes 

from individuals' opinions gathered through the standard gamble method. The positivist promises 

unambiguous and accurate knowledge and data uninfluenced by human interpretation or bias. Since the QALY 

data is gathered based on individuals' perceptions, it was not possible to follow this philosophy. The rest of the 

methods were not suitable philosophies for seeking answers to the research questions. 

 

The following layer in the research onion is the choice of the intended approach to theory development. The 

three different approaches to theory development are (1) the deductive, (2) inductive, and (3) the abductive 

approach (Saunders et al., 2022). This thesis does not aim to test a theory and does not follow the deductive 

approach. The inductive approach is not fully applicable either since the researchers aim to answer the research 

question by partly using the frameworks for EE and partly also modify these frameworks. The abductive 

approach is, therefore, the approach used for theory development. Data is collected to explore a phenomenon 

and identify themes and patterns (Saunders et al., 2022). The aim is to modify the existing models for EE to 

test the cost-effectiveness of cost and QALY data. The researchers will explain both the existing theories and 

the theory building and modifications in the methodology section below. The approach incorporates a process 

where the researchers move back and forth and combine deductive and inductive approaches (Suddaby, 2006). 

1.5 Research Design 

Following the third layer of the research onion (Figure 1), the methodological choice has to be made (Saunders 

et al., 2022). In research, there are multiple approaches to theory development distinguished both in qualitative 

and quantitative literature. Qualitative methods help explore phenomena, smaller groups, and their meanings 

(Basias & Pollalis, 2018). Quantitative research can examine larger populations, linking empirical observation 

with quantitative relations as mathematical expressions (Basias & Pollalis, 2018). Quantitative research is 

associated with experiments and survey research strategies. However, the analysis of such research is often 

performed qualitatively (Saunders et al., 2022). The research method is dependent on the aims of the research 

question. As shown in Figure 1, six different methods separate or combine the qualitative and quantitative data 
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differently. This thesis follows the mixed-model approach using quantitative, focusing on numerical data, 

while qualitative data focuses on textual, audio, and visual research (Saunders et al., 2022). 

 

The mixed-model research approach combines various qualitative and quantitative strategies within a single 

project that may have qualitative or quantitative theoretical drivers (Saunders et al., 2022). The research 

process follows the characteristics of mixed-model research, which allows iterative collection, analysis, 

interpretation, and presentation of research (Saunders et al., 2022). Within this process, quantitative data can 

be qualified, while qualitative data can be quantitated to create understanding between the research (Saunders 

et al., 2022). This method can combine an overview of the disease and the associated literature, the Danish 

context, and HTA theory. The limitations following the mixed-model research approach could be that it is 

complex to conduct and requires more expertise and time in data collection and analysis. However, as the 

qualitative methods are not being wholly and rigorously followed and used to triangulate the data with 

quantitative methods, a mixed-method approach applies over a multi-method.  

 

The fourth layer regarding strategy is connected to the objectives of the study. The research strategy will from 

a practical perspective dictate how the research will be conducted, and include several methods to capture all 

relevant literature (Saunders et al., 2022). Archival research will be used primarily to source the necessary 

health information required, with a secondary a grounded theory approach will also be used to help predict and 

explain behaviors (Saunders et al., 2022). This approach will enable the researchers to conclude commonalities 

between literature and the data produced from the applied framework (Saunders et al., 2022). The use of these 

strategies will allow for both the quantitative and qualitative research approaches to be undertaken to produce, 

interpret and contextualize the data. A shortcoming of a grounded theory is that it tends to produce numerous 

amounts of data and is difficult to manage without standard rules to identify categories (Saunders et al., 2022). 

The researchers will overcome these obstacles and mention the difficulties in management of data in the 

limitations section. 

 

The fifth layer is about the time horizon (Saunders et al., 2022), where the researchers had to decide upon 

taking data from a single point in time or throughout a given period. The researchers collected data that had 

followed patients over multiple periods by using the longitudinal approach. The model being created for this 

thesis will use this data to further predict disease progression and the associated epidemiological developments 

in the screening cohort versus the comparator cohort over time and not just a single point of time.  

 

The last inner layer of the research onion (Figure 1) is the data collection and analysis (Saunders et al., 2022). 

The quantitative data will be collected and simulated through a developed model, while the qualitative data 

will be collected through grounded theory. Multiple sources will be identified to help develop the theoretical 
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framework for the CUA to construct the EE. Recommended books will include health economics, such as 

Methods for the Economic Evaluation of Health Care Programs (Drummond et al., 2015) and  Decision 

Modeling for Health Economic Evaluation (Briggs et al., 2006), relevant academic journals, and government 

health economics publications and websites. There are three main aspects of the research collection process 

for the qualitative and quantitative data in this thesis: 

 

● Lung cancer background research 

● A review of lung cancer in the Danish context 

● A systematic literature review of randomized control trials (RCT) and EEs 

 

A broad search was performed to find information on the three main aspects through literature, scholarly 

databases, and books connected to the thesis scope in health and economics. Due to the broad scope, multiple 

literature searches were performed to obtain the relevant information. The data collected for this thesis was 

extracted from multiple sources, including databases, governmental websites, and Ministry of Health 

submissions in a structured literature search, including the Snowball Method. The databases accessed focused 

on science, health, business, and economics, including PubMed/MEDLINE, NCIB, Scopus, Google Scholar, 

ScienceDirect, Mendeley, Cochrane Library, CBS Library, ResearchGate, and NHS EED. These databases 

were accessed continually from December 2021 until May 2022.  Boolean search terms were used to limit and 

define search results (Ferguson & Hebels, 2003). Other documents, including gray literature, were sourced 

from Danish government sites, various Danish cancer societies, and health authority pages. The researchers 

have aimed to search, identify, evaluate, and include existing scientific knowledge published in this field by 

conducting a structured literature search. 

 

Additionally, a structured literature search contributes to identifying relevant literature, which reduces the risk 

of biased reviews (Saunders et al., 2022). All articles were first screened by titles and abstracts to remove 

unwanted literature. A full-text assessment was performed to examine viability and relevance, with texts 

excluded if they were not within the scope, with the included literature presented throughout the thesis. The 

literature search methodology is visualized in Figure 2 with the literature searches articulated below.  
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Figure 2. Literature Search Methodology  

 

Note. PRISMA, n.d. 

 

Background of Lung Cancer  

The background review aims to investigate lung cancer, its causes, the process of diagnosis, treatment, and 

mortality. Relevant literature was identified to define and articulate lung cancer as a disease and its impact on 

those diagnosed. The search terms utilized were lung cancer*, epidemiology, incidence, prevalence, mortality, 

treatment, cost, high risk, causes, statistics, and demographics. 

 

Danish Context  

To highlight the Danish context, the epidemiology of lung cancer was explored in Denmark, with the costs of 

lung cancer to the Danish taxpayer explained. Relevant literature about Denmark and lung cancer, lung cancer 

screening programs, randomized control trials, and associated economic evaluations was extracted using the 



 

 

17 

search terms Denmark, lung cancer*, screen* epidemiology, mortality, treatment, cost, high risk, and non-

small cell lung cancer. 

 

Lung Cancer Screening Randomized Control Trials and Economic Evaluations 

A systematic literature review is performed on lung cancer screening trials and CUA studies assessing the 

economic viability of the screening program. The hierarchy of evidence referenced by Drummond et al. (2015) 

is used as a guiding principle to rank research designs to include the relevant literature. A study design provided 

high levels of internal validity. The hierarchy of evidence, as explained by Cook (1997), includes: 

 

1. No-of-1 randomized trial  

2. Systematic review of randomized trials  

3. Single randomized trial  

4. Systematic review of observational studies  

5. Single observational study  

6. Physiological study  

7. Unsystematic clinical observations 

 

Relevant literature was identified about lung cancer screening programs, randomized control trials, and 

associated economic evaluations were extracted using the search terms lung cancer*, screen* epidemiology, 

LDCT, low dose computed tomography, diagnosis, treatment, mortality, high risk, non-small cell lung cancer, 

cost-effective*, cost-utility, cost-benefit, economic*, health economic evaluation, model, modelling, Markov 

model, QALY, quality-adjusted life-year*. 

 

The final step of the research onion involves analyzing the data (Saunders et al., 2022). Multiple analysis 

techniques will be used for the quantitative data. A descriptive approach will give an overview of the data, 

while an exploratory, causal, and mechanical analysis will find and determine the relationships when 

sensitivity testing is performed (Saunders et al., 2022). Predictive analysis will also be performed to estimate 

the epidemiological benefits and costs associated with the intervention. A grounded theory approach will be 

used for the qualitative analysis to place the data within the explored context (Saunders et al., 2022). 

Furthermore, the limitations section of this thesis will explore the validity and reliability of the methodological 

choices and subsequent outcomes.  
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2. Background Information  

This section is divided into three main chapters. The first chapter introduces lung cancer and LCSPs. The 

second chapter outlines the Danish context and identifies the epidemiology of the disease and costs of lung 

cancer in Denmark. The third section covers RCTs and previous studies on the EE of LCSPs in other countries. 

Chapter 1  

2.1 Lung Cancer and Lung Cancer Screening 

This section will introduce lung cancer, its symptoms, causes, health states, and disease severity. The main 

risk groups for developing lung cancer will be identified based on current research. Furthermore, the different 

tools for both detection and treatment are outlined. This section aims for the reader to understand the disease 

and pathways to diagnosis. 

2.1.1 Lung Cancer Disease Overview 

Lung cancer, or lung malignancies, is a malignant growth of cells in a person's lungs or bronchial system 

(Snowsill et al., 2018). The type of lung malignancies by commonality is classified as non-small cell lung 

carcinoma (NSCLC) (79%), small-cell carcinoma (16%), and tumors such as carcinoids (5%) (EUnetHTA, 

2020).  

 

The tumor node metastasis system (TNM) was developed by the International Association for the Study of 

Lung Cancer and can divide lung cancer into different stages (EUnetHTA, 2020). The TNM system provides 

information about the size of the tumor (T), its spread to surrounding lymph nodes (N) or distant parts of the 

body, and whether it has metastasized (M). Mapping cancer using the TNM system allows healthcare 

professionals to develop a targeted treatment plan (EUnetHTA, 2020). Once classified using the TNM system, 

cancer can be further segmented into stages I-IV.  

 

Stage I. A small tumor has not spread to any lymph nodes, and no evidence of bronchoscopic invasion 

in the main bronchus. The largest dimension of the tumor is ≤ 3cm. 

 

Stage II. Spread to bronchus, but the carina is spared. The tumor invades the visceral pleura, leading to 

obstructive pneumonitis or atelectasis, and involves part of the lung or entire lung. The tumor is between 

> 3 cm and ≤ 5 cm in size.  
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Stage IIIA. Tumor size >5cm and ≤ 7cm, with direct invasion of the chest wall, parietal pleura, phrenic 

nerve, or pericardium, with different tumors located in the same lobe as the primary tumor.  

 

Stage IIIB. Tumor size >5cm and ≤ 7cm with direct invasion to surrounding lymph nodes, visceral 

pleura, and bronchus.  

 

Stage IV. Tumors are >7 cm and affect one or more of the body's other parts: the heart, diaphragm, great 

vessels, mediastinum, trachea, recurrent laryngeal nerve, esophagus, vertebral body, or carina. 

Alternatively, a separate tumor nodule arises from the primary tumor location (EUnetHTA, 2020). 

 

Lung Cancer Symptoms 

The different stages of lung cancer will affect the body differently and result in different symptoms. The 

following can be signs and symptoms of lung cancer; cough (8%–75%), weight loss (0%–68%), dyspnoea, or 

shortness of breath (3%–60%), chest pain (20%–49%), hemoptysis (6%–35%), bone pain (6%–25%), fever 

(0%–20%) and asthenia, or generalized weakness (0%–10%) (EUnetHTA, 2020 p. 40). Early stages of lung 

cancer are usually asymptomatic and often undetected, with symptoms usually appearing when the disease has 

advanced to the lungs and other parts of the body (Chowienczyk et al., 2020; EUnetHTA, 2020). Patients often 

report a lack of awareness of lung cancer symptoms due to delayed detection and initiation of treatment (Ellis 

& Vandermeer, 2011). 

 

Lung Cancer Progression  

Metastasis is the spread of cancer outside of the primary location (National Cancer Institute, n.d.). Lung cancer 

metastases are multifaceted. Cancer cells will travel away from the primary tumor through the blood or 

lymphatic system to areas of higher oxygen concentration, forming a new tumor in other tissues or organs 

(Popper, 2016). When a patient moves into a higher cancer stage, the mortality rate will increase compared to 

the previous stage (Popper, 2016). Limiting the spread of cancer will reduce mortality and increase survival 

time (Popper, 2016).  

 

Lung Cancer Mortality  

Lung cancer is the biggest killer from cancer globally, accounting for 25% of all lung cancer deaths (American 

Lung Association, 2020). All-stage lung cancer 5-year survivability is 26%, which varies between lung cancer 

staging (American Lung Association, 2020). Listed in the problem statement is the survivability per lung 

cancer at the stage of diagnosis (American Lung Association, 2020). 

 

 



 

 

20 

Reducing Lung Cancer Mortality  

The main factors used in decreasing lung cancer mortality are early detection and smoking cessation (Schabath 

& Cote, 2019). Cessation of smoking in earlier years is associated with a higher increase in life years added: 

10 life years are added when quitting smoking in the 30s compared to four life years when quitting in the 60s 

(EUnetHTA, 2020). While smoking cessation should be the priority when reducing lung cancer incidence and 

mortality, nicotine addiction and readily accessible cigarettes can hamper the efforts of both smokers and 

policymakers to reduce smoking rates (Schabath & Cote, 2019).  

 

Detecting lung cancer early is pivotal in successfully treating lung cancer. However, most lung cancer patients 

are diagnosed in the advanced stages of the disease, limiting curative treatment options (Schabath & Cote, 

2019). As earlier explained in the problem statement, lung cancer is often asymptomatic and therefore 

screening could be a way to detect lung cancer in all stages. Multiple clinical trials have proven the efficacy 

of screening for lung cancer using LDCT scanning and the associated increase in early-stage disease detection 

and decrease in overall mortality (Yang et al., 2019). Having outlined the basis of the disease, the next section 

will identify the different risk groups at higher risk of developing lung cancer. 

2.1.2 Lung Cancer Causes 

Lung cancer is often a terminal disease, with some population groups at greater risk. This section will identify 

the groups most likely to develop lung cancer (EUnetHTA, 2020). The main risk factor for lung cancer is 

tobacco smoking, but other factors such as age, gender, genetic history, environmental, or comorbidities can 

affect the development (Barta et al., 2019; EUnetHTA, 2020).  

 

Smoking  

The main factor for lung cancer is smoking, accounting for 80% of all female lung cancer cases and deaths 

and 90% among men (European Respiratory Society, n.d.). "It is estimated that individuals who smoke are 11 

times more likely to develop lung cancer than those who have never smoked" (EUnetHTA, 2020, p. 41). The 

number and duration of cigarettes smoked can increase the risk of lung cancer and is defined in medical 

terminology by the term pack-year (Barta et al., 2019). One pack-year of smoking is defined as 20 cigarettes 

per day per year and is used in medicine as a benchmark term to characterize the severity and intensity of 

smoking history (Barta et al., 2019). The risk of developing lung cancer increases with an increase in pack-

year smoking history (Barta et al., 2019). The European Respiratory Society (n.d.) gathered 13 studies 

reporting pack-years and found that "cigarette consumption of <20 pack years resulted in a significant 

threefold increase in the risk of developing lung cancer; the increase in risk was sevenfold for 20–40 pack-

years, 11-fold for 40–60 pack-years and 12-fold for >60 pack years" (EUnetHTA, 2020 p. 41). However, the 

risk of being diagnosed with lung cancer 15-20 years after quitting smoking is reduced by 90% compared to 
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those who continue to smoke (EUnetHTA, 2020). Löfling and colleagues (2019) also state that approximately 

10-15% of lung cancer patients have never smoked. Hence multiple factors can, to a lesser degree, impact a 

person's risk of developing lung cancer.   

 

Age 

Studies show that lung cancer mainly occurs amongst older people (Eldridge, 2022). The average age of 

diagnosis is 70 years, with approximately 53% of cases occurring between ages 55-74 (American Cancer 

Society, n.d.; De Groot et al., 2018). Furthermore, 37% of lung cancers occur above 74 years, with 

approximately 10% of lung cancer cases occurring <55 years of age (De Groot et al., 2018). Lung cancer 

incidences peak at age 80, with decreased incidences due to competing mortality from other causes (De Groot 

et al., 2018). As patients age, treatment success and outcome prognosis for lung cancer decrease. Hence poor 

survivability is seen in patients once diagnosed (Torre et al., 2015).  

 

Gender 

The overall risk of developing lung cancer for men is 1 in 15, and for women, 1 in 17 for both smokers and 

non-smokers (Herndon, 2021). However, women are usually two years younger when diagnosed than men, 

and there are more young women with lung cancer than men (Eldridge, 2022a; Eldridge, 2022b).  

 

Genetic Factors 

According to the European Network for Health Technology Assessment report (2020), several studies have 

presented an increased risk of lung cancer in first-degree relatives of people with lung cancer. A metastudy 

including 24 case-control studies showed that individuals with a family history of lung cancer had a two-

threefold greater susceptibility of developing lung cancer versus those with no family history of lung cancer 

(Coté et al., 2012). Furthermore, several registry-based studies have concluded that a family history of lung 

cancer will increase the early onset (EUnetHTA, 2020).  

 

Environmental Factors 

Several environmental and occupational exposures can affect lung cancer incidences, such as carcinogens, air 

pollution, domestic biomass fuels, and exposure to radon (Barta et al., 2019; EUnetHTA, 2020). According to 

Pope III (2002), workplace exposure to carcinogens, such as asbestos and other cancer-causing particles, could 

significantly increase the risk of developing lung cancers. Long-term exposure to fine particle air pollution 

increases lung cancer mortality. With each increase in fine particulate air pollution by 10-µg/m3, lung cancer 

mortality increased by 8% (Pope III, 2002). The WHO recommends a concentration of 40-µg/m3, with many 

high-trafficked areas in Copenhagen regularly exceeding this threshold (IQAir, 2022). It is also estimated that 

3-14% of lung cancer can be linked to radon exposure (EUnetHTA, 2020). 
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Comorbidities 

Other diseases, such as chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF), 

can also cause an increased risk of lung cancer (EUnetHTA, 2020). COPD is caused by cigarette smoking, but 

evidence also shows that COPD is an independent risk factor for lung cancer, with a relative risk of 2.06 (Zhang 

et al., 2017; EUnetHTA, 2020). Research also shows that chronic airway disease IPF is associated with a higher 

risk of lung cancer. The prevalence of this disease in lung cancer patients ranges from 2.7% to 48% (Ballester 

et al., 2019). 

2.1.3 Lung Cancer Detection 

There are different ways to detect and diagnose lung cancer. This section is divided into two main components, 

where the first one explains the current clinical pathways for diagnosis, and the second part identifies the 

different screening programs for diagnosis. 

2.1.3.1 Diagnosis Through Standard Clinical Care 

This section will outline ways to detect lung cancer through standard current clinical care. The following 

examinations are regarded as basic diagnosing methods; anamnesis, clinical examination, laboratory tests, 

chest x-ray, spiral CT of the thorax and abdomen, bronchoscopy and abdominal sonography (Latimer & Mott, 

2015; Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen 

Fachgesellschaften, 2018). 

 

When diagnosing patients through standard clinical care, a patient's general practitioner (GP) will interpret 

their symptoms and risk factors and examine them physically and through image-guided examinations 

(Mahncke Guldbrandt et al., 2015; EUnetHTA, 2020). The health care professionals' accuracy and clinical 

skills are essential when evaluating patient symptoms and weighing the risk of underlying diseases versus the 

likelihood of symptoms caused by lung cancer. Most lung symptoms do not represent underlying lung cancer. 

Evidence suggests that symptoms are often experienced long before a lung cancer diagnosis (Corner et al., 

2005; Hamilton et al., 2005; Mahncke Guldbrandt et al., 2015). Other factors such as medical history, family 

history, and other risk factors for developing lung cancer must also be considered when evaluating the 

symptoms and patients (EUnetHTA, 2020). 

 

The physical examination mainly assesses the lymph nodes and thoracic organs (EUnetHTA, 2020). It includes 

basic laboratory tests such as electrolytes, blood count, coagulation values, and liver and kidney parameters. 

A chest X-ray is often ordered to examine the thoracic organs (EUnetHTA, 2020). However, the chest X-ray 

is inaccurate, with a false-negative of 20% before diagnosis, according to Mahncke Guldbrandt and colleagues 
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(2015). This examination process is usually enough to diagnose NSCLC but is not enough to classify the tumor 

in detail (Postmus et al., 2017). If there remains suspicion of tumors, the patient will be referred for a LDCT 

scan to investigate further. The most used diagnostic test for lung cancer is fiber-optic bronchoscopy which 

also includes the assessment of regional lymph nodes through endoscopic and endobronchial (EUnetHTA, 

2020). 

2.1.3.2 Diagnosis Through Screening Programs 

A LCSP aims to detect and treat lung cancer at an early stage (EUnetHTA, 2020). Early detection has a 

significant impact on the mortality rate of lung cancer, improving the oncological outcomes and leading to a 

better quality of life in terms of morbidity (Ma et al., 2013). It can provide opportunities for changes in 

unhealthy lifestyle behaviors, reduce mental stress and anxiety, and potentially identify other conditions or 

diseases that require treatment (Humphrey et al., 2013).  

 

There are two main methods for screening, including (1) imaging technologies such as chest X-ray and LDCT 

and (2) biomarkers (EUnetHTA, 2020). The LDCT is the recommended lung cancer screening method 

according to several major European, American, and Asian health organizations, including (EUnetHTA, 2020). 

This section will therefore present the two main methods for screening for lung cancer and further explain the 

LDCT screening method. 

 

The imaging technologies use ionizing radiation to diagnose lung cancer and are only initiated if the health 

benefits outweigh the radiation risk (EUnetHTA, 2020). The NLST demonstrated a 20% reduction in lung 

cancer mortality amongst people who underwent annual screening CT relative to chest x-ray. Therefore, LDCT 

is the recommended screening method for high-risk patients (Tanoue et al., 2015; Allen et al., 2019). The 

LDCT offers highly sensitive technology, enabling the detection of lung cancers <1cm (Allen et al., 2019). 

LDCT reduces radiation exposure by 90% compared to standard CT scanning, offering ultra-low radiation 

doses without compromising image quality (Allen et al., 2019). A LDCT scanner uses x-ray images and 

computer processing tomography to combine images, creating cross-sectional 3D images, and is used primarily 

for rapidly visualizing and examining internal parts of the body (Allen et al., 2019). LDCT can also guide 

biopsy procedures, map for surgery, and monitor the effectiveness of treatments such as radiotherapy or 

chemotherapy (Allen et al., 2019).  

 

The harms of LDCT scanning can include exposure to radiation and the risk of reaction to contrast materials 

when used (Allen et al., 2019). Further criticism of LDCT as a means for lung cancer screening is the high 

false positive detection rates within screening groups, leading to overdiagnosis. False positive screening is 

classified as a patient having a suspicious nodule detected which is benign, requiring either increased 
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surveillance or escalated diagnostic interventions (Hammer et al., 2022). In the National Lung Cancer 

Screening Trial in the U.S. (NLST) trial, 33% of patients were found to have received a false positive screen 

in their first two rounds of screening. This could result in further investigations, a marked increase in 

psychological distress, and additional costs (Allen et al., 2019). Section 3.1 summarizes the most extensive 

clinical trials on LDCT and the false positive rates. 

 

Chest x-ray was previously recommended for lung cancer screening because of negative trial results in recent 

studies (EUnetHTA, 2020). A chest x-ray will produce images of significant structures, including the heart, 

lungs, bones, and blood vessels, and detect air, fluid, and chronic lung conditions (Bradley et al., 2019). A 

chest x-ray is still the first-line investigation used for suspected lung cancer due to accessibility and low cost 

in some countries. X-rays can detect masses >1cm yet fail to detect lung cancer in >20% of symptomatic cases 

(Bradley et al., 2019). Therefore the recommended imaging technology for detecting lung cancer is LDCT 

(EUnetHTA, 2020; Allen et al., 2019). 

 

The second method to detect early-stage lung cancer is biomarkers (EUnetHTA, 2020). Molecular biomarkers 

complement routine pathological testing and explain why a cell becomes cancerous (American Lung 

Association, 2021). Even though the methods for biomarkers have enormous potential, they are not used in 

practice because much improvement is still needed for the most promising biomarkers (image-based and 

molecular ones). The biomarkers for lung cancer are still at an early stage and have to be developed further 

(EUnetHTA, 2020). 

 

A general limitation to all LCSPs is adherence since the impact of the screening is highly dependent on the 

participation rates of the programs (Dressler et al., 2021). The initial barrier to low adherence is the inability 

to consistently and systematically identify individuals in the risk group (Moldovanu et al., 2022). The same 

research also shows that eligible patients are more likely to undergo screening when their GP endorses it. 

However, clinicians report unfamiliarity with eligibility criteria and the balance between harms and benefits 

for different risk groups. Clinicians have also reported negative reactions from their patients and concerns 

about the increased workload if they would recommend a screening (Moldovanu et al., 2022). 

 

Individuals with extensive smoking history and low socioeconomic status (SES) are less likely to attend cancer 

screening programs. This group is more pessimistic about survival changes for early-stage lung cancer, and 

they experience stigma around smoking and fear of being judged if they attend the screening (Moldovanu et 

al., 2022). Educational materials about a higher risk of cancer can lead to anxiety and counterproductive 

behavior. Some screening programs also include smoking cessation as a mandatory part, leading to less 

attendance amongst smokers. 
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A long smoke-pack history is also often associated with lower SES in Western countries (Moldovanu et al., 

2022). Low SES people face higher barriers to attending screening programs because of geographical issues 

(travel time and cost) and lack of insurance. Mobile CT scanners can be a way to solve this problem and make 

screening accessible for everyone (Moldovanu et al., 2022). Another study on lung cancer showed higher 

adherence to centralized screening versus decentralized screening. However, overall, the annual screening was 

still suboptimal (Sakoda et al., 2021). The same study also concluded that individuals aged 65 to 71 who had 

previously smoked were more likely to adhere. When a patient has been diagnosed with lung cancer through 

any of the aforementioned methods, the person will be treated according to the methods explained below. 

2.1.4 Treatment 

This section will outline NSCLC treatment options at different diagnostic stages. Lung cancer treatment is 

standardized across most western countries and is based on the TNM classification system previously 

described in section 2.1.1. (EUnetHTA, 2020). Collins et al. (2007) describe a multimodality approach used 

in lung cancer treatment across differing stages, including surgery, radiotherapy, chemotherapy, and palliative 

care, as described in Table 2, with the treatments explained below. 

 

Table 2. Lung Cancer Treatment by Stage 

 

Note. Collins et al., 2007 

 

Resection 

Surgical resection is the removal of tissue or part of an organ (National Cancer Institute, n.d.). Surgery can 

remove lung cancer, debulk the tumor if organ preservation is required, or ease cancer symptoms (National 

Cancer Institute, 2019). Recovery can range from weeks to months, depending on the surgery performed 
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(American Cancer Society, 2019). The risk associated with lung cancer surgery can be bleeding, blood clots, 

medication reactions, infections, and pneumonia (American Cancer Society, 2019). 

 

Chemotherapy 

Chemotherapy uses drug treatment to stop the growth of cancer cells either by cell death, apoptosis, or 

preventing division and can be administered orally, via intravenous infusion, injection intrathecally, 

intraperitoneal, intraarterial, or topically (National Cancer Institute, n.d.). Chemotherapy can shrink cancers 

before surgical resection or radiotherapy, kill cancer cells after resection or radiotherapy, or work with other 

therapies to improve treatment success (National Cancer Institute, 2019). The effects of chemotherapy can be 

related to the type of chemotherapy administered, the drug dosage, cancer type and stage, and a patient's 

premorbid health status. Side effects of chemotherapy can include killing or slowing the growth of healthy, 

fast-growing cells causing overall deconditioning, nausea, vomiting, mucosal membranes, and hair loss 

(American Cancer Society, 2019). 

 

Radiotherapy 

Radiation therapy uses high doses of high-energy rays or particles to kill cancer cells or shrink tumors (National 

Cancer Institute, n.d.). Radiotherapy can be used as the primary treatment alongside chemotherapy when 

cancer cannot be removed or debulked due to its size or location (American Cancer Society, 2019). 

Radiotherapy is also used after resection to kill any lingering cancer cells, before surgery to shrink the tumor, 

treat cancer that has spread distally, or as palliative therapy to relieve symptoms of advanced cancer (American 

Cancer Society, 2019). Radiotherapy's side effects can include fatigue, nausea, vomiting, anorexia, weight 

loss, topical dermal changes in treatment areas, and hair loss (American Cancer Society, 2019). 

 

Palliative Care 

Palliative care is the treatment or care given to a patient to improve quality of life by preventing or treating 

cancer symptoms or treatment side effects (National Cancer Institute, n.d.). The goal of palliative care is not 

curative. However, palliative care can include centesis procedures to remove fluid from the heart and lungs, 

resection, chemotherapy, or radiotherapy to remove, shrink, or slow cancer-causing pain (National Cancer 

Institute, n.d.). In advanced NSCLC, palliation therapy can alleviate pain, bleeding, trouble swallowing, 

breathing difficulties, and obstructed airways caused by invasive tumors (American Cancer Society, 2019). 

Palliative care can also address the physiological, social, and spiritual problems caused by cancer and 

treatments (National Cancer Institute, n.d.). 

 

Treatment success can be defined differently depending on the healthcare professional, patient, and caregivers 

(Islam et al., 2019). Defining treatment success in the early stages is curative and conventionally leads to 
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cancer remission. However, this may not be possible in advanced cancer stages, where a focus may fall on 

improving quality of life (Islam et al., 2019). The success of lung cancer treatment depends on multiple factors 

(Islam et al., 2019). 

Chapter 2 

2.2 Danish Context 

This section will outline lung cancer within the Danish context. The focus will be placed on lung cancer 

epidemiology in Denmark and identifying the high-risk population. Furthermore, the current lung cancer 

pathways in Denmark will be explained, the costs for treating lung cancer identified, and the potential costs of 

a LCSP. 

2.2.1 Lung Cancer Epidemiology in Denmark 

Epidemiology refers to disease patterns, causes, and control in populations (National Cancer Institute, n.d.). 

This section will outline the demographics of lung cancer in Denmark, the factors that affect its presence in 

Denmark, and the measures in place to control the disease. 

2.2.1.1 Incidence 

Lung cancer incidence is the number of newly diagnosed lung cancer cases in a population over one year 

(National Cancer Institute, n.d.). The numerator indicates lung cancer cases as a primary diagnosis during a 

given time, and the denominator represents the population at risk of developing lung cancer (Torre et al., 2015). 

In Denmark, lung cancer is monitored by the Cancer Registry (CAR) and the Danish Lung Cancer Register 

(DLCR), which are driven by reports from the National Patient Register (LPR) (Jakobsen et al., 2013). Lung 

cancer is the second most common cancer in Denmark, with an incidence of 36.8 per 100,000 people in 2020 

and up trending (IARC, 2021). Denmark has the sixth-lowest incidence of lung cancer in Europe (OECD, n.d.). 

Compared to other cancers in Denmark, lung cancer has the second-highest incidence, at 11.8%, and breast 

cancer at 11.9% (IARC, 2021).  

2.2.1.2 Prevalence 

Lung cancer prevalence refers to the total number of people in a population who have been diagnosed or have 

lung cancer and includes people who are receiving treatment, in remission, and are still alive at a specific date 

(National Cancer Institute, n.d.). Prevalence has increased rapidly in Denmark due to improved survivability 

post-diagnosis, with a 5-year prevalence of 114.43 per 100,000 (IARC, 2021).  
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2.2.1.3 Mortality 

Lung cancer mortality is the number of deaths in a population from lung cancer over a specific period (National 

Cancer Institute, n.d.). Lung cancer mortality reflects both incidence and survival, as the numerator includes 

only deaths, and the denominator is the population at risk of dying from lung cancer (Torre et al., 2015). Lung 

cancer has the highest mortality rate in Denmark of any cancer, at a stable rate of 27.0 per 100,000 persons in 

2020, or approximately 3,700 deaths per annum (IARC, 2021). Denmark has the third-worst mortality rate 

compared to other EU nations, preceding Poland and Hungary (OECD, n.d.). 

 

Figure 3. Lung Cancer Epidemiology in Denmark 

 

Note. IARC, 2021 

2.2.1.4 Survival 

Lung cancer survivability is the length of time someone survives following a lung cancer diagnosis (Torre et 

al., 2015). The survivability depends on the stage lung cancer is diagnosed and the response to treatment 

(Popper, 2016). The DLCR monitors survivability, and the current lung cancer survivability for Denmark is 1-

year 51.4%, 2-year 35.5%, and 5-year 15.9% (Jakobsen et al., 2013). 
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2.2.1.5 Danish High-Risk Population 

The primary etiology of lung cancer development in Denmark is smoking (Guldbrandt et al., 2015). Smoking 

rates continue to be elevated in Denmark, with 18% of the population smoking daily or occasionally (Danish 

Health Authority, 2021). The prevalence of smoking has declined since the 1960s, yet smoking rates have 

stagnated over the past decade (Danish Health Authority, 2021). Other risk factors for lung cancer include 

COPD and increasing age, which, combined with a high pack-year smoking history, drastically increase the 

risk of lung cancer development (Jakobsen et al., 2013). When determining the high-risk Danish population, 

the inclusion criteria for different clinical trials have been used to segment the Danish population, producing 

varied results. Table 3 below displays the results of the high-risk smoking criteria from the NELSON study 

and the NLST study. 

 

Table 3. Screening Risk Group in Denmark - NELSON and NLST Risk Group Criteria 

 

Note. Pedersen et al., 2017 

 

Lastly, participant exclusion criteria would limit a person's participation in a LCSP, including recent infections 

or a history of cancers (Pedersen et al., 2017). As these populations cannot be estimated within this high-risk 

cohort, the screening cohort may overestimate. Having outlined the main risk factors for developing lung 

cancer, the next section will present the different methods for identifying and diagnosing lung cancer. 

2.2.2 Current Lung Cancer Pathway in Denmark 

Like other European nations, Denmark has no LCSP (Guldbrandt et al., 2015). In Denmark, diagnosing lung 

cancer primarily begins with the general practitioner (GP), with 68.3% of all lung cancer diagnoses involving 

a GP and the remaining from specialists or acute care settings (Guldbrandt et al., 2015). In 2008, Denmark 

introduced a lung cancer diagnosis pathway in which GPs could refer a patient to fast-track diagnostics, 

circumventing traditional respiratory referrals (Guldbrandt et al., 2015). However, many primary healthcare 

professionals report a lack of awareness surrounding lung cancer among high-risk groups (Moldovanu et al., 

2022). Patients are commonly referred for an x-ray over LDCT (Guldbrandt et al., 2015). Guldbrandt et al. 

(2015) have found that one-third of patients diagnosed with lung cancer had at least two X-rays performed 

within 90 days of a lung cancer diagnosis, indicating high rates of false-negatives and poor x-ray sensitivity. 
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Therefore, recommendations have been given for upgraded technologies, such as LDCT, for the fast-track lung 

cancer diagnostics pathways (Guldbrandt et al., 2015). The nature of lung cancer diagnosis in Denmark means 

more patients are diagnosed in later disease stages, limiting treatment options and effectiveness (Guldbrandt 

et al., 2015). 

 

Understanding the extent and seriousness of a cancer diagnosis and determining the best treatment plan begins 

with staging and categorizing cancer. Staging of lung cancer in Denmark is performed using the TNM system, 

as previously discussed in section 2.1.1. Treatment in Denmark is aligned with other Western countries, and 

Denmark has developed and legislated The Cancer Patient Pathways in 2008 for cancer treatment (Probst et 

al., 2012). Probst et al. (2012) discuss how healthcare professionals developed pathways with the involvement 

and cooperation of bureaucrats and politicians. The models have allowed for successful national 

implementation, significantly reducing waiting times and increasing survival. The Cancer Patient Pathways 

prescribed maximum waiting times for cancer diagnostics and treatment. An example is that surgery and 

chemotherapy must be offered within 14 and 42 calendar days, respectively, after diagnosis (Probst et al., 

2012). As explained by Sørensen et al. (2018), the clinical care offered per lung cancer stage in Denmark was 

sourced from the Danish national registries from 2005-to 2015 and is listed below. 
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Table 4. Danish Lung Cancer Clinical Care by Lung Cancer Stage 

 

Note. Ekman et al., 2021 

2.2.2.1 Cost of Lung Cancer in Denmark 

Health expenditure in Denmark accounts for 10.4% of total GDP, providing more comprehensive care than in 

many other countries in the Organization for Economic Cooperation and Development (OECD) (Tikkanen et 

al., 2020). Denmark offers universal healthcare paid for by income tax, covering primary and acute healthcare 

episodes. Estimating the economic burden of lung cancer in Denmark can be done by calculating the annual 

cost per patient diagnosed with lung cancer and comparing it to the average healthcare costs in the general 

population (Gouliaev et al., 2021). The study by Gouliaev et al. (2021) calculated the societal and payer 

perspective costs relating to the treatment of lung cancer compared to the standard population's health care 

costs. Gouliaev et al. (2021) found the costs of lung cancer in Denmark to be 2.9-fold higher in the decade pre-

diagnosis than in the general population and 5.5-fold higher in the decade post-diagnosis. 

 

The costs relating to lung cancer treatment for the years 2013-2015 have been produced by Professor Anders 

Green in a proposal for a Danish lung cancer screening program (Danish Lung Cancer Group & Saghir, 2021). 

The costs have been segmented into therapy by no targeted treatment, oncological therapy only, and surgery 

+/- neoadjuvant oncological therapy. An average treatment cost indicates treatment for late-stage lung cancer 

to be substantially higher than early stages. Hence introducing ways of detecting lung cancer early should 

assist in overall cost-containment. 
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Table 5. Lung Cancer Treatment Costs 

 

Note. Danish Lung Cancer Group and Saghir, 2021 

 

2.2.2.2 Cost of a Lung Cancer Screening Program in Denmark 

The Danish Lung Cancer Society has submitted a proposal for introducing a lung cancer screening program 

(Danish Lung Cancer Group & Saghir, 2021). The proposal is currently under review and suggests that 

additional feasibility trials may need to occur before it can be implemented. Introducing a LCSP will come 

with budget constraints. The healthcare payer costs for introducing a LCSP have been estimated by Jensen et 

al. (2020) as € 238/scan based on 2018 prices. They include the costs of participant recruitment, consultations 

with radiographers and radiologists. Other costs borne by the patient or caregiver are estimated by Gouliaev et 

al. (2021) and include sick pay, travel costs, and foregone earnings. Costs unable to be estimated but identified 

by Rasmussen et al. (2015) are the psychosocial consequences of being included in a LCSP and receiving a 

false positive diagnosis. 

3. Literature Review 

This literature review will introduce the lung cancer screening trials and cost-effectiveness studies published 

on LCSPs. According to Pedersen et al. (2017), no study on the cost-effectiveness of a LCSP has been done in 

the Nordics. This section will first present results from lung cancer screening trials, and then CUA studies that 

use the RCT outcomes will be outlined and explored for their relevance. 

3.1 Lung Cancer Screening Clinical Trials 

This section will outline the significant clinical RCTs contributing evidence to support LCSPs. Kaneko et al. 

(1996) produced the first lung cancer screening trial, which enrolled 1,369 subjects and concluded that using 
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x-ray alone missed 73% of lung cancers detected by CT scan. Larger and more comprehensive studies have 

since been produced involving LCSPs which will be outlined in this section.  

 

National Lung Cancer Screening Trial 

The Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening (2011), or the 

National Lung Cancer Screening Trial (NLST), was conducted to determine whether mortality from lung 

cancer could be reduced with the use of low-dose CT screening versus a chest x-ray. The study is the largest 

lung cancer screening trial, enrolled 53,454 subjects at high risk of lung cancer from August 2002 - to April 

2004 from 33 US medical centers. Participants were aged between 55-74 years, had at least 30 pack-years 

smoking history, or had quit within the previous 15 years for former smokers. The patients were randomized 

to undergo 3-annual LDCT or a posterior chest X-ray, with the LDCT arm detecting more cancers than the x-

ray control group (1060 vs. 941). Despite a higher incidence of lung cancer, the NLST proved a reduction in 

mortality in the LDCT group than the control (247 vs. 309), representing a 20% reduction in mortality 

(“Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening,” 2011). 

 

Netherlands Lung Cancer Screening Research 

The Dutch-Belgian Randomized Lung Cancer Screening Trial from de Koning et al. (2020), or the NELSON 

study, investigated screening men primarily and women as a subgroup. It recruited 13,195 men and 2,594 

women aged 50-74 years who were current or former smokers with a 15-20 pack-year smoking history. 

Participants were randomly assigned to undergo LDCT scanning at baseline, year one, year three, and year 

5.5, with the control group undergoing no screening. As in the NLST, trial adherence was 90%, with the 

screening lung cancer incidence of 5.58 per 1000 person-years versus 4.91 cases per 1000 person-years in 

control. Overall, the NELSON study proved a reduction in mortality of 25% through screening for lung cancer 

versus no screening (de Koning et al., 2020). 

 

United Kingdom Lung Screening 

The UKLS trial from Baldwin et al. (2011) determined whether screening via LDCT and the treatment of early 

lesions decreased lung cancer mortality compared to a no screening. The study randomized 4,055 people aged 

50-75 years with a risk score of developing lung cancer within five years of ≥ 4.5% using the Liverpool Lung 

Project risk model (LLPv2). The LLPv2 model uses smoking status and duration, respiratory disease history, 

and family history of lung cancer to determine a person’s risk of developing lung cancer. The screening arm 

detected 86 cancers, with the control detecting 75, with fewer deaths in the screening group than control (30 

vs. 46). The relative rate ratio of mortality reduction was 0.65, and a further meta-analysis pooled data from 

nine trials to determine a rate ratio of 0.86. The UKLS study continued to strengthen the results of the NLST 

and NELSON study in recommending screening high-risk lung cancer individuals. The study also conducted 
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a cost-effectiveness analysis to determine the incremental cost-effectiveness ratio (ICER) and QALY 

performed by Snowsill et al. (2018), which will be discussed further (Baldwin et al., 2011). 

 

Danish Lung Cancer Screening Trial 

The DLCST conducted by Wille et al. (2016) compared LDCT versus no screening for lung cancer to conclude 

if there was an associated reduction in mortality. The study randomized 4,104 participants aged 50-70 years 

who had a minimum 20-pack year smoking history, with LDCT scans conducted annually for five years. The 

study identified more early cancers, stage I and II, in the screening group. However, this study did not identify 

any significant change to lung cancer mortality (Willie et al., 2016). 

 

Additional studies using LDCT as their chosen intervention have been conducted globally, producing positive 

results in increased detection and reduced lung cancer mortality. The studies investigated LDCT vs. a 

comparator, risk group categorization, cohort sizes, and outcomes are listed in the appendix 

3.2 Cost-Utility Analysis Studies 

This section aims to identify and outline CUAs conducted on LDCT screening programs, outlining the costs 

and benefits gained and the methods applied in the studies. There are currently no CUAs for LCSPs conducted 

in the Danish context. Most CUAs have been performed in a U.S. context, where the costs differ substantially 

from Europe (Pedersen et al., 2017; Peters et al., 2022). The CUAs identified and included in this study all 

have the same comparator, no screening, and the outcome benefits of QALYs and subsequent ICERs. This 

section will highlight the largest and most comprehensive CUAs performed on LDCT screening programs and 

provide an overview in the appendix. 

 

Cost-utility Analysis of a Potential Lung Cancer Screening Program for a High-Risk Population in Germany: 

A Modeling Approach 

The paper by Hofer et al. (2018) was created based on the German population aged 55-75 years, comparing an 

annual and biennial LDCT for 5-years vs. no screening program. Hofer et al. (2018) used the payer perspective 

with two Markov models to compare the standard clinical care pathway to a LCSP pathway. Costs associated 

with a LCSP and cancer diagnosis were sourced from the German outpatient reimbursement catalog, and 

QALYs were taken from the metastudy by Sturza (2010). The starting probabilities were based on the German 

LUSI study and risk group parameters from the NLST. Transitioning state probabilities were determined using 

Bayesian calibration methods and German incidence data from the German Center for Cancer Registry Data. 

The discount rate was set at 3%, reflecting the German statutory health insurer applied rate over a 15-year time 

horizon. Adherence was set at 54%, with sensitivity and specificity of LDCT and current clinical pathway 
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derived from current literature. This study produced an ICER of € 30,291/QALY, with a surplus of 0.04 

QALYs per person in the screening cohort and a 5-year reduction in all-cause mortality of 2.25%. However, 

as Germany does not yet have a CET, it was compared to that set by the WHO, and was therefore deemed cost-

effective. 

 

Low-Dose Computed Tomography for Lung Cancer Screening in High-Risk Populations: A Systematic Review 

and Economic Evaluation. 

The U.K. metastudy by Snowsill et al. (2018) compared the clinical and cost-effectiveness of LDCT compared 

to both standard clinical pathways or a single chest x-ray via a Markov model. Adherence was adjusted from 

30-47%, with the target cohort aged 60-75 years and 3% risk of developing lung cancer. All-cause mortality 

rates were sourced from the local statistics, and lung cancer mortality was sourced from the International 

Association for the Study of Lung Cancer. The cost perspective was the NHS and the Personal Social Services, 

both government institutions. The primary health outcomes were HRQoL, and life-year attained, expressed as 

QALYs. A discount rate was applied at 3.5% for costs and QALYs, with the time horizon set as the participants' 

natural lifetime. The overall findings discovered that the most cost-effective ICER was £28,169/QALY. It was 

determined not to be cost-effective as it is above the NICE CET guidelines of £20,000/QALY (McCabe et al., 

2008). 

 

Cost-Effectiveness and Health Impact of Lung Cancer Screening with Low-Dose Computed Tomography for 

Never Smokers in Japan and the United States: A Modeling Study 

The study by Kowada (2022) compared annual LDCT for lung cancer screening to chest x-ray and no screening 

via a Markov model. The risk group focused on never-smokers in Japan and the U.S., using a healthcare payer 

perspective over the lifetime horizon. Detection rates for the U.S. were obtained from the Surveillance, 

Epidemiology, and End Results Medicare database and the Japanese Cancer Statistic for the Japanese cohort. 

Transition probabilities were estimated from literature, cancer statistics, vital statistics, and life tables, with 

detection rates estimated to be equal in both Japan and the U.S. Adherence was set at 100%, with sensitivity 

and specificity of LDCT and current clinical pathway derived from current literature. A payer perspective was 

adopted, with costs for screening and cancer treatment taken from Japan based on the Japanese national fee 

schedule and costs for the U.S. cohort based on Medicare. QALYs were obtained from current literature, with 

costs and QALYs discounted at 3%. LDCT was found to be more cost-effective for women than men in Japan. 

However, it was determined to not be cost-effective in the U.S., with an ICER >$100,000/QALY. 

 

There are still inconsistencies seen between CUAs. The methods chosen by each study strongly impact the 

results, and a country's policies on health economic evaluations can determine if a LCSP will be cost-effective. 
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Having outlined the methods and results from the most relevant CUAs, this thesis will outline our chosen 

methods for this EE using evidence supported by the literature. 

4. Methodology 

The methodology section outlines all of the methodological steps leading up to creating the model for this EE. 

The first part will outline the inclusion criterias for the model by analyzing existing literature. This will allow 

the researchers to gain insights leading to decisions for the models' input variables and provide rationale for 

the choices and assumptions made. Secondly, a framework for the EE will be decided upon in order to answer 

the research question. The following decisions behind theories, perspectives, and applied frameworks leading 

up to the model will be explained, and elaborated on. The model's output will be identified as QALYs and 

costs, with all assumptions within the model addressed and justified.  

4.1 Model Scope 

This first section will outline the scope criteria for the model, including the screening population, target 

condition, intervention, comparator, and choice of audience for the EE. This section aims to clarify for the 

reader which input values the model will be built upon and for whom. 

4.1.1 Target Disease 

This EE compares different technologies and diagnosis pathways for NSCLC. NSCLC was the chosen disease 

because it accounts for >85% of all lung cancers and is the most deadly of all cancers in Denmark and globally 

(Siemens Healthineersn, n.d.). It is also not detected effectively in the earlier stages through the current clinical 

pathway. 

4.1.2 Diagnostic Tool and Comparator 

As outlined in section 2.1.2, several different diagnostic tools can be evaluated for the Danish diagnosis 

pathway of lung cancer. The chosen diagnostic technology evaluated in this thesis is LDCT screening. The 

motivation behind this choice is that it is the preferred option for a LCSP in today's research (EUnetHTA, 

2020). The comparator is Denmark's current lung cancer diagnosis pathway, which is symptomatic 

presentation. The model is therefore comparing screening through LDCT versus no screening. 
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4.1.3 Risk Group 

The Pedersen et al. (2017) study shows that most studies follow the NLST criteria regarding age and tobacco 

exposure when identifying their eligible risk group for screening. The screening cohort for this risk group 

identifies people between 55-74 years old with a ≥30 smoking history or former heavy smokers who have quit 

within the last 15-years. Based on Pedersen et al.'s. (2017) study, risk groups are filtered using data from the 

Danish national registries, producing the eligible cohort for the Danish screening program as 106,041 

participants (Pedersen et al., 2017). Table 3 in the Danish High-Risk Population 2.3.2 shows the identification 

of the age risk group in Denmark and then the number of people according to the NELSON criteria and NLST 

criteria. 

4.1.4 Choice of Audience 

Having the audience and decision-makers in mind will ensure an EE holds relevance to the setting it is applied 

and reflects the EE's objectives and strengths (Drummond et al., 2015). The primary audience for this thesis is 

the Danish Ministry of Health, as a LCSP in Denmark would be carried out at a national level and offered free 

to participants. The Danish Ministry of Health is the primary gatekeeper and decision-maker for universal 

healthcare in Denmark. The current detection and treatment pathway is provided via primary, acute, and 

outpatient care (Kristensen & Sigmund, 2008). All costs accounted for in this thesis are the responsibility of 

the Ministry of Health, as discussed in section 3.1.3, which oversees the general regulation, planning, and 

supervision of healthcare services and overall cost-control activities (Tikkanen et al., 2020). 

The Ministry of Health is a national level organization and is further divided into the governmental authorities; 

the Health Authority, Medicines Agency, Patient Safety Authority, Health Data Authority, and the Danish 

Agency for Patient Complaints (Tikkanen et al., 2020). The Danish national authorities have the role of 

planning mandatory health agreements between the regions and the Local Government of Denmark, 

negotiating financial reimbursements and agreements on behalf of the regions, and setting performance targets 

(Tikkanen et al., 2020). 
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Table 6. Model Scope 

 

Note. References in text 

4.2 Model Foundations 

This thesis seeks to evaluate if a lung cancer LDCT screening program for a high-risk population would be 

cost-effective in Denmark. Therefore, an EE model will be created to calculate the cost-effectiveness between 

the intervention and comparator previously identified. This section introduces the theoretical foundation which 

underpins the cost-effectiveness evaluation, perspectives leading the choices of input values, and choices of 

frameworks. 

4.2.1 Viewpoints 

This section will introduce the views behind economic analysis, being welfarism and extra-welfarism.  

Welfarism 

Welfarism is part of welfare economics and is the economic framework for ranking the allocation of resources 

(Hurley, 2014). All economic systems face problems associated with resource allocation and the distribution 

of resources efficiently and equitably. Welfare economics is built upon four central tenets; (1) utility 

maximization, (2) individual sovereignty, (3) consequentialism, and (4) welfarism (Hurley, 2014). Utility 

maximization refers to the assumption that behavior will dictate rational choices and preferences. Individual 

sovereignty is the term that individuals themselves best judge one's welfare. It notes that individual evaluations 

and preferences are respected. Consequentialism refers to any policy or resource allocation being judged on 

the effects that flow from the policy . Welfarism refers to the benefits of any policy being judged by the attained 

utilities of the included cohort. Modern welfare economics also include the Pareto criterion, where resources 
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cannot be reallocated to increase one cohort's utility without decreasing another. The welfarist approach can 

be made through a cost-benefit analysis (CBA). Employing the use of a welfare-economic framework can 

present challenges. The Pareto criterion can lead to policy paralysis if resources need to be reallocated from 

one group to another in society. Also, the only outcome which can be measured is utilities. With efficiency 

defined as the Pareto criterion, the policy is only deemed efficient if there is a positive net benefit (Hurley, 

2014). 

Extra-Welfarism 

Extra-welfarism is the economic framework evaluating a policy based on larger volumes of information and 

additional inclusions (Hurley, 2014). The economic approach was developed to compensate for the priority 

setting required in healthcare and offers differing outcomes rather than simply the preferences and utilities 

gained by society. Extra-welfarism places health at the center of health policies and considers other factors 

beyond the welfarist approach. Brouwer et al. (2008: p.14-15) states four ways in which welfarism and extra-

welfarism differ from one another: 

1. It permits the use of outcomes other than utility. 

2. It permits the use of sources of valuation other than affected individuals. 

3. It permits weighing the outcomes (whether utility or other) according to principles that need not be 

preference-based. 

4. It permits interpersonal comparisons of well-being in various dimensions, thus enabling moving 

beyond Paretian economics. 

(Brouwer et al., 2008: p.14-15) 

The difference arose from multiple objections within the welfarism framework. Firstly, assigning a monetary 

value to lives saved can be deemed unpalatable, which has given rise to CUAs over CBAs in evaluating health 

care policies and interventions (Hurley, 2014). Secondly, as healthcare consumption and resource allocation 

is performed out of need, the WTP threshold should be circumvented, and access to healthcare ideally be 

independent of the ability to pay. Thirdly, a "decision-maker" approach has formed, whereby the analyst assists 

in achieving the stated goals of the decision-makers. Fourth, the demand for health and healthcare has presented 

consumption efficiency and supply issues. An extra-welfarist approach allows for assessing the effectiveness 

of a health care service by measuring the health effects after its consumption (Brouwer et al., 2008). 

An EE undertaken through an extra-welfarist framework would use the Cost-effectiveness analysis (CEA) or 

CUA methods (Hurley, 2014), where health benefits can be optimized under restricted budgets. Providing 

outcomes using this approach can assist decision-makers in making informed choices, as it can accommodate 
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for distributional and procedural equity, ensuring fairness in resource allocation (Hurley, 2014). This thesis 

uses an extra-welfarist approach to focus on the CUA methodology as it is adaptable and can include individual 

utility and other relevant outcomes (Brouwer et al., 2008). The CUA framework and alternative frameworks 

are explained more in detail in the following section. 

4.2.2 Economic Evaluation Frameworks 

This thesis aims to conduct an EE to guide the Danish Health Authorities in making decisions that give the 

most benefit at the lowest cost (Drummond et al., 2015). The framework for EE is used in order to compare 

different alternatives to analyze the cost and health outcomes (Drummond et al., 2015). As explained below, 

Drummond et al. (2015) list four main reasons why EEs are important:“ 

1. Without systematic analysis, it is difficult to identify clearly the relevant alternatives 

2. The perspective (or viewpoint) assumed in an analysis is important 

3. Without some attempt at quantification, informal assessment of orders of magnitude can be misleading 

4. Systematic approaches increase the explicitness and accountability in decision-making 

(Drummond et al. 2015, p. 2-3). 

The two main features of EE include dealing with both the inputs, described as costs, and outputs, described 

as consequences, and providing several choices because resources are limited (Drummond et al., 2015). These 

two attributes aid in decision-making as all desired outputs cannot be produced. These two characteristics lead 

to EE's definition: "the comparative analysis of alternative courses of action in terms of both their costs and 

consequences" (Drummond et al. 2015, p. 4). This definition creates the formula for arriving at the cost-

effectiveness stage, where the cost and effects of one alternative are compared to the cost and effects of the 

second alternative. 

     𝐶𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐴 − 𝐶𝑜𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐵     = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 (𝐼𝐶𝐸𝑅)  

𝐸𝑓𝑓𝑒𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐴 − 𝐸𝑓𝑓𝑒𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝐵  

The output of the EE is usually expressed as an incremental cost-effectiveness ratio (ICER), the ratio of the 

incremental costs and effects between the alternative interventions (Drummond et al., 2015). An ICER can 

capture the output of the Markov model and systematically present this information. The ICER has been used 

routinely within HTA to summarize the results of EEs (Paulden, 2020). For this thesis, the decision-maker is 

provided with an estimate of how much one more unit of effect will cost if Denmark implements the potential 

LDCT screening program.  

The ICER is usually illustrated in a cost-effectiveness plane (CEP), falling in the northeast, southeast, 

southwest, or northwest quadrant of the cost-effectiveness plane (Briggs & Tambour, 2001). The intervention 
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is always cost-effective to its comparator if the ICER falls in the southeast quadrant, with higher effects at a 

lower cost. The intervention is not cost-effective if the ICER falls in the northwest quadrant, leading to a lower 

effect at a higher cost. For the northeast and southwest quadrants, the ICER has to be put in relation to a defined 

cost-effectiveness threshold (CET) to determine the cost-effectiveness. If the ICER falls below the CET, it is 

considered cost-effective, since the intervention will either cost less with a more negligible effect or cost more 

with a higher effect, as displayed in figure 4. Displaying the ICER results, falling on, above, or below the CET, 

will assist the decision-maker in determining if an intervention is cost-effective (Briggs & Tambour, 2001). 

The concept of the CET will be further explained in section 3.2.2. 

Figure 4. Cost-effectiveness Plane 

 

Note. Briggs & Tambour, 2001 

There are limitations to using ICERs as a measure of cost-effectiveness. First of all, a CET is required to 

determine the cost-effectiveness. Secondly, a reduction in the ICER does not necessarily imply that an ICER 

has become more cost-effective (Paulden, 2020). Variation in the assumptions can lead to changes in the 

comparator and the intervention group; hence using the ICER as a guide can be misleading. This thesis has 

sought to overcome this by investigating the granular details within the model's output to explain changes, 

such as the epidemiological benefits gained. However, in doing so, measuring the net benefits without a 

threshold or context can lead to results that lack meaning. Other studies have identified limitations to ICERs 

when evaluating screening interventions that suggest the Relative net benefit as an alternative method 

(O'Mahony, 2015). The research shows that improvement in screening could enhance cost-effectiveness. 

However, this improvement might not be reflected in the ICER "because the whole efficient frontier may shift 
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when all strategies are affected by a common technological change, so ICERs on the frontier can be insensitive 

to this improvement" (O'Mahony, 2015, p. 705). 

To summarize, the task of this thesis includes identification, measuring, valuing, and comparing costs and 

consequences between choices being (1) the introduction of a LCSP through a LDCT and (2) no LCSP or the 

current diagnosis pathway for lung cancer in Denmark. The relation between the two features is illustrated in 

Figure 5 below. 

Figure 5. Illustration of the Two Features of an Economic Evaluation 

 

Note. Drummond et al. 2015, page 4. 

There are several different EE frameworks used in healthcare, the foremost being; CBAs, CEAs, and CUAs 

(Shiell et al., 2002; Rudmik & Drummond, 2013). These originate from different views and underlying 

theoretical frameworks, identifying and measuring different effects or consequences. Each framework is 

preferred by different stakeholders and comes with advantages and disadvantages (Drummond & McGuire, 

2001). This thesis will follow the CUA stemming from an extra-welfarism viewpoint. The following 

paragraphs will outline the different EE frameworks and the motivation behind conducting a CUA. 

4.2.2.1 Cost-Utility Analysis 

In this thesis, the chosen EE method is the CUA, the most widely published form of EE (Drummond et al., 

2015). The CUA is similar to the CEA and originates from an extra-welfarist viewpoint, calculating the ICER 

using costs and effects. However, it uses a generic measure of health gains (not natural units) which allows for 

comparisons between interventions and programs in different areas within health care, requiring only one CET 

(Drummond et al., 2015). The generic outcome measure is usually expressed as either quality-adjusted life 

years (QALYs) (Drummond et al., 2015) or disability-adjusted life- years (DALYs) (Tan-Torres Edejer et al., 

2003). 
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QALYs are the most common measure of health effects and measure effects in terms of quality and quantity 

of life years (Weinstein et al., 2009). The QALY is a preference-based measure on a scale that reflects the 

level of health status from zero to one, with zero being equal to death and one being equal to perfect health, 

further explained in section 3.3.2.2. The incremental cost and effect of the evaluated intervention are then 

expressed in cost per QALY, or the ICER (Drummond et al., 2015). The ICER will be the end output of this 

thesis, and together with the CET, this output can help guide the decision-makers (Drummond et al., 2015). 

Like other EE methods, the CUA can be criticized in several ways. The limitations of conducting a CUA are 

that it assumes risk-neutrality and does not account for uncertainty in outcomes (Drummond et al., 2015). An 

example of this is that people would value five additional life-years of full health the same as having 50% 

reduced health at ten years or a 50% chance of instant death because of, e.g., side effects of lung cancer 

treatment. CUAs require a CET, further explained in Section 3.2.2. An additional criticism is that QALYs are 

the same for each individual. Firstly, patients' preferences for health might differ. For example, a youth athlete 

may value health more than someone elderly (Drummond et al., 2015). Secondly, 0.2 QALYs are the same for 

people near death as for people in near-perfect health. Thirdly, CUAs remove individual utility as they violate 

equality, societal preference and fairness (Senera, 2021). The CUA also includes the limitations of QALYs (or 

DALYs), further explained in section Benefits. 

4.2.2.2 Cost-Effectiveness Analysis 

The CEA compares alternative interventions' costs and benefits similar to the CBA. However, the health 

benefits are measured in natural units and not in monetary terms (Drummond et al., 2015). Natural units can 

be life years gained, disability years saved, or point of blood pressure reduction. This method believes that it 

is too narrow using only individual preferences, such as utilities used in CUAs for EEs, since health is a merit 

good (Drummond et al., 2015). Therefore, this extra-welfarism framework includes more perspectives than 

the individual utilities, including decision-makers, population samples, and clinical experts (Brouwer et al., 

2008). The CEA can reflect a societal benefit of health and not simply focus on the individual's WTP. The 

CEA is mainly used when the decision-maker has a given budget and considers a limited range of options 

within a given field (Drummond et al., 2015). The cost-effective alternative is the one with the highest benefits 

and lowest cost. 

The limitations of this evaluation method are that, firstly, the benefits are difficult to communicate to decision-

makers since it is expressed in natural units. Studies on diagnostics or prevention interventions usually focus 

on the specific impact of the intervention and not the patient's broader health (Drummond et al., 2015). The 

method requires specific CET for all different disease areas, a process that is impractical and politically 

infeasible. Therefore, using this type of EE for this thesis would not be feasible since there is no assigned CET 
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for lung cancer (Cameron et al., 2018). Lastly, the specific measure used, or natural units, makes it difficult to 

assess the opportunity cost (i.e., benefits forgone) in other interventions covered by the same budget 

(Drummond et al., 2015). In turn, a generic measure must be used in a CUA, as explained above. 

4.2.2.3 Cost-Benefit Analysis 

The CBA measures health outcomes in monetary terms, and the result can be stated as a sum or a ratio of cost 

to benefits (Drummond et al., 2015). The value of expressing the benefits and costs in monetary terms enables 

comparisons with two or more treatment alternatives or even non-health-related programs. The results can also 

be easily communicated to decision-makers transparently (Gov.UK, 2020). This method follows a welfarism 

framework that puts the individual in the center. It believes that individuals are rational and capable of choosing 

options, in this case, healthcare interventions, that give them the highest welfare (Hurley, 2014). 

The CBA tries to mimic the private market without distortion by measuring the population's willingness to pay 

(WTP). This monetary valuation of benefits for different interventions is usually obtained through (1) stated 

preferences/contingent valuation, such as WTP surveys or discrete choice experiments, or through (2) revealed 

preference, such as the human capital approach or wage risk studies (Drummond et al., 2015). The individual 

focus and data collection create critiques of the framework (UK Health Security Agency, 2020). 

There are several critiques to this method, justifying its disuse for this EE. Firstly, it assumes rationality that 

in order to calculate the ICER, the health benefits are turned into monetary value. The question is then 

proposed, are individuals able to express monetary values to health outcomes? It assumes no externalities or 

spillover effects, such as overlap between individual utility functions. It accepts the current income distribution 

that individuals from different SES with the same intervention benefit will assign different WTP for the 

intervention (Drummond et al., 2015). Furthermore, this thesis evaluates two interventions from an extra-

welfarist approach, which do not have to be compared to a non-health-related program. Due to these critiques, 

the CBA evaluation method was not chosen for this thesis. 
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Table 7. Summarizing the Different Economic Evaluation Frameworks 

 

Note. Drummond et al., 2015, page 4; Kristensen & Sigmund, 2008; Sundhetsstyrelsen, 2008 

Table 7 summarizes the main EEs for comparison of healthcare interventions. To conclude, choosing a CUA 

for this study is because CUAs are the most favorable type of EE (Drummond et al., 2015). The CUA makes 

it possible for the decision-makers to compare the cost-effectiveness results of the two alternatives to other 

diseases and treatments using the generic QALY measurements. CUAs originate from an extra-welfarism 

viewpoint, including more than just the individual preferences, which provides importance, considering that 

health is a merit good. However, the CUA requires a CET for the cost-effectiveness analysis. Therefore the 

next section will explain the concept behind the threshold and the threshold used for this thesis. 

4.2.3 Cost-Effectiveness Threshold 

The CET is important for CUAs to determine if an intervention is cost-effective (Drummond et al., 2015). The 

CET is the maximum amount that a decision-maker would pay for a unit of health outcome (York Health 

Economics Consortium, 2016). The calculated ICER in this thesis should, in other words, be below a certain 

threshold for the intervention to be cost-effective. The CET is not being calculated as a part of the CUA but is 

previously established and guides the interpretation of the cost-effectiveness output decision (York Health 

Economics Consortium, 2016). Even though EEs are a mandatory part of the HTA process in several countries, 

an explicit CET value has never been established to assess new health care technologies (Santos et al., 2018). 

This section will explain the different methodological approaches for defining the CET, outline the most 

common measure for CETs, and provide a table with implicit and explicit CETs identified by different 
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European countries, the US, and Canada. It will then present the Swedish CET as the chosen CET for this 

thesis. 

Research on CETs usually suggests a definition through three main approaches: (1) the willingness-to-pay 

(WTP) method, (2) the precedent method, and (3) the opportunity cost method (Santos et al., 2018). The WTP 

method represents the welfare economics theory, previously explained in section 3.3.1. The CET is estimated 

through preference data collected from the population using the WTP method (Santos et al., 2018). The values 

are collected through either contingent valuation surveys or indirectly from people's behavior in the market. 

Santos et al. (2015) state that "these methods are intended to elicit the maximum value that an individual would 

be willing to disburse to obtain a determined amount of health improvement, usually a small difference in 

utility aggregated to generate the value for a quality-adjusted life-year (QALY)" (p.278). This method can be 

questioned for the same reason that the CBA and welfarism viewpoint can be criticized. Putting individual 

preferences in the center leads to detachment from the budget-setting process (Santos et al., 2018). This thesis 

will not use this method since this kind of CET data is unavailable in Denmark. Furthermore, this thesis follows 

an extra-welfarism viewpoint conducting a CUA, making the WTP method inappropriate. 

The second method for determining the CET is the precedent method, which identifies cost-effectiveness 

among approved and funded technologies (Santos et al., 2018). Society already pays for technologies and 

alternatives with higher efficiency, which should be approved. This threshold depends on evaluating existing 

technologies and assumes that previous decisions have been taken rationally. This method is questioned 

because it runs the risk of uncontrolled growth in healthcare expenditures, does not consider the affordability 

of interventions, and could lead to fewer gains and more losses in health outcomes (Santos et al., 2018). This 

method is not used since there are no available screening programs for lung cancer today. 

The third approach is the opportunity cost method, which "It assumes that the budget will be fully spent trying 

to obtain the maximum possible health returns by allocating from the most efficient to the least efficient 

interventions” (Santos et al., 2018, p. 279). The measure for opportunity cost is expressed in forgone health 

benefits, including QALYs or DALYs. This CET cannot be calculated independently of the healthcare budget 

nor for new technologies that would impose further costs on the healthcare system and maybe provoke 

displacement of the already funded interventions (McCabe et al., 2008; Culyer, 2016; Vallejo-Torres et al., 

2016). It suggests that multiple thresholds may be required because different interventions are associated with 

different costs and opportunity costs (Santos et al., 2018). It suggests separate budgets for different 

interventions in the same healthcare system, meaning that optimal reallocation involves the expansion of cost-

effective interventions and displacing those less cost-effective (Santos et al., 2018). Although, the discussion 

about how to best estimate the threshold through the opportunity cost measure is divided. Some suggest that 

estimating the CET through a league table (Vallejo-Torres et al., 2016) or a bookshelf model is better. 
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Santos et al. (2018) explain that "A cost-effectiveness league table lists alternative therapeutic strategies in 

order of desirability based on their ICERs and allocates them until the limit of the budget is reached" (p.279). 

The bookshelf model represents the league tables differently and consists of bi-dimensional graph computing. 

This figure provides the health benefit that the society would get if they used the specific intervention explored. 

Although these methods are adequate since they combine measures of affordability and efficiency, as well as 

outline the cost and benefits of all alternative health interventions, they are challenging to construct because 

of data availability.  Another limitation is that these methods do not consider the potential lack of information 

about the alternatives. Furthermore, it does not consider other objectives of the healthcare system, such as 

social inequalities or access to innovation (Santos et al., 2018). Some less effective technologies might be 

necessary for certain groups of patients who will not get the treatment because other interventions are more 

suitable for other groups and are more cost-effective. This thesis cannot apply this approach either because of 

poor data availability on cost and benefits. 

The different approaches to arriving at a CET come with benefits and limitations. Many countries do not have 

an established threshold due to the controversy regarding the use and the methods for arriving at an appropriate 

threshold value (Vallejo-Torres et al., 2016). Some also argue that setting an explicit threshold could 

incentivize manufacturers to raise their prices to the ICER level (Soares Santos et al., 2018). Adopting high 

threshold levels could increase health expenditures and decrease health coverage (Newall et al., 2014; Culyer, 

2016; Revil et al., 2014). However, establishing an appropriate method for the threshold could also improve 

the value for money in healthcare and bring transparency to the decision-makers (Soares Santos et al., 2018). 

Internationally the most referred CET is based on years of perfect health and is referenced by the Commission 

on Macroeconomics and Health published by the WHO (Newall et al., 2014; Bertram et al., 2016; Marseille 

et al., 2015; WHO, 2001). 

The objective of the international threshold is to be able to associate the national benchmark with affordability 

(Eichler et al., 2014). This threshold should reflect more factors than market income, such as pain, suffering, 

and life longevity, and it tries to because the value is a utility-adjusted life year (Newall et al., 2014). The 

WHO’s (2003) approach defines the threshold being one to three times (3x) gross domestic product (GDP) per 

capita (Griffiths et al., 2015) per DALY. In Denmark the GDP per capita was 395,300 DKK in 2020 (Statista, 

2022) resulting in a CET between 395,300 to 1,185,900 DKK (395,300*3=1,185,900). Although this threshold 

has been used in EEs around the world, WHO is trying to dissociate themselves from this recommendation in 

later years because it is unfit for many contexts (Marseille et al., 2015; Bertram et al., 2016; WHO, 2016; 

WHO, 2001) and criticized by many health economists (Newall et al., 2014; Revil et al., 2014). This method 

is usually higher than the opportunity cost threshold (Bertram et al., 2016; Claxton et al., 2015; Woods et al., 

2016; Marseille et al., 2015) and could offer a poor constraint when trying to incorporate new interventions 

into the health system. This method does not discriminate between interventions effectively and does not 
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compare what is considered good or bad value for money. Therefore, using this method could lead to 

unrestrained budget increases without foreknowledge if these lead to health gains or losses (Santos et al., 2018). 

Most countries have not established an explicit CET; however, some have an implicit threshold (Vallejo-Torres 

et al., 2016). The UK's National Institute for Health and Care Excellence (NICE) reports a maximum threshold 

value that the healthcare system uses as a WTP for a QALY. This threshold ranges between £20,000 to £30,000 

per QALY (NICE, 2015). Other countries recommend specific ranges or figures, but these have not been 

formally adopted (Vallejo-Torres et al., 2016). Table 8 below summarizes the recommended CETs in some 

European countries, the US, and Canada. 

Table 8. Implicit or Explicit Thresholds in European Countries, the U.S., and Canada 

 

Note. Soares Santos et al., 2018 

* All currencies were converted 2022-04-14 to DKK with the Official Exchange Rate from the Global 

Exchange. 
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* All GDP per capita are from 2020 derived from the World Bank Data (2022). 

NICE in the UK has operated with an explicit value since 2004. The threshold of 20,000 GBP/QALY is set, 

but it can be higher considering: "certainty of ICER; inadequately evaluated health-related quality of life; 

innovation; and other non-health objectives of NICE" (Santos et al., 2018, p.6). The 50,000 GBP/QALY can 

be used if the technology prolongs life in terminal care (Paulden et al., 2014; Claxton et al., 2015; Schwarzer 

et al., 2015; Bertram et al., 2016). 

Ireland legally established a threshold of 45,000 EUR/QALY in 2012. New pharmaceuticals with an ICER 

below this threshold will have a guaranteed reimbursement (Santos et al., 2018). Poland's general threshold 

follows the international WHO threshold of three-fold GDP per capita/QALY (Grzywacz et al., 2014; 

Jakubiak-Lasocka et al., 2014; Bertram et al., 2016; Matusewicz et al., 2015). Sweden uses an implicit 

threshold between 700,000 - 1,220,000 SEK/QALY (Santos et al., 2018). Although the rule-of-thumb 

threshold in Sweden is 500,000 SEK, approval is between 91% for non-severe and 98% for severe diseases 

(Svensson et al., 2015). Many publications in The United States refer to a threshold value between 100,000 - 

150,000 USD/QALY. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not have 

an explicit CET, but 50,000 CAD/QALY is often cited. The Netherlands and Norway are not included in the 

table because they do not have a formal CET. Although, the Health Care Insurance Board, Zorginstituut 

Nederland, suggests a range between 10,000 - 80,000 EUR/QALY (Franken et al., 2014), and in Norway, it is 

common to see a threshold of 500,000 NOK/QALY cited in the literature (Burger et al., 2014; Samdal et al., 

2009). 

To decide on a threshold for this thesis' analysis, one must consider all the different approach options 

previously mentioned. The first three main approaches are not chosen due to lacking data availability about 

the cost and benefits of screening programs in Denmark. The analysis will instead choose the Swedish implicit 

CET for the primary analysis. Sweden is similar to Denmark, a high-income country with the same Beveridge 

health care system model. Sweden and Denmark are also neighboring countries sharing similar cultures and 

health standards. 

Regarding the threshold ranges, it can be assumed that cancer programs would probably be in the upper CET 

range since cancer historically has been given a large budget proportion compared to other diseases worldwide 

(Field et al., 2016). Therefore, the primary threshold used in this thesis will be 881,316 DKK/QALY, and a 

second analysis will use the international threshold of 1,185,900 DKK/QALY. The reason for why the 

international threshold is applied to QALYs instead of DALYs is because of Poland's interpretation of the 

international threshold, being applicable to QALY values too. Having decided on the CET, the next step will 

be to identify the cost and QALY data used in the economic model. After deciding upon the model scope and 
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foundation, a decision model has to be developed to organize the cost and benefit data correctly and aligned 

to the different diagnosis pathways. The model development is further explained in the following section.  

4.3 Decision Analysis and Model Development 

The following steps is to decide on the method for gathering and handling the cost and benefit data. There are 

two main ways of doing this: firstly, through a trial-based EE, where data comes from one single source, 

usually a RCT. This method collects data from a sample of study participants or patients (Drummond et al., 

2015). Research indicates that this method comes with many limitations and EEs for decision-making usually 

need to use evidence from different sources (Drummond et al., 2015). Decision-analytic modeling has a 

growing use as the second vehicle for EEs. This method combines evidence and data from several different 

sources such as RCTs, observational studies, surveys, resource use, outcome data, etc. According to 

Drummond et al. (2015), the decision model brings together meaningful evidence to answer a specific 

healthcare decision problem at a point in time and specific jurisdiction. The decision-analytic modeling method 

is preferred over the trial-based EE because of the inclusion of multi-source research data. This thesis will 

follow the decision-analytic modeling approach, further explained in the following sections. 

4.3.1 Decision Analytic Modeling 

The decision-analytic modeling is used for clinical decision-making regarding patients under conditions of 

uncertainty (Drummond et al., 2015) and when the cost does not have to be the primary consideration (Hunink 

et al., 2014; Weinstein & Fineberg, 1980). Drummond et al. (2015) further state that a decision-analytic model 

"defines a set of mathematical relationships between entities (usually health states or pathways) characterizing 

the range of possible disease prognoses and the impacts of alternative interventions" (p.312). This information 

benefits EE because the entities predict costs and health effects quantities. This method further satisfies five 

other central objectives in EE, being the following: 

Structure - Provides structure on prognoses of patients in question and how interventions affect 

these prognoses. The patients may be healthy or asymptomatic but will often have a particular 

condition that is being explored. 

Evidence - The structure of the model and the estimates of input parameters offer an analytical 

framework with a full range of evidence. 

Evaluation - It makes it possible to compare two options, going from relevant evidence to 

estimates of cost and effects. 
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Uncertainty, variability, and heterogeneity - The model assesses uncertainty in the structure and 

input parameters related to the evaluation. 

Future research - By assessing uncertainty, it can identify priorities for valuable future research. 

Drummond et al. 2015 p.312 

Decision-analytic models also serve two essential activities for EEs; measurement and decision analysis 

(Drummond et al., 2015). The first relates to measuring data related to effectiveness, unit costs, resource use, 

and health-related quality of life (HRQoL) weights. The decision analysis is about synthesizing the relevant 

evidence in decision uncertainty. This thesis is conducting decision-analytic modeling as it uses several sources 

and RCTs in the data collection. The following sections will explain the requirements for conducting an EE 

through this approach. 

Drummond et al. (2015) outline six requirements for EEs being: 

"They need to compare all options; 

The need to reflect all relevant evidence; 

The need to link intermediate to final endpoints; 

The need to extrapolate over the appropriate time horizon of the evaluation; 

The need to make results applicable to the decision-making context; 

Using models to assess heterogeneity." 

(p. 314-322). 

The first stresses the importance of assessing all relevant options to evaluate the value for money. This thesis 

presents the different screening options, and in section 3.2.1, the motivation is outlined behind the choice of 

evaluating the LDCT scan versus the current clinical pathway. The researchers assess previous EEs and RCTs 

on LCSPs, concluding that LDCT screening is the preferred intervention for screening for lung cancer. This 

thesis is also transparent in outlining all the different screening options in the background information so that 

the reader or decision-maker is informed of the different available options. 

The second requirement is bringing all relevant evidence to the decision-maker (Drummond et al., 2015). 

Evidence in EEs must display effectiveness and resource use, HRQoL, unit costs, and parameters and how 

these will change over time. This thesis collects data from a range of sources compared against each other. The 
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results from RCTs for LCSPs are explained in the literature review and the previous CUAs within the field. 

The costs and QALYs are explained in detail in the Perspectives section and the parameters are explained 

further in the following sections. The researchers have identified the main RCTs on LCSPs and the most 

comprehensive CUAs on LCSPs worldwide. Based on this evidence and cost data from the Danish context, 

relevant evidence was used for this study. 

The third requirement is fulfilled when the EE makes meaningful measurements of effects related to the 

ultimate health measures (Drummond et al., 2015). This study avoids the intermediate endpoints and links 

intermediate to final endpoints by investigating the diagnosis linked to a final health outcome. It will link the 

transitions between health states, diagnosis stage, or death states, and then the diagnosed patients will be 

followed to the death stage. This EE will look at changes in mortality when introducing a LCSP compared to 

the current clinical pathway in Denmark. The utility measure will be further presented in the benefits section 

3.3.2.2. 

The fourth requirement regarding time evaluation is essential for decision models. These bridge the gap 

between observed data from trials and forecasting what is expected to happen with costs and effects over a 

longer time horizon (Drummond et al., 2015). By comparing the available data options, one has to extrapolate 

and make appropriate assumptions about the future development of QALYs, death, and cost data. The choices 

will significantly affect the EE outcome when extrapolating data and making assumptions. The probabilities 

of moving to different stages in the model will be further explained in section 3.2.2.1. A Markov model will 

be created using the data to estimate the future costs and QALYs over a more extended period. 

The fifth requirement also holds that the model relates and combines other available evidence to make the 

results applicable to a decision-making context that answers our research question. Many RCTs only explore 

specific areas and do not cover the complete scope needed in a decision-making context. However, the decision 

model combines evidence to make this possible. 

The sixth and last requirement is assessing heterogeneity between subgroups in the broader population. The 

intervention evaluated might be cost-effective for some patient groups but not others (Drummond et al., 2015). 

If one fails to reflect heterogeneity in EEs, this can lead to costs for the healthcare systems and lost 

opportunities for health gains, and wasted resources. This thesis focuses on one specific subgroup of lung 

cancer; participants aged 55-74 years with a 30-pack-year smoking history.  
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Key Elements and Stages of Decision-Analytic Modeling  

Once all the six requirements for EE are fulfilled, the critical elements of the decision analysis have to be 

identified. These include (1) probabilities, reflecting changes in health or likelihood of events such as death 

and disease progression, and (2) the expected values of cost and effects, where each alternative intervention 

follows possible pathways resulting in different outcomes (Drummond et al., 2015). There are also four main 

stages to follow when developing decision-analytic models. (1) Define a decision problem by identifying the 

question to be answered, interventions being compared, and the recipient group. (2) Defining the model 

boundaries and what the model should include and exclude. (3) Conceptualizing the model, structure the 

model. (4) Implement the assumptions and impacts of interventions in a specific model (Drummond et al., 

2015). The quality and validity of the model are determined by the quality of evidence used and the structural 

assumptions the model is built upon. This thesis will create two models, (1) a decision tree and (2) a Markov 

model, to answer the thesis' research questions. The models' choices of evidence and structure are further 

explained below to uphold the highest quality and validity. 

4.3.1.1 Decision Tree 

Drummond et al. (2015) explain that the decision tree "represents individuals' possible prognoses, following 

some sort of intervention, by series of pathways" (p.328). The decision tree consists of decision nodes. This 

model starts with outlining the decision to either implement a LDCT screening program or keep the current 

lung cancer detection pathway, visualized in Figure 7 as the square box to the left. It also consists of chance 

nodes, which characterize the range of different events that can happen to patients, visualized in circles 

(Drummond et al., 2015). Each chance node is then related to branch probabilities, the chance that different 

events may happen to the patient in that part of the tree. Moving from the left to the right in the model illustrates 

subsequent possible events with conditional probabilities since the previous events will determine the next 

step's probability. The combination of such linked events is called pathways and illustrates the different events 

a patient can experience through the tree. Each pathway consists of events, probabilities, and is mutually 

exclusive, meaning that one individual can only follow one pathway (Drummond et al., 2015). Normally the 

purpose of the decision tree is to illustrate and calculate the cost and effects for each pathway by using the 

probabilities associated with each chance node. The expected cost and effects for the total number of people 

are then calculated by weighting each pathway's cost with the probability of that pathway and summing all the 

possible pathways (Drummond et al., 2015). 

A limitation to decision trees is that they quickly get complex with multiple branches. Over time a patient can 

face new events, making the decision tree even more complicated and "bushy" (Drummond et al., 2015). 

Usually, one illustrates the decision tree as a simplified version of reality to avoid the messy and complex 
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illustration. Another limitation of using a decision tree for developing a decision model is that the decision tree 

does not define time, time-dependent elements are challenging to consider and implement. Furthermore, 

adjusting for mortality over time when calculating the QALYs is complicated (Drummond et al., 2015). The 

following steps follow Drummond et al. 's (2015) four stages to developing the decision tree model, built on 

the previously described theory.  

Stage 1: Decision Problem 

This model is constructed to illustrate the patient pathways for the LDCT screening cohort versus the current 

pathway. The main goal for this decision tree is purely illustrative and its purpose is not to help in calculating 

costs or QALYs. This is due to the nature of the screening intervention, making it more feasible to calculate 

costs and benefits using a Markov model explained in the following chapter. Decision trees cannot define time, 

and the cost and QALY data will be the same in the output of one "cycle" in the decision tree. The output 

would, therefore, not be relevant to compare. 

Stage 2: Model Boundaries 

The model boundaries for the decision tree follow the model scope in terms of explored disease, intervention 

options compared, and cohorts or risk groups. False positive rates and post-diagnosis progression are not 

included. 

Stage 3: Conceptualizing the Decision Model 

The critical stage when developing a decision model is to decide on the structure and how to relate the input 

parameters to each other (Drummond et al., 2015). How should the probabilities, costs, and QALYs be 

interconnected with each other to result in an output that helps decision-makers? This thesis identifies the 

different pathways that patients can potentially take in the diagnosis process of lung cancer in Denmark. It 

compares a screening group to a non-screening group to illustrate the different possible decision branches. The 

cohort in both the LDCT screening and non-screening group are 106,041 people. 

The first chance node consists of all cause mortality and all individuals must pass through this pathway. The 

chance of dying of all-cause non-related lung cancer reasons was taken from a Dutch study that collected data 

on heavy smokers aged 55 to 74 in the Netherlands (Du et al., 2020). The reason why the all-cause death rate 

is not based on the Danish population is that there is no smoking register in Denmark is because the Danish 

Health Data Authority does not hold this information about Danish citizens (Sundhetstyrelsen, 2022). The 

epidemiology from the Dutch high-risk population was seen as applicable to the same risk group in Denmark. 
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For the screening group that did not have lung cancer, the risk of dying was the same as the all-cause death 

above. 

The next chance node in the screening pathway is whether the patient has lung cancer or not. The probabilities 

for developing lung cancer in the different stages were taken from a German CUA study on LDCT screening 

versus non-screening (Hofter et al., 2018). Hofter et al. (2018) used a Bayesian calibration method with the 

German Center for Cancer Registry Data data to estimate the transition probabilities. They set up a 

"Metropolis-Hastings algorithm with 50,000 runs and a "burn-in" of 10,000 runs" (p.190) which helped them 

identify the transition probabilities illustrated in the appendix. This thesis chose these transition probabilities 

because the German population is comparable to the Danish population and is closely situated in European 

high-income countries. Furthermore, no other studies outlined the lung cancer development and transition 

probabilities stated for the same NSCLC lung cancer stages, as much of the literature used simulation models, 

such as the Cancer Risk Management Model. It was also a preferred option to use these transition probabilities 

since the study also compared LDCT screening versus non-screening, and the diagnosis probabilities were 

easily transformed from the undiagnosed health states. The transition probabilities are illustrated in Table 9. 

Table 9. Transition Probabilities Between Health States 

 

Note. Hofer et al., 2018; Ekman et al., 2021 

The following chance nodes consist of adherence versus non-adherence to the screening program for the 

screening group. This chance node is also related to a branch probability, as shown in Figure 7. These rates 

were taken from a study of cancer screening conducted in Denmark of people aged 50-74 by Kirkegaard (2015) 

where interviews were conducted for adherence to colorectal cancer screening programs. These numbers 

applied to this study since they explore publicly funded cancer screening programs in Denmark. Studies 

conducted in other countries have varied results of participation rates between 26% and 58%, according to the 

systematic review by Dressler et al. (2021). This participation rate might not seem so conservative to the reader. 

However, after talking to Bigaard (2022), a Danish project manager and head physician for breast cancer in 
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Denmark, specifically focusing on information related to screening (Aglund, 2018), this adherence rate was 

used with more confidence.  

The following chance node illustrates the event and probability of getting diagnosed or not diagnosed with 

lung cancer through screening amongst the adherent group or through the current clinical pathway for the non-

adherent group. Here the probabilities of getting diagnosed through LCST screening were taken from the Hofer 

et al. (2018) study as well. This was because Hofer et al. (2018) also explored the cost-effectiveness of the 

LDCT scan versus no screening, using the same cancer stages. Therefore, it was easy to apply the exact 

diagnosis probabilities used in their study. For the non-adherent group, the probabilities were taken from the 

same study. Listed below are the probabilities of diagnoses for each for LDCT screening versus the current 

clinical pathway.  

Table 10. Diagnosis Probabilities for Current Pathway Versus LDCT Screening 

 

Note. Hofer et al., 2018 

The last node is the probability of dying or surviving amongst both the diagnosed and undiagnosed patient 

groups, for the screening group. As the healthy patients have already passed through the all cause mortality 

node, another mortality probability does not apply to them. For the patients who have developed lung cancer, 

there is however a possibility of dying of lung cancer. The probabilities of dying of lung cancer in the different 

undiagnosed lung cancer stages are taken from the Hofer et al. (2018) CUA article. The death probabilities for 

diagnosed patients come from a Danish study on epidemiology and survival outcomes between 2005 and 2015 

for patients with NSCLC (Ekman et al., 2021). The study reported one-year survivability rates, ranging 

between an upper and lower band. Since Ekman et al. (2021) reported an overall 12% increase in survivability 

from 2005 to 2015, the mortality rate is calculated by taking one minus the probability of surviving, presented 

in Table 10 above. The probability of dying after diagnosis is the same for both the screening and current 

cohort. 
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The current lung cancer pathway is similar to the screening one, although it does not consist of an adherence 

or non-adherence stage. The probability of getting diagnosed through the current pathway is the same as for 

the non-adherent group in the screening cohort, i.e. the probabilities were taken from Hofer et al.’s (2018) 

study. The current non-screening pathway for detecting lung cancer is assumed to be similar between Germany 

and Denmark. Since the process moving forward from the diagnosis stage is the same for both groups moving 

on to treatment, aftercare, and palliative care, these stages are not illustrated in the decision tree in the results. 

Stage 4: Implementing the Model 

The decision tree, including probabilities and effects, is presented in the results section. This figure illustrates 

the risk groups' possible prognosis when altering the possible screening pathways and current clinical pathways 

and the associated QALYs for each branch. 

Even though the decision tree is a good way to illustrate the different pathways, it has several limitations to it. 

It does not define time and events take place instantly and in parallel. The patients get screened, diagnosed, 

treated, or die instantly and in parallel for the screening group. The Markov model is a more suitable model 

for illustrating health interventions' costs and benefits over a long period. Therefore a Markov model will also 

be created for this thesis, presented in the next section. 

4.3.1.2 Markov Model 

The Markov model is a widely used model for EE which handles specific decision problems (Sonnenberg & 

Beck, 1993; Briggs & Sculpher, 1998). The Markov model is based on a series of states that patients can 

occupy at a given point of time and over discrete-time periods, called cycles (Drummond et al., 2015). The 

cycle should be limited to a period where the patient can only experience one event per cycle. The Markov 

model is also built on Markov states and transition probabilities. 

The Markov states are the different health states that the patients can be in in the model. The states are mutually 

exclusive, and therefore a patient can only be in one event or Markov state per cycle (Drummond et al., 2015). 

The states should also be exhaustive so that the most critical health states for the disease are included in the 

model. A Markov state can also be absorbing, meaning that a patient cannot leave this stage, which happens 

when the patient, for example, dies. 

Regarding the transition probabilities, these illustrate how patients move between health states. These are 

related to the Markov states so that the model shows how fast patients can move through the model over cycles. 

Transition probabilities can be the same throughout every cycle in the model, called fixed transition 

probabilities, also known as Markov chains (Drummond et al., 2015). These Markov models are time-

invariant. Depending on the model structure, the transition probabilities can also vary over time, and these 
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Markov models are, therefore, time-dependent. Markov models can also differ and include stages of health 

improvements through the interventions or without improvement of health. The nature of the disease and 

interventions determine which transition probabilities are suitable for the developed Markov model. 

Furthermore, there are also different assumptions that the transition probabilities in the Markov states can 

depend on. One is the memoryless assumption that the transition probabilities depend on the current health 

state alone. Previous health status does not affect the transition probability in the state that the individual takes 

on in the current Markov state. The memoryless assumption is managed by building tunnels into the model 

(Drummond et al., 2015). 

The Markov model is a cohort model and therefore calculates the average patient's outcomes and costs and 

does not consider variety between individual patients. Each state in the model usually has a cost and QALY 

associated with it, and a HRQoL weight is associated with the QALY measures. The expected costs and 

outcomes are calculated by identifying the average patient per health state during a specific time duration, in 

other words, the proportion of the patient cohort in a specific state at a point in time (Drummond et al., 2015). 

Calculations are typically done in a spreadsheet or similar software using a cohort-simulation method, 

producing a "Markov trace" illustrating how the proportion of the cohort moves between states over each cycle. 

Then the cohort proportion number for each state per cycle is weighted to relevant costs and HRQoL 

(Drummond et al., 2015). The total expected costs and effects for the whole period, including all cycles, are 

the sum of all expected costs and effects for all cycles. Discounting can also be implemented in the Markov 

model by adjusting expected costs and effects for each cycle by the chosen discount rate (Drummond et al., 

2015),  further explained in the Discounting section. One cohort simulation is created for each intervention 

option being evaluated to insert the expected costs and effects into the ICER equation. 

Decision Problem 

The specified question to be addressed is what the total expected costs and QALYs are for a 15 cycle time 

independent cohort Markov model? The costs are measured in Danish kroner (DKK), and effects are measured 

in QALYs. The Markov model is constructed in order to extrapolate costs and effects over time, because the 

literature suggests that the screening program gets effective after a few years after the implemented screening 

program. The objective is to gather cost and QALY results for the LDCT screening program versus the current 

pathways to calculate an ICER and determine the screening program's cost-effectiveness to its comparator.  

Model Boundaries 

In terms of explored disease, intervention options compared, and cohort and risk group, the model follows the 

inclusion criteria explained in the Model Scope section. Furthermore, the inclusion of cost and QALY data are 

explained in the Cost and Benefits sections. The Markov model is further narrowed into a time horizon of 15 
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time-independent cycle years. The post-diagnosis progression stages are not included, nor the possibility of 

false positive rates. 

Conceptualizing the Decision Model 

Two cohort simulations are created for the two compared interventions to illustrate how individuals and 

patients move through the Markov states over time using a set of transition probabilities. The Markov states in 

the model follow the definition by the International Association for the Study of Lung Cancer's lung cancer 

stages defined in the Background section. The lung cancer stages are Stage I, Stage II, Stage IIIA, Stage IIIB, 

and Stage IV. There was no need to account for the interaction between individuals since cancer is a non-

communicable disease. The model also includes diagnosis stages and absorbing death states for lung cancer 

stages. 

The cycle length and number of cycles were decided based on the characteristics of the disease, cohort group, 

screening intervention, and current CUA literature. The cycle length in the model is one year because it is the 

most used cycle length, following the identified EEs for lung cancer screening studies gathered in a meta-study 

from Peters et al. (2021). As previously mentioned, the time horizon is 15 cycles. Different EEs have reported 

time horizons for Markov models between 10-45 years but 15 years is the most common time horizon (Peters 

et al., 2021). Since it is rare to screen the same person for 15 cycle years, the results in this thesis will also 

present ICERs based on shorter periods in the appendix. 

The input values for the natural history part of the Markov model were identified by assuming that one could 

simulate one cohort Markov model for the current pathway cohort for 30 cycle years. The output rates from 

each cancer stage in this Markov model will be used to calculate the input values in the main cohort 

simulations, used for the results in this study. The rates are multiplied but the total number at risk (106,041) to 

arrive at the starting distribution of the natural history part of the model for each cancer stage. Since there is 

no screening program for lung cancer in Denmark today, the input values will be identified using a cohort 

simulation from the current diagnostic pathway, excluding screening. The starting distribution for diagnosed 

patients is assumed to be zero. The starting distribution for each lung cancer stage is presented in the results 

section.  

The Markov model type used in both the cohort simulations is fixed time-invariant without improvement 

(Markov chain) and with absorbing death states. Therefore, the cohort simulations accept the assumptions that 

patients' health cannot improve due to the nature of the disease progression, further explained below and 

illustrated in Figure 6.  
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Figure 6. Fixed Time-Invariant Markov Chain  

 

Note. Hofer et al., 2018; Du et al., 2020 

 

Both of the cohort simulations use the same transition probabilities between Markov states. These are the 

same as the health states used in the decision tree. The patients cannot go back from a poorly state to an 

improved health state, with a zero probability of moving from, for instance Stage I to no lung cancer as 

illustrated in Figure 6. This model choice is connected to the nature of the disease as lung cancer will 

continue to spread without treatment.  

The diagnosis stage can only happen once in the model but is not an absorbing state. The diagnosis 

probabilities are the same as in the decision tree, illustrated in Table 9. In the illustrated Markov model, 

the assumption is that once a patient is diagnosed it moves to the corresponding treatment stage where 

they stay until they die. In real life patients would move into a treatment stage with the possibility to 

progress to other cancer stages or enter an aftercare stage or palliative care stage. Due to limited resources 

in time and the fact that both cohorts move through these stages identically once diagnosed, these stages 

were not outlined in detail in the model.  
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The death state is absorbing, therefore, the patients cannot move from the death state to another stage in 

the model and instead leave the model. The mortality rates for all-cause death reasons, undiagnosed lung 

cancer patients, and diagnosed patients are the same as in the decision tree.  

Implementing the Model 

Having formulated the Markov states and the probabilities of moving between states, costs and effects 

should be assigned to the different stages. Each cycle time has costs and effects associated with the 

different Markov states. To calculate the expected values, the highest QALY values are assigned to the 

Markov state "no lung cancer" and the lowest (zero QALYs) to the different death states. In regards to 

costs, the different lung cancer diagnosis stages are associated with the average treatment cost per stage. 

Both costs and QALYs are calculated as totals for each cycle and presented in non-discounted and 

discounted results. A total of all 15 cycles together is also presented in the result, used to calculate the 

base case ICER. The result of the Markov model is presented in the result section, and a detailed version 

of the cohort simulations can be found in the supplementary excel files. As stated throughout the text, 

several assumptions were made when creating and structuring the Markov model, summarized and 

presented below. 
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Table 11. Summary of Assumptions in Markov Model 
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In conclusion, this EE conducts a time-invariant Markov model without improvement and with an 

absorbing death state. It uses one-year cycles for a 15-year time horizon and accepts the above 

assumptions. The following section will explain the cost and effect data used in the decision models to 

calculate the expected cost and QALYs. 

4.4 Perspectives 

Once the model is created, one must decide which perspectives to follow when identifying the costs and 

benefits data (Byford & Raftery, 1998). The perspectives highlight the different stakeholders affected by an 

EE, dictating which costs and consequences should be included and how they are measured and valued within 

a CUA (Drummond et al., 2015). This chapter examines the economic impact of lung cancer from a healthcare 

payer perspective. The benefits or QALYs are measured through the standard gamble method and both costs 

and QALYs will be discounted with appropriate discount rates.  
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4.4.1 Costs 

Several different perspectives can be followed for identifying cost data within EEs, with the choice of cost 

perspective to advise different types of decision-makers in health care (Drummond et al., 2015). The decision-

makers in healthcare can extend beyond the direct beneficiaries of such interventions and can encompass the 

patients and clinicians, reimbursement authorities, national health ministries, healthcare providers, and other 

aspects valued by society, such as education, taxation, and pensions.  

The different cost perspectives reflect the decision-makers and include the societal; healthcare sector (provider 

perspective); public sector; and private sector (Drummond et al., 2015). The cost perspectives will differ 

depending on the country and the healthcare model, such as the Beveridge model in Denmark. Specifying the 

cost perspective is essential as the choice affects the outcome of the result. It needs to target its intended 

audience, where different costs can hold relevance to one decision-maker but not to others (Kristensen & 

Sigmund, 2008). The payer perspective is the chosen perspective for this thesis. 

Payer Perspective 

The payer perspective within the Danish context refers to the Ministry of Health, the primary audience of this 

thesis, and the governmental body acting as decision-makers for health interventions and policies (Kristensen 

& Sigmund, 2008). The payer perspective focuses on direct costs associated with delivering an intervention, 

including the costs of the hospital or primary healthcare sectors associated with the resources for the 

intervention, treatment, or service (Drummond et al., 2015). Direct costs associated with lung cancer treatment 

include health personnel, medicine, capital equipment, overhead costs, inpatient stays, and outpatient visits 

(Drummond et al., 2015). Direct costs of the primary healthcare sector can include GP consultations and 

specialists, allied health, and medications (Drummond et al., 2015). Because of this perspective choice, the 

costs that fall onto the patient or their carers have been excluded. 

Societal Perspective  

The societal perspective offers a much broader understanding of the cost and effects of interventions without 

bias. The societal perspective includes all economic agents consumed for an intervention and the indirect costs, 

and consumption individuals must expend to receive an intervention or service (Drummond et al., 2015). 

Therefore, an EE that follows the societal perspective should include all costs incurred by society, including 

direct costs to the patient and family, time to access care, indirect costs, future costs, productivity losses and 

gains, capital, and shared costs (Fakhri et al., 2017). It has been argued that all CUAs should adopt a societal 

perspective to incorporate all costs. Drummond et al. (2015) states that EEs in health care should consider the 

societal viewpoint where feasible. However, other perspectives should be utilized where analytical difficulties 

preclude total measurement and valuation of all monetary costs and consequences. The societal perspective is 
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not used in this thesis as the direct costs borne by patients, and their carers could not be accurately estimated 

within the available literature. However, it is hypothesized by Drummond et al. (2015) that the inclusion of 

patient-borne costs will likely increase the ICER and place an additional burden upon patients. 

The societal perspective includes the direct costs by all healthcare services and providers and the costs 

absorbed by the patient, such as time used to access care, transport costs, and carers' time. To calculate these 

costs, the market price is applied where able (Drummond et al., 2015). For costs unable to be estimated due to 

an absence of markets, for example, patient and carer time, hypothetical estimations are applied (Drummond 

et al., 2015). A common numeraire is placed on these non-health additions to provide a standardized 

quantifiable value, allowing for aggregation of costs to understand the net consumable impact on an overall 

EE of an intervention (Drummond et al., 2015). 

Indirect costs are those borne which are unrelated to undertaking an intervention or service (Drummond et al., 

2015). These costs can impact the broader economy and are the costs that are external to the patients, the 

intervention, or those involved in the screening process (Drummond et al., 2015). However, these costs were 

unable to be reliably estimated from the literature. These costs are valued by society and may include treating 

benign findings in the screening process, the psychological consequences of a false positive diagnosis, patients 

accessing resources to assist with smoking cessation, and loss of future income. It can also include the cost of 

returning someone to a complete state of health or the disutility someone faces once they receive a cancer 

diagnosis (Drummond et al., 2015). 

Future costs are defined as the costs arising from extending individuals' lives through intervention and all the 

costs borne in the life years gained (Drummond et al., 2015). Future costs are typically separated into medical 

costs (applicable for societal and healthcare perspectives) and non-medical costs (relevant for societal 

perspectives) (Kellerborg et al., 2020). Further divestment of medical costs can include related and unrelated 

costs (Drummond et al., 2015). These include ongoing medical appointments for lung cancer or homecare 

assistance for post-diagnosis disutility, respectively (Kellerborg et al., 2020). Discounting must be applied to 

future costs to account for changes in value over time and to calculate the present value of future costs 

(Drummond et al., 2015). The discount rate will be discussed further in this thesis in section 3.3.2.3. 

Determining productivity changes is considered in societal costs and estimates changes in productivity and the 

cost this has to society. There are two main methods to estimate productivity costs, the friction-cost method 

(FCM) and the human capital method (HCM). The HCM method estimates the gross earnings of those in 

employment, including the cost of replacing the role of the individual, be it in the workplace or the home 

(Drummond et al., 2015). Koopmanschap et al. (1995) have also estimated productivity losses through the 

FCM. This method specifies "[...] is that the amount of production lost due to disease depends on 

organizations' time to restore the initial production level. This friction period is likely to differ by location, 
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industry, firm, and category of worker" (Drummond, 2015, p. 247). The HCM method can often overestimate 

costs to society and does not include the adjustments made by employers to compensate for employee absence 

or disutility, whereas economic evaluations comparing the FCM and HCM have produced significantly lower 

values when using the FCM (Drummond et al., 2015). Neither method includes the loss of productivity when 

a worker remains in employment and is often referred to as "presenteeism." However, productivity losses can 

lead to equity considerations for unemployed participants due to age, illness, or personal choice (Drummond 

et al., 2015). For this thesis, the screening cohort has participants within retirement age. Including the 

productivity changes in this cohort may present biases for those who are not employed due to retirement or 

other reasons. 

Capital costs refer to investments at a single point in time in the intervention used for different interventions 

(Drummond et al., 2015). In order to allocate these costs to goods that are used directly in the screening 

program, the costs for establishing and running the program must be identified and included, affecting the 

ICER. These costs would relate to establishing an adequate volume of CT scanners in Denmark to facilitate 

scanning the screening population, employing radiographers to conduct the scan, and radiologists to review 

and make a diagnosis based on the imaging, with the cost allocated depending on the frequency and duration 

of scans performed. The cost per scan is included in this thesis in section 3.3.2.1. However, the upfront costs 

of establishing a lung cancer screening program are not included, as these costs would be shared with other 

areas of the Danish healthcare service. Shared costs are the overhead costs associated with the resources needed 

for the screening program but will also be utilized by other parts of the healthcare network. These costs include 

the use of central service, including cleaning, overhead laboratory costs, disposables, and utilities, and have 

not been estimated for this thesis. 

Cost Overview 

According to Drummond et al. (2015), the payer perspective is the most common cost perspective to assess 

healthcare programs and interventions. Meta-studies examining previous CUAs and CEAs have shown that 

74% adopt a payer perspective, and 67% of governmental guidelines recommend the healthcare sector or payer 

perspective (Kim et al., 2020). The motivation behind this choice spurred from both the data available within 

the thesis' delimitations and the universal healthcare model in Denmark. Cost data was reliably sourced from 

a Danish epidemiologist, who provided costs based on the Danish national registries. The data required to use 

an alternate perspective could not be reliably estimated from the available literature. 

Cost Data Collection 

Including costs in EE consists of three steps, (1) identification, (2) measurements, and (3) valuation (Serena, 

2021). Firstly, the resources required to conduct an EE should be identified concerning the chosen perspective 
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(Kristensen & Sigmund, 2008). The various methods used to help identify associated costs can be done from 

pilot studies, expert opinions, or modeling the possible disease pathways and therapeutic options through a 

decision tree (Kristensen & Sigmund, 2008). The direct resources identified for this thesis are related to the 

primary and acute healthcare sector or payer perspective. These included the price of undertaking a LDCT 

scan for a screening program, the treatment of lung cancer, and the costs of the current standard clinical 

pathway. 

Measuring resource consumption can be done by collecting prospective and retrospective patient-specific or 

deterministic data (Kristensen & Sigmund, 2008). Prospective data collection is patient-specific and is usually 

measured within clinical trials (Kristensen & Sigmund, 2008). Retrospective data collection is when data is 

collected after events, often through questionnaires or patient records, measuring the consumption of a specific 

service (Kristensen & Sigmund, 2008). Deterministic data represents standard or average treatment costs and 

can be collected via prospective or retrospective methods (Kristensen & Sigmund, 2008). Expressing cost 

should be in monetary value as opportunity costs or costs relating to forgoing another alternative. This thesis 

presents the monetary value applied to the LCSP intervention, as the resources used to facilitate this program 

cannot be allocated elsewhere. Finally, when costs are identified and measured as price per quantity, they are 

valued in the form of unit costs. The price must correspond to the opportunity cost, often inflating the value of 

a resource, as the demand for the resource is lower than the demand (Kristensen & Sigmund, 2008). The health 

outcomes can be expressed as monetary or non-monetary, depending on the outcome. This thesis uses the 

Danish kroner (DKK) to monetize the costs identified. 

The direct costs were sourced from persons Dr. Zaigham Saghir and Professor Anders Green (2022). Dr. 

Saghir, a clinical associate professor in lung cancer diagnostics, is the key person responsible for drafting and 

submitting a lung cancer screening proposal from the Danish Lung Cancer Group to the Ministry of Health 

(Danish Lung Cancer Group & Saghir, 2021). The submission is currently (2022) under review by 

Sundhedsstyrelsen, the National Board of Health. The proposal uses costs created by Professor Anders Green 

for the 2011-2012 treatment of non-small cell lung cancer. Anders Green, a professor of epidemiology at the 

University of Southern Denmark, was contacted directly about supplying more recent non-small cell lung 

cancer costs and assisted in providing average total costs for lung cancer in Denmark for 2013-2015. Professor 

Green provided mix-case costs, giving the cost for each category of case based on deterministic measuring 

methods (Drummond et at., 2015). The cost matrices were produced using the Diagnosis-Related group 

database (DRG-DAGS), the Danish Cancer Registry, and Danish National Patient Register. 

As previously mentioned, The focus of this EE is on NSCLC, as it represents 85-90% of all lung cancers in 

Denmark. As treatment pathways differ widely between NSCLC and other lung cancers, the treatment 

probabilities and costs will reflect that of NSCLC. Including treatments for all lung cancer types would involve 
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creating additional Markov models as small-cell lung cancer (SCLC) treatment differs significantly from 

NSCLC (Gadgeel et al., 2012). The majority of other EEs and feasibility studies for LCSP focus on NSCLC, 

however, this does not exclude other cancers from being incidentally detected during the screening program 

(Goffin et al., 2015; Hofer et al., 2018; Pedersen et al., 2017; Snowsill et al., 2018). 

Professor Green identified the total annual costs of primary NSCLC via the DRG code and divided this by the 

annual incidence. The costs were further stratified by both stages and the time horizons of <180 days and ≥180 

days, displayed below in Table 12. As this thesis aims to determine whether introducing a LCSP to Denmark 

is overall cost-effective, the costs of NSCLC treatment for <180 days and ≥180 days were combined to present 

total treatment costs. These costs are applied to all individuals diagnosed with NSCLC in the intervention and 

comparator groups. 

Table 12. Total Lung Cancer Treatment Costs in Denmark (2015) 

 

Note. Danish Lung Cancer Group & Saghir, 2021 

 

To further specify the costs for lung cancer, the weighted cost of treatment was established per lung cancer 

stage. These costs were created using the above Table 12, then multiplying each cost by the treatment 

probabilities for clinical care by lung cancer outlined in section 2.3.2. Inflation has been considered, with costs 

adjusted to reflect the Consumer Price Index (CPI) changes from 2015 to 2022 (Statistics Denmark, n.d.). The 

CPI is used to measure inflation and measures the development of consumer goods and services (Statistics 

Denmark, n.d.), which has caused a cost increase of 8% from 2015 to January 2022, reflected in the current 

costs in Table 13. 
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Table 13.Weighted Lung Cancer Treatment Costs 

 

Note. Danish Lung Cancer Group & Saghir, 2021 

 

Cost of a Lung Cancer Screening Program 

As the payer perspective has been chosen, costs absorbed by the Danish Ministry of Health relating to lung 

cancer screening must be identified. The costs of the LCSP were sourced from the article "Direct and indirect 

healthcare costs of lung cancer LDCT screening in Denmark: a registry study" (Jensen et al., 2020). The cost 

was measured to include recruitment of participants, use of the physical technology, and the associated staff 

resources, including a radiologist, to review and comment on scans. The total cost of introducing a LDCT was 

calculated at €238 per scan per participant (Jensen et al., 2020). This CPI was adjusted for inflation from 2020 

to 2022, equaling €247.86. This price was then converted to 1844 DKK using Danmarks Nationalbank 

(Denmark's National Bank, 2022). The cost associated with additional imaging or procedures to confirm a 

cancer diagnosis was not included, as these costs could not be reliably estimated within the literature. 

Costs of the Comparator 

Calculating the cost of the comparator is vital in determining the delta between the intervention group and the 

comparator. The current pathway for lung cancer diagnosis in Denmark is through symptomatic patient 

presentation to their GP or an acute care setting. Symptomatic presentations leading to diagnosis will occur on 

an ad-hoc basis and not in a timed or coordinated manner as with a screening program. As the costs for 

confirming diagnosis have not been included in the intervention group, these costs were also omitted from the 

comparator group. There will be no changes or disruptions to the comparator group, so a cost of €0 is applied 

to the comparator group. The post-diagnosis costs are then the same as for det LDCT group. 

False Positive Costs 

False positive costs were not included in this CUA, despite the Danish payer's ownership of these costs. False 

positive costs are the costs incurred for a participant requiring further diagnostic investigations for an 

abnormality eventuated as benign (Hammer et al., 2022). False positives can arise, for example, from damage 
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or congestion in the lungs from recent infections, with further diagnostic investigations potentially including 

increased frequency of scanning via LDCT, biomarker investigations, bronchoscopies, and biopsies. False 

positives occurred in a small proportion of individuals in all RCTs reviewed. However, the extent to which the 

false positives were detected is inconsistent across the literature. Therefore, the costs were often omitted and 

not included in this thesis. 

This thesis has focused on the Danish payer perspective when introducing a LCSP due to data availability and 

accuracy. However, a more detailed and potentially targeted CUA could be achieved using a societal 

perspective. Having this in mind, it is difficult to capture all aspects of value in economic analysis, and the 

values chosen may hold different worth depending on the audience. The results and discussion will reflect the 

provider perspective chosen and should be considered by the reader. 

4.4.2 Benefits 

Some of the benefits obtained in EE can be seen as changes to health-related quality of life or an extension of 

life with poor health, which can be measured in QALYs and disability-adjusted life years (DALYs) 

(Drummond et al., 2015). The outcome in focus for this thesis is QALYs. They are a generic measurement of 

benefits widely used, acknowledging that health technologies can impact the mortality and morbidity of those 

consuming the technology (Drummond et al., 2015; Kristensen & Sigmund, 2008). 

QALYs are defined as the measurement of both the quality and quantity of life due to health interventions 

(Salomon, 2017). QALYs can encompass every patient population, disease, and intervention to conduct 

comparisons across the healthcare sector (Kristensen & Sigmund, 2008). They allow for quantification and 

comparison of disease states through a standard scale for years lived in full health (Salomon, 2017). The 

primary motivation for using QALYs as the unit of measurement is that QALYs were available within the 

literature. The CUA articles on LCSPs use QALYs as their standard unit of measurement and not disability-

adjusted life years (DALY), allowing for comparisons across studies (Peters et al., 2022). 

QALYs are calculated by quality-adjusting each life-year gained from an intervention (Drummond et al., 

2015). QALYs, also referred to as health utilities, are weighted from 0 to 1 and, in some circumstances, can 

fall below 0 for states worse than death or where interventions reduce the quality of life (Drummond et al., 

2015). Between the indices 0 and 1, there are varying states of health and disability which will all have a 

QALY of <1 (Kristensen & Sigmund, 2008). QALYs measure the quality and quantity of life gained from 

interventions, including the gains from reduced mortality and morbidity (Drummond et al., 2015). 

DALYs are the loss measurements of the equivalent of one year of full health (World Health Organization, 

n.d.). As defined by the WHO, "DALYs for a disease or health condition is the sum of the years of life lost 

due to premature mortality and the years lived with a disability due to prevalent cases of the disease or health 
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condition in a population" (World Health Organization, n.d.). DALYs are gathered through trade-off scores 

and do not use associated age weights (Drummond et al., 2015). Due to other CUAs referenced in this study 

not using DALYs as their outcome, this thesis has chosen the QALY approach for measuring benefits. 

Methods to Gather Quality-Adjusted Life-Years Data 

QALY data must be gathered and derived through validated and reliable methods and include using standard 

gamble, visual analog scales (VAS), or time trade-off (TTO) (Drummond et al., 2015). Standard gamble, which 

is used in this thesis, involves risk where patients are asked to prefer staying in a specific health state or 

returning to perfect health with a percentile risk of death (Drummond et al., 2015). As many respondents cannot 

relate to the chronic health state, visual aids are used to support decision-making (Drummond et al., 2015). 

This method uses uncertainty as a gauge for guiding decision-makers and can generally produce higher scores 

than other methods, such as the TTO or VAS (Drummond et al., 2015). 

VAS is a simple method of gathering QALY data and is widely used in psychometric and health research 

(Drummond et al., 2015). VAS involves utilizing a visual scale with endpoints 0 (worst-imaginable health 

state) and 100 (best-imaginable health state), where participants are asked to rank their current health state 

before and after an intervention (Drummond et al., 2015). Administering these tests produces reliable results 

when endpoints are unambiguous, and results can be compared over time and with other patients from the 

same population (Drummond et al., 2015). A significant criticism of VAS is that it does not have any 

underlying economic theoretical framework (Johannesson et al., 1996). Also, using the VAS method does not 

present a choice, so it is not possible to trade-off scenarios and only provides preference. Moreover, it is viewed 

that "choiceless" techniques for data collection are not based on economic theory (Johannesson et al., 1996). 

The TTO method was developed for specific use in healthcare and asks individuals if they would rather live 

the rest of their lives in certain health states or live in full health for a shorter period. This process is repeated 

until no distinction can be made between the two stages (Drummond & McGuire, 2001, Whitehead & Ali, 

2010). However, several criticisms of the TTO method exist. The TTO results often have to be adjusted before 

becoming QALYs, or utilities and reflecting trade-offs between living in certain health states and death. Also, 

if illnesses considered are shortly followed by death, this can distort the outcomes (Drummond et al., 2015). It 

is also shown in respondents who do not believe it is possible to return to full health after an illness. 

Quality-Adjusted Life-Years Used 

Due to the lack of validated QALY data for the Danish population, the utilities in this thesis are taken directly 

from the study by Hofer et al. (2018), which is reflective of the German population. It is acknowledged that 

QALYs can vary widely among lung cancer patients. Hence Hofer et al. (2018) referenced their utilities from 

the pooled quality of life studies taken from the meta-analysis by Sturza (2010). The utilities obtained by Sturza 
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(2010) were gathered via the standard gamble method, with the patients as the respondents and NSCLC as the 

disease scaled from death to perfect health. The starting QALY of no lung cancer was for people aged 55 and 

75 years in Germany to maintain consistency with using German lung cancer utilities (Hofer et al., (2018). An 

assumption was made that the QALYs assigned for patients with undetected lung cancer remained the same 

as those diagnosed with lung cancer, as it is difficult to determine the QALY weight assigned to a person with 

undiagnosed cancer. Other literature was researched for their QALY weights, however, Hofer et al. (2018) 

was chosen due to the geographical proximity to Denmark, as well as similarities across the Danish population. 

Additionally, the QALY weights have to align with the cost data, accounting for each lung cancer stage 

explored in this thesis. Some CUA studies only presented QALY weights on stages I, II, III, and IV (Goffin et 

al., 2015; Field et al., 2016). However, due to treatment and mortality rates ranging widely in stages IIIA and 

IIIB, the researchers decided to include these QALYs within our model. Table 14 outlines the QALYs used in 

this thesis for all states. 

Table 14. Health States with Associated Utility Weights  

 

 

Note. Hofer et al., 2018 

In summary, QALY weights for lung cancer do not yet exist within a Danish context. To circumvent this, 

QALYs were obtained from the German study by Hofer et al. (2018). These QALYs were sourced from a 

metastudy by Sturza (2010), examining QALYs using the standard gamble method. This source was chosen 

due to its proximity to Denmark, both geographically and in population, and corresponding with this thesis’ 
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cost data. The following section will outline the choice of discounting perspective, followed by the sensitivity 

analysis.  

4.4.3 Discounting   

Cost and benefit discounting is the process that adjusts for future costs and benefits of a healthcare intervention 

to present-day value (Severens & Milne, 2004). As discounting can influence the outcomes of an EE, this 

section will outline the rationale for discounting, the rates applied for both the costs and benefits associated 

with a LCSP in Denmark and how they will be accounted for in the economic analysis. The purpose of 

discounting future costs and benefits is to account for the impact of time preference and adjusts the value of 

future benefits and costs to that of present-day value (Drummond et al., 2015). Measuring discounting for both 

costs and benefits can be shown as (1/1+D)n, where (D) is the discount rate and (n) is the year in the future the 

discount is applied (Severens & Milne, 2004).  

 

Discounting Costs 

The principle for discounting future costs is that money has greater worth in the present than in the future if it 

is spent and not invested in other sectors of the economy at a positive rate of return (Drummond et al., 2015). 

This can be due to: 

 

1. Individuals think the future is uncertain (risk of, for instance, death), 

2. Individuals prefer consumption sooner than later, 

3. Individuals assume their incomes will increase over time to consume more in the future. 

 

The discount rate for the costs of an intervention can be performed through two methods, the social time 

preference, and the social opportunity cost. The social time preference approach is used in this thesis and refers 

to the positive rate of time preference, where one benefits from receiving an intervention earlier than later 

(Drummond et al., 2015). Applying the social discount rate factors the impacts occurring in different years 

from an intervention, with lower rates favoring interventions that present more significant benefits in the future 

and higher rates indicating immediate benefits (Moore & Vining, 2018).  

 

The other method for applying discount rates to benefits is the social opportunity cost of capital, which uses 

societal perspectives and is the method that is most commonly used in Denmark for CBAs. However, as the 

social opportunity cost is used within societal perspective CUAs, it is not utilized for this thesis. The societal 

perspective takes the opportunity costs of the intervention in projects where capital investment is required 

(Drummond et al., 2015). If investments were made in a screening program, this money has not been invested 
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at a positive rate of return and earning interest, meaning that investments made now would be worthless 

(Drummond et al., 2015). This can lead to depreciation of opportunity costs, and therefore investments should 

be made where the best investment can be made.  

 

Discounting Benefits 

Discounting health benefits is based on "positive time preference" in that those receiving an intervention prefer 

immediate benefits over future benefits and will gain benefits in the interim time (Severens & Milne, 2004). 

The positive time preference means benefits received sooner will be of higher value than those received in the 

future, hence future benefits are discounted to account for this (Severens & Milne, 2004). Positive time 

preference is a valuation approach and is elicited from either a stated preference (SP) or a revealed preference 

(RP) (Abdullah et al., 2011). SP uses hypothetical situations to elicit preferences and values through survey-

based techniques (Abdullah et al., 2011). RP uses the consumption patterns of an individual to learn about 

their preferences and holds high reliability and face validity as it portrays the world as it currently is (Abdullah 

et al., 2011). 

 

Discount Rate 

The Danish Ministry of Finance sets a cost and benefit discount rate of 4%, used within this EE 

(Finansministeriet, n.d.). The non-discounted costs for each cycle in the Markov model must first be 

established to determine the discounted costs rate. In order to discount, the total non-discounted costs and 

QALYs are divided by the discounted rate of 4% to the power of the number of years (n) the costs refer to, or 

(1/1 + 0.04)𝑛. 

 

There are conflicting ideas surrounding discounting costs at the same rate as benefits, and uncertainty around 

the future can lead to criticism of current discount rates (Drummond et al., 2015). As in Denmark, discounting 

at the same rate follows the "consistency" argument, assuming that life-years and cost relationships are 

independent of time (Severens & Milne, 2004). In situations where health will become more valuable over 

time, a differential discount rate can be applied (Attema et al., 2018). However, discounting health outcomes 

at a lower rate, as in the Netherlands, can lead to the Keeler-Cretin Paradox, which shows that programs are 

more cost-effective if their introduction is delayed (Severens & Milne, 2004). It is agreed that it is in society's 

best interest to invest in health. However, discounting benefits at a lower rate than costs can lead to indefinite 

deferral of spending on healthcare, essentially providing no opportunity for healthcare benefit gains to be made. 

Additionally, Gravelle and Smith (2001) argue that discounting QALYs removes the possibility of future utility 

gains that an intervention may provide. Calculating the discount rate is nearly identical to discounting for costs 

and employs the same equation but using the number of individuals in that health state multiplied by QALYs.  
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This CUA will adopt the discount rate of 4% for costs and benefits specified by the Danish Ministry of Finance 

and set for social time preference. The economic model will be constructed according to the choice of 

perspective, with further sensitivity analysis applied to the discounting rates to determine their impact on the 

economic-utilization.  

4.5 Sensitivity Analysis  

Sensitivity analysis is used in EEs to assess how varied inputs could impact the results (Drummond et al., 

2015). As no intervention can be tested on a whole population, sensitivity testing is essential for any EE. It can 

determine a model's robustness by investigating the conclusions when assumptions of a model change. This 

section will outline two methods of conducting a sensitivity analysis, deterministic sensitivity analysis (DSA) 

and probabilistic sensitivity analysis (PSA) (Drummond et al., 2015). The sensitivity methods utilized for this 

EE will be explored. The justifications behind the decisions of tested parameters will be explained, with all 

simulations for this thesis conducted in Microsoft Excel.  

4.5.1 Deterministic Sensitivity Analysis  

A DSA is used to test the robustness of an EE and evaluate uncertainty and can be performed through a single 

or two-way approach (Drummond et al., 2015). This EE will perform a series of single- and two-way sensitivity 

analysis to test the robustness of assumptions and choices in the model. A model is considered robust when 

the output accuracy is not significantly altered from the baseline under alternate conditions (Drummond et al., 

2015). The main assumptions within the model have been tested, with the sensitivity ranges extracted from EE 

literature. Table 15 displays the parameters with the current assumptions, base case ICER value, and upper and 

lower bounds. 

4.5.1.1 One-Way Deterministic Sensitivity Analysis 

A one-way DSA is the most straightforward sensitivity analysis, involving changing single values for the input 

parameters while the others remain unchanged (Drummond et al., 2015). One-way sensitivity analyses can 

explain the quantitative relationships between inputs and outputs within a model as they should display 

predictable results. It also allows for exploring the structural integrity of an economic model (Drummond et 

al., 2015). A one-way analysis will show the sensitivity of outputs to particular input parameter changes. 

However, it cannot indicate which parameters contribute to decision uncertainty (Drummond et al., 2015).  

 

DSAs include inputting "extreme yet plausible" upper and lower bounds of values (Drummond et al., 2015, 

p.394). Testing these values can determine the results of best-case and worst-case scenarios, and parameter 

uncertainty. A parameter can be considered sensitive when the baseline output changes after its variation 
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(Drummond et al., 2015). It can be beneficial in helping determine the values needed to produce sufficient 

changes to costs and effects. Challenges here can be found with uncertainty in estimating the parameters of 

interest, identifying the upper and lower bounds, and an inability to justify the parameters taken can risk 

producing misleading results and second order uncertainty (Drummond et al., 2015). The result of the single-

way DSA will be presented in a Tornado Diagram. A tornado diagram is able to determine which parameters 

have the most influence on a model. The parameters tested through one-way sensitivity analysis in this thesis 

are listed below.  

 

Adherence 

Testing the sensitivity of adherence to a screening program is essential as adherence could affect the cost-

effectiveness of the intervention. Inadequate participation could yield no health benefits to the targeted 

population (Baccolini et al., 2022). However, increased uptake of screening services can also inflate costs 

dramatically; hence determining the impact of adherence should be explored. The assumption is challenged in 

adding the upper and lower bound limits of +/- 50% to the current adherence rate in 25% increments. This 

threshold was used in the reference paper by Hofer et al. (2017) and can be seen in other economic analyses 

(Snowsill et al., 2018; Du et al., 2020).  

 

Disease Transition Probabilities 

Lung cancer disease progression within this EE is represented through transition probabilities obtained from 

Hofer et al. (2018) paper, motivated in section 3.2.3.1. Because of the difficulties in finding disease progression 

probabilities in the literature, the used transition probabilities have been adjusted to present varying stages of 

disease progression. The risk of cancer progression was altered to doubling and halving as the upper and lower 

bounds. The sensitivity will explore the impact of disease progression only in the pre-diagnosis stages, as 

progression in the aftercare and palliative care have not been included in this EE. 

 

Diagnosis Sensitivity  

The sensitivities of the diagnosis through standard clinical pathway and LDCT scanning will be adjusted. 

Testing the sensitivity of the standard clinical care pathway will determine whether improving the diagnosis 

in current clinical workflows will impact the outcome. These parameters can be tested to see whether 

investments should be made in the current clinical settings or whether a focus on innovations or alternative 

methods should be investigated. The value was adjusted by +/-50% to explore the most significant sensitivity 

changes within the model. The sensitivity of LDCT scanners is adjusted by an upper and lower bound of 20%. 

There are two reasons behind these parameter variations. Firstly, it is estimated by the Exeter Test Group and 

Health Economics Group (2022), that lung cancers diagnosed at stage IV by screening detection are 

overestimated, while underestimating earlier staged cancers compared to observed data. Secondly, testing 
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parameters will attempt to reflect technological changes and advancements that are likely to occur (Abbas, 

2021). This can help determine if changes to modern technologies should be considered and whether 

introducing potentially more expensive technologies can be absorbed within the model.  

 

Quality-Adjusted Life-Years 

The benefits gained from this economic analysis are based on health utilities (QALYs) for different lung cancer 

stages. As the QALY application is relatively new in the health economics realm, there is limited data on 

different health state utilities (Whitehead & Ali, 2010). Denmark approved the use of QALYs only in January 

2021, and their uptake in health economics is currently limited (Plesner, 2020). In line with the lack of data, 

most studies have not explored QALY states within their sensitivity analyses. This thesis will examine QALY 

sensitivities through confidence intervals provided by the cost-effectiveness study by Kowada (2022). These 

confidence interval ranges are displayed in Table 15, and were obtained from expert, patient and public 

respondents in the meta-analysis by Sturza (2010). 

 

Post-Diagnosis Mortality  

The mortality rate of the diagnosed population was adjusted in intervals of +/-20% from the base case, 

reflecting slight decreases in lung cancer mortality seen globally (IARC, 2021) and possible, but not expected, 

increases. Despite a slight decrease in mortality rates, Denmark currently has the third-highest mortality rate 

in Europe for lung cancer.  

 

Discounting Rates  

Adjustments for future costs and QALYs to their present value will be performed by challenging the discount 

rate assumptions. Denmark's discount rates for costs and QALYs are equally set at 4% (Finansministeriet, 

n.d.). The European Commission recommends varied discount rates based on a country's specific economic 

landscape, with 5% applied to EU member states with less advanced economies that will typically experience 

higher economic growth rates and 3% applied to other member states (Haacker et al., 2019). Currently, 85% 

of studies sampled in the Global Health Cost-Effectiveness Registry database apply a discount rate of 3% 

(Haacker et al., 2019). Some nations apply lower discount rates to benefits than costs, indicating an increase 

in health status over time after diagnosis and treatment (Haacker et al., 2019). This sensitivity analysis will 

explore cost discount rates from 3-5%, as seen in other literature and upon recommendation from the European 

Commission (Hofer et al., 2015; Snowsill et al., 2018; Haacker et al., 2019; de Koning et al., 2020; Du et al., 

2020). The QALY discount rates will be varied from 1.5 to 4%, as reflected in other studies (Hofer et al., 2015; 

Snowsill et al., 2018; de Koning et al., 2020; Du et al., 2020) 
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Screening and Treatment Costs 

Introducing a LCSP could lead to new priorities in budget allocations from the Danish Health Authorities. 

Future advancements in research and technology will impact and shift clinical practice away from current 

interventions (Drummond et al., 2015). This can lead to changes in costs of medical technologies and 

treatments over time caused by expiring patents, design efficiencies, and demand for services change 

(Drummond et al., 2015). It is discussed by the Danish Lung Cancer Group and Saghir (2021) that costs of 

lung cancer surgery have decreased dramatically over the past decade due to less invasive surgical procedures, 

while costs for chemotherapy have increased due to the developments in targeted therapies. The cost of the 

screening program and lung cancer treatment has been adjusted to compensate for these fluctuations, with 

upper and lower bound limits set at +/-50%. This threshold was used in the reference paper by Hofer et al. 

(2017) and can be seen in other economic analyses (Snowsill et al., 2018; Du et al., 2020).  

4.5.1.2 Two- and Multi-Way Deterministic Sensitivity Analysis 

The combined effects of all parameters cannot be interpreted using a one-way analysis and can therefore 

underestimate the uncertainty surrounding the decisions (Drummond et al., 2015). A multi-way sensitivity 

analysis can represent an analysis between two parameters and can be constructed using parameters set at 

extreme yet plausible scenarios. Difficulties in interpreting a multi-way sensitivity analysis can arise from the 

low probabilities of these scenarios eventuating within a model. Such events can be seen as unlikely, meaning 

sensitivity testing of extreme circumstances can be questioned as to whether or not it is genuinely uncertain.  

 

It must be addressed that this thesis performed some of its DSA testing using an iterative method after the one-

way DSA testing was performed. In doing so, the most sensitive parameters were identified and further 

explored against other parameter variations. Other two- and multi-way sensitivities within this EE were 

sourced from literature to reflect historical changes in healthcare or from other CUAs to strengthen their use. 

The two- and multi-way sensitivity analysis will be presented in a graph in the results section with the chosen 

baseline ICER. In contrast to the CEP, the costs will populate X-axis and the QALYs on the Y-axis, with the 

most acute-angled ICER presenting the most cost-effective solution.  

 

The two-way DSA parameters chosen to explore were adherence, treatment costs, screening costs, LDCT 

sensitivity, and diagnosis sensitivity. Once adherence and treatment costs were identified in the single-way 

DSA testing as sensitive parameters, they were further scrutinized against multiple model input parameters. 

Outlined below are the chosen two- and multi-way DSA parameter combinations and the justification for their 

use.  
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Best and Worst Case 

The literature shows that multi-way DSAs are conducted to determine the best and worst-case scenarios 

(Drummond et al., 2015). The parameters with the highest sensitivity were identified through single DSAs; 

adherence, treatment cost, and screening costs. These parameters will be combined in order to construct the 

outer thresholds. As seen in other economic analyses, all parameters varied by +/-50% (Peters et al., 2022).  

 

Adherence, Screening Costs, and Treatment Costs  

As adherence was identified as a highly sensitive parameter, it will be measured against both the treatment and 

screening costs to determine the extent of uncertainty. As with the worst and best-case scenarios, all parameters 

will be varied by +/-50% based on other CUAs (Peters et al., 2022). The goal is to ascertain where other model 

parameters could compensate for alterations in adherence.  

 

Screening Sensitivity and Screening Costs 

Innovations in healthcare have historically been associated with higher expenditure (Topol, 2015). This thesis 

will mimic these changes by altering the sensitivity of LDCT by screening by +/-20% and the screening costs 

by +/-50%. Doing so will determine if upgrading to newer and more advanced technologies can overcome the 

investment required by the Danish Ministry of Health. This multi-way sensitivity was not observed in other 

CUA studies. However, as this thesis focuses on healthcare in innovation, the researchers decided to determine 

if investments in innovation could be cost-effective within this LCSP.  

 

There are several limitations to the DSA approach. (1) The parameter ranges are often decided upon arbitrarily, 

(2) it is not possible to observe non-linearities within the model, (3) correlations between parameters cannot 

be determined, and (4) the DSAs are usually reported as ICERS. This thesis has, when able to, used literature 

to support the formulation of parameter ranges. The non-linear relationships and correlations between 

parameters have been explored through varied multi-way sensitivity analyses. Inevitably, not all parameters 

will be able to be combined within the multi-way DSA, which could lead to questions surrounding model 

robustness. As the ICER itself presents limitations, the results will be presented and explored on a granular 

level and will attempt to determine the reasoning behind changes to the ICER.  
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Table 15. Sensitivity Upper and Lower Bounds Overview 

 

Note. Sources in text  
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4.5.2 Probabilistic Sensitivity Analysis  

PSAs have a growing role in determining parameter uncertainty due to the limitations of DSAs. The NICE in 

the UK recommends using a PSA to demonstrate the consequences of parameter uncertainty (Briggs, 2005). 

The use of a PSA can provide the opportunity to determine statistical-based statements surrounding the impacts 

of uncertainty on the cost-effectiveness of a model (Drummond et al., 2015). A PSA assigns distributions to 

each model parameter and given alpha and beta parameters, with random samples generating empirical 

distributions of costs and effects often through Monte Carlo simulations (Hatswell et al., 2018). The net 

benefits from the model can be calculated by each sample from the model generating a single estimate of 

expected costs and benefits, then repeating in large volumes (e.g., 10,000 times) (Drummond et al., 2015). The 

results of the costs and outcomes are stored and graphed to illustrate what the ICER could have been. The 

output graphed in the CEP can then be analyzed to determine the proportion of the results within the cost-

effectiveness threshold (Hatswell et al., 2018). Furthermore, a cost-effectiveness acceptability curve (CEA) 

can represent the trajectory of the results (Hatswell et al., 2018).  

 

As per Briggs et al. (2006), each parameter's distribution must be determined, described, and justified to 

perform a PSA. Beta distributions are generally applied for the probabilities as they have a binomial range 

from 0 to 1 (Drummond et al., 2015). The cost data typically assign gamma distributions as they cannot present 

negative results. QALY data is also commonly assigned gamma distributions as there is an upper bound of 1 

with technically no lower bound. However, applying a PSA statistical approach is not without its limitations. 

The distribution choices can lead to further criticism within the model, such as the distributions determined 

through arbitrary means (A. Briggs, 2005). Briggs (2005) also comments that it is still possible to perform a 

PSA when parameters are informed by secondary information, such as literature. However, the subjective 

opinions of the researchers will often determine the parameter distributions.  

 

This thesis could not perform PSA testing due to a lack of data availability on the alpha and beta parameters. 

Estimating these could risk parameter uncertainty or second-order uncertainty (Drummond et al., 2015). 

Without evidentiary support from the literature, estimating parameters would invalidate the requirements to 

explicitly justify the distribution and parameters, which would, in turn, question the credibility of the 

assumptions made (Drummond et al., 2015). The researchers did not wish to create additional sources of 

structural uncertainty within the model. The DSA method was, therefore, the chosen method for sensitivity 

testing.   

 

In summary, this thesis will use both single, two- and multiway deterministic sensitivity analyses to test the 

robustness of the model. The assumptions within the model will be tested, with variations of the base values 
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adjusted to reflect the literature or changes to technologies or pathways. The results will be displayed and 

discussed extensively in the text by applying them to the Danish context. 

5. Results 

This section presents the results of the EE by illustrating the decision tree with probabilities, showing the 

starting cohort Markov model, the Markov model results and ICER calculation, and the sensitivity analysis. 

5.1 Illustrated Decision Tree with Data 

The decision tree in the appendix illustrates the pathways that patients can take when getting diagnosed with 

lung cancer. The two figures illustrate the LDCT screening group and the current pathway’s possible paths. 

The available link can allow the reader a closer view of the decision tree, nodes, and branches: Decision tree. 

5.2 Markov Model Results 

This thesis conducted two Markov models with two purposes. The first simulation produced the starting cohort 

for the second Markov model. This section presents the output values for each cancer stage after simulating a 

Markov model for 30 cycles. The second part shows the second Markov model simulated for 15 cycles for 

both the screening and the comparator cohort. The output from the second Markov model is then used to 

calculate the ICER and cost-effectiveness. 

5.2.1 Starting Distribution  

Table 16 illustrates the distribution calculated using the probabilities and stages explained in the methodology 

section, simulating a Markov model for 30 cycles. The output percentages from the 30-cycle Markov model 

are then used as input distribution in the primary Markov model used to calculate the ICER. The percentage 

output was multiplied by the risk cohort of 106,041 to arrive at a starting distribution for no lung cancer and 

the different cancer stages. 

 

Table 16. Calculating Input Values for the Markov Cohort-Simulation Model 

 

Note. References in text 

 

https://drive.google.com/file/d/1e3SWJtWC6JB4SgGKCSpgEmxPeZqcMx8N/view?usp=sharing
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5.2.2 Incremental Cost-Effectiveness Ratio  

The primary Markov model simulation resulted in total costs and QALYs used to calculate the ICER, with the 

starting distribution calculated based on the output from the first Markov model. The total incremental cost for 

15 cycles is 4,565,071,950 DKK, and the respective total incremental QALYs for the 15 cycles are 6,331. This 

results in an ICER or cost per QALY of 721,101 and 0.06 QALYs gained per person in the screening cohort.  

As illustrated in Figure 8, the ICER falls in the northeast quadrant under the CET. Therefore, the LDCT 

screening is considered cost-effective, using the total non-discounted costs and QALYs after 15 years. The 

costs are higher, but the effects are also higher. 

 

𝐼𝐶𝐸R =     Total 𝐶𝑜𝑠𝑡 LDCT − Total 𝐶𝑜𝑠𝑡 Current        =   ∆𝐶𝑜𝑠𝑡𝑠_ 

                Total 𝐸𝑓𝑓𝑒𝑐𝑡 LDCT  − Total 𝐸𝑓𝑓𝑒𝑐𝑡 Current       ∆Q𝐴𝐿𝑌𝑠  

 

721,101 =      5,503,457,083 − 938,385,132 

               905,944 − 899,614 

 

Figure 7. Markov Model Cost-Effectiveness Plane 
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Calculating the ICER by only including the cost of LDCT, excluding the treatment cost, results in an ICER of 

168,246 DKK per QALY. This result is calculated by setting the cost for the current pathway to a zero versus 

the cost of LDCT scans. 

168,246 =   _   899 614  − 0    . 

                   905,944 − 899,614 

 

The cost and QALYs are not the only interesting output values from the Markov model. Table 17 below 

summarizes other interesting results that should be considered when evaluating the two options. The total lung 

cancer death decreased by 882 people (3517 - 2635) for the screening group compared to the current pathway 

after 15 cycle years. The complete diagnosed population is 2,153 more people in the screening group versus 

the non-screening group. Among these, 1,684 more people get detected in stage I and 667 more people in stage 

II for the screening group compared to the current pathway. 295 more people get detected in stage IV in the 

current pathway versus the screening group. In the screening group, 58% adhere, and the remaining 42% go 

through the existing pathway, which means that the screening group includes people getting detected through 

screening and current care. A detailed representation of the differences in diagnosis in the different stages can 

be found in the Appendix. 

 

Table 17. Summary of Results 
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5.2.2 Deterministic Sensitivity Analyses 

The output from the DSA is illustrated in the Tornado diagram and two- and multi-way sensitivity graph 

(Figure  9 and 10). These graphs demonstrate how robust and sensitive the different tested parameters are. 

Twenty-seven single and multi-way sensitivity analyses have been performed as shown below. The more 

significant results will be analyzed and discussed further.  

 

Table 18. Summary of Undiscounted Sensitivity Results  

 

 

Table 18 shows that the uncertain parameters are decreased LDCT sensitivity by 20%, decreased adherence from 

25% onwards, increased treatment cost by 50%, and decreased lung cancer progression by 50%. These parameters 

are uncertain because the change of parameters results in an ICER above the CET, making the screening program 

no longer cost-effective. 
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Table 19. Summary of Discounted Sensitivity Results 

 

 

Table 19 shows that the uncertain parameters are the same as for the discounted cost and QALY values. The 

ICER has changes as a result of the applied discount rate of 4% for both costs and QALYs.  

 

Figure 8. Tornado Diagram of One-Way Deterministic Sensitivity Analysis 
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The above tornado diagram displays the output simultaneously from the sensitivities when varied. The green 

bars represent the upper bound, where the input parameters were increased, and the blue shows the lower 

bound, where the parameters were decreased. The midline is set at the base case ICER at 721,101 DKK/QALY. 

The larger bars display higher variance from the midline as seen with adherence, lung cancer progression, and 

treatment costs. The smaller bars show minimal change, as seen with the standard clinical pathway. 

 

Figure 9. Two- and Multi-Way Sensitivity Analysis 

 

 

Lastly, figure 10 illustrates the two- and multi-way sensitivity analysis performed. The x-axis is the cost 

(DKK), and the y-axis is QALYs. The dotted line is the base case ICER, with variations in the ICERs falling 

to their respective sides. The best and worst-case scenarios combining adherence, treatment, and screening 

costs are shown as the outer bounds. There is overlap with the LDCT costs of +50%, LDCT sensitivity +20%, 

adherence -50%, and treatment cost -50%.  

 

In conclusion, the results have produced an ICER which is costly. However, there are significant 

epidemiological benefits gained from LCSP regarding reduced morbidity and mortality. Some high variation 

was seen in the sensitivity analysis, including adherence and costs, highlighting areas of weakness in the model. 

The most significant results will be discussed further regarding the numerical changes and the subsequent 

impact towards the Danish and innovation context.  
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6. Discussion 

This section discusses the results in light of the research question; Why should the Danish Ministry of Health 

consider a lung cancer screening program for detecting lung cancer among a heavy-smoking population aged 

55-74 years? It considers the results from the EE, sensitivity analysis, and broader views outside of the scope 

of this EE that also has to be taken into account when considering new healthcare interventions in the Danish 

healthcare system. 

6.1 Epidemiological Results and Incremental Cost-Effectiveness Ratio  

The first part of the discussion relates the results to the methodological choices, logical reasoning, and analysis. 

The ICER result in this thesis is not the only interesting result to consider when considering if Denmark should 

implement a LCSP. The epidemiological results reveal the impact of introducing a LCSP in the Danish setting, 

as more patients get diagnosed in earlier stages, and fewer individuals die. Therefore, the first part of this 

section will discuss the epidemiological results, and the second part will present the ICER results. 

Epidemiological Effects 

By introducing a LCSP in Denmark, the number of people diagnosed would initially increase the incidence of 

lung cancer. Screening would result in 419 additional lung cancers discovered in the first year alone, or a 2-

fold increase from the standard clinical pathway. This increase is due to the higher detection rates when using 

LDCT screening for all-stage lung cancer, as opposed to more patients developing lung cancer. Furthermore, 

the all-stage diagnosis rate from a LCSP increases to 2.4-fold when observed from a 15-year perspective. 

Within this increase, the diagnosis through a LCSP accounts for 75% of all diagnoses in the intervention group. 

 

These results display highly positive effects when observing morbidity at a granular level. Focusing on the 

first year of diagnosis, there is an 11-fold increase in stage I lung cancers discovered. The increased detection 

is due to screening via LDCT being 17-times more effective in detecting Stage I lung cancer than the standard 

clinical pathway. This diagnostic trend continues further in the model, and after 15 cycles, there are almost 10-

fold detection of lung cancers in stage I in the LDCT group than in the standard clinical care group. When 

observing the overall prevalence of late-stage lung cancer, there is a decrease within the screening group. There 

are 47% fewer stage IIIB and 29% fewer stage IV lung cancers detected instead of the standard clinical 

pathway. More people have already been diagnosed in the earlier stages rather than progressed to later stages 

through the normal disease progression and pathways.  

 

These positive findings are similarly reflected in the total estimated mortality. After 15-years, the LCSP group 

displayed 882 fewer deaths from lung cancer than the standard clinical pathway. The decrease subsequently 
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means there is an all-stage 25% reduction in mortality rate from lung cancer compared to the screening group, 

a mortality decrease similar to that produced by the NLST and NELSON clinical trials (Snowsill et al., 2018). 

This reduction in lung cancer mortality is linked to the probability of dying in the different diagnosis stages, 

as patients will live longer if diagnosed at an earlier stage of lung cancer. As already stated, Veronesi et al. 

(2013) explained that surgical resection is only possible in 20% of symptomatic lung cancer cases. With lung 

cancer being detected in earlier stages through screening, the overall mortality from lung cancer is expected to 

decline. When observing the lung cancer mortality in relation to all-cause mortality, there is a 2.7% reduction 

in the overall death rate. By reducing lung cancer mortality significantly, it reduces the mortality in the overall 

high-risk population. These are similar results as seen from Hofer et al. (2018). The screening program might 

help lower cancer mortality in Denmark, being the third highest in Europe. 

 

The model reported a surplus of 0.06 QALYs gained per person within the screening cohort, due to patients 

having a higher survival rate when diagnosed earlier. Table 1 (Lung cancer treatment by stage) shows a 60-

70% five-year survival rate in stage I compared to a 10-15% five-year survival rate in stage IV. The mortality 

results from the Markov model have aligned with the literature that survivability depends on lung cancer 

diagnosis stages since fewer people die if they get diagnosed early (Popper, 2016). This intrinsically means 

that patients who are detected early would have the opportunity to get treatment at an earlier stage, stop or 

slow the disease progression and live for longer, resulting in higher survivability. 

 

Denmark should establish the importance and weight of epidemiological benefits gained from introducing a 

LCSP. Diagnosing lung cancer at earlier stages will provide more curative treatment options and increase life 

expectancy, something that the Danish government should prioritize. It could be argued that the benefits would 

outweigh the costs associated with the program, with the positive effects felt by patients, families, and also 

society. The following section will discuss the weighting of cost to outcomes using the ICER results. 

 

Incremental Cost-Effectiveness Ratios 

The total undiscounted cost per QALY is 721,101 DKK, including the cost for treatment and LDCT scanning 

for 15-cycles in the Markov model. This result is cost-effective, and the intervention should be adopted in 

Denmark, given that the CET is 881,316 DKK/QALY since the cost of producing better health outcomes is 

acceptable. In comparison, the ICER, when only including the cost for the LCSP, is 168,246 DKK/QALY. 

This ICER is lower since the costs for treatment are not included. Since the overall number of patients being 

diagnosed through the LDCT screening is improved, the cost for treatment will be higher for this cohort even 

though more patients are diagnosed in earlier stages with lower treatment costs. The QALYs stay the same in 

both ICERs, being higher for the LDCT screening group since more people are diagnosed early before 



 

 

90 

progressing into the higher stages with lower QALY values. Also, there are fewer deaths associated with a 

QALY value of zero. 

 

The ICER, including treatment cost, is the main ICER as it shows the total cost effect of introducing the new 

intervention. Laupacis (2002) argues that the effect and not costs determine if one should adopt a new 

intervention or not. At the same time, the issue of scarce resources in healthcare budgets is vital, and the cost 

factor is essential to consider, which is why the more inclusive result was chosen as the main ICER. 

 

The results section also presents the discounted ICER of 732,504 DKK/QALYs, slightly higher when 

calculating future costs and QALYs. When investigating the incremental costs and QALYs, both are lower 

figures reflective of a 4% discounted rate. The higher ICER results from the marginally more significant 

negative incremental change for the QALYs. This discount rate has subsequently provided less QALYs overall 

than costs; hence a slightly higher ICER is produced. Due to scrutiny applied to discounting rates, the 

sensitivity results from the adjusted discounting rates will be discussed further. One could argue that the 

discounted ICER should have been used as the main ICER due to individual social time preferences taken into 

consideration in the discounted ICER. However, Danish decision-makers should be aware that uncertainty 

about the future and the associated discounted rates applied can bring some skepticism toward discounted 

ICERs (Cleemput et al., 2008). For this reason, the base case ICER has been chosen as our benchmark to 

compare other results. 

 

One can also discuss the different ICERs by comparing the different cycle outcomes. Table 3 and 4 in the 

appendix shows the different ICERs for one-year cycle times of five, 10, 15, 20, and 30-cycle years. The lowest 

ICER out of these is the 15 cycles. The first cycles are higher and aligned with previous research saying that 

screening gets more effective after a few years (Peters et al., 2022). There are patients in all stages of the 

natural history part of the model in the first years, and the effect of early-stage diagnosis is not evident. After 

a few cycles, fewer people are in the later stages, and more are diagnosed only in the early stages, which results 

in higher QALYs and lower ICER. The QALY values are relatively increasing with every cycle, i.e., the gap 

between QALY values increases between the alternatives for every increase in cycle years in favor of the 

LDCT screening.  

 

After 15 cycles, the ICER goes up again even though the QALYs are increasing. One explanation for this could 

be that the costs are overestimated in the post-diagnosis model. The only way patients leave the model is when 

they die. Otherwise, patients stay in the post-diagnosis model and get treated every cycle associated with 

treatment costs. Even though the same thing happens with the standard pathway cohort, more people in this 

simulation are diagnosed in the later stages and die faster. This leads to a lower cost for this group due to how 
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the model is structured. So even though fewer people get screened, and more people are diagnosed in the lower, 

less expensive treatment stages with time, the costs increase. The 15-cycle ICER was chosen as the main ICER 

since most CUAs have chosen this time horizon and not because it was associated with a favorable result. The 

researchers did not know this would result before deciding on the time horizon.  

 

Having discussed the different ICER outputs does not give us much valuable information since the ICER value 

does not hold much value on its own. The number has to be put into perspective and in relation to something 

else, especially given that Denmark has no threshold. Therefore, the following discussion sections will first 

discuss the sensitivity of the results. Then the ICER will be related to a discussion about the threshold it is 

compared against and compared to other ICERs from similar CUA studies. 

6.2 Sensitivity Analysis Results 

Sensitivity analysis was conducted to test uncertainties in the parameters to evaluate the robustness of the 

results. The single-, two-and multi-way deterministic sensitivity analyses examine the variations in the input 

parameters (Drummond et al., 2015). The results from the sensitivity analysis showed that the model was most 

sensitive to a decrease in adherence, which was present in both single-, two- and multi-way testing. However, 

many of the other parameter variations demonstrated high levels of robustness within the model, as discussed 

below. 

 

Low robustness was seen within the model when adjusting the adherence rates. As the leading cause of 

instability, adherence was tested with multiple scenarios to determine where the most significant impact was 

seen and where other parameters could absorb the adverse effects within the model. Lowering adherence by 

25% caused the model to no longer be cost-effective, with an ICER increase of 24% to 894,276 DKK/QALY. 

Furthermore, when adherence was reduced by 50%, the ICER inflated by 74% to 1,254,369 DKK/QALY. 

When screening adherence decreases, there is a reduction in QALYs from the screening group as fewer people 

are diagnosed in the early stages. Lowering adherence allows the disease to progress to later stages with lower 

associated QALY values, and the lowered QALYs outweigh the costs saved from not screening populations. 

Seen consistently across both single and multi-way sensitivities, adherence is a crucial factor that will need to 

be considered by the Danish government prior to introducing a potential LCSP. 

 

The effects were not as positively dramatic when increasing the adherence rate. When adherence was increased 

by 25% and 50%, the ICER decreased by 14% and 23%. The decline could be due to the higher QALY output 

in the screening group. Even though the costs go up due to increased overall treatment and more people getting 
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screened, the cost does not increase significantly. An explanation could be that the early-stage treatment is less 

expensive than the later stages. 

 

Two-way and multi-way sensitivities were conducted to determine if other model elements could absorb the 

adherence uncertainty. When testing against decreasing screening costs, the model could not withstand 

decreased adherence rates. The only scenario that could buffer a decrease in adherence was reducing the 

treatment costs by 50%, producing an ICER of 664,658 DKK/QALY, 8% lower than the base case. The 

QALYs in this scenario are lower since fewer people are diagnosed in the early stages. However, the lowered 

costs affect the screening group more, as more people in this group are diagnosed than through the current 

pathway. This optimistic scenario would require lung cancer treatment to innovate cost-effectively, either 

through more efficient technologies or by introducing generic treatment options offered as the primary 

treatment (Miller, 2020). 

 

Careful attention needs to be paid before implementing a LCSP, as increasing costs can expose the payer to an 

economically ineffective program. The program costs were explored through several single and multi-way 

DSAs. Plausible worst and best-case scenarios were created, with the best-case scenario being where adherence 

increased by 50% and all costs decreased by 50%, showing an ICER reduction of 64%. This ICER reduction 

resulted from higher screening uptake, leading to higher cancer detection in earlier stages and thereby higher 

QALY rates, with subsequent treatment able to proceed at lower costs. Alternately, the worst-case scenario 

outcome presented for the inverse scenario produced an ICER that inflated to 143% over the base case outcome 

to 1,755,439 DKK/QALY. The increase was due to the lowered total QALYs for the screening cohort, due to 

adherence that kept people being screened through the current pathway. Furthermore, higher costs affect the 

non-adhering screening cohort more because more people are diagnosed in this group, leading to an overall 

higher cost increase than the current cohort. 

 

The model showed less robust results when lowering treatment costs. Adjusting lung cancer treatment costs 

by -50% decreased the ICER by 41% to 423,449 DKK/QALY due to cost reductions in the screening group 

and the current clinical pathway. However, this scenario may not be realistic as lung cancer treatment costs 

have increased in the last decade (Danish Lung Cancer Group & Saghir, 2021). With oncological therapy 

becoming more specialized and targeted, the primary treatment for stage III-IV lung cancer has led to higher 

costs (Danish Lung Cancer Group & Saghir, 2021). However, costs have decreased in the past decade for 

early-stage lung cancers with less-invasive VATS surgical procedures as the primary treatment (Danish Lung 

Cancer Group & Saghir, 2021). With oncology being the primary treatment in late-stage cancers, reducing the 

prevalence of stage III-IV lung cancers through early detection will reduce lung cancer costs overall. The 

sensitivity analysis also tested increasing the treatment costs by 50%, which only produced a 30% increase of 
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the ICER to 933,856 DKK/QALY or about 50,000 DKK over the Swedish CET. Despite the ICER no longer 

being cost-effective, the model can withstand significant treatment cost increases, and the ICER does not 

dramatically exceed the CET.  

 

Further analyses were conducted to determine if improving the current clinical pathway for diagnosis would 

improve the ICER. The sensitivities of the standard clinical diagnostic pathway were adjusted, which produced 

robust and unaffected results, with an ICER still below the Swedish CET. When the sensitivity of current 

diagnostic pathways was adjusted by +/-50%, the ICER changed by -1% and 3%, respectively. As the diagnosis 

rates are meager currently, there is minimal impact on the QALYs in the current pathway when improving and 

streamlining standard diagnosis. Therefore, it is not recommended to focus on enhancing current diagnostic 

pathways as the impact on reducing lung cancer costs is so minimal. Instead, it is recommended to look to 

innovations that can contain costs and enhance diagnosis capabilities.  

 

Additionally, the sensitivity of LDCT screening was increased by 20%, leading to higher accuracy in diagnosis. 

The subsequent ICER fell by 18% to 589,895 DKK/QALY. This theory of upgrading to advanced technologies 

was explored further by introducing a cost element, combining the increase in LDCT screening sensitivity with 

a 50% increase in costs. The ICER remained robust and was reduced by 8% to 662,189 DKK/QALY. This 

sensitivity outcome demonstrates that investing in innovative and highly sensitive technologies, despite the 

increasing costs, would be economically beneficial to a lung cancer screening program and other users of the 

technologies, which should be a factor considered by Denmark when establishing a LCSP.  

 

Looking into the changes within lung cancer as a disease, the progression and mortality rates post-diagnosis 

were explored through single-way DSAs. Mortality rates for post-diagnosis lung cancer have been slowly 

decreasing over the past decade (Jakobsen et al., 2013), and sensitivity testing was used to estimate this effect 

in the future. The mortality rate for the diagnosed population was adjusted to +/-20%, with an ICER of 621,921 

DKK/QALY established for the lower bound. This outcome results from the QALYs within the screening 

cohort increasing more than the current pathway cohort since more patients are getting diagnosed than in the 

current cohort. These results should be of interest to Denmark, as decreasing mortality from lung cancer will 

inherently decrease costs for such programs.  

 

From observing lung cancer progression, the upper and lower bounds were adjusted to +/-50%, respectively. 

This change decreased the ICER to 538,758 DKK/QALY when cancer progressed faster versus 1,130,611 

DKK/QALY when lung cancer progressed slower. Fewer cancers are detected in the current clinical pathway 

with decreased progression as they are not progressing to late stages, where they are more likely to be detected. 

This would lead to higher overall QALYs in this cohort due to low detection rates and lower treatment costs. 
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Low-stage cancers have a high detection rate in a screening program, and these cancers are treated at the 

detection stage in higher volumes, leading to increased costs. The incremental difference between the costs 

and effects of the two groups resulted in lower QALYs with higher costs, creating a poor ICER.  

 

The increased progression rate led to a better ICER since the QALYs for the screening group went up, and 

QALYs for the standard pathway group went down. More patients progress to late-stage cancer and die faster 

in the current cohort. The screening cohort diagnoses more people in the early stages before they progress to 

the later stages, and the cost has gone up in the screening group due to treatment requirements. The cost for 

the current pathway also went up, which can be due to more people progressing to the more expensive stages 

faster, associated with a higher cost. Lung cancer disease progression is only included in the pre-diagnostic 

stage within our model. Changes in these probabilities would represent pathophysiological changes within 

lung cancer itself. Therefore, as this is a very hypothetical situation, it was not included in the multi-way 

sensitivity. Not explored in our study is the post-diagnosis disease progression, which would give the Danish 

decision-makers insight into how initiating treatment could affect costs and QALYs.  

 

Denmark does not currently have QALY weights established for lung cancer. It will need to develop these 

within a local context if they wish to implement cost per QALY within its economic evaluations. Considering 

the methods for collecting QALYs in a Danish context should be considered as this can bias results 

(Drummond et al., 2015). This thesis determined health benefits by obtaining QALY data through the standard 

gamble methods. This method uses uncertainty and generally produces higher scores than other collection 

methods. To measure the impact alternate QALY collection methods may have had on the ICER, QALY 

sensitivities were also explored in single-way DSAs. The upper and lower bound confidence intervals from 

Kowada (2022) were applied to the QALYs, producing an ICER that increased by 15% and decreased by 7%, 

respectively. Both ICERs remained below the CET, displaying robustness against QALY changes. These 

variations indicate a potential underestimation of QALY weights due to the use of the standard gamble 

collection method can be compensated for by this model.  

 

The sensitivity analyzes around discount rates were extended to reflect those used in other European countries. 

Denmark's current discount rate for costs and benefits is set at 4%, and the sensitivities have challenged these 

inputs. Many neighboring countries to Denmark have different discount rates, with discount rates applied to 

reflect a country's current economic standpoint (Kellerborg et al., 2020). When the differential discount 

perspective was applied, as in the Netherlands, with a cost discount rate of 4% and a benefit rate of 1.5% 

(Versteegh et al., 2016), an ICER of 592,726 DKK/QALY was produced. The QALYs in both the screening 

and current clinical pathway group were almost fixed throughout the EE life cycle, as the lower discounting 
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meant they held their weight throughout the later cycles. This indicates a higher total QALY for the same cost 

when applying the 1.5% rate. 

 

Interestingly, there was almost no change from the base case discount ICER when a discount rate of 3% was 

applied to the costs, which is the discount rate set in Germany, Ireland, and Sweden. Drummond et al. (2015) 

discussed that there will always be cost constraints regarding healthcare expenditure, which supports 

maintaining discount rates for both costs and benefits at the same level. Changing Denmark's discount rates 

for EEs is unlikely to occur unless more substantial evidence is produced to support changes. With a Dutch 

differential discounting policy applied to our EE, a LCSP would seem more attractive to the intended audience. 

Observing other countries and how discounting policies impact their health and economic choices could benefit 

both the Danish government and the populations receiving care.  

 

To summarize the sensitivity analysis, all the parameters showed robustness to the model except for decreased 

adherence from 25% onwards, increased treatment cost by 50%, decreased lung cancer progression of 50%, 

or decreased LDCT sensitivity by 20%. Investing in newer technologies instead of improving standard 

diagnostic processes has improved the ICER, with robustness seen in most other parameters. However, in 

multi-way sensitivity testing, favorable circumstances only presented with cost decreases. The ICER was 

higher than the threshold for changes in these parameters due to lowered effects or higher costs. Since the CET 

determines if the intervention is cost-effective or not and plays a vital role in the analysis, the next section will 

discuss the threshold.  

6.3 Cost-Effectiveness Threshold  

Denmark does not have a CET. Instead, this thesis uses the implicit Swedish threshold converted to 881,316 

DKK/QALY to determine if the LDCT screening intervention is cost-effective compared to the standard 

pathway. Since the LDCT is more expensive but more effective, the threshold is essential in determining if the 

ICER in the northeast quadrant is cost-effective. There are several approaches to determining the threshold, 

and it can therefore be challenging to know which CET to use for this thesis. Therefore, the use of the threshold 

has to be communicated to the decision-maker. 

 

The preferred approach in this thesis would have been the precedent method or the opportunity cost method to 

arrive at a Danish CET. For the precedent method, one could collect data on the cost-effectiveness of other 

cancer screening programs implemented in Denmark since there is no current screening program comparator 

for lung cancer in Denmark. Denmark offers free national screening programs for breast cancer, cervical 

cancer, and bowel and rectal cancer (Danish Health Authority, 2021). The researchers did not do this because 
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there is no cost-effectiveness data available for these programs either. Furthermore, this kind of comparison 

would not be wholly accurate since the screening technologies are meant to detect different cancers. Even 

though this is a suitable method, it is difficult to use in real situations due to variations between diseases. 

 

The second opportunity cost method suggests separate budgets for different types of interventions. If a CET 

for other cancer screening programs were available, or if the decision-maker could compare the cost and health 

outcomes for these programs to the results in this thesis, this would be good guidance in deciding on the budget 

allocation. This data is not available but might become more available, making it possible to evaluate league 

tables with alternative therapeutic strategies to develop a suitable CET. 

  

The motivation behind using the upper bound of the implicit Swedish threshold can be discussed. On the one 

hand, lung cancer is most normal amongst people from lower socioeconomic backgrounds and due to self-

inflicted behavior, which might lead to lower prioritization (Tetzlaff et al., 2021). On the other hand, cancer is 

generally given a more significant portion of the healthcare budget historically and in comparison to other 

diseases (Trasta, 2018), which supports the assumption to use an upper bound of the Swedish threshold for this 

EE. The rule-of-thumb threshold in Sweden is 356,240 DKK (500,000 SEK) (Svensson et al., 2015) and if this 

CET would have been applied, the ICER would not have been cost-effective. 

 

The ICER would not be cost-effective if adopting the other thresholds, identified in the Cost-Effectiveness 

Threshold section, from Ireland, Poland, America, or Canada. Although, according to the upper bound of the 

international definition, the base case ICER produced from this EE would be below the international threshold. 

Furthermore, the Danish government has adopted the NICE guidelines to some extent, and therefore the UK 

threshold might be a suitable option. For extending life treatments in end-of-life care, the UK threshold is 

447,869 DKK/QALY, which means the intervention is not cost-effective since the ICER would be above this 

threshold and too expensive. To conclude, the use of CET determines if the new interventions are cost-effective 

or not since they are usually more costly but also more effective. This thesis would benefit from having more 

clear guidance regarding a CET since the ICER is not not cost-effective when adopting the upper range of 

threshold values, or when using other countries’ implicit or explicit thresholds. 

6.4 Cost-Utility Analysis Literature 

Discussing this EE's findings with that of other literature can assist Denmark in contextualizing the conclusions 

presented. The validity and reliability of this thesis and ICER can be discussed through comparison with other 

CUAs and guide decision-makers even further. As explained in the literature review, the most relevant CUAs 

on LDCT screening produce varied ICERs due to the different methodological choices made for each EE. The 
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literature did not explain many detailed methodological choices and raw data due to cohort-simulation models 

or poor literature transparency. This section will first discuss the ICER results, the model choices, cost 

perspectives, and the epidemiological results. 

 

Several of the epidemiological outcomes were reflected in this thesis’ model from the literature. The model 

estimated a 21% reduction in mortality, similar to that of the NELSON, MILD, LUSI, and NLST RCTs (Field 

et al., 2016; Becker et al., 2019; Pastorino et al., 2019; de Koning et al., 2020), with the results, were also 

mirrored in CUAs (Hofer et al., 2018; Criss et al., 2019; Toumazis et al., 2019). This reduction in mortality 

was also seen in overall QALYs gained in this thesis’ output, with 0.06 QALYs gained per person in the 

screening cohort, the same as Hofer et al. (2018) and Field et al. (2016). The similarities observed between 

this thesis and the literature indicate strong external validity. The strong correlations further endorse the 

recommendations of introducing a LCSP, and that Denmark should prioritize both saving and improving the 

lives of its citizens. 

 

When comparing the results to that of other CUAs, this model's ICER is higher than all others except the EE 

performed in the US setting, which could be a consequence of variations between treatment and screening 

costs. However, it can also be due to wide-ranging methodological choices within each EE. Almost every CUA 

examined within this thesis has methodological choices that vary. Multiple studies compare single screening 

sessions to annual and biennial screening starting with the screening intervention. High-risk inclusion criteria 

have been determined using risk prediction tools, with participants aged 50-80 years. Sources from starting 

and transition probabilities vary from both RCTs and literature, with QALY data obtained from various 

literature sources. Modeling approaches also vary within each study, from Markov models to newer, less 

validated methods, such as lung cancer outcome simulators. Cost data has been sourced from governments, 

insurance companies, and registries. Discount rates for costs and QALYs have been applied at rates reflective 

of the country in which the CUA has been conducted. Due to these inconsistencies stemming from the 

methodological choices, uniformly comparing the ICER results should be performed with caution. For 

Denmark to compare their results to others, CUA guidelines should be developed nationally or adopted from 

other countries, such as the NICE guidelines used within the UK. Doing so will assist decision-makers in 

determining the viability of CUAs through the use of equal comparators, as the EE would employ similar 

methodological choices. 

 

Studying the model choices more closely, there have only been three CUAs performed on a LCSP using a 

Markov Model in the past decade (Peters et al., 2022). Therefore, directly comparing the results to other studies 

is complex as the model choice will affect the outcome. Although this thesis models many decisions from the 

methodological choices of Hofer et al. (2018), comparing the results in both the base case and sensitivities is 
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logical here. Hofer et al. (2018) produced an ICER of € 30,291/QALY, or 225,353 DKK/QALY. The 

differences noted are the treatment costs of lung cancer and screening costs, which were between 30-75% 

lower than the cost within Denmark. The ICER can also differ due to this thesis' model's simplified nature, as 

disease progression post-diagnosis, aftercare, and the associated mortality rate was not included. Since the 

model in this thesis does not have those stages, only the probability of surviving in the same stage of diagnosis, 

this could lead to an overestimation of treatment costs. With higher diagnosis rates in the early stages and low 

mortality rates, many patients will continue to receive treatment within the model longer than in reality. This 

inherently means a patient will stay in the same lung cancer stage, receiving the same treatment until they die. 

Since there was no data on aftercare or palliative care costs in Denmark, the model did not include these stages, 

which otherwise would have been preferred. 

 

Consistency in the literature was seen across a choice of the payer as a cost perspective, with no study yet to 

choose the societal perspective within their cost methods. This aspect reinforced the researcher's choice of 

payer perspective methods for this thesis. However, the payer perspective does not encompass the actual costs 

placed upon society and how this might impact the ICER. Although no CUAs currently exist using the societal 

perspective, producing results using the societal perspective would be challenging to validate. With the model 

already being sensitive to cost variations, there is a risk that introducing a societal perspective would produce 

an ICER above the CET, making the program economically unviable. Providing cost from a payer perspective 

risks underestimating the true ICER, which can be misleading to decision-makers. 

 

In conclusion, the ICER produced from this thesis is higher than all non-U.S. CUAs produced. Apart from the 

epidemiological gains seen across studies, limited methodological similarities are found across the literature 

on CUAs for introducing a LCSP. Comparing results across studies should be done with vigilance, as 

methodological choices taken by researchers will indicate variance in the results. Therefore, the ICER in this 

study could not be validated compared to other CUAs because the differences in methodological choices made 

it infeasible. No single economic metric used in isolation, such as cost per QALY, should be used as the basis 

for decision-makers (Gafni & Birch, 2006). Hence the contextual application of the results needs also to occur. 

Therefore, the next section will discuss the applicability of the LCSP in the Danish context. 

 

6.5 Danish Context 

 

There are also other factors than the ICER and epidemiological results that affect whether Denmark should 

implement a LDCT screening program or not. These are factors outside of this EE that, for example, can be 

social, structural, political, and healthcare professional-related issues that could make an implementation 

unfeasible. 
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Social Barriers to Adherence 

The social barriers to implementing the screening program would first be connected to adherence to sensitivity 

analysis. There are several uncertainties associated with adherence. Moldovanu et al. (2021) say that a barrier 

to low adherence is the inability to consistently and systematically identify the people in the risk group. 

Therefore, the first concerning question is: (1) How do you reach out to the risk group? There is no smoking 

register in Denmark, so a survey has to be sent out to the age group in question to gather information on the 

habits of those people and then identify the persons eligible for a screening program. 

 

The second question of concern would be: (2) What is the likelihood that people will answer the survey or 

contact the organization responsible for the screening program? The highest incidence of lung cancer is 

amongst people from lower SES, with Moldovanu et al. (2021) saying that people with extensive smoking 

history from the lower SES are less likely to attend LCSP. On the other hand, other studies, such as the one 

from Sakoda et al. (2021), say that people in age 65-71 years who have previously smoked but are not current 

smokers are more likely to adhere. Therefore, it is difficult to predict how many people would fill out the form 

or contact the organization responsible for the screening. 

 

Furthermore, (3) Once the risk group is contacted, would they adhere to the screening program? Accessibility 

could be an issue since people in lower SES might face geographical issues related to traveling time and cost. 

Therefore, it is difficult to know if and how many people in the risk group will adhere to the screening program, 

even though they are identified and contacted. The only way to find out is to do a pilot study or investigate the 

behavior amongst these people in Denmark, according to the expert opinion of Dr. Saghir (2022). 

 

(4) Could there be skepticism against the screening program? Patients might not want to be screened because 

of the harms connected to the scanning, including radiation exposure and the risk of reaction to contrast 

materials when used (Allen et al., 2019). Furthermore, people might not want to attend a screening program 

since the false positive rate is still high, as seen by 33% false positive rates in the NLST trial's first and second 

screening rounds. The technology might not be developed enough for people to trust the diagnostic method. 

People eligible for screening can also experience negative psychological elements, such as fear of being judged 

and pessimism about survival chances for the early stages of cancer, leading to lower adherence (Quaife et al., 

2018). 

 

In conclusion, there is a lot of uncertainty related to predicting the adherence rate for the screening program. 

Since the most sensitive parameter in this study is adherence, the issue has to be further explored before 

recommending Denmark implement a LDCT screening for lung cancer. 
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Structural Barriers 

This EE shows that increasing the diagnosis in current pathways by 50% does not affect the outcome. 

Therefore, the decision-makers should not make the current pathway for diagnosis more effective but instead, 

look into other innovations such as LDCT screening. However, this could lead to structural barriers to the 

healthcare system. First, it would require 20-40 additional radiologists to interpret the scans, according to 

Bigaard (2022). Secondly, it would lead to a higher resource burden on the actual treatment process since more 

people are diagnosed and increase cancer spending, which would affect the budget and thereby politically 

related discussions. 

 

The first structural barrier could be related to the hospitals. If educated radiologists are available, the health 

care professionals would potentially benefit from introducing the LCSP through LDCT scans. From this, less 

pressure would be placed on the GPs to interpret the patient's symptoms and risk factors. The signs and 

symptoms can be hard to recognize, and the early stages of lung cancer are usually asymptomatic and, 

consequently, often undetected. Therefore, it can be difficult and stressful for the GPs to detect cancer, and a 

national LCSP could help ease the stress on the clinicians. Although research also shows that eligible patients 

are more likely to undergo screening when their GP endorses attendance, the GPs should still be a part of the 

diagnosis process (Moldovanu et al., 2022). This could be dealt with by the screening organization identifying 

patients at higher risk and the GP informing patients, subsequently endorsing a LDCT. It would help to solve 

the issue of clinicians' unfamiliarity with eligibility criteria and the balance between harms and benefits for 

different risk groups when identifying people eligible for screening. 

 

The LDCT will lead to a higher diagnosis rate in the early stages and, therefore, also a higher overall treatment 

burden. The increased capacity burden for hospitals has to be investigated on a national level so that hospitals 

do not experience bottlenecks in the treatment process after patients have been diagnosed. As earlier explained, 

The Cancer Patient Pathways prescribed standards for maximum waiting of 42 calendar days from lung cancer 

diagnostics to treatment. If the capacity for more patients is not in place, this would not lead to an improvement 

of the system but instead lead to new problems after the diagnosis stage. It is unethical to provide a diagnosis 

but not offer treatment, and if bottlenecks are present, it will lead to a glut of diagnosed but untreated patients. 

 

Implementing a LDCT LCSP would also lead to changes in the healthcare budget allocation. More radiologists 

would have to be employed and potentially more lung cancer treatment personnel, affecting the budget and 

other parts of the health system already in place. Although, at the same time, more patients will be diagnosed 

in stage I than stage IV after a few years of a LCSP. Since the cost of treating patients in Denmark is higher in 

the later stages, according to Green (2015), the prices might fall even though the cost of screening is added to 

the budget. 
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Table 1 in the appendix shows the treatment cost for the different stages after simulating the Markov model 

for 15 cycles. Here, one can see that the total cost for stage IIIB and IV is higher for the current pathway 

(156,055,303 + 644,360,591) than for the screening cohort (83,209,014 + 457,197,784). Although, at the same 

time the costs for the earlier stages are higher for the screening cohort (454,923,764 + 201,625,838 + 

166,186,767 for screening versus 45,751,607 + 29,829,622 + 62,387,907 for current) since more people are 

diagnosed in these stages, even though the actual treatment for these are lower. Note that the limitations of the 

post-diagnosis model, discussed in the limitation section, will explain why these costs are potentially 

overestimated and the treatment costs might be lower, especially for the early stages. Interestingly, however, 

there are 842 people diagnosed in stage IV for the current pathway, and the cost for these is 644,360,591 DKK, 

while there are 1,590 patients diagnosed in the screening group, with the total cost for these being 454,923,764 

DKK. More people are getting diagnosed for a lower cost in stage I for the screening group than there are for 

the lower number of patients diagnosed in the current pathway for stage IV with a higher cost. Changing the 

adherence to 100% will decrease the total treatment cost of stage IV by 278,870,197 DKK (644,360,591 DKK- 

365,490,394 DKK) for the screening group. To conclude, the higher the adherence to the screening program, 

the lower the cost for later stages will be since more people will be diagnosed in the earlier, less expensive 

stages. 

 

There might also be political barriers to implementing a LDCT LCSP regarding screening program approval 

and the subsequent budgeting allocations. The main factors used in decreasing lung cancer mortality are early 

detection and smoking cessation (Schabath & Cote, 2019). Some critics argue that one should go to the root 

cause of the problem and stop people from smoking, to work with preventive care instead of sick care. 

Denmark has unveiled plans saying no citizens born after 2010 are allowed to buy cigarettes or nicotine 

products (Euronews, 2022). However, this kind of argument and policy does not help the patients who have 

smoked for 30 pack-years already. When discussing the lung cancer screening submission made by Dr. Saghir 

and the Danish Lung Cancer Screening Society (2022), there is bipartisan support for the program across the 

political parties. Using both methods will help to lower lung cancer incidence since smoking is the main factor 

for developing lung cancer. The question is how these two should be combined and targeted towards the 

eligible risk group.  

 

To conclude the discussion, the primary consideration Denmark has to evaluate are CETs in EEs, adherence, 

cost, and investments in screening technologies, when deciding if the intervention should be considered or not. 

Overall, there do not seem to be solid structural barriers in the Danish healthcare system to introducing a LCSP. 

However, a clear plan regarding resources, implementation, and education have to be established for the 

program to be successful within the Danish context. 
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7. Limitations 

When creating the economic model used in this thesis, several assumptions had to be made. To account for 

sensitivity in the model, parameters were tested as discussed in the previous section though single and multi-

way DSAs. Even though parameters were tested and Drummond et al. 's (2015) six requirements for conducting 

an EE were fulfilled, there is still uncertainty in the Markov model and in this thesis as a whole. This section 

will list the main limitations to the model that has not already been mentioned in the methodology section. 

Limitations to the thesis as a whole and its generalizability will also be discussed.  

  

7.1 Markov model 

According to Sculpher et al. (2006) decision-analytic methodology is the framework capable of meeting all 

requirements for the decision-makers. However, the quality of the model is dependent on the evidence it is 

built on and the structural assumptions have to reflect a real world scenario (Drummond et al., 2015). In order 

to identify the limitations to the model in a structured manner, the checklist for assessing quality in decision-

analytic models developed by Philips et al. (2004) will be used as a guidance. This checklist is structured in 

three main parts being (1) structure, (2) data, and (3) consistency. The following sections will discuss the 

limitations to the Markov model, guided by the checklist from Philips et al. (2004) and end by discussing the 

sensitivities, internal and external validity.  

 

Structure 

The objective and perspectives used in the EE is clearly stated and the intervention pathways are aligned with 

evidence. Even though the structural assumptions are explained and reasonable for the analysis, some of them 

have to be mentioned as limitations. Firstly, a time-dependent Markov model could have been beneficial since 

age is a factor affecting the likelihood of treatment success, outcome prognosis, and mortality. A higher age 

should be given a higher probability of dying of both lung cancer and all-causes. Since no people enter the 

model, one could say that the mortality rates should have been increased in the later cycles, compared to the 

early ones, since one knows the cohort is aging for every cycle.  

 

Secondly, the memoryless assumption could be seen as a bad representation of the real life progression of lung 

cancer and underestimate the progression rate of the disease. One could argue that the longer a patient has been 

in a stage, the faster the progression prognosis should be. Since the progression rate parameter is making the 

model sensitive in the DSA, this could affect the cost-effectiveness of the ICER result.  

 

Thirdly there are no individuals entering the model over the 15 cycles, but only patients leaving the model 

through the absorbing death stage. Since the defined risk group is within a specific age group and smoke-pack 
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year history, it would make sense that individuals could enter the model or leave the model by not being in the 

eligible risk group anymore. The model instead simulates the 15 cycles with the same cohort, as a simplified 

version of a real life context. 

 

Fourth, the duration element of the post-diagnosis stages also adds to the list of structural limitations. In the 

post-diagnosis model, there is only the death transition and no disease progression, aftercare, or palliative care 

stage. The duration a person stays in stage I is therefore probably overestimated, given that the patients will 

stay in that stage until they die. The probability of dying in stage IV for the post-diagnosis model is 69% and 

therefore the later stages do not face the same duration problem as they die quicker. Furthermore, patients in 

stage IV cannot progress to a later stage in real life but for the early stage’s disease progression this is possible. 

This also means that the stage IV is more realistic, even though it does not include the aftercare or palliative 

care stages either. 

 

Data 

Some of the choices made in the Markov model were due to data availability. First and foremost, the only 

identified study with the defined lung cancer stages I-IV with stated transition probabilities for the disease 

progression before diagnosis were identified in Hofer et al.’s (2018) study. The transition probabilities were 

created by Hofer et al. (2015) through a Bayesian calibration method and German incidence data were used 

and taken from the German Center for Cancer Registry Data. Since Germans do not differ too much from the 

Danish population, the use of German epidemiology data was considered acceptable. However, it would have 

been preferred to derive data from epidemiological or observational studies from Denmark, to calculate the 

Markov states progression. Although, a limitation to the Markov states would still remain since the whole 

identification of transition probabilities between Markov states can be questioned. How can one predict how 

disease progresses between stages of undiagnosed patients? The only way to study this is to determine disease 

progression from diagnosed but untreated cohorts, otherwise this will continue to be a limitation in the future 

research since the data on undetected incidence will not be available in the future either. To account for this 

uncertainty, the researchers tested the probabilities in the DSA and the analysis of the outcome as stated in the 

discussion. Since the parameters were sensitive, this limitation remains and poses uncertainty to the model and 

results. 

 

When the diagnosis probabilities were modeled the probability of getting diagnosed in the current pathway 

and the non-adherence group for the screening cohort were the same. The assumption is that all the diagnosed 

in the non-adherence screening group (equalling 42% going through the current pathway) were removed before 

the diagnosed through screening “had a chance” to get diagnosed.  The amount of people getting diagnosed 

through the current pathway might therefore be overestimated and the amount of diagnosed through screening 
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cohort underestimated. Furthermore, there might be differences between the German and Danish detection 

process of diagnosis. The diagnosis probabilities were taken from the German study and therefore follows the 

probability of getting diagnosed through this healthcare system more so than the Danish pathway. 

  

In regards to the mortality probabilities, these should have been time dependent, and the risk of dying should 

have increased in the later cycles in comparison to the early stages. Furthermore, the probability of dying in 

the undiagnosed stage is lower than for those in the diagnosed stage, except for in stage I where it is the 

opposite. It might not be reasonable to say that there is a 130% increase (from 29.78% to 69%) in death between 

undiagnosed and diagnosed stage IV patients. As discussed by Snowsill et al. (2018), mortality rates in pre-

clinical lung cancer are uncertain, yet it is widely believed that death as a result of lung cancer occurs post-

diagnosis. A paradox presents in that a diagnosis should not necessarily accelerate death, however a lack of 

diagnosis may constitute mild symptoms which do not directly lead to death.  

 

The process after diagnosis was brought together to one treatment stage for each cancer stage. The death 

probability for the post diagnosis model is therefore the same, even though the probabilities between treatment 

and death, aftercare and death, and palliative care and death are not the same (Hofer et al., 2018). Here, the 

death probability of one year was applied and stayed the same in the sequent cycles. A two year death 

probability after diagnosis should have been applied for the following cycle, and so on. This leads to an 

underestimation of the mortality rates in the post-diagnosis part of the model. 

 

The QALY values remain stable throughout the whole model, independent of how long an individual has been 

in a certain stage. While in reality, patients might change the perception of severity of one stage after being in 

that stage for a long time. The QALY estimation might therefore not be representative of that state over a 

longer time period. Although, since the survivability forecast is low for patients with lung cancer, this might 

not be a large limitation since the probability of dying is quite high. A further limitation for utility measures is 

that QALYs remain the same in the same stages throughout the 15 cycles, meaning no other events that could 

affect the QALY value are taken into account in the model. Since the risk group are heavy smokers in an older 

age range, the probability of other diseases or lowered life quality is likely in reality (Rojewski et al., 2016). 

A third limitation related to QALYs is that some CUA studies report that radiation can affect people who have 

been screened for many cycles who might be physically affected by this. These patients should therefore have 

a lower QALY than people who haven’t been screened for less cycles and therefore have not been exposed to 

as much radiation.  

 

The costs of determining a true-positive diagnosis has also not been included in this Markov model, leading to 

an underestimation of diagnostic costs. To diagnose and stage lung cancer, further imaging and testing must 
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be performed, including but not limited to scans and biopsies. The cost data for the true-positives was not able 

to be averaged for the Danish context, as this is probably because it is difficult to estimate these figures. There 

is a large variation between diagnostic needs and costs, as a patient with obvious and extensive disease may 

not require the same detailed examination as a patient with stage I.  

 

The cost for screening can also be underestimated since the false positive rates could pose extra costs in terms 

of resources used in diagnosis and psychological stress for the patient and the patient's family. On the other 

hand, the screening cost for the cohort might be lower since the probability that individuals would get screened 

for an executive 15 years is low. Furthermore, due to poor data availability, the preferred societal costs 

perspective was not able to be reliably estimated and included in the model. As previously explained, the costs 

would probably be higher if the societal perspective would be used. As the model is sensitive to large cost 

increases, applying the preferred cost perspective might make the results not cost-effective with an ICER above 

the threshold. Providing cost from a payer perspective risks providing an underestimation of the true ICER, 

which can be misleading to decision-makers.  

 

More limitations connected to the cost data is that there was no Danish cost data on the aftercare or palliative 

care which affected the structure of the post diagnosis model. If this data would have been available, the 

structure of the model could have been improved and be a better representation of reality. This would solve 

the issue of the potentially overestimated costs for the lower stage cancers in the post-diagnosis model. 

Depending on the cost of aftercare and palliative care, the cost results might not have looked that different if 

they are the same as treatment costs, but one could assume they are lower in the earlier staged cancer as curative 

treatment is able to be offered. 

 

The number of individuals in cohorts can also be discussed from different perspectives. Section 2.1.2 outlined 

the different risk factors for developing lung cancer, with the cohorts in this study only referring to two of 

these risk factors, being age and smoking history. One could therefore argue that more people should be 

included in the cohort. However, these people can also be difficult to identify and were therefore not included. 

Moreover, in reality there would be additional exclusion criteria which would deem a participant ineligible to 

be included in the program. This includes patients who have cancer, are above a certain weight, on home 

oxygen, recent weight loss or acute respiratory infection (Pedersen et al., 2017). This consequently can lead to 

an overestimation of the inclusion cohort, and the limitation is that one does not know the number of 

individuals that could be eligible for a screening program, in Denmark. 

 

The adherence rate can also be questioned for being overestimated. The adherence rate stays the same for the 

15 cycles but the likelihood that individuals would attend screening for an executive 15 years is low. 
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Furthermore, there are not enough studies to validate that a 58% adherence rate would be correct for those 

implementing the screening program. Although, this is the best estimation in a Danish context for 2022, 

according to studies (Kirkegaard, 2015) and experts within the field (Bigaard, 2022). 

 

Consistency 

The external consistency is about the fact that all relevant data available should be taken into account and 

incorporated in the model. Even though there is evidence of false positive results from LDCT screening from 

both RCTs and CUAs, this model does not account for false positives. The choice to exclude these numbers 

was made to simplify the model and also because no cost data for the false positives could be identified in the 

Danish context. Since all other costs were taken from Denmark, the researchers excluded the false positives 

and left its inclusion to future research. The model could therefore be overestimating the outcomes from the 

screening group, which should have a higher cost and a negative QALY value related to a false positive 

diagnosis. It is important to take this into consideration when concluding the ICER results. 

 

External and Internal Validity 

The model created for this thesis is based on a mix of different data sources. The costs are taken from the 

Danish context and will differ from costs in other countries. However, the interventions compared, risk group 

identified, probabilities of progression, and utility values could be used for studies in other countries similar 

to Denmark, such as Germany, the Netherlands, or Sweden. These countries are mentioned because parameters 

used in this model come from epidemiology data and economic models from these countries. The external 

validity in this study could therefore be argued to be high. Although, since costs have a great impact on the 

model output, these should be applied by the context being studied. The internal validity can be argued to be 

high since the researchers are transparent in choices of perspectives and data sources, conduct sensitivity 

analyses, and state all inclusion criteria and limitations to assumptions and excluded factors. 

 

7.2 Sensitivity Analysis 

A total of 27 single and multi-way sensitivity analysis tests were conducted to determine the uncertainties in 

the model. One could argue that DSA testing is too simplistic, and that inadequate multi-way sensitivity testing 

occurred with only 7 scenarios tested. Testing scenarios which are deemed to be implausible would produce 

results which simply present additional noise, distorting the base case ICER. Additional combinations of input 

assumptions would ultimately lead to flaws within the model, yet in the absence of additional time, the multi-

way scenarios were kept to realistic ones. The parameters of the sensitivities were obtained from the literature, 

whilst some were estimated best-guesses, including the changes in disease progression, diagnostic and 

screening accuracy and associated costs. The lack of evidence to support these variations can deem the results 

to be inaccurate, however not testing these assumptions would lead to more significant limitations. 
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The absence of a PSA presents a large limitation in this study. It was not able to be performed as the alpha and 

beta parameters were unable to to be estimated accurately from the literature due to limited data availability. 

Undertaking PSA testing would enable the researchers to test at various parameters the probability of the 

intervention being cost-effective (A. H. Briggs & Gray, 1999). From here, a more accurate estimate of 

uncertainty within the model can be determined which would lie between the ranges produced in the DSA 

results. Without this testing, the comprehensiveness of the sensitivities can be questioned, however including 

a PSA would risk second-order uncertainty, or parameter uncertainty (A. Briggs et al., 2012). Furthermore, the 

results of the DSA would not be able to be compared against the PSA. Comparing the cost and QALY outcomes 

from the DSA and PSA would determine if there was agreement between the sensitivity analysis, further 

providing evidence of robustness within the model. 

 

7.3 Non-Model Related Limitations 

There are also other factors to this thesis that can add to the list of limitations. These could be the comparison 

to other screening programs in Denmark, identification and further analysis of the Danish context in terms of 

political, structural, social perspectives, expert insights, and patient views and behaviors. These are all 

limitations that would help the EE from being “just” an EE, bringing a more nuanced analysis of the landscape 

and essentially the feasibility of the screening program.  

8. Conclusion 

Several factors have to be considered when determining why the Danish Ministry of Health should consider a 

LCSP for detecting lung cancer amongst heavy smokers aged 55 to 74. The objective of this thesis was to 

primarily conduct an EE to answer the research question as the European Union recommends HTAs for 

assessing healthcare interventions' cost-effectiveness. Other factors such as previous research, epidemiological 

results, and the feasibility of the Danish context are also discussed. 

 

The first reason why the Danish Health Authorities should consider a LCSP for heavy smokers in age 55 to 74 

years old is that the chosen risk group has a higher probability of developing lung cancer than non-smokers at 

younger ages. Furthermore, research has shown that detection in earlier lung cancer stages increase 

survivability at the same time as Guldbrandt et al. (2015) state that the nature of lung cancer diagnosis in 

Denmark leads to diagnosis in later stages. New interventions should be evaluated and potentially introduced 

to improve early-stage diagnosis, looking at the current detection difficulties for early-stage lung cancer. 

However, knowing this is not enough to recommend the Danish Health Authorities consider a LCSP.  
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Healthcare decision-makers have to allocate a constrained budget between an overwhelming volume of new 

healthcare innovations and interventions. To guide decision-makers, HTAs and EEs can be conducted to assess 

the cost and the health outcome to arrive at the most cost-effective interventions to which resources should be 

allocated. Since this EE fulfilled all the requirements for decision-analytic modeling, a CUA was conducted, 

and a Markov model developed. This thesis contributes to the literature through the choice of evaluation since 

there is no CUA conducted on a LCSP in the Danish context. 

 

The recommended screening innovation had to be identified first to evaluate if a LCSP should be implemented 

instead of or in parallel with the current clinical diagnosis pathway. Previous research has identified LDCT 

scanning as the preferred screening option for detecting lung cancer in 2022, so this intervention was compared 

to the current clinical pathway.  

 

The results from this EE arrived in an undiscounted base case ICER of 721,101 DKK/QALY, being cost-

effective given the upper bound of the Swedish CET of 881,316 DKK/QALY. The increased health outcomes 

are worth the higher costs of the intervention. This result would argue for why the Danish Ministry of Health 

should consider introducing a screening program. However, this ICER result comes with uncertainties, as 

shown when testing several parameters through a DSA. 

 

The most sensitive parameter is adherence. However, the model result is sensitive to treatment costs, lung 

cancer progression, and LDCT screening sensitivity. It is important to mention that false positives are not 

included in the analysis, nor the post-diagnosis disease progression, which could affect the output. The 

uncertainties around the choice of CET also affect the interpretation of the ICER, which might not have been 

cost-effective using a lower CET. Therefore, it is difficult to conclude if the ICER result is robust or low 

enough to recommend the Danish Ministry of Health consider a LCSP despite the cost-effective result.  

 

The researchers also compared the base-case ICER result to other CUA results on LDCT screening with the 

same comparator. The ICER in this study is higher than in other CUAs, due to higher healthcare costs within 

the Danish healthcare system. However, since the methodological approaches within the literature varied 

greatly, the comparison did not validate the cost-effectiveness result. 

 

The epidemiological results showed that the screening program is preferred over the current clinical pathway 

for the chosen risk group. More patients are diagnosed in the early stages in the screening group, decreasing 

lung cancer mortality by 21%. This result would argue for a screening program in Denmark since the 

survivability is higher amongst the adherent screening patients getting detected at earlier stages.  

 



 

 

109 

When discussing the feasibility of a potential LCSP in Denmark, social behaviors, resource use, structural 

healthcare changes, and political agendas should be considered. Since this thesis has not researched these 

topics, it is difficult to conclude if a LCSP would be feasible in the Danish context. Although, after talking to 

experts on lung cancer, cancer screening programs, epidemiologists, and lung cancer physicians in Denmark, 

no significant barriers were identified to introducing the program. 

 

The researchers believe that the Danish Ministry of Health should consider a LCSP based on the cost-effective 

results. However, based on the ICER alone, there are multiple uncertainties in the analysis. Difficulties arose 

in confirming the robustness of the base case ICER through sensitivity analysis and when comparing it to the 

existing literature. The model results also show that more patients are being diagnosed earlier, fewer 

individuals die, and no significant challenges in the Danish healthcare system are identified. Therefore, there 

are arguments for why the Danish Ministry of Health should consider an LCSP for detecting lung cancer among 

the risk group evaluated. Recommendations for further research are outlined below, which could give a more 

comprehensive evaluation of the feasibility of a LCSP in Denmark.  

9. Future Perspectives 

Following the five objectives in EEs, the last objective is to identify future research (Drummond et al., 2015). 

This can be done by exploring areas of uncertainty in the model structure and input parameters and identifying 

areas for further consideration. This section will elaborate on the uncertainties and suggest areas of valuable 

future research beyond the model.  

 

As adherence was the most sensitive parameter affecting the ICER, research should be conducted to understand 

the psychosocial elements of adherence to cancer screening programs. There are multiple barriers to lung 

cancer screening adherence among patients identified in the literature. These include the stigma associated 

with lung cancer, reduced health literacy, lack of disease awareness, language barriers, fear of results, and 

access to services (Coughlin et al., 2020). Furthermore, barriers within the medical community should be 

addressed and further investigated. Failures currently exist both within the primary and acute healthcare 

settings, where eligible participants currently have low referral rates from physicians due to competing 

demands, lack of symptom awareness, low levels of shared decision-making, and evolving attitudes about the 

effectiveness of screening and lung cancer treatment (Carter-Harris & Gould, 2017). Addressing these barriers 

has been suggested to involve creating dedicated teams, expedited screening results for patients, utilization of 

mobile scanners to improve access to health care, and targeting the information needs of both medical and 

participating individuals. Addressing the root cause of barriers to adherence should be of a high priority to 
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establish and maintain the cost-effectiveness of a LCSP, as advanced infrastructure must be in place for the 

program to be successful.  

 

The structural implementation barriers of introducing a LCSP have not been addressed in detail in this thesis 

but must be carefully planned and considered. When introducing a screening program, it is essential that 

resources are not diverted from other cost-effective healthcare interventions but instead used to enhance 

healthcare in harmony. When implementing the intervention, innovative methods should address the resource 

consumption around equipment, personnel, and information technology systems (Carter-Harris & Gould, 

2017). 

 

As previously mentioned in the discussion, investing in technologies with higher detection sensitivity has 

shown to be cost-effective, while advancements to the standard clinical pathway showed minimal effects. To 

compensate for this, utilizing innovation methodologies, such as the validated innovation model created by the 

Center for Integration of Medicine and Innovative Technologies, can further focus upon and facilitate the cycle 

of innovation (Brenan, 2011). Having robust methodologies to follow can provide structured guidance for 

healthcare decision-makers, enabling innovation and change. As the LDCT has a high false positive rate and 

the European Agency Health Technology Assessment has identified molecular biomarkers as an area for future 

research (EUnetHTA, 2020), other technologies should be considered. Biomarkers are said to have enormous 

potential but still require validation for widespread application. 

 

Smoking is the leading risk factor for developing lung cancer, and it can be argued that preventative measures 

should be utilized further. Denmark is moving forward in these areas and has proposed new legislation to 

reduce the sale and consumption of cigarettes. However, smoking prevention programs should be considered 

in conjunction with a LCSP, as changing the behaviors of smokers will ultimately affect lung cancer rates. 

This area has to be further researched as some screening programs, including smoking cessation as a mandatory 

part, have led to lower attendance amongst smokers. For the risk group identified within this thesis, ceasing or 

reducing smoking may not offset the damage caused by extensive smoking history. However, it could bring 

benefits to future generations. 

 

Denmark could also begin measuring health utilities for widespread use in economic analyses. As QALYs are 

relatively new health measurements, a fundamental approach should be utilized to begin collecting validated 

QALYs for different health states. Using health utilities from other countries risks misrepresenting results and 

having QALYs obtained in a localized context will provide greater accuracy in future EE research. 

Additionally, having QALYs specific to Denmark can allow for equity weights to be applied, which can help 

decision-makers in trade-off situations when allocating resources (Cookson et al., 2017). 
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Denmark does not yet have a CET established for EEs despite EEs being part of HTA and becoming a more 

popular method for assessing healthcare technologies globally. Given that the European council and parliament 

are adopting a new framework for HTA, which will be in place by 2025, one can assume that HTA reports will 

become increasingly used in Europe and Denmark. Without a threshold, it is impossible to determine if an 

intervention is cost-effective if the ICER falls in the northeast or southwest quadrant. Given that, typically, 

new interventions are more effective but more costly, a threshold is therefore needed to assess the health 

innovations. With multiple methods available for creating a CET, Denmark could focus research on 

establishing an appropriate CET within the Danish context. There are, however, risks and downsides of 

introducing a CET, including possible higher prices for interventions and decreased coverage. This leads to 

whether EEs should be a significant part of HTAs as the analysis is incomplete without a CET. One should 

also further investigate if the downsides of introducing a CET outweigh the positives. If so, other methods 

guiding the decision-makers could be explored, for instance, the ones stated in the introduction (Kristensen & 

Sigmund, 2008) or the relative net benefit (O'Mahony, 2015). 

 

This thesis closes by giving the reader food for thought on the methods for EEs and the future of assessing 

healthcare innovations. The EU is adopting a framework for HTA to deal with current inefficiencies, intending 

to facilitate the joint clinical assessment of health technologies across the Union (European Commission, 

2022). An EE's methodological choices and perspectives significantly affect the outcome. Therefore, the EU 

should provide structure for collaboration and the methodological frameworks and perspectives which should 

be followed. Data availability should also be considered when setting up the guidelines. This, to validate 

research against other literature and generalized to other member countries. The uncertainties between the 

different methodological choices and the use of CETs can limit the practical use of EEs, which the European 

Commission should focus on solving when moving towards introducing new valuable healthcare innovations. 
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11. Appendix  
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Appendix 2. Summary of Cost-Utility Analysis Studies
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Appendix 3. Decision Tree - Lung Cancer Screening Program and Standard Clinical Pathway 
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Appendix 4. Number of Diagnosed Patients in Different Stages After 15 Cycles in the Markov 

Model and Costs for Each Stage 
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Appendix 5. Outcomes of Sensitivity Analysis  

 

 

Appendix 6. Undiscounted ICERs From 1 to 30 Cycles 
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Appendix 7. Discounted ICERs from 1 to 30 Cycles 
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12. Glossary 

 

CADTH                    Canadian Agency for Drugs and Technologies in Health 

CAR                         Cancer Registry 

CAR                         Danish Cancer Registry 

CBA                          Cost-benefit analysis 

CEA                          Cost-effectiveness analysis 

CEP                          Cost-effectiveness plane 

CET                          Cost-effectiveness threshold 

COPD                       Chronic obstructive pulmonary airway disease 

CPI                           Consumer price index 

CUA                         Cost-utility analysis 

DALY                       Disability-adjusted life year 

DKK                         Danish Kroner 

DLCR                       Danish Lung Cancer Register  

DLCR                       Danish Lung Cancer Register 

DRG-DAGS           Diagnosis-related group database 

DSA                          Deterministic sensitivity analysis 

ECR                          Effectiveness-cost ratio 

EE                             Economic evaluation 

ERS                          European Respiratory Society 

ESR                          European Society of Radiology 

FCM                         Friction-cost method  

GDP                          Gross domestic product 

GP                            General practitioner  

HCM                         Human-capital method 

HRQoL                     Health-related quality of life 

HTA                          Health Technology Assessment 

ICER                         Incremental Cost-Effectiveness Ratio 

IPF                            Idiopathic pulmonary fibrosis 

LCSP                        Lung cancer screening program 

LDCT                        Low dose computed tomography 

LLPv2                       Liverpool Lung Project risk model  

LPR                          National Patient Register  
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LPR                          National Patient Register 

MFS                          Metastasis-free survival  

NCCN                       National Comprehensive Cancer Network 

NELSON                   Netherland-Belgian Lung Cancer Screening Trial  

NICE                        National Institute for Health and Care Excellence 

NLST                        National Lung Screening Trial 

NSCLC                     Non-small cell lung cancer  

OECD                       Organization for Economic Cooperation and Development 

PFS                        Progression-free survival 

PSA                          Probabilistic sensitivity analysis 

QALY                       Quality-adjusted life year 

RCT                          Randomized control trial 

RP                             Revealed preference 

SACT                        Systemic anticancer therapy  

SCLC                        Small-cell lung cancer 

SES                                Socioeconomic status  

SP                             Stated preference 

TNM                         Tumor node metastasis  

TTO                          Time trade off 

UKLS                        United Kingdom Lung Cancer Screening 

VAS                          Visual-analogue scale    

VATS                       Video-assisted thoracic surgery 

VATS                       Video-assisted thoracotomy surgery  

WHO                        World Health Organization 

WTP                         Willingness-to-pay
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