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Abstract

Intertemporal choice is fundamental in many economic and financial decision-
making problems. In this thesis we first present reinforcement learning theory and
then show how it can be used as a tool to model and approach two of these problems
fully automated. The first is the classical utility maximization problem framed as an
investor performing portfolio optimization trading an equity index. Here we show
that a risk-averse agent tends towards a classic buy and hold strategy the longer
it trains. The second is a method to develop automated market-making trading
strategies. We do this by simulating a stock market in an agent-based model, which
lets us mitigate some common assumptions, such as no market impact and the
absence of transaction cost, as well as model the dynamics of the order book. Here
we see that the agent learns and improves its performance through time, but slowly.
And due to the lag of computing power, we have not been able to run the experiment
for as long as desired.



Resumé

I mange problemstillinger indenfor økonomi og finans er tid altafgørende for resultatet.
Vi præsenterer først teorien bag reinforcement learning, og derefter hvordan den kan
anvendes til at modellere og takle to af disse helt automatiseret. Den første er det
klassiske nyttemaksimeringsproblem i et porteføljeoptimerings setup. Her viser vi, at en
riskikofølsom agent konvergerer mod en klassisk køb-og-hold strategi desto længere den
træner. Den anden er en metode til at udvikle automatiserede market making trading
strategier. Vi gør dette ved at simulere et aktiemarked i en agentbaseret model, hvilket
lader os se mildere på nogle klassiske antagelser så som ingen transaktionsomkostninger
og ingen markedspåvirkninger, samt modellere dynamikkerne i orderbooken. Her ser vi,
at agenten lærer og forbedre dens performance over tid, men gør det langsomt, og i mangel
på computerkraft har vi ikke kunne køre forsøget så længe, som vi havde ønsket.
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1 Introduction
The influence of systematic trading strategies on the financial markets is increasing every
day, and today, trades executed through algorithms account for 63-70% of the volume in
the US equity markets and 92% in the forex market (Kissell 2020). The idea of automatic
and systematic financial decision-making has been around for a long time. It started in
the 1970s, together with the growth of computer technology and the implementation
of The Designated Order Turnaround, which made trading electronic. Back then, the
focus was on statistical arbitrage and asset pricing models. In the last decade, machine
learning (ML) and artificial intelligence (AI) techniques have gained enormous popularity
and are today influencing numerous aspects of human life. Within the world of AI,
especially reinforcement learning (RL) has accomplished great success. Through self-
taught agents, it has developed state-of-the-art robots, self-driving cars, and computer
programs for playing games. It is the core component in the first computer program to
beat the world champion in the game Go and is likewise the method used in the best
chess engine as of today. These achievements have drawn the attention of researchers
within finance to investigate whether RL techniques can perform equally well playing
in the financial markets. This thesis presents the theory of modern RL techniques and
shows how they can be applied as tools to solve financial decision-making problems within
portfolio optimization and market making.

1.1 Structure

This thesis is structured into four main parts, which individually is split into sections.

In Part I we present the theoretical background in RL. It includes section 2-4. In section
2 we introduce Markov decision processes, which is the framework used to model the
sequential decision making we are attempting to solve. In section 3 we present classical
methods to approach MDP’s and the transition to the basic RL approaches. In section 4
we go through generalized and advanced RL methods, which can be used to solve most
real life representations of Markov decision processes.

In Part II, we present our first experiment using RL for portfolio optimization trading a
stock. The part is split into sections 5-10. In section 5, we introduce the experiment and
its theory and background. In section 6, we present the data used and the methods that
we use to simulate more data to train our RL agent upon. In section 7, we present the
implemented RL agent and the framework in which it learns. In sections 8, 9 and 10 we
represent the experiment’s results, discussion and conclusion.

In Part III, we present the second experiment, where we use RL to train an agent using
an agent-based model simulation of the underlying dynamics in a stock market. It is split
into sections 11-15. In section 11, we introduce the background of the experiment and
present some recent related research within the field. In section 12, we go through the
agent-based model framework, how we construct it and how to use it for simulation. In
section 13, we introduce real high-frequency data and suggest a method to calibrate the
agent-based model to this data. Finally, we compare the statistics of the simulated data
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and the real data. In section 14, we present the market making RL agent, which we train
using the agent-based simulation. In section 15, we show the results, and in sections 16
and 17, we discuss and conclude upon the experiment.

In Part IV, we give an overall conclusion on the experiments and analyses done in the the-
sis, as well as reflect on how these can be improved for further studies. This is respectively
done in section 18 and 19.

1.2 Problem Statement

In this thesis we aim to answer the following problem statement:

How can reinforcement learning be applied as a tool for implementing systematic trading
strategies within portfolio optimization and market making?

To do this we answer the following sub-questions

• What is Markov decision processes?

• How do we solve Markov decision processes using reinforcement learning methods?

• How can policy gradient methods be used to directly model the decision process, rather
than the possible outcomes?

• How can the portfolio optimization problem be framed, so that it can be solved using
reinforcement learning?

• How can we model stock prices in order to simulate more data for the purpose of
training a reinforcement learning agent?

• How do we train a reinforcement learning agent in order to perform portfolio opti-
mization?

• How can we model the underlying dynamics of the financial markets using agent-based
model simulation?

• How can we evaluate how well the agent-based model reflects the stylized facts of
the financial markets

• How can reinforcement learning be used to learn systematic trading strategies in an
agent-based model simulation of the financial markets?

1.3 Research Delimitation

In this thesis, we wish to dive into reinforcement learning, focusing on the class of policy
gradient methods to tackle portfolio optimization and market making, where the under-
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lying dynamics of the order book come into play. We will only apply the reinforcement
learning class of policy gradient methods within the experiments. Concerning the portfo-
lio optimization problem, we will limit it to a simple representation of an equity market,
including a single index. In the market making problem, we will focus on the applications
of reinforcement learning for market making solely, though it could easily be extended to
other types of actors too.

1.4 Code

All the code for this thesis is implemented in Python and can be found at github.com/rl_for_trading.
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Part I

Reinforcement Learning Theory
RL is a class of ML techniques. The main difference between ML and statistics is their
purpose. Generally statistics aim to explain inference regarding the relationship of vari-
ables, while ML attempts to make precise predictions out of sample. This does not mean
that statistical models can not be used for prediction, just that it is generally not their
main purpose. Within ML we have three major categories: Supervised learning (SL),
Unsupervised learning (UL) and reinforcement learning (RL).

SL attempts to learn from labeled data, i.e. we wish to explain Y (label) from X (input).
The term learn generally refers to estimation and the two words will be used interchange-
ably. This could for instance be the act of ’learning’ the parameters of an underlying
distribution, or ’learn’ the parameters optimizing a parameterised objective function.
The purpose of SL is to learn in a generalized way, such that given another sample of
inputs X2 we can predict the corresponding labels Y2.

In contrast UL tries to learn from unlabeled data. The goal is to extract information
from the data, which then can use to label provide labels to the data. A common use
case is clustering. UL can be used to create clusters of observations, which reveal some
of the underlying similarities in the data.

RL is focused on learning policies through trial and error. In RL problems, there is
not a human modeler to collect or label any data. The goal is to make decisions, interact
and observe through agents, and then let the agents learn from these experiences (obser-
vations). An example could be a game playing agent. The agent trains by playing the
game and will hopefully be better the more it plays. An appealing factor of RL model-
ing is that the agents can output an optimal policy, which can be directly implemented
without the need for human input afterwards. This is practical for the purpose of full
automation of tasks. In comparison, normal statistical models will output a probabil-
ity distribution over possible outcomes, which humans then have to select their decision
upon.

2 Markov Decision Processes
A Markov decision process (MDP) is a framework satisfying the Markov property, while
allowing a model to interact with and affect an underlying probability distribution. In
this section we will thoroughly go through the concepts needed to understand MDP’s as
well as showing methods to model and find optimal solutions to MDP problems. We use
the notation introduced by S. R. Sutton and Barto 2018 with slight modifications.
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2.1 Markov states

We let St ∈ S be the state of a stochastic process, where S is a finite set of all its possible
states. For the purpose of this introduction, we assume S to be finite, though we will later
show how to generalize to infinite state representations. A stochastic process is Markov
(a Markov process or Markov chain) if it meets the Markov property:

Definition 2.1. (Markov Property) A state St is Markov if and only if

P(St | St−1) = P(St | S1, ..., St−1).

I.e the current state is a sufficient statistic of the future and thus we can ignore the
history of the process and keep our model simple by only keeping track of the information
in the current state.
Let

p(s′ | s) = P(St = s′ | St−1 = s)

be the one step transition probability from state s to s′. All transitions are probabilities,
i.e

0 ≤ p(s′ | s) ≤ 1, ∀s, s′ ∈ S

and the process will always find itself in a state∑
s′∈S

p(s′ | s) = 1.

Further we denote the n-step transition probability from s to s′ as pn(s′ | s). To calculate
the n+m step we can use the Chapman-Kolmogorov equation

pm+n(s | s′) = P{Sm+n = s′ | S0 = s}

=
∑
z∈S

P{Sm+n = s′, Sm = z | S0 = s}

=
∑
z∈S

pm(s | z)pn(z | s′), (1)

which says that the transition from state s to s′, in n+m steps, can be written in terms
of the transition probability from s to all possible states z in n steps multiplied by the
probability from these new states to s′ in m steps.

2.2 Environment and actions

In the case of a simple Markov process, there is no way to interact with and influence
the environment since one moves from state to state through the transition probabilities.
Therefore a Markov process alone is not an adequate representation of the environments
we need to solve real-life problems. For an environment to be complex enough to describe
problems that we face in the real world, we need it to be interactable and change through
interactions. To formalize this way of interacting with the environment, we make use of
the MDPs, which is a method that enables the agent to influence the transition proba-
bilities and thereby interact with the environment. This environment where the agent
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moves around consists of states, actions, and rewards, where rewards are used to achieve
a goal. The agent runs for a full episode, which will be the period that the agent is active.
An episode could represent a game, for example a game of tic-tac-toe.

We will, in this section, consider only episodic environments, which means that there
eventually will be a terminal absorbing state in which the Markov process stops. This
means that we will have a point in time T , where the Markov process stops. If the process
describes an intraday stock market, the terminal state could be the state at the time at
which the stock market closes. If the state represents the positions in a game. Then the
terminal state could be a position in which the game is over.

The actions that the agent can take may depend on the current state that the agent
are in, and consists of all the possible actions at time t = 0, 1, ..., T , at ∈ A(s). We define
the transition probabilities given actions in a MDP as

p(s′|s, a) = P(St = s′ | St−1 = s, At−1 = a), ∀s, s′ ∈ S, a ∈ A(s). (2)

where the only difference from an ordinary Markov process is that transition probability
also depends on the chosen action a. Given a state s and an action a at time t we will
with certainty end be in a state again at time t+ 1, i.e.∑

s′∈S

p(s′ | s, a) = 1, ∀s ∈ S, a ∈ A(s),

Since we only need to include the preceding state and action, we need the last state
to include all information about the changes to the environment that affects the agent;
otherwise we would not have the Markov property. If the agent would act differently
whether it had information about all previous states and actions taken or just the last
state and action, then we could not have the Markov property. Therefore we have to be
careful when defining how the states are represented.

Note that the action space is dependent on the given state, since the actions that the
agent are able to take can depend on the state. Though to spare notation we will from
now denote the action space as A . To describe how the states and actions can interact,
consider a game of tic-tac-toe where the agent plays randomly with the given probabili-
ties:

1 2 3
1 1

9
1
9

1
9

2 1
9

1
9

1
9

3 1
9

1
9

1
9

When the game starts it is possible for the agent to place a piece wherever it wants, but
after the first move the environment changes, lets say the first piece is placed in the upper
left corner (1,1):

1 2 3
1 ×
2
3
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Then the agent has the action space of all positions except for the upper left corner (1,1).
In the tic tac toe example, a terminal state is either a state with three X’s or O’s in a
row/diagonal or where all places in the matrix are filled.

2.3 Rewards, Value Functions and Policies

In Markov decision problems rewards are used to evaluate the value of being in different
states, or the value of selecting different actions given a state. For instance in the tic tac
toe problem, a winning state having 3 pieces in a row is an optimal state and should be
rewarded accordingly. We define the reward function r(s, a), which defines the expected
future reward being in state s taking action a.

r(s, a) = E [Rt | St−1 = s, At−1 = a]

=
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a). (3)

where Rt is a stochastic variable representing the reward at time t and R is the space of
all possible rewards and

p(s′, r | s, a) = P(St = s′, Rt = r | St−1 = s, At−1 = a)

is the transition probability from state s, by taking action a to state s′ receiving reward
r. We can write the transition formulation with rewards with regards to the transition
including rewards as follows

p(s′ | s, a) =
∑
r∈R

p(s′, r | s, a). (4)

Often we are not very interested in the immediate reward, but rather the future cu-
mulative reward. For example in tic tac toe one could imagine a reward provided for
connecting two pieces, but we would care much more about the future reward received
when connecting three. Another obvious example is modelling returns in the financial
markets, where investors often have a long investing horizon. We define the cumulative
future rewards from time t until T as

Gt =
T∑

k=t+1

γk−t−1Rk, (5)

where 0 ≤ γ < 1 is a discount factor to ensure convergence. This is especially helpful,
when an episode of the MDP is long. Note that the cumulative rewards has a recursive
nature

Gt = Rt+1 + γGt+1

= Rt+1 + γRt+2 + γ2Gt+2

...

In the tic-tac-toe example the agent played randomly, however this is surely not the best
strategy. To define how the agent acts we need a smart way to map from a given state
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to a set of probabilities, from which the agent will choose an action to take in order to
maximize its expected return. This mapping is defined as the policy, π. We define π to
be a probability function that specifies the probability that we will take action At = a
given the state we are in St = s

π(a | s) = P(At = a | St = s).

Thus for a given policy the transition probability of going from state s to s′ is given by

P(St = s | St−1 = s, π) =
∑
a∈A

π(a | s)p(s′ | s, a)

where the only difference is that we take the probability weighted expectation over the
action space.

To evaluate policies and their future reward Richard Bellman 1957 suggests the state-
value function, vπ(s). This function is the expectation of the future cumulative rewards
given the current state following policy π:

vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

= Eπ[Rt+1 | St = s] + γEπ[Gt+1 | St = s]

The first term is straight forward and follows from probability weighting the actions in
eq. (3) by our policy:

Eπ[Rt+1 | St = s] =
∑
r,s′,a

rπ(a | s)p(s′, r | a, s).

As for the second, see that by applying the law of total expectation we can further
condition on the next state and thus get

γEπ[Gt+1 | St = s] = γEπ
[
E [Gt+1 | St+1 = s′]

∣∣∣ St = s
]

=
∑
r,s′,a

π(a | s)p(s′, r | a, s)γE [Gt+1 | St+1 = s′]

=
∑
r,s′,a

π(a | s)p(s′, r | a, s)γvπ(s′).

Finally we get

vπ(s) =
∑
s′,r,a

π(a | s)p(s′, r | s, a)[r + γvπ(s′)], ∀ s ∈ S (6)

Equation 6 is known as the bellman equation for vπ(s). Note its recursive nature (vπ(s)
is a function of vπ(s′)).
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Instead of evaluating the value of a state, another intuitive objective is to evaluate
the actions given a state. We let the action-value function express the expected return
given a state s, taking action a, and thereafter following the policy π:

qπ(s, a) = Eπ[Gt | St = s, At = a]

following the same steps as when deriving the state-value function we get

qπ(s, a) = Eπ[Rt+1 + γGt+1 | St = s, At = a]

= Eπ[Rt+1 + γvπ(St+1) | St = s, At = a]

= Eπ[Rt+1 | St = s, At = a] + Eπ[γvπ(St+1) | St = s, At = a]

=
∑
s′,r

p(s′, r | s, a)r +
∑
s′,r

p(s′, r | s, a)γvπ(s′)

=
∑
s′,r

p(s′, r | s, a)[r + γvπ(s′)]. (7)

Clearly the value functions have a close relationship. We can write vπ(s) as an expectation
of qπ(s, a) over the action space

vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

= Eπ
[
Eπ′ [Rt+1 + γGt+1 | St = s, At = a]

∣∣∣ St = s
]

= Eπ′ [qπ(St, At) | St = s] (8)

and by taking a probability weighted average over the action space we get

vπ(s) =
∑
a∈A

π(a | s)qπ(s, a) (9)

The State Distribution

We define the expected discounted number of time steps spent in s starting in state S0,
be given by

η(s) = Eπ
[ ∞∑
t=0

γt1{St=s} | S0 = s0

]
=
∞∑
t=0

γtPπ(St = s | S0 = s0)

=
∞∑
t=0

γtpt(s | s0, π) (10)

where pt(s | s0, π) is the t-step transition probability following π. Recall that γ is the
discount factor. It can be seen as a form of termination, which eventually occur. And
thus η(s) is the discount weighted expected number of time steps visiting s, under policy
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π, starting in state S0. We define the state distribution of s under π as the expected
fraction of time spent in s following π given by

µπ(s) =
η(s)∑
s∈S η(s)

.

This is also known as the on-policy distribution. Recall that the state space is assumed
finite.

2.4 Putting it all together

Finally we combine all the elements in the tuple 〈S,A, p, r, γ〉, which defines the Markov
Decision Process.
Definition 2.2 (Markov Decision Process). AMarkov Decision Process is a tuple 〈S,A, p, r, γ〉

• S is a set of states.

• A is a set of actions.

• p is a transition probability function.

• r is a reward function.

• γ is a discount factor.

Figure 1 illustrates the MDP dynamics between the agent and the environment:

observe→ take action→ receive reward+observe→ take action→ receive reward+observe....

Figure 1: Illustration of MDP dynamics. Green illustrates input, and red illustrates output.
Agent observe and interacts through actions which affect the environment, which provides feedback
in rewards, and updates the state, which the agent observe ....
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3 Solution Methods
The goal of RL is for the agent to achieve the maximum possible reward during a given
time frame. This is done by finding an optimal policy maximizing the value functions.
Bellman explain the definition in his principle of optimality.

Principal of Optimality. (Bellman 1957) An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.

A policy π is considered a better policy than π′ when:

vπ′(s) ≤ vπ(s),∀s ∈ S

And all optimal policies π∗(a | s) satisfies

vπ∗(s) = max
π

vπ(s)

and

qπ∗(s, a) = max
π

qπ(s, a)

In this section we present three fundamental approaches to solve the Bellman Equation
(eq. 6) in order to find optimal policies.

3.1 Dynamic Programming

Dynamic programming, also introduced by Richard Bellman, is a method to find solu-
tions to the recursive value function by splitting the problem into sub problems, which is
done by approximating the value functions through updated expectations. The process
assumes that the problem is well defined (full knowledge of the MDP). The idea is the
same as in the shortest path algorithm: split the problem into sub problems and solve
them one at a time.

The first objective when finding an optimal policy is being able to estimate the state-value
function given a policy. The simplest method to do so is the Iterative Policy Evaluation
algorithm, shown in algorithm 1. It simply computes and updates the value function for
each step in time and by adding up reward. As k → ∞ the algorithm converges to the
true vπ(s). The convergence is guaranteed and easily reasoned by the discount factor γ:
the more iterations into the future the harder discounting through γ and thus the less
the value function is affected by the reward.
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Algorithm 1: Iterative Policy Evaluation
Input:
• π: policy
• θ: accuracy threshold parameter
• v̂0(s) = 0
Output: Estimate of value function vector v̂π(s), ∀s ∈ S.

1 Initialize:
2 k = 0
3 repeat
4 ∆(s)←− 0, ∀s ∈ S

5 for s ∈ S do
6 v̂k+1(s)←−

∑
s′,r,a π(a | s)p(s′, r | s, a)[r + γv̂k(s

′)]

7 ∆(s)←− max(∆, |v̂k(s)k+1 − v̂k(s)|)
8 end
9 k ←− k + 1

10 until ∆(s) < θ, ∀s ∈ S;

In theory we are now able to find an optimal policy brute forcing through all possible
policies and finding the one maximizing our value function. Though a simpler way is
to update our policy in each iteration choosing the policy maximizing the probability of
entering the state with the highest value. This method is called Policy Improvement and
specifically updates the policy as the greedy policy π′

π′(s)←− argmax
a
qπ(s, a),

where π′(s) = a denotes a deterministic policy, meaning that policy π′ takes action a
with probability equal to 1 given state s. Its value is at least as large as if any other
policies were followed, for all s, over one step:

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s).

Thus it improves the state-value function

vπ(s) ≤ qπ(s, π′(s)) = Eπ′ [Rt+1 + γvπ(St+1) | St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1)) | St = s]

≤ Eπ′ [Rt+1 + γRt+2 + γ2qπ(St+2, π
′(St+2)) | St = s]

≤ Eπ′ [Rt+1 + γRt+2 + ... | St = s] = vπ′(s)

Combining the policy evaluation and improvement methods we can now construct the
policy iteration algorithm, shown in algorithm 2 and converges to the optimal policy π∗.
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Algorithm 2: Policy Iteration
Input: π0: policy, v0

π0 : value function
Output: Optimal policy π∗, state-value function v∗

1

2 1. Policy Evaluation
3 e.g. algorithm 1
4

5 2. Policy Improvement
6 Policy_stable = True
7 for s ∈ S do
8 πold ←− π(s)
9 π(s)←− argmaxa qπ(s, a)

10 if vπold(s) 6= vπ(s) then
11 Policy_stable = False
12 end
13 end
14 if Policy_stable then
15 Return vπ(s) ≈ v∗, π ≈ π∗
16 else
17 Go to 1.
18 end

Figure 2, illustrates the policy iteration algorithm solving a simple grid-world example. It
has a cost of 1 to take a step from a given state (square) to another. The top right corner
is a terminal state, which ends (wins) the game. We start by setting up the grid (a) and
evaluates all states as 0 (b). A random policy is then chosen (c) and being evaluated (d).
Policy is improved (e) and evaluated (f), same again (g) and (h), with no change to value
function, so algorithm has converged and stops.

Another method for finding optimal policies is to work directly on the value function
and maximize it with respect to the possible actions. This is known as value iteration
and shown in algorithm 3, which iteratively maximizes the Bellman equation and stops
when the difference in state-value function between two iterations is small, returning the
policy achieving the latest state-value function. The key difference to policy iteration is
expressed in the wording. Policy iteration evaluates policies and the improve upon these,
while value iteration evaluates the value of each action from a state and then updates the
corresponding state-value function.
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(a) Grid (b) Initialization. (c) Random Policy. (d) Evaluation 1.

(e) Improvement 1. (f) Evaluation 2. (g) Improvement 2. (h) Evaluation 3.

Figure 2: Grid world example. We start by setting up the grid (a) and evaluates all states
as 0 (b). A random policy is then chosen (c) and being evaluated (d). Policy is improved (e)
and evaluated (f), same again (g) and (h), with no change to value function, so algorithm has
converged and stops. The squares are colored using a heat map, such the the red colors presents
high value states, and blue represents low.

Algorithm 3: Value Iteration
Input: v(s): value function, θ: accuracy threshold parameter.
Output: π ≈ π∗

1 repeat
2 ∆←− 0
3 for s ∈ S do
4 vk+1(s)←− maxa

∑
s′,r p(s

′, r | s, a)[r + γvk(s
′)]

5 ∆←− max(∆, |vk+1(s)− vk(s′)|)
6 end
7 k ←− k + 1

8 until ∆ < θ;

3.2 Monte Carlo methods

Sometimes the environment is not known before the agent moves into it, which makes it
so that we cannot use Dynamic Programming. Here Monte Carlo methods offer a range
of methods to estimate the value functions and find the optimal policies, without knowing
the environment in advance. These algorithms rely on random sampling, which in RL
frameworks are sampling of states, actions and rewards. This can either be through live
experience, where the agent is running in real time or in a simulated setup. In Monte
Carlo methods we do not need full knowledge of the MDP, but we need a model that can
generate samples, from which returns from different states can be calculated to evaluate
a given a policy π. The Monte Carlo method is simply an iterative mean update after
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each simulated episode. Let Gk(s) be the cumulative return of the k-th visit to state s,
we then write the Monte Carlo update as

v̂π(s)k ←−
1

k

k∑
j=0

Gj(s)

=
1

k

(
Gk(s) +

k−1∑
j=0

Gj(s)
)

= v̂π(s)k−1 +
1

k

(
Gk(s)− v̂π(s)k−1

)
.

Note that we in the last equation subtract a fraction of the previous state-value estimate
and add a corresponding fraction of the new observed value of the same state. The esti-
mates we get at the different states are independent and we can therefore start estimating
the value functions from any given starting state. The general Monte Carlo algorithm for
estimating the value function is illustrated in Algorithm 4.
Algorithm 4: Monte Carlo Algorithm to estimate vπ
Input:
• π: policy
• v̂π(s): state-value function
• n(s): vector to count number of times we have been in s.
Output: Approximate state-value function v̂π(s).

1 Initialize:
2 n(s) = 0, ∀s
3 repeat
4 Simulate an episode using π
5 for s ∈ S do
6 n(s)←− n(s) + 1
7 v̂π(s)←− v̂π(s) + 1

n(s)
(G(s)− v̂π(s))

8 end
9 until Desired number of episodes has been run;

Monte Carlo methods allows us to estimate state-value functions and is seen as ’model-
free’ because we do not model the underlying transition probabilities of the MDP. Re-
garding the action-value function we can sample state-action pairs and thus estimate the
action-value function, q̂π(s, a). We can then make a deterministic policy that chooses the
action that leads to the highest future cumulative reward. Though when doing so, we
are facing some issues because we are following a deterministic policy, and thus we are
not going to experience all the state-action pairs. Therefore we need to find a way such
that our policy sometimes allow us to pick the less-favored actions to make sure that
we actually find the optimal policy. This dilemma between choosing high value actions
and testing unknown or low value actions is known as the exploration exploitation trade-
off. To deal with this we split RL algorithms into two families; on-policy and off-policy.
On-policy is a method where we improve the policy that we also use in the episodes to
decide which actions to take, where off-policy improves another policy that we do not use
through the episodes.
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In on-policy methods we ensure that

π(a | s) > 0,∀s ∈ S, a ∈ A,

which allows us to choose all the given actions in a given state, although there should
be a higher probability to choose the action with the most expected reward than the
others. One method is using ε−greedy policies, where we choose a non-optimal action
with probability ε. Assuming that there only is one action a∗ yielding the highest expected
reward (if there is more, a random of those can be chosen), we have

π(a | s) =
ε

|A| − 1
,∀s ∈ S, a ∈ A\a∗.

The greedy action then has

π(a∗ | s) = 1− ε,∀s ∈ S

Since we are assigning probability mass to the actions that are not considered the most
favorable actions, these ε−greedy policies will be worse the more we increase ε. Despite
from being a constant, ε can also defined as a function of the number of actions taken,
such that it goes to 0 when the number of actions taken goes to ∞. An example of an
on-policy algorithm to estimate the action-value function can be seen in Algorithm 5.
Algorithm 5: Monte Carlo Algorithm to estimate π and q̂(s, a) on-policy
Input: π: initial policy, Q: action-value function, R: return array, n(s, a) vector

to count number of times we have been in s and taken action a
Output: Policy π(a | s) and action-value function q̂(s, a).

1 repeat
2 Simulate an episode, E, using π

/* Action-value function q̂(s, a) update */
3 for s, a in E do
4 G = cummulated return after state s and action a
5 n(s, a)+ = 1
6 q̂(s, a) = q̂(s, a) + 1

n(s,a)
(G− q̂(s, a))

7 end
/* Policy π(a | s) update */

8 for s in E do
9 a∗ = argmax

a
q̂(s, a)

10 for For all a ∈ A(s) do

11 π(a | s) =

{
1− ε if a = a∗
ε

|A|−1
if a 6= a∗

12 end
13 end
14 until;

In the off-policy methods we use two policies: the one we know from earlier, π, which we
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will call the target-policy and a behaviour-policy, b. The behaviour-policy is the policy we
use during episodes and use to estimate the target-policy. Because we use b to estimate
π we need to make sure that all the states and actions that we encounter in π is also
encountered in b. Here we can keep b ε-greedy while having π as a deterministic policy
which simply chooses the optimal actions.

To estimate the value function under π we encounter a problem, because all the observed
rewards are achieved following b. I.e. we wish to calculate

v̂π(s) = Eπ[Gt | St = s],

but only know

v̂b(s) = Eb[Gt | St = s],

because Gt is achieved from following b. Luckily we can use a method called importance
sampling, which is a method where we estimate the expected returns following π relative
to following b. In a general setting where p and q are two distributions, the idea is that

Ep[f(X)] =
N∑
i=1

p(xi)f(xi)

=
N∑
i=1

q(xi)
p(xi)

q(xi)
f(xi)

= Eq
[p(X)

q(X)
f(X)

]
.

so that using Monte Carlo we can compute

Eq
[p(X)

q(X)
f(X)

]
=

1

N

N∑
i=1

p(xi)

q(xi)
f(xi), xi ∼ q(x). (11)

The ratio between the two distributions q and p is called the importance sampling ratio.
Back to the RL setting we let St be the state at time t. To calculate the probability of a
given sequence of state-action pairs from time t to T , we can multiply our target policy
π, with the transition probabilities:

T−1∏
k=t

π(Ak | Sk)p(Sk+1 | Sk, Ak),

which is dependent on the transition probabilities. However the ratio between the prob-
abilities given the two policies are independent on the transition probabilities:

ρTt =

∏T−1
k=t π(Ak | Sk)p(Sk+1 | Sk, Ak)∏T−1
k=t b(Ak | Sk)p(Sk+1 | Sk, Ak)

=
T−1∏
k=t

π(Ak | Sk)
b(Ak | Sk)

.
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because they cancel out. ρTt is the importance sampling ratio. It represents the ratio
between the probability that we get a sequence of state-action pairs given the two different
policies. It tells us the likelihood of selecting an action a following π relative to following
b. To calculate the state-value function we define a set J(s) that keeps track of all the
time steps, t, that we have entered a given state s. Furthermore we let T (t) keep track of
the time step of termination after being at time t. Using these we can estimate the state-
value function following π by multiplying the reward following b with the importance
sampling ratio:

v̂π(s) =

∑
t∈J(s) ρ

T (t)
t Gt

|J(s)|
,

where Gt is the return we gained from t to T (t) following b, and |J(s)| is the number of
times we have been in s (equal to the number of time steps we have entered s). This
way of estimating v̂ is called the ordinary importance sampling method. It follows from
eq. (11) that it is an unbiased estimate. Though it has potentially very large variances
because there is no bound on the importance sampling ratio. Instead of computing the
average by dividing with the number of times we have been in s, a solution is to calculate
the weighted average with respect to the sampling ratios

v̂π(s) =

∑
t∈J(s) ρ

T (t)
t Gt∑

t∈J(s) ρ
T (t)
t

.

This adds bias to our estimate, but lowers the variance.

3.3 Temporal Difference

The RL problem deviates from classical ML problems in the fact that temporality mat-
ters. Temporality refers to time or the sequence in which we observe a MDP. Temporal
difference (TD) is a method, which mixtures Dynamic programming and Monte Carlo.
It utilizes the resampling aspect of Monte Carlo and the value function estimation of
Dynamic Programming. Just as with Monte Carlo we in TD use an incremental mean
update, though instead of estimating the mean after a full sampled episode we estimate
(bootstrap) the expected future reward in an episode on an ongoing basis. TD agent’s
approach to learning during episodes is known as online learning, and its ability to do
so is one of the reasons why RL has gained its popularity. In general we see the TD
problem as an update with respect to a fraction α of a TD error. The simplest version
is a one-step look ahead update known as TD(0):

v̂(St)←− v̂(St) + α

Rt+1 + γv̂(St+1)︸ ︷︷ ︸
TD target

−v̂(St)


︸ ︷︷ ︸

TD error

.

Thus the TD target in TD(0) is an estimate of the future value function at time t + 1.
We will refer to the TD error by δt, i.e

v̂(St)←− v̂(St) + αδt,
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where

δt = Rt+1 + γv̂(St+1)− v̂(St)

By learning online and estimating v̂(St) continuously we add bias to our estimates, un-
less our estimate of the value function is the actual true value function, whereas Monte
Carlo updates after full episodes creates unbiased estimates. By only updating with a
single step into the future the noise of our updates becomes much smaller and thus the
variances of our estimates becomes smaller. Instead of only looking one step ahead we
could also look n steps ahead before updating our estimate and this way find a balance
in the trade-off between bias and variance. Even though we add bias to our estimate the
TD(0) algorithm still converges to the true value function (S. R. Sutton and Barto 2018).

An intuitive alternative approach is estimating the action value function. Using TD(0)
this is known as the on-policy Sarsa algorithm:

q̂π(St, At) = q̂π(St, At) + α [Rt+1 + γq̂π(St+1, At+1)− q̂π(St, At)] .

The sequence of random variables appearing in the update: St, At, Rt+1, St+1, At+1, is
what the algorithm is named after.

One of the most famous RL algorithms is Q-learning. Q-learning is an off-policy TD
algorithm, which approximates the action value function by estimating q∗ one step ahead:

q̂π(St, At) = q̂π(St, At) + α
[
Rt+1 + γmax

a
(q̂π(St+1, a))− q̂π(St, At)

]
3.4 Ergodic Markov Decision Processes

We have considered cases where MDP’s comes in episodes, and shown that if the episodes
are long, using discounting helps. But when MDP’s are continuous, e.g. we play a game
without an ending it turns out there is a more efficient way of modelling rewards: the
average reward setting. This could for instance represent a financial market, which never
closes, e.g. the Foreign Exchange Market. In the average reward setting we evaluate
rewards as the difference between the instantaneous reward and the average reward:

Gt = Rt+1 − r(π) +Rt+2 − r(π) + . . .

where r(π) is the average reward of the followed policy π, which is given by

r(π) = lim
h→∞

1

h

h∑
t=1

Eπ[Rt | s0]

= lim
t→∞

Eπ[Rt | S0]

=
∑
s

µπ(s)
∑
s′,r,a

π(a | s)p(s′, r | s, a)r (12)

where

µπ(s) = lim
t→∞

Pπ(St = s)
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is the steady state or stationary distribution following π. The derivation holds if the
MDP is ergodic. In an ergodic MDP a stationary distribution exists independent of S0.
I.e. the probability of transitioning from a state to another in x steps converges to a
distribution, which is independent of the starting distribution and does not change as
long as the same policy is being followed.

In the derivation of the state-value function in the average reward setting, we use the
same steps as deriving the bellman equation earlier, eq. (6), where the only difference is
the subtraction of r(π) and the removal of the discount factor γ:

vπ(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r − r(π) + vπ(s′)], ∀ s ∈ S

Likewise our TD targets gets adjusted. In the average reward setting we have

δ = Rt+1 − r̂(π) + v̂(St+1)− v̂(St)

Finally the main reason for choosing the average reward setting, is because using dis-
counted rewards in a continuous setting simply happens to be a scalar of the average
reward. This is shown in the futility of discounting in continuing problems.

The Futillity of Discounting in Continuing Problems. (S. R. Sutton and Barto
2018) Discounting can be saved by choosing an objective that sums discounted values over
the distribution with which states occur under the policy.

Argument. Let J(π) denote the performance measured in reward following π.

J(π) =
∑
s

µπ(s)vπ(s)

=
∑
s

µπ(s)
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvπ(s′)] (Bellman, eq.6)

= r(π) +
∑
s

µπ(s)
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)γvπ(s′) (def. r(π), eq. 12)

= r(π) + γ
∑
s′

vπ(s′)
∑
s

µπ(s)
∑
a

π(a | s)p(s′ | s, a) (def. p(s′ | s, a))

and since
∑

s µπ(s)
∑

a π(a | s)p(s′ | s, a) = µπ(s′), we get

= r(π) + γ
∑
s′

vπ(s′)µπ(s′)

= r(π) + γJ(π)

= r(π) + γr(π) + γ2r(π) + ...

=
1

1− γ
r(π) (sum geo. series)

Because the rewards in the discounted setting just becomes scalar of those in the
average setting, the discount factor has no influence.
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4 Generalized Solution Methods
So far we have focused on finding solutions to the value functions for each and every
unique (state, action)-pair provided in a given MDP. In practice the state and action
spaces are often large, sometimes continuous and therefore infinite. Thus the problems
will be computationally difficult or even impossible to solve. The solution is to find a way
of generalizing our estimate of the value function, even to scenarios not encountered in the
MDP before. In this section we show how this is done by using function approximators.

4.1 Function approximation

We let f̂ denote a model or function approximating another unknown function f . There
are endless ways of approximating functions, some common known are linear models,
decision trees and neural networks. We will focus on parametric methods, where the
model takes vector of parameters as input and utilizes them to output an approximation
of the desired unknown function.

4.1.1 Value Function approximation

In RL, two key unknown functions are the value functions vπ(s) and qπ(s, a). Let vπ(s)
and qπ(s, a) represent the true state- and action-value functions. Then the idea is to find
approximators v̂π(s,w) and q̂π(s, a,w) such that

v̂π(s,w) ≈ vπ(s) ∧ q̂π(s, a,w) ≈ qπ(s, a).

Here w ∈ Rd stands for weights and represents an unknown parameter vector estimated
using data from the given state (and chosen action for q̂π(s, a,w)). From the data pro-
vided in a state, we extract a state feature vector:

x(s) =


x1(s)
x2(s)
...

x‖x‖(s)

 ,
where in the linear case ‖x‖ = d. The feature vector is basically a design matrix with one
row dependent on the current sate. This way of looking at the problem does not change
anything dramatically, actually all the methods introduced in section 3 can be modelled
this way with the feature vector having as many features as the MDP has states. In this
case, when modeling v̂π(s,w), the features would be binary each representing a state,
such that each state could potentially gain their unique value - just as in section 3. I.e
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the feature vector would be of the form:

x(S = sj) =



1{S = s1}
...

1{S = sj−1}
1{S = sj}
1{S = sj+1}

...
1{S = s|S|}


=



0
...
0
1
0
...
0


,

and the function approximator could be a linear model

v̂π(s,w) = x(s)>w.

For obvious reason, all-ready mentioned, we do not desire to include features for each state
in most practical applications. The aim is to select a set of features and find a function
approximator f(s,w) of our value functions that generalizes well, while describing enough
information about the individual states to distinguish them from each other.

4.1.2 Policy approximation

Until now we have solely presented methods to solve MDPs by estimating the true value
functions and then make decisions based on these. Policy methods is another class of RL
algorithms, which attempts to learn the optimal policy directly. This is done by making
a parameterized function of the policy, such that

π(a | s,θ) = πθ(a | s) = P(At = a | St = s,θt = θ),

which again could be any function, though often neural networks are a popular choice.
θ ∈ Rd′ represents the parameter vector of the learned policy, while we keep w for the
weights of the learned value functions. We keep the parameter vectors separated because
the more advanced methods, which we present in 4.4, utilizes function approximations
for both policy and value functions to enhance performance and convergence.

In discrete action spaces the softmax function is often used to output a probability equiv-
alent to the exponential weight

πθ(a | s) =
eh(s,a,θ)∑
a e

h(s,a,θ)

where h(s, a, θ) is some function used to approximate the optimal policy, e.g. linear model
or neural network.

One clear advantage that policy methods bring is its possibility learn stochastic poli-
cies. In a game like rock-paper-scissors the only optimal policy is a random uniform
distribution between rock, paper and scissors. Any strategy, which leans towards a spe-
cific action will easily be learned and exploited. Another advantage is that policy methods
works well in continuous action spaces, which we will show in section 4.3.3. A disadvan-
tage on the other hand is that policy methods often converge to local instead of global
optimum. Another disadvantage is that evaluating a policy is often inefficient and with
high variance, though in section 4.4 we introduce some methods to help with this issue.
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4.2 Deep Reinforcement Learning

Deep reinforcement learning is a popular subgroup of RL algorithms, where the function
approximator is a deep neural network. In part II and III of this thesis, where we test RL
algorithms for trading purposes, deep neural networks are our function approximators of
choice. We will only focus on feed-forward neural networks, even though network types
such as Convolutional neural networks and Recurrent neural networks also have its use
cases in RL.

Neural networks attempts to replicate some of the mechanisms in the brain of human
beings, by mathematically connecting data points like the network of neurons in the
brain, and is one of the building blocks of modern artificial intelligence. Like any other
statistical model neural networks are used as function approximators attempting to map
an input to an output (e.g. X → Y ). Actually neural networks are build upon the linear
model and a traditional feed forward neural network has the output form/layer:

f(X) = β0 + β>Z,

where

Z ∈ RM , Zm = σ(α0m + α>mX), ∀m ∈ 1, ...M.

Z represents a hidden layer in the neural network with elements Zm, called neurons. The
activation function σ(x) maps x to a given range depending on the chosen function, and
can be different from layer to layer. Usually it maps an input to output in a limited
range, e.g. x ∈ R→ Y ∈]− 1, 1[. For example the sign, sigmoid or ReLU functions:

σ(x) = sign (x) ∨ σ(x) =
1

1 + e−x
∨ σ(x) = max(0, x)

In case the output has a specific form, for instance a probability or a non-negative value,
it is a common practice to apply an activation function in the output-layer, such that

f(X) = σ(β0 + β>Z).

To further develop a neural network a common extension is to add additional ’hidden
layers’ (Z ′s) and feed them into each other, replacing X after first iteration, i.e:

f(X) = β0 + β>ZD,

where

ZD
m = σD(αD0m + α>DmZ

D−1), ∀m ∈ 1, ...MD

Z1
m = σ1(α10m + α>1mX), ∀m ∈ 1, ...M1.

A neural network with more than one hidden layer (D > 1) is called a deep neural net-
work and is often referred to as deep learning. We will generally refer to neural works
covering both regular neural networks, and deep neural networks. Figure 3 illustrates a
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Figure 3: Illustration of a neural network with two hidden layers. The green circles represent
the inputted feature vector and the blue circles represent the neurons of the network. The 2 times
4 stacked set of neurons represents two hidden layers. The final red circles represents the output
layer.

deep neural network with input X ∈ R3, two hidden layers Z1, Z2 ∈ R4 and an output
f(X) ∈ R. We will only work with dense layers, which are layers that are fully connected
to each other, but there are other type of networks that work with layers that are not
fully connected.

One thing to keep in mind, when using neural networks is that due to its complex struc-
ture, it is often impossible to interpret the relationship between the inputs and outputs.
It is a "black box" model. Thus if the modeller has a priori knowledge about how the
inputs and outputs are related, or if it is important for the modeller to gain information
about the relation. Then it is advised to use a model which reflects, or can reflect this
relation, rather than using neural networks. Or for the first case at least attempt to do so
before testing neural networks. Note that because of this, when we use neural networks
later, we will not be analyzing variable importance, when estimating vπ(s,w), qπ(s, a,w)
or πθ(a | s). This would have been possible if e.g. linear models were used. This is a
sacrifice, which often is necessary, because the linear models are not complex enough to
capture the structure of the value and policy functions. As a consequence of complexity
neural networks are prone to overfitting, but there are various ways that we can try to
prevent this. We can use shrinkage methods, here two popular ones are the L1- and L2-
Regularization, also known as Lasso and Ridge. L2 regularization is a method where we
punish the loss function with the sum of the squared weights, θ, where θ is our parameter
vector

L̂(θ) =
λ

2

∑
w∈θ

w2 + L(θ),
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where λ determines the amount of regularization that we use. This form of regularization
pushes the weights towards zero. On the other hand we have the L1 regularization that
allow the weights to become zero. This is done by penalizing the sum of absolute weights:

L̂(θ) = λ
∑
w∈θ

|w|+ L(θ).

Another famous and very powerful method to prevent overfitting is dropout (Srivastava
et al. 2014). Dropout is a very simple approach where we assign a probability, pdropout,
to each neuron that it will be omitted. This can either be done to specific layer or to all
layers in the network. Formally the dropout procedure is done by sampling Ml (where l
represents the given layer) number of Bernoulli random variables with probability pdropout

and multiply these with the weights in the given layer:

B ∼ Bernoulli(pdropout)

α = α�B.

Note that this is only done during training, and when actually predicting we utilize the
full neural network.

Figure 4 shows an example neural network, where dropout has dropped out 3 neurons
marked with dark blue.

Figure 4: Illustration of how a neural network could be with dropout. The dark blue circles
with crosses represents the neurons that are dropped out.
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4.3 Estimation

Just like any other statistical problem we would like to estimate the parameters w∗, such
that f̂(X,w∗) is as close to the true function f(X) as possible, where ’close’ is defined
by an objective function, often a loss-function measuring the distance from f̂(X,w∗) to
f(X).

4.3.1 The Weight Vector

When estimating the state-value function a natural objective is to minimize the loss
function mean squared value error by following a policy. The mean squared value error
is

VE(w) = Eπ
[(
vπ(S)− v̂π(S,w)

)2]
=
∑
s∈S

µπ(s)[vπ(s)− v̂π(s,w)]2.

Recall that µπ(s) ≥ 0,
∑

s µπ(s) = 1 is a state distribution under π, which in practice
usually is the fraction of time spent in s. The distribution is used to weight the different
states according to their frequency in the minimization problem. vπ(s) represents the
true state-value function, which we obviously do not know. Therefore we substitute in
approximations of it in its place. Using Monte Carlo methods we run through an entire
episode and therefore have knowledge of the future cumulative reward and in TD(0) we
use the TD target. In Monte Carlo we use the mean square return error :

RE(w) = Eπ[(Gt − v̂π(St,w))2]

=
∑
s∈S

µ(s)
(
Gt − v̂π(s,w)

)2

=
∑
s∈S

µ(s)
(

[Gt − vπ(s)] + [vπ(s)− v̂π(s,w)]
)2

=
∑
s∈S

µ(s)
(
Gt − vπ(s)]2 + [vπ(s)− v̂π(s,w)]2 + 2(Gt − vπ(s))(vπ(s)− v̂π(s,w))

)
=
∑
s∈S

µ(s)
(

[Gt − vπ(s)]2 + [vπ(s)− v̂π(s,w)]2
)

The double product term is zero, because

Eπ
[(

(Gt − vπ(St)
)(
vπ(St)− v̂(St,w)

)]
= Eπ

[
(Eπ[Gt − vπ(St) | St])(vπ(St)− v̂(St,w))

]
where the right hand side is zero because Eπ[Gt|St] = vπ(St). Thus we finally get

RE(w) = VE(w) + Eπ[(Gt − vπ(St))
2].

In TD(0) we use the mean square TD error :

TDE(w) =
∑
s∈S

µ(s)Eπ
[(

Rt+1 + γv̂(St+1,wt)︸ ︷︷ ︸
TD target

−v̂(St,wt)
)2

| St = s

]

= Eπ
[(
Rt+1 + γv̂(St+1,wt)− v̂(St,wt)

)2
]
,
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if training on-policy and

= Eb
[
ρt

(
Rt+1 + γv̂(St+1,wt)− v̂(St,wt)

)2
]
,

if training off-policy, where b represents the behavior policy and ρ is the importance sam-
pling ratio. Note that the parameter wt is time dependent this is because TD(0) is fully
online and trains within the episodes.

Whenever we get a new observation we would like update our parameters iteratively.
There are many methods to do so which utilizes second order derivatives and advanced
techniques, but in practice stochastic gradient descent (SGD) is a popular and reliable
choice. With VE as objective function standard gradient descent performs the iterative
update

wt+1 ←− wt − α
1

2
∇wVE

= wt + αEπ[(vπ(S)− v̂(S,w))∇wv̂(S,w)]

and stochastic gradient descent samples the update

wt+1 ←− wt + α[vπ(st)− v̂(st,wt)] ∇wv̂(st,wt),

where α is the learning rate or step size. The lower α the better convergence properties,
but the slower the learning and vice versa. SGD updates like this makes it possible to
learn fully online, i.e. we learn immediately from each action taken, in an efficient way.
Though instead of updating the weights after each time step a common practice is to
use mini batch gradient descent, which at every m steps in time samples a batch B from
memory M to perform gradient descent upon. The memory

M =
{
{s1, vπ(s1)}, {s2, vπ(s2)}, ..., {st, vπ(st)}

}
represents all data points an agent has experienced at a given time point. At time t+ 1
in the context of estimating a state-value function we get

wt+1 ←− wt − α
1

‖B‖
∑

{s,vπ(s)}∈B

[vπ(s)− v̂(s,wt)] ∇wv̂(s,wt), B ⊆M.

Updating in mini batches saves a lot of computing power compared to training on the full
updated data frequently. It is often also a preferred solution over learning fully online,
because modern implementations can parallelize the gradient updates. An advantage of
both SGD and mini batch gradient descent is that they are less prone to get stuck in local
minimums. This is a consequence of the noise added to the direction in the sampling
process.

Sometimes B is restricted to the most recent experiences. If samples are drawn from
the past and replayed (trained upon), this is called experience replay.Through time our
function approximators change, and thus replaying a data point with our new updated
functions will also provide a new representation of the old state. Often gaining new ex-
periences can be expensive, why learning multiple times from previous experiences can
be efficient.
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4.3.2 Policy Gradient Methods

Let us consider the performance measure J(πθ) = J(θ) of a policy πθ. In an episodic
environment with the same starting state s0 a natural choice is the state-value function
of s0 following πθ:

J(θ) = vπθ(s0)

To estimate θ, we use gradient descent methods again, and with J(θ) as the objective
function, we update our parameters as follows.

θt+1 ←− θt + α∇̂θJ(θt)

where ∇̂θJ(θt) is an estimate of the performance measure with expected value approx-
imately equal to the gradient ∇θJ(θt). Notice that the minus sign in the update has
become a plus, previously we wished to minimize a loss function, whereas we now desire
to maximize a performance function. All RL methods that uses policy updates as in the
equation above is called policy gradient methods.

When the function approximator for πθ is differentiable with respect to θ and we know
the gradient ∇θπθ(a | s) we can calculate the gradient analytically using likelihood ratios:

∇θπθ(a | s) = πθ(a | s)∇θπθ(a | s)
πθ(a | s)

= πθ(a | s)∇θ log πθ(a | s).

where ∇θ log πθ(a | s) is the score function.

We now have a performance measure J(θ) and a parameterized policy function πθ(a | s)
with a gradient we can calculate. But

∇θJ(θt) = ∇θvπθ(s0)

= ∇θ

∑
a∈A

πθ(a | s)qπθ(s, a), (eq., 9)

which depends on the state distribution µπθ(s). And we do not know the effect of the
policy changes on µπθ(s). This is where the Policy Gradient Theorem (R. Sutton et al.
1999) comes in handy. It utilizes likelihood ratios and creates a new formulation for
∇θ log πθ(a | s), which does not include derivatives of µπθ(s).

Theorem 4.1. (Policy Gradient Theorem). Assuming a finite state space S. Then for
any differentiable policy πθ(a | s), the policy gradient is

∇θJ(θ) ∝ Eπθ [∇θ log πθ(At | St) qπθ(St, At)].

Proof. From eq. (9) we have that vπ(s) = Eπ[qπ(s, At)] =
∑

a∈A π(a | s)qπ(s, a) and thus

∇θvπθ(s) = ∇θ

[∑
a

πθ(a | s)qπθ(s, a)
]
,

=
∑
a

[
∇θπθ(a | s)qπθ(s, a) + πθ(a | s)∇θqπθ(s, a)

]
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using the product rule. From eq. (7) we get

∇θvπθ(s) =
∑
a

[
∇θπθ(a | s)qπθ(s, a) + πθ(a | s)∇θE [Rt+1 + γvπθ(St+1) | St = s, At = a]

]
=
∑
a

[
∇θπθ(a | s)qπθ(s, a) + πθ(a | s)∇θ

∑
s′,r

p(s′, r | s, a)(r + γvπθ(s′))
]

because p(s′, r | s, a)r is independent of θ and given the definition of p(s′ | s, a), eq.(4)
we get

∇θvπθ(s) =
∑
a

[
∇θπθ(a | s)qπθ(s, a) + πθ(a | s)∇θ

∑
s′

p(s′ | s, a)γvπθ(s′)
]

=
∑
a

[
∇θπθ(a | s)qπθ(s, a) + πθ(a | s)

∑
s′

p(s′ | s, a)∇θγvπθ(s′)
]
,

from which we see a recursion similar to the one from the bellman equation, eq. (6). To
ease notation we let

b(s) =
∑
a

∇θπθ(a | s)qπθ(s, a),

and the n-step transition probability from state s to s′ under policy πθ be denoted as

pn(s′ | s, πθ) = Pπθ(St+n = s′ | St = s)

such that

∇θvπθ(s) = b(s) +
∑
s′

p1(s, s′, πθ)γ∇θvπθ(s′)

and by inserting ∇θvπθ(s′)

∇θvπθ(s) = b(s) +
∑
s′

[
p1(s, s′, πθ)γ

[
b(s′) +

∑
s′′

p1(s′, s′′, πθ)γ∇θvπθ(s′′)
]]
,

which we can write using the Chapman-Kolmogorov equation, eq. (1)

∇θvπθ(s) = b(s) +
∑
s′

[
p1(s, s′, πθ)γb(s′) +

∑
s′′

p2(s, s′′, πθ)γ2∇θvπθ(s′′)

]
,

inserting again

∇θvπθ(s) = b(s) +
∑
s′

[
p1(s, s′, πθ)γb(s′) +

∑
s′′

[
p2(s, s′′, πθ)γ2b(s′′)

+
∑
s′′′

p3(s, s′′′, πθ)γ3∇θvπθ(s′′)
]]
.
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Note that this recursion continues and the longer we do so, the higher the exponent of
γ. Thus eventually the term including ∇θvπθ will be eliminated because 0 ≤ γ < 1. This
leads to

∇θvπθ(s) =
∞∑
t=0

∑
s′

pt(s
′ | s, πθ)γtb(s′)

=
∞∑
t=0

∑
s′

pt(s
′ | s, πθ)γt

∑
a

∇θπθ(a | s′)qπθ(s′, a),

which applies for all s. Now recall that the performance measure is with respect to the
first state s0:

∇J(θ) = ∇vπθ(s0)

=
∑
s′

∞∑
t=0

pt(s
′ | s0, πθ)γt

∑
a

∇θπθ(a | s′)qπθ(s′, a).

Now recall that η(s′) =
∑∞

t=0 γ
tpt(s

′ | s0, πθ), eq. (10) is the expected number of time
steps in s, such that

∇J(θ) =
∑
s′

η(s′)
∑
a

∇θπθ(a | s′)qπθ(s′, a).

Dividing and multiplying by the total number of time steps
∑

s η(s) :

∇J(θ) =
∑
s

η(s)
∑
s′

η(s′)∑
s η(s)

∑
a

∇θπθ(a | s′)qθ(s′, a)

∝
∑
s′

µ(s′)
∑
a

∇θπθ(a | s′)qπθ(s′, a),

where ∝ means that it is proportional to. The constant of proportionality is
∑

s η(s).
Using likelihood ratios we finally get

∇J(θ) ∝
∑
s′

µ(s′)
∑
a

πθ(a | s′)∇θπθ(a | s′)
πθ(a | s′)

qπθ(s′, a)

∝ Eπθ [∇θ log πθ(At | St)qπθ(St, At)]

The theorem says that we can take a step in the correct gradient direction of the per-
formance measure, with respect to our policy parameters. We do this by adjusting our
policy such that we do more of the actions that provide high rewards and less of the ac-
tions which provide low rewards, a quite intuitive result. The result leads us to our first
policy gradient algorithm REINFORCE (Williams 1992). The REINFORCE algorithm
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uses Monte Carlo methods to run through episodes using v̂π(st) = Gt as an unbiased esti-
mates of qπθ(st, at) followed by a policy update combining SGD with the policy gradient
theorem:

θt+1 ←− θt + α∇θ log πθ(at | st)Gt.

The full algorithm is shown in algorithm 6.
Algorithm 6: REINFORCE
Input:
• Differentiable policy parameterization πθ(a | s).
• learning rate α ∈ [0, 1].
• Initial policy parameter θ ∈ Rd′ .
Output: Policy parameter θ.

1 for each episode following πθ do
2 for t = 0, 1, ...T − 1 do
3 θ ←− θ + α∇θ log πθ(at | st)Gt

4 end
5 end

4.3.3 Continuous Action Spaces

When we are in the case of continuous action spaces or in a case where we have a very large
action space, the most effective way is not to use our policy to evaluate probabilities for
each of the actions. Instead we want our policy to learn statistics regarding a distribution
of our actions. Such a distribution could be the multivariate normal distribution, where
we need to estimate the mean, µ(s,θµ) ∈ Rda and Σ(s,θΣ) ∈ Rda×da , such that
a ∼ N

(
µ(s,θµ),Σ(s,θΣ)

)
, i.e. the policy is given by

πθ(a | s) =
1√

(2π)da|Σ(s,θΣ)|
exp

(
− 1

2
(a− µ(s,θµ))>Σ(s,θΣ)−1(a− µ(s,θµ)

)
,

where θ = [θµ,θΣ]>. It does seem very appealing to model the policy as a multivariate
normal distribution, but in practice estimating the variance parameters makes the prob-
lem a lot more difficult for the agents, while not providing a lot of gain in performance.
The reason why we include the variance term is to provide exploration. It is less im-
portant to find optimal exploration than optimal actions. Thus in practice we assume
the actions to be uncorrelated and therefore let Σ be a diagonal matrix, with constant
elements chosen by the modeller. To solve the problem we then need to calculate the
score function of µ(s,θµ), which is

∇θµ log πθ(a | s) =

(
∂µ(s,θµ)

∂θµ

)>
Σ−1

(
a− µ(s,θµ)

)
where ∂µ(s,θµ)

∂θµ
is a Jacobian matrix.
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4.4 Actor-Critic Methods

The REINFORCE method has a problem with high variance in its estimates, which is due
to the Monte-Carlo sampling that makes the trajectories of rewards and log-probabilities
vary a lot. In theory one could increase the sample size, but in practice this is not a
computationally efficient solution. This variance makes the gradients unstable, but luckily
actor-critic methods provides tools to ease the issue by utilizing function approximators
for both policy and value functions. The "critic" estimates the value-function and the
"actor" updates the policy in the direction we get from the critic. The idea is that we in
actor-critic methods not only update the policy in regards to the observed reward, but
also in regards to our expectation to the rewards. Hence the critic refers to the function
approximator of the action-value function

q̂πθ(s, a,w) ≈ qπθ(s, a),

where w is the parameters in the action-value function and θ is the parameters used to
set the policy πθ. Actor-critic methods uses the approximate policy gradient

∇̂θJ(θ) ≈ Eπθ [∇θ log πθ(At | St)q̂πθ(St, At,w)] ,

such that

∆θ = α∇θ log πθ(a | s)q̂πθ(s, a,w).

The compatible function approximation theorem (Theorem 4.2) states that we can replace
the true q-function with an approximation in the policy gradient and still ensure that
the true gradient is preserved. An approximation of q(s, a) is thus compatible with the
policy πθ(s, a) in the policy gradient if it meets the criteria given in Theorem 4.2.

Theorem 4.2. (Compatible Function Approximation). A function approximator, q̂πθ(s, a,w),
is compatible with a policy, πθ if the value function approximator is compatible to the pol-
icy:

∇wq̂πθ(s, a,w) = ∇θ log πθ(a | s)

and w minimizes the MSE

Eπθ
[
(qπθ(St, At)− q̂πθ(St, At,w))2

]
and thereby ensuring that the gradient is exact:

∇θJ(θ) = Eπθ [∇θ log πθ(At | St)q̂πθ(St, At,w)]

Proof. If w is chosen to minimize the MSE then the gradient of the MSE w.r.t w must
be zero:

∇wMSE = E [2 (qπθ(St, At)− q̂πθ(St, At,w))∇wq̂πθ(St, At,w)] = 0.

We have that

∇wq̂πθ(s, a,w) = ∇θ log(πθ(a | s))
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and by substituting it into the MSE gradient we get

∇wMSE = E [2 (qπθ(St, At)− q̂πθ(St, At,w))∇θ log πθ(At | St)] = 0

expanding and ignoring the factor 2

0 = Eπθ [qπθ(St, At)∇θ log πθ(At | St)− q̂πθ(St, At,w)∇θ log πθ(At | St)]
= E [qπθ(St, At)∇θ log πθ(At | St)]− E [q̂πθ(St, At,w)∇θ log πθ(At | St)] .

Because ∇wMSE = 0 the two expectations on the right hand side are equal. Thus we
can substitute q̂πθ in for q and still follow the true gradient:

E [qπθ(St, At)∇θ log πθ(At | St)] = E [q̂πθ(St, At,w)∇θ log πθ(At | St)] .

Due to the high variance of the action value function, we wish to subtract a baseline from
it to reduce the variance. This needs to be done such that it does not change the direction
of our gradient step. A good baseline is our state-value function, which then means we
will compare how good a specific action is given the mean value of the corresponding
state. By subtracting the state-value function from the action-value function we create
what is called the advantage function

Advπθ(s, a) = qπθ(s, a)− vπθ(s).

Note that it is important that the baseline function is independent of a since we then do
not add any bias to the gradient. As we will see, this does not change the expectation.
We let v denote the parameter vector for estimating vπθ , in order to distinguish between
the parameters used for estimating vπθ and qπθ in following derivations. Substituting in
the advantage function gives

∇θJ(θ) = Eπθ [∇θ log πθ(At | St)(q̂πθ(St, At,w)− v̂πθ(St,v))],

= Eπθ [∇θ log(πθ(At | St))q̂πθ(St, At,w)]− Eπθ [∇θ log πθ(At | St)v̂πθ(St,v)],

= Eπθ [∇θ log πθ(At | St)q̂πθ(St, At,w)]−
∑
s

µ(s)
∑
a

∇θπθ(a | s)v̂πθ(s,v),

using that both µ(s) and v̂πθ(s,v) is independent of a:

= Eπθ [∇θ log πθ(At | St)q̂πθ(St, At,w)]−
∑
s

µπθ(s)v̂πθ(s,v)∇θ

∑
a

πθ(a | s),

where µπθ(s) is the on-policy distribution following πθ. Using that
∑

a πθ(a | s) = 1 since
it is a sum over all the probabilities, which must sum to 1 we get

= Eπθ [∇θ log(πθ(At | St))q̂πθ(St, At,w)]−
∑
s

µ(s)v̂πθ(s,v)∇θ

∑
a

1,

= Eπθ [∇θ log(πθ(At | St))q̂πθ(St, At,w)]−
∑
s

µ(s)v̂πθ(s,v) · 0,
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To do this we let the critic approximate both value functions and compute the advantage
from these:

v̂πθ(s,v) ≈ vπθ(s),

q̂πθ(s, a,w) ≈ qπθ(s, a),

ˆAdvπθ(s, a) = q̂πθ(s, a,w)− v̂πθ(s,v).

Thus to reduce variance we can replace q̂πθ(s, a,w) by the advantage function in our
estimated gradient, providing

∇θJ(θ) = Eπθ
[
∇θ log πθ(At | St) ˆAdvπθ(St, At)

]
.

However we can do this in a smarter fashion by using TD(0). Recall the TD error:

δπθ = Rt + γvπθ(St+1)− vπθ(St),

which is an unbiased sample estimate of the advantage function:

Eπθ [δπθ | St = s, At = a] = Eπθ [Rt + γvπθ(St+1)− vπθ(St) | St = s, At = a]

= Eπθ [Rt + γvπθ(St+1) | St = s, At = a]− vπθ(s)

= qπθ(s, a)− vπθ(s)

= Advπθ(s, a),

why we substitute it into our gradient replacing the advantage function

∇θJ(θ) = Eπθ [∇θ log πθ(At | St)δπθ ].

In practice we use an approximation of the state-value function, and only need to estimate
one set of parameters, v, instead of estimating both v and w:

δv = r + γv̂πθ(St+1,v)− v̂πθ(St,v).

We call actor critic policy gradient methods, which uses the advantage function for
advantage-actor-critic (A2C) algorithms. The A2C algorithm using TD(0) as an estimate
of the advantage function is show in Algorithm 7, and a visualization of its interactions
between the actor, critic and the environment is shown in figure 5.
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Algorithm 7: Advantage-Actor-Critic (A2C) with TD(0) step (online)
Input:
• Differentiable parameterized policy πθ(a | s,θ).
• Differentiable parameterized state-value function v̂πθ(s,v).
• learning rate αθ, αv ∈]0, 1].
• Initial policy parameter and state-value parameters θ ∈ Rd′ ,v ∈ Rd.
Output: Policy πθ

1 for each episode do
2 I ←− 1
3 for t = 0, 1, ...T − 1 do
4 Take action a ∼ πθ(At | s), observe s′, r
5 δ ←− r + γv̂πθ(s′,v)− v̂πθ(s,v)
6 v←− v + αvδ∇v̂πθ(s,v)
7 θ ←− θ + αθIδ∇ log πθ(a | s)
8 I ←− Iγ
9 s←− s′

10 end
11 end

5.

Figure 5: A representation of the A2C algorithm: Advantage - Actor - Critic
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Part II

Portfolio Optimization with
Reinforcement Learning
In this part we build upon the study made by Petter N. Kolm and Gordon Ritter in 2019
(Kolm and Ritter 2019), where they create an RL agent that trades a mean-reverting pro-
cess around a predefined equilibrium price. Their environment enforces an alpha strategy,
by selling above the equilibrium price and buying below. We will contribute by imple-
menting a RL agent that trades an index, which is simulated by a AR(1)+GARCH(1,1)
process, which is known to reflect real market dynamics well. We will estimate the pa-
rameters from daily S&P500 prices observed from 2010 to 2020. This way we incorporate
real data, and produce a simulation which reflect the dynamics of the real stock mar-
ket better. Furthermore we will back test the agents performance on the period from
2020-01-01 to 2022-04-01.

5 Background
We will start by considering the classical utility maximization problem: How should one
individual allocate her money in order to maximize her utility? Consider the expected
future utility at time T :

E [u(wT )] = E

[
u

(
w0 +

T∑
t=1

[wt − wt−1]

)]

where u is the utility function and wt is the individuals wealth at time t. Because the
future changes in wealth are unknown, we often let the maximization problem take risk
into account. We call individuals that care about risk for risk-averse. There are multiple
ways to model risk, but we will consider the general case, in which risk is measured in
variance of change in wealth.

The changes in wealth are assumed independent, such that wt−wt−1 ⊥⊥ wk−wk−1, k 6= t.
Thus the variance in wealth at time T can be written as:

Var[wT ] =
T∑
t=1

Var[wt − wt−1].

Now consider the risk-averse mean-variance utility function (Chamberlain 1983)

E [u(wT )] = E [wT ]− κ

2
Var[wT ],

κ controls the investors sensitivity to risk, and is often called the risk-aversion parameter.
In this case we define risk as the variance in the change in wealth. If κ is zero the investor
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is risk-neutral, i.e. ignores risk and only cares about maximum wealth. As κ becomes
large the investor will tend toward was is called the minimum variance strategy. The
importance of risk becomes large and the investor will only care to minimize risk. In RL
the individual (an agent), will seek to maximize its utility (cumulative future reward),
by adjusting its policy. This leads to the maximization problem of interest:

max
π

E [u(wT )] = max
π

{
Eπ[wT ]− κ

2
Varπ[wT ]

}
. (13)

As presented in Part I we seek to maximize the expectation of the cumulative future
reward:

max
π

Eπ[Gt],

Gt =
T∑

k=t+1

γk−t−1Rk,

where Rt represents the reward the agent received at time t and γ the discount factor.
In the RL setting the change in utility is expressed in form of rewards, i.e. we need to
to define a reward function resembling eq. (13). To this we let the reward at time t be
expressed as

Rt = (wt − wt−1)− κ

2
([wt − wt−1]− µ̂)2 , µ̂ = E [wt − wt−1]

Taking the sample average provides

1

T

T∑
t=1

Rt =
1

T

T∑
t=1

(
(wt − wt−1)− κ

2
([wt − wt−1]− µ̂)2

)
=

1

T

T∑
t=1

((wt − wt−1)︸ ︷︷ ︸
≈E[wT ]

−κ
2

1

T

T∑
t=1

([wt − wt−1]− µ̂)2

︸ ︷︷ ︸
≈Var[wT ]

which by law of large numbers converge as T becomes large. Inserting this into the
cumulative reward function, gives us an expression of the desired form

Gt =
T∑

k=t+1

γk−t−1
(

(wt − wt−1)− κ

2
([wt − wt−1]− µ̂)2

)
,

except for the constant w0 which is irrelevant for the optimization problem and the
discount factor γ, which represents the same in finance and RL: The cost of receiving
utility (reward) in the future as opposed to the present. Because we do not have an
estimate of µ̂, at initialization, a natural solution is to instantiate the biased estimate
µ̂ = 0, during the first learning period. When we have enough observations such that
we are somewhat confident in our approximation of the value function, we let µ̂ be the
sample average.
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6 Modelling the Stock-Market
In this experiment, we are studying the applications of RL to perform asset trading in
an index. For this purpose, we assume that the agent’s actions won’t affect the future
development of the stock index price. And in order not to let the agent train upon the
same observed returns repeatedly throughout the learning process. We wish to simulate
new data with similar characteristics as the original stock index. The better these sim-
ulations reflect the true dynamics of the stock index, the better the results will be from
our trained model.

6.1 Data

The data we will use in this study is The Standard and Poor’s 500 (S&P 500) stock
market index, which tracks the performance of 500 of the largest companies on United
States stock exchanges. The period is from the beginning of 2010 until and including
2022-04-01. The prices and returns is shown in figure 6 (a) and (b). We will use the
data from 2010 till 2019-12-31 to simulate and train on, and the data from 2020-01-01
till 2022-04-01 for testing.

(a) S&P 500 Prices (b) S&P 500 Returns

Figure 6: Returns and prices of the S&P 500 stock market index from 2010-01-01 until and
including 2022-04-01.

6.2 Stylized Facts

When studying asset prices and returns it is an empirical fact that they possess certain
statistical properties (Cont 2001). These properties are known as the stylized facts of
the financial markets. In our simulation we will attempt to reflect 3 key stylized facts:
absence of autocorrelation, heavy tails and volatility clustering.

To avoid confusion between returns of assets and rewards of agents we let the return
at time t be denoted as REt and defined as

REt =
Pt
Pt−1

− 1.
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where Pt is the price of the traded asset at time t.

6.2.1 Absence of Autocorrelation

The linear autocorrelation of returns in financial markets are insignificant, when time
scales are larger than 20 minutes, which is obviously the case when modelling daily re-
turns. This fact is known as the absence of autocorrelation. Autocorrelation refers to
correlation between a time series and a lagged version of itself. To measure the autocor-
relation, for a given lag we use the sample autocorrelation function (acf)

ρ(τ) =

∑n−τ
t=1 (REt − R̄E)(REt+τ − R̄E)∑n

t=1(REt − R̄E)2

where R̄E is the sample mean of RE. We expect that ρ(τ) ≈ 0. If this is not the case it
implies that past returns reflect the future performance, which could be utilized to create
statistical arbitrage strategies. The autocorrelation function of the S&P 500 index from
2010 until 2020 is shown in figure 7, and illustrates that it is close to zero for all lags.
Though a bit low for lag 5 and 25 at 95% confidence interval.

Figure 7: Autocorrelation of the S&P 500 returns from 2010 until 2020.

6.2.2 Heavy Tails

The second stylized fact is that the pdf of returns in financial time series have heavy tails,
compared to the normal distribution. A natural way to measure "heaviness" of the tails
of a distribution is through the fourth standardized moment, also known as kurtosis. The
sample kurtosis is

Kurt =
1

n− 1

n∑
t=1

(REt − R̄E)4

s4
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where s the sample standard deviation of the returns. The kurtosis gets high in distribu-
tions with a lot of centered observations, as well as a lot of observations in the tails (heavy
tails). The larger kurtosis the heavier the tails. The normal distribution has a kurtosis of
3, and thus a kurtosis larger than 3 reflects heavy tails. Figure 8 illustrates a distribution
comparison between the selected S&P 500 returns and the normal distribution. It clearly
shows that with a kurtosis of 7.4 the S&P 500 returns has heavier tails. The figure also
shows that the return distribution has a skewness (third standardized moment) of -0.4.
It is also a common statistic that financial data has negative skewness, as opposed to the
normal distribution which has a skewness of 0. Though the general divergence from the
normal distribution is not as clear as with kurtosis.

Figure 8: Distribution comparison of S&P 500 returns and the normal distribution. It
shows that the kurtosis and skewness of the returns are respectively 7.4 and -0.4, compared the
3 and 0 of the normal distribution.

6.2.3 Volatility Clustering

The last stylized fact we will touch upon is volatility clustering, which states that volatility
tends to cluster. This states that there is in fact autocorrelation in financial markets, not
in the actual returns themselves, but in the size of the returns. The volatility clustering of
S&P 500 returns is clearly shown in figure 6 (b). A natural method to measure volatility
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clustering is through the autocorrelation of squared returns. This is this is shown in
figure 9.

Figure 9: Autocorrelation of the S&P 500 squared returns from 2010 until 2020. Illustrating
the tendency to volatility clustering.

6.3 AR + GARCH

To simulate the S&P 500 we use a combination of an Auto Regressive (AR) process and
a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process. These
processes are known to reflect the stylized facts well.

An AR(p) is a process which is modelled by a weighted average of the last p observations.
The series Y1, ..., Yn is an AR process if the following holds:

Yt − µ = φ1(Yt−1 − µ) + · · ·+ φp(Yt−p − µ) + εt,

where µ is the mean of Y , φ is the parameter vector of weights and ε is weak white noise;
εt ∼ WN(0, σ2

ε ). For an AR(1) process we have that if |φ| < 1 then Y is a stationary
process, if |φ| = 1 then it is a random walk and if |φ| > 1 then it has explosive behaviour.
Generally we say that stock returns are stationary while stock prices are non-stationary.
For an AR(1) process with |φ| < 1 then the following properties holds:

E [Yt] = µ, ∀t,

Var[Yt] =
σ2
ε

1− φ2
, ∀t,

Cov[Yt, Yt+h] = φ|h|
σ2
ε

1− φ2
, ∀t,∀h,

Corr[Yt, Yt+h] = φ|h|, ∀t, ∀h
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To estimate the values for µ, φ and σε one can use Maximum Likelihood with conditional
least squares, where we know that in the AR(1) Y1, ..., Yn is Markov

P(Yt|Yt−1, ..., Y1) = P(Yt|Yt−1).

The joint density for Y1, ..., Yn is

fY1,...,Yn(y1, ..., yn;θ) = fY1(y1;θ)
n∏
t=2

fY1|Yt−1(yt|yt−1;θ),

where θ is our parameters (µ, φ, σε). Assuming that the errors are following a Gaussian
white noise, we have that Y1 ∼ N

(
µ, σ2

ε

1−φ2

)
and the only random component of Yt is the

noise-term εt when Yt−1 is given. We think of Y1 as being deterministic and write the
conditional likelihood as

fYn,...,Y2|Y1(yn, ..., y2|y1;θ) =
n∏
t=2

fYt|Yt−1(yt|yt−1;θ)

we then maximize the following log-likelihood w.r.t to µ, φ, σε

`(θ) = log

[(
1√

2πσε

)n−1
]

n∑
t=2

−(Yt − (µ+ φ(Yt−1 − µ)))2

2σ2
ε

.

One issue arises when modelling the financial markets, since they are known to experience
volatility clustering. Because this we can not only use an AR process since it has constant
conditional variance. However combining this AR process with a GARCH process allows
us to account for these clusters of volatility. We make an AR + GARCH process by
replacing the noise term in the AR process with a GARCH process. The GARCH(p,q)
model (Bollerslev 1986) :

at = σtεt,

σt =

√√√√ω +

p∑
i=1

αia2
t−i +

q∑
j=1

βjσ2
t−j,

p ≥ 0, q > 0,

α0 > 0, αi ≥ 0, i = 1, ..., q,

βj ≥ 0 j = 1, ..., p.

where ω represents a constant volatility, α measures how much a volatility burst today
continues through into the next period’s volatility, and α+ β measures the rate at which
this effect dies over time. When p = 0 we have an ARCH(q) process. To get an idea
about how this process works we take a look at the ARCH(1) process:

at = εt

√
ω + αa2

t−1, εt ∼ N(0, 1).
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Taking a look at the variance of at shows that this process allows these volatility clusters

Var(at|at−1, ...) = E
[
ε2t (ω + αa2

t−1)|at−1, ...
]
− E

[
εt

√
ω + αa2

t−1|at−1, ...

]2

,

since εt and at−1 is independent we can split the last expectation up

Var(at|at−1, ...) = E
[
ε2t (ω + αa2

t−1)|at−1, ...
]
−
(
E [εt|at−1, ...]E

[√
ω + αa2

t−1|at−1, ...

])2

,

having E [εt] = 0 removes the last part

Var(at|at−1, ...) = E
[
ε2t (ω + αa2

t−1)|at−1, ...
]
,

using that ω and α are constants and at−1 is known at time t we can take them out from
the expectation

Var(at|at−1, ...) = (ω + αa2
t−1)E

[
ε2t |at−1, ...

]
,

εt independent on at−1 and E [ε2t ] = Var[εt]− E [εt]
2 = Var[εt] = 1 we get the following

Var(at|at−1, ...) = ω + αa2
t−1.

We see that if at−1 is large then Var[at|at−1, ...] will also be proportionally larger than
usual and vice versa. This can continue for some time, but having α < 1 ensures finite
variance. The unconditional variance of at is γa(0), can be seen to be positive only for
α < 1:

γa(0) = E
[
a2
t

]
= E

[
ω + αa2

t−1

]
E
[
ε2t
]︸ ︷︷ ︸

=1

= ω + αE
[
a2
t−1

]
because the expectation and variance of at and at−1 is not conditioned on the previous
processes, they can be set equal providing:

E
[
a2
t−1

]
= E

[
a2
t

]
= γa(0)

and thus

γa(0) = ω + αγa(0)

=
ω

1− α
we therefore need to have α < 1 to ensure a positive unconditional variance. Apart from
the ARCH part of the process we have

q∑
j=1

βjσ
2
t−j
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which feeds the past q values of σ into the process and allows more persistent volatility.
The unconditional variance of the full GARCH process is (in the GARCH(1,1) case):

γa(0) =
ω

1− α− β
,

thus we now need α + β < 1.
The full AR+GARCH model is then

Yt = c+

p∑
i=1

[φt−iYt−i] + at

c = µ

(
1−

p∑
i=1

φi

)
at = σtεt,

σt =

√√√√ω +

p∑
i=1

αia2
t−i +

q∑
j=1

βjσ2
t−j

So far we have only considered the case where the noise, εt, is Gaussian, but since stock
returns have heavy tails this is often not the best distribution to use. Thus we instead
model the process such that εt is an i.i.d white noise that follows a heavy tailed distri-
bution. To model a skew t-distribution we use a method introduced by Bruce E. Hansen
(Hansen 1994). He uses a t-distribution that is normalized to unit variance:

fη(z) =

[
Γ
(
η+1

2

)
(π(η − 2))

1
2 Γ
(
η
2

)] · [1 +
z2

(η − 2)

]−(η+1)/2

,

where 2 < η <∞ controls heaviness of the tails. To further allow for skewness (which is
often observed in financial markets), Hansen suggests the following method:

fη(z, λ) =

bc
[
1 + 1

η−2

(
bz+a
1−λ

)2]−(η+1)/2

z < −a/b

bc
[
1 + 1

η−2

(
bz+a
1+λ

)2]−(η+1)/2

z > −a/b
,

where

a = 4λc
(η − 1

η − 1

)
,

b2 = 1 + 3λ2 − α2,

c =
Γ
(
η+1

2

)
(π(η − 2))

1
2 Γ
(
η
2

) ,
and 2 < η < ∞ and −1 < λ < 1 is the skew-parameter. If λ = 0, we have the normal t
distribution, and when λ < 0 it is left-skewed and for λ > 0 it is right-skewed.
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6.4 Simulating stock prices with AR+GARCH

In our study we have decided to use an AR(1)+GARCH(1,1) model, which is considered
the most widely model used to model financial time series (Ruppert and S. Matteson
2015). We simulate pseudo S&P 500 paths by through a AR(1) + GARCH(1,1) model
with parameters estimated on the test data set. The noise εt is sampled using a skewed
t-distribution. We train the agent on these simulated paths where each represents one
episode. By letting the agent train on the different paths, we expose it to a lot of dif-
ferent scenarios compared to if we just trained it on the actual observed data. This will
make the agent less prone to overfitting and therefore better at generalizing out of sample.

Figure 10 (a) shows 1000 examples of simulated paths of stock prices, from the AR(1)+GARCH(1,1)
model. And Figure 10 (b) shows densities of the corresponding returns, as well as average
statistics of each path of returns. We observe, a sample average kurtosis of 11, a skewness
of -0.4, which roughly matches the real data. The kurtosis is a bit higher. Figure 11 shows
the autocorrelation and squared autocorrelation of returns as an average over the 1000
paths. In Figure 11 (a), we see that most of the lags show no autocorrelation of returns,
however, there is autocorrelation in the first lag, which is due to the negative AR(1)
parameter. And in figure 11 (b), we see a slow decay in autocorrelation as expected.

(a) Simulated S&P 500 prices (b) Densities of simulated S&P 500 returns

Figure 10: 100 AR(1) + GARCH(1,1) simulations of S&P-500 using data from 2010-01-01
to 2020-01-0 . figure (a) shows paths of stock prices and figure (b) return densities compared to
the true S&P 500 density from the period, including key average statistics over the simulations.
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(a) Acf of returns (b) Acf of squared returns

Figure 11: Autocorrelation function of returns (left) and squared returns (right), calculated
as an average over 1000 simulated paths. We observe autocorrelation on the first lag of returns,
which is due to the negative AR(1) parameter, while the rest are approximately 0. And we see a
slow decay in autocorrelation of squared returns, implying volatility clustering, as expected.

Table 1: Parameter estimates for AR(1)+GARCH(1,1) and skewed t-distribution. The
parameters are estimated on returns * 100, for better convergence properties in optimization.

Parameter S&P-500 Estimate

µ 0.083536
φ1 -0.065907
ω 0.023387
α1 0.169049
β1 0.815012
η 5.403227
λ -0.109379
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7 REINFORCE Agent

7.1 The environment

The environments state space is deviating a bit from that of Peter and Kolm. They use
the price as input, which makes perfectly sense since they want to model a mean-reverting
process, however, this is not the case in this study. Due to the random nature of our
simulations there are a lot of different paths and thus a lot of different price ranges for
each path which complicates our value-function approximation. To get the input in a
more stable format we use returns instead of prices.
The state space consists of the last k returns and the currency position size at time t:

St = {REt, ...,REt−k+1, ht}
REt = Simulated return from t− 1 to t,∈ R
ht = Agents invested position size at time t,∈ Z

where k is a constant deciding how many time-steps before time t we want the agent to
have information about. To model the state space we have decided to consider it contin-
uous due to the continuous nature of the inputs we have in the state. Even though it in
theory is possible to discretize the inputs we would not be able to do this in a computa-
tionally feasible way, since a matrix containing those states would have a way too large
dimension.

When running the environment we start off by simulating a path using the AR(1)+GARCH(1,1)
model, which consists of NP observations. The first k time steps in the can be seen as an
initial burn-period. Thus when the agent observes the market (simulation) for the first
time it will be at time k. We haven chosen an episode length of 525 trading days which
is roughly equal to two and a half years of daily returns, thus NP = 525 + k where k is
decided when setting the agent up.

7.2 The Agent

We let the agent be modelled using REINFORCE (algorithm 6), and represent an investor
controlling a portfolio of one asset, the simulated stock index. The agent then at each
time point, has the possibility to increase, decrease or do nothing about its position. Up
to a max position size of hmax. We let ht ∈ Z denote the agents position in the traded
index at time t. ht ∈ Z thus represents the exposure to the index and will be negative if
the agent has a short position. We then have the portfolio value given by

vpf = navt + casht,

where navt = htPt is the net asset value at time t, and casht is the corresponding cash
position. Furthermore let

δht = |ht − ht−1|

denote the shares traded from t − 1 to t, or absolute change in holdings. We assume
that the buy/sell-period, where the trades are executed, always happen just before a new
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time point. This way the change in position from t − 1 to t will not be reflected in the
corresponding period return. Because in reality markets have spreads and transaction
costs, we include TCt, which represents the difference between the market price, and the
prices that the agent would be able to realize a trade for plus transaction cost at time t.

TCt = δht(P̃t − Pt), P̃t =

{
Pt(1− cost) if selling
Pt(1 + cost) if buying

where P̃t represents the effective buy (sell) price of the agent determined by the cost
parameter. This leads to the change in portfolio value (wealth)

δvpft = ht−1Pt−1REt − TCt

Recall that in REINFORCE we use Monte Carlo and estimate q̂πθ(s, a) for our policy
gradient step with Gt, which in our utility context, as shown in section 5 is given by

Gt =
T∑

k=t+1

γk−t−1

(
(δvpft )− κ

2

(
[δvpft ]− µ̂

)2
)
,

where µ̂ is the sample average change in portfolio value, γ the discount factor and κ the
risk-aversion parameter.

We let the agents action space be defined by the possibilities of buying or selling 0,
1 or 2 assets in the market, which can be done at each time step. We have made the
action space in this way since we want the agent to be able to get in and out of the
market at different speeds according to what it observes in the state space. For this
problem we have implemented the REINFORCE algorithm with a dense feed-forward
neural network as function approximator for the policy. To decide the number of layers
and hidden units, we have tested different combinations of the numbers of layers and
number of hidden units. We have generally tested combinations between 2 and 6 hidden
layers, and {23, 24, ..., 210 number of hidden units. When deciding the neural network
architecture in a RL setup, there is not a method that is as straight forward as when we
do it in a regression/classification problem. Since the actions that the agent takes depend
on the predictions of the network, we need to make sure that it gets to try out a lot of
different actions at the different states. To do this we kept track of the following during
training:

• The actions that the agent took during each episode
• Distribution of actions taken during each episode
• Position size during each episode
• The agents reward and loss during each episode

When evaluating these observations we wanted the agent to start off with a lot of explo-
ration and slowly converging to a strategy.

Regarding the selection of activation functions we generally prefer nonlinear ones. If
we just pick a linear activation function, the network will also have a linear relationship
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between layers, and thus will not be able to detect nonlinear relations. To make sure the
network can find nonlinear relations between neurons we will use the ReLU activation
function. It has become a popular choice, both because it is computationally efficient
and does not suffer (to the same degree as tanh and sigmoid) from vanishing gradients
(Basodi et al. 2020). The output-layer is using the softmax activation function since the
output is probabilities.

The final neural network we have decided to use has 4 hidden layers with number of
hidden units: 512, 256, 128 and, 64 respectively.

To mitigate overfitting each layer is further applied with a dropout probability of 0.1,
plus a L2 regularization on the objective function, with a weight of 1e− 04. The neural
networks layers is sketched in Figure 12.

Figure 12: Illustration of the neural network used in the REINFORCE agent in Part II.
It takes an observed state as input, extracts a feature vector, which is fed into 4 hidden layers,
then an output layer and finally a softmax layer transforming the output to probabilities.

The simulation of the environment can be seen in Algorithm 8, where "Env.step(a)"
takes in an action a, calculates the reward and returns the next state as well as the
reward gained by the agent. The "Agent.take_action(state)" takes in a state where the
neural network is used to predict the probabilities for the 5 different possible actions,
from which the action is sampled.

To prevent the agent from taking actions that would make its position exceed hmax,
Huang and Ontañón 2020 proposes four different methods to tackle the problem. One
of them is invalid action masking : This is a very simple method where we exclude the
invalid actions by redistributing their probability mass to the legal actions by changing
our output function, in this case the softmax function, in the states where we have illegal
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Algorithm 8: Stock Market Simulation
Input:
• REINFORCE Agent: Agent
• Environment class of stock market: Env
• Initial action vector: a
• Number of episodes: NE
• Number of steps in episode: SE
Output: Actions, Rewards

1 episode = 1
2 repeat
3 Env.simulate_path
4 a = 0
5 repeat
6 state, reward = Env.step(a)
7 a = Agent.take_action(state)
8 until until step ≥ SE ;
9 Train REINFORCE

10 episode+ = 1

11 until until episode ≥ NE ;

actions, such that our policy is:

πθ(a | s) =
efθ(s,a)∑

b∈LegalMoves e
fθ(s,b)

,

where f represents the neural network output-layer with parameters θ.

To make sure that the agent keeps trying new actions during training and thereby ex-
ploring the environment, we have used a combination of an ε-greedy action selection as
well as using the softmax as explained above. During the first 100 episodes we ensured
that it explored a lot of different states by setting ε = 0.8, after these we set ε = 0.01

8 Results Part II
We split this results section into three subsections. First, we will show the observations
during the training period on the AR(1) + GARCH(1,1) model. Then we will present test
results on the test data set. And lastly, we will enforce an obvious statistical arbitrage
strategy and show that the agent can learn and exploit it.

8.1 Train Results

The final hyper parameters used in when training the REINFORCE model can be seen in
Table 2. Figure 13 shows the actions and corresponding returns (top graphs) and position
sizes and corresponding prices (bottom graphs) of four example training episodes on the
data simulated by the AR(1) + GARCH(1,1) model. Beginning with episode 50 (far left),
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Table 2: Hyper parameter values for the REINFORCE agent

Parameter Value Explanation
κ 1e− 03 Variance term multiplier
α 1e− 06 Learning rate of the NN

cost 0.001 Cost weight
ε 0.01 Exploration
k 10 Time steps to include in the state

pdropout 0.1 Percentage of neurons to drop
γ 0.99 Discount factor
λL2 1e− 04 L2 regularization weight
hmax 10 Maximum exposure

and ending at episode 10000 (far right). From the top graphs we see how the agent has
changed its strategy during training from taking somewhat random actions into a buy
and hold strategy. This insinuates that the agent have identified the positive drift in the
market, but given up on learning the random fluctuations in the short term.

Even after 10000 episodes, there are still periods where the agent does not have a posi-
tion size of 10 in the market. This is mainly a consequence of our enforced exploration.
Moreover we see that the agent has drastically lowered its number of trades per episode,
which is influenced both by the trading cost as well as the fact that the agent has shifted
towards this buy-and-hold setup. Generally, this behavior is likely to be due to the fact
that the S&P-500 index has increased over the period, why the parameters that we have
estimated for the AR(1)+GARCH(1,1) model also most of the time have generated paths
that providing positive returns, which can be seen in Figure 10.

In table 3 we see the distribution of actions of the same four episodes. We see that
agent goes from an almost uniformly distributed policy, to a policy where it in most of
the time points had no trades executed. The weight has mainly been moved from the
action buy 1 and sell 2 to do nothing, while buy 2 for instance still has a high frequency.
The reason why action sell 1 has a high frequency in the last training episode could be
explained by the fact that when the agent has a max position, its policy will only dis-
tribute probabilities over the sell actions and do nothing action due to the invalid action
masking.

Table 3: Number of actions taken during train episodes

Episode 50 Episode 250 Episode 1000 Episode 10000
Action

Sell 2 169 63 70 32
Sell 1 96 98 89 78
Do nothing 95 201 205 336
Buy 1 83 91 84 5
Buy 2 82 72 77 74
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(a) Actions episode 50 (b) Actions episode 250 (c) Actions episode 1000 (d) Actions episode 10000

(e) Position episode 50 (f) Position episode 250 (g) Position episode 1000 (h) Position episode 10000

Figure 13: Training development on the AR(1)+GARCH(1,1) model. We see the REIN-
FORCE agents actions and return from episode 50 (far left), 250, 1000 and 10000 (far right).
The agent had the following hyper parameter values: κ = 1e−3 and γ = 0.99. The top graphs
shows the actions that the agent have taken at each time step where red indicates shorting, yel-
low is neutral and green is long and corresponding returns. The bottom graphs shows the agents
position at each time step on top of the cumulative price development. The plots are normalized
such that the price starts at 1.

To get a more general idea of how the agent have improved during training we take a
look at Figure 14. It shows a fan chart of the distribution of cumulative returns during
the first 1000 episodes (a) and during the last 1000 episodes (b). We see that the agent
clearly have gotten a higher median reward during the last part of the training than in the
beginning, while the variance does not change a lot. This behaviour is due to the agents
reward function, prioritizing return over reducing risk, increasing the value of κ would
decrease the variance but also decrease the expected return. Nevertheless we tested the
agent with different values of κ and found that, κ = 1e − 03 seemed like a good choice.
If κ was much higher the agent would be too risk sensitive to trade.

8.2 Test Results

When running the final test we set ε = 0, and let the agent run for the full period from
2020-01-01 to 2022-04-10. Figure 15 shows the final results where the agent traded the
S&P-500 index. Overall it gained a positive return and it acted much like we saw from
the test data, where it primarily kept a long position.

In Table 4 we have compared the REINFORCE agent to a simple buy and hold strategy,
where we see that they perform very similarly. We do see that the REINFORCE agents
return over the period is a bit lower, but likewise is its risk levels measured in standard
deviation, value at risk and conditional value at risk. Overall the two strategies perform
very similarly.
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(a) Percentiles of cumulative returns during the
first 1000 episodes

(b) Percentiles of cumulative returns during the last
1000 episodes

Figure 14: Fan charts showing the distribution of cumulative returns training on the AR(1)
+ GARCH(1,1) model with, for the first (left figure) and last (right figure) 1000 episodes. The
blue layers represents confidence intervals represented by the 20, 40, 60 and 80th percentiles of
the cumulative returns. We clearly see an increase in return from the first episodes to the last.

(a) Actions taken during the test episode (b) Position size during the test episode

Figure 15: Plots generated from running the agent on the observed S&P-500 data from
2020-01-01 to 2022-04-01. The left figure shows the actions that the agent took during the
episode and the right figure shows the position that the agent was holding during the episode.
Further the plots are normalized such that the price starts at 1.
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Table 4: Performance measures during the test period on S&P-500 data from 2020-01-01 to
2022-04-01

REINFORCE buy and hold

Return 4.208074 4.623759
sd 0.149935 0.156679
VaR0.95 0.254030 0.265855
CVaR0.95 0.316682 0.331325

8.3 Sinus Curve Experiment

To further test whether the agent can learn other patterns we have combined the simu-
lated prices with a sinus curve, in order to enforce a price pattern, which can be exploited.
We want to test whether the agent can learn an efficient strategy in a market where we
know that there is statistical arbitrage opportunities.

In Figure 16 we see example training episodes through time, where the agents actions (top
graphs) and position size (bottom graphs) is plotted on top of the returns and cumulative
returns respectively. We see that the agent struggle in the beginning (left graphs), while
learning an almost perfect strategy in the final episodes (right graphs). However, it still
needs some improvement on exactly when to get in and out of the market. Because of
the stochasticity in the returns, this is a very hard task to learn.

(a) Actions episode 50 (b) Actions episode 250 (c) Actions episode 1000 (d) Actions episode 10000

(e) Position episode 50 (f) Position episode 250 (g) Position episode 1000 (h) Position episode 10000

Figure 16: Training development on the AR(1)+GARCH(1,1) model with enforced sinus
curve. We see the REINFORCE agents actions and returns from episode 50 (far left), 250, 1000
and 10000 (far right). The top graphs shows the actions that the agent have taken at each time
step where red indicates shorting, yellow is neutral and green is long and corresponding returns.
The bottom graphs shows the agents position at each time step on top of the cumulative price
development. The plots are normalized such that the price starts at 1.

In Figure 17 we again see fan charts showing the distributions of cumulative returns
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during the initial 1000 (left figure) and last 1000 (right figure) training episodes. We
see that the agent has indeed learned a systematic strategy that provides a high return.
Furthermore we notice that the returns are not only higher but also more stable. Hence
the agent has both learned to increase its return and decrease its variance in returns at
the same time.

(a) First 1000 episodes (b) Last 1000 episodes

Figure 17: Fan charts showing the distribution of cumulative returns training on the AR(1)
+ GARCH(1,1) model with enforced sinus curve, for the first (left figure) and last (right figure)
1000 episodes. The blue layers represents confidence intervals represented by the 20, 40, 60 and
80th percentiles of the cumulative returns. We clearly see an increase in return and a decrease
in variation.

This ’market’ is obviously unrealistic, but it serves as a proof of concept that the agent
can identify and exploit patterns in a market.

9 Discussion Part II
In this study, we simulated market prices with an AR(1)+GARCH(1,1) model because
it is a simple yet widely used model to model financial time series. However, it could be
worthwhile to do some testing on the performance of the REINFORCE agent when using
a more sophisticated model. Such a model could either be a AR+GARCH model with
more lags or an extension such to the GARCH model, such as EGARCH. Using a more
sophisticated model could lead to more realistic simulations of the S&P-500 index, but
one must be careful, since we still need to be able to generalize.

The agent we implemented was the REINFORCE agent, which proved to create a strat-
egy that performed on par with a buy and hold strategy when trading the S&P-500 index
out of sample.
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To build on the environment, one could expand it with a risk-neutral asset with a positive
interest rate or even one or multiple other assets that the agent could invest in. This
would require a rework of the agent’s actions, where one solution could be to expand the
action space to a continuous one with weights assigned to each asset.

10 Conclusion Part II
In this experiment, we showed how the REINFORCE algorithm can be used to create
a risk-averse systematic trading strategy. We trained the agent on simulations from a
AR(1) + GARCH(1,1) model with parameters estimated on the S&P 500 index from
2010 until 2020. During the training period, we saw that its strategy converged to a buy
and hold strategy: the classic long-term investment strategy you find on page one in most
finance books. This is not a surprising result since we trained it using a AR + GARCH
model, which has random increments through time. It reflects that the agent has learned
the long term drift in market prices, and given up predicting the random small changes
through time. A test on the following period 2020 until 2022-04-01, showed that the
agent performed similarly to a fixed buy and hold strategy, with a return of 4.2, slightly
lower than the return of 4.6 achieved by the buy and hold strategy. As a compensation
it achieved a lower standard deviation of returns at 0.15 vs 0.16 by the buy and hold
strategy. Furthermore as a proof of concept we enforced a sinus curve on the simulated
price and showed that the agent was able to learn and exploit the statistical arbitrage
strategy, which it entailed.
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Part III

Market Making As a Multi-Agent
Reinforcement Learning Problem
11 Background
In recent years technology and systematic trading strategies have become more and more
dominating in the financial markets. This is true for all market participants, but es-
pecially for market makers, and high frequency trading firms. For theses firms, as in
any other area within finance, managing risk and optimizing return subject to risk is
crucial.But in contrast to long term investing, their risk exposures lie within the small
intraday changes in the financial markets. They do have an impact on these changes
because they are constantly interacting within them and setting the prices. Because ac-
tions in the markets provoke reactions from other market participants and thus affect
the future development of the market, intertemporal choice is essentially at the heart
of decision making for any market participant. And thus, with RLs recent success at
solving problems of intertemporal choice, RL has become a popular area of interest for
optimizing systematic trading strategies in the financial markets. A key problem though,
is how to simulate these financial markets in order to back test and evaluate these intra-
day strategies. In this study we create an environment, where it is possible to test the
performance of systematic intraday trading strategies and optimize them with RL agents.

Through historical simulation, it is possible to evaluate actions made by agents at specific
time points, but the effect these actions have on the future development of the market will
not be reflected therein. For that reason historical simulation is simply not an efficient
way to evaluate intraday systematic trading strategies. In agent-based models (ABMs),
financial markets can be simulated through the interactions of agents representing the
market participants, who act according to their own strategies or reward functions. This
concept reflect the dynamics of the true financial markets quite well. We can for example
relax on assumptions often made when modelling markets, such as no market impact and
that the market is frictionless. Though, a dilemma is how to get the agents to reflect the
characteristics of real market participants, i.e. create the agents such that their behavior
reflect the behavior of the real market participants. A natural way to measure this re-
flection is by comparing descriptive statistics of the real markets and the pseudo market
from the ABM simulation. Recall that the descriptive statistics of the financial markets
are known as the stylized facts (Cont 2001). We will use these to calibrate our ABM to
reflect the true markets as close as possible.

Firstly we present an ABM representation of a financial stock market and the actors/a-
gents within it. We then evaluate and calibrate our ABM to a real financial market
using the stylized facts (ibid.). Afterwards we present the RL algorithm built to optimize
market making and finally we present the results achieved and conclude based on these.
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11.1 Related Work

An example within finance, where ABMs have been widely used is in the replication of
the the famous flash crash in 2010, where the American stock market dropped by 9%
within minutes, an extreme scenario never seen before. In this case ABMs are used to
understand which dynamics, actors, signals and actions that may have caused the crash.
See for example (Vuorenmaa and Wang 2014). It is likely that ABMs will also be used
to replicate the recent European flash crash 3rd of may 2022.

With the recent success of RL as a tool to solve dynamic decision problems, e.g. the
first go-computer to ever beat the world champion (Silver et al. 2017), it has also seen
increase of interest for researches within finance. Due to the structure of RL, ABMs are
a natural choice to simulate financial environments to train RL agents within. Recent
research include multiple articles from J.P. Morgan AI research (Vyetrenko et al. 2019;
Ardon et al. 2021 and Ganesh et al. 2020), studying the combination of RL and ABMs
ability to replicate realistic market dynamics and optimal hedging strategies. In the
first and second paper they present the objective of applying ABMs with RL agents to
replicate stylized facts by calibrating to real data through the reward functions these RL
agents. In the third they train RL agents to perform market making in an environment
with prices simulated through a statistical model. Other interesting recent papers within
the field are also studying realistic market simulation, specifically the dynamics of the
order book (Karpe et al. 2020; Maeda et al. 2020 ). In a recent presentation Thomas
Spooner from J.P. Morgan AI Research says that they currently are focusing a lot of their
research on combing ABMs and RL to analyze trading strategies (Spooner 2021). In this
part of the thesis we will do exactly that.

12 The Agent-Based Model Simulation Framework
An ABM is a method which simulates a complex environment composed of multiple
agents, which interact inside an environment. Agents in this context are usually similar
to the agents presented in part I, but without the ability to learn. They observe states
and takes actions based on these states, which affects the environment and thus the future
states. Agents thus also affect each other, i.e. an action by one agent may affect future
actions by other agents. In ABMs, the agents usually follow a fixed policy/strategy and
do not apply RL to estimate parameters attempting to improve their performance within
the environment.

Using ABMs enables researchers to built, experiment with and analyze scenarios, which
may or may not have happened in reality. Within finance the obvious objective is mod-
elling the financial markets. Especially when it comes to modelling the underlying dy-
namics of high frequency data, i.e. time series with small time intervals e.g. 1 min, 30 sec
or even 1 sec between data points. When modelling financial markets with ABMs, the
agents represents the actors in the market, e.g. institutional investors, market makers,
hedge funds, retail investors etc., and the environment represents the financial market
itself.
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12.1 The Order Book

Before going into details about how the environment and the agents are constructed, we
will briefly go through how trades are being executed on stock exchanges through the
order book.

The order book is a key component at the heart of the financial markets, controlling
what goes in and out of a given exchange. It holds all current orders listed on the ex-
change. The orders contain information, such as the price, volume, and whether the
trader wishes to buy or sell. Thus the order book also includes an overview of the volume
of buy and sell orders currently existing in the market and their corresponding prices. Bid
prices refer to buy orders and ask prices to sell orders. The bid price and ask price often
refer to the best bid and best ask price. They are respectively defined as the best price
to sell at and the best buy price to buy at in the current market, i.e., the highest buy
price and the lowest sell price. The gap between the bid and ask price is called bid-ask
spread.

If two traders agree on a specific price, i.e a trader wish to buy at a given price and
another wish to sell at the same price or lower, the order book will match the traders
resulting in a trade. If there are two orders in the market with the same price, the order
which entered the market first will get priority. This is known as price-time priority.

There are two main order types: a limit order and a market order. With limit or-
ders the trader places an order to trade at a given limit or better; for instance to buy
for a particular price or lower, or to sell for a particular price or higher. The limit or-
der remains in the market until it is matched or the trader withdraws it off the market.
with market orders the trader places an order to trade at the current best price, i.e to
buy at the ask price or to sell at the bid price. Thus it will trade immediately (as long
as there are any orders of the opposing site in the order book). A dilemma with this
choice is that the trader will not know the actual trading price. Prices can change within
nanoseconds and thus a price which appear on the screen can change just as the trader
places her market order. With the limit order, there is a limit to how ’bad’ a trade can be.

In figure 18 we illustrate an example order book. It shows how the order book is built
up and how the best bid and ask prices are interpreted as well as the bid-ask spread.

12.2 The Environment

As mentioned the environment is representing a financial market. For simplicity we let
the market be a stock exchange where a single stock, Stock A, is traded and can be either
bought or sold. Furthermore we let the environment be episodic, where an episode can
be seen as a full day of trading. An episode is run over 500 time points at which the
agents will observe a state and be able to place orders.

We let Nagents be the number of agents in the model, i.e. the number of actors in
the market. Furthermore we let the a

(i)
t ∈ R4 be the action taken by agent i at time t,
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Figure 18: Example of a filled order book, with prices ranging from 22.53 to 22.67. In the
example the best bid price is 22.59 with a volume of 5. The best ask price is 22.62 with a volume
of 146. And the bid-ask spread is 0.03.

defined as

a
(i)
t =

[
bp

(i)
t sp

(i)
t bv

(i)
t sv

(i)
t

]
,

where bpt ∈ RNagents

+ , spt ∈ RNagents

+ , bvt ∈ NNagents

0 , svt ∈ NNagents

0 are vectors holding
the actions of each agent at time t and respectively represent buy price, sell price, buy
volume and sell volume. Note that we assume no negative buy or sell prices.

12.2.1 Order Matching

The action of an agent at time t defines the agents order to the market at time t. There-
fore when we refer to the order of an agent, we directly refer to the composition of the
agents action.

In the real market, order placement happens on a continuing basis, but for practical
purposes we have approximated it by discrete time steps in which agents can submit
orders (actions). At each time step t the agents orders are being submitted to the order
book, from which the trades are being matched. The orders placed by the agents are
limit orders, which gets updated after each time step. If a buy order is submitted with a
limit a lot higher (lower if selling) than the current market price, the order will effectively
work as a market order. To compensate for the lag of a continuous market and reflect
the fact that orders does not hit the market at the exact same time, we let each agent
have a latency, which changes through time. The agents orders then hit the market in
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a sequence from lowest to highest corresponding to the agents latency. This way if two
agents has similar prices, the agent with the lowest latency has the highest probability of
getting its orders executed. This also opens up to the possibility of letting specific types
of traders consistently have lower latency than others, which is the case in the real world.

Note that we will at each time step have multiple orders being matched. All these
matches we interpret as our pseudo high frequency data set. Thus even though we only
simulate 500 time steps, we could easily, with enough agents and volumes in the market,
observe a lot more than 500 prices.

12.2.2 State Definition

Notice that due to the structure of the environment, the agents are only able to observe the
market after a full order book matching. For this reason we need a reference market price
reflecting the price after a sequence of matches in the order book. Letting mpt and mvt
denote vectors with elements respectively equal to the matched prices and corresponding
volumes at time step t. We then define Pt as the volume weighted median trade price at
time t. That is the median in the cumulative distribution function

Ft(p) =

∑Ntrades

j=0 mvt,j1{p ≤mpt,j}∑Ntrades

j=0 mvt,j
,

where N trades
t denote the number of trades that happened at time t. The distribution is

discrete and thus have either zero or infinitely many solutions. Thus, we in practice use a
linear interpolation between the jumps to enforce a unique output. Our reason for using
the median instead of an average is related to the fact that we desire the environment
to reflect real market dynamics. The issue we find is that the average method easily
drag prices too far in either direction, because a few trades happen a bit far from the
mid price. We have observed similar results if the reference price was the last traded
price at the time step. Of course, this is also affected by other decisions, such as the
agent’s attributes and parameters. To further enrich the state representation we define
the following metrics

TMVt =
Ntrades

t∑
j

mvt,j (Total Matched Volume)

TBVt =
Nagents

t∑
i

bv
(i)
t (Total Buy Volume)

TSVt =
Nagents

t∑
i

sv
(i)
t (Total Sell Volume)

MBPt =
1

TBVt

Nagents
t∑

i=1

bp
(i)
t bv

(i)
t (Mean Buy Price)

MSPt =
1

TSVt

Nagents
t∑

i=1

sp
(i)
t sv

(i)
t (Mean Sell Price),
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from which we together with the reference market price define the current state of the
environment at time t:

St = {P0, P1, ..., Pt−1, TMVt−1, MBPt−1, MSPt−1, TBVt−1, TSVt−1}.

All the agents observe the state St and based on the observation they select actions at
according to their policies.

As well as the state, the environment includes the parameters slippage and fee, which
respectively represent a slippage cost used to calculate profit and loss at given time
points, as well as a market fee for buying and selling on the exchange. The slippage
refers to the loss associated with liquidating a position. It is reflected in the difference
between the current market price and the actual trade price, e.g. due to market spread.
If the order is large, it could be due to the order moving the market in the unfavorable
direction.

12.2.3 Simulating The Environment

We now have all the ingredients to compose and simulate the ABM of our stock exchange.
The simulation works as follows: At each time point the agents, which we present later
in more detail, submit their actions; the buy and sell prices as well as corresponding
volumes. When prices have been submitted, the exchange matches the buyers and sellers
through a pseudo order book and send back information to the agents as to whether they
have made any trades, and if so at which prices and volumes. Afterward, the state gets
updated according to the latest matches, and the agents will be able to update their ac-
tions, and the environment continues in this circular manner until desired. The structure
of the simulation algorithm is shown in algorithm 9.
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Algorithm 9: ABM Simulation
Input:
• List of agent objects: agents
• Environment class of financial market: Env
• Initial state: state0

• Initial 4 dimensional action vector: a ∈ RNagents×4

• Number of episodes: NE
Output: Observed Financial Market

1 episode = 1
2 repeat

/* Initialize env and agents orders */
3 env = Env(state0)
4 agents_temp←− agents

/* Run one full episode */
5 for i ∈ Nagents do
6 ai = agents_tempi.update_orders(state0)
7 end
8 for t ∈ 0, 1, ..., T do
9 state←− env.step(a)

10 for i ∈ Nagents do
11 ai ←− agents_tempi.update_orders(state)
12 end
13 end
14 episode+ = 1

15 until until episode ≥ NE ;

12.3 The Agents

In the ABM we have split the actors of the market into 4 classes (5 if we include the RL
agent): Random, Investor, Trend Follower and Market Maker. Each class has their own
strategy/policy, which they follow when placing orders.

12.3.1 The Random Agent

The first agent class is the random agent, which given in the name, represents random
actors who places noisy orders to the market. This group of agents represents the retail
investors, who ’randomly’ decides whether they want to enter (long or short) the market
of stock A. The action of a random agent at time t is given by

a(R)
t =

[
bp(R)

t sp(R)
t bv(R)

t sv(R)
t

]
.
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bp(R)
t and sp(R)

t are respectively the buy price and sell price and calculated as

bp(R)
t = max

{
P̄R
t

(
1− U(lb(R), ub(R))

)
, 0
}

sp(R)
t = max

{
P̄R
t

(
1 + U(lb(R), ub(R))

)
, 0
}
,

where

P̄
(R)
t = Pt−1

(
1 +N(0, σ(R))

)
.

U(lb(R), ub(R)) is a uniform distribution, which creates a spread around the random agents
mid price, P̄ (R)

t−1 . lb(R) and ub(R) represent parameters for lower-and upper bounds. The
distribution is subtracted when buying and added when selling, which secures that the
agent does not place orders irrationally, where the buy price is higher than the sell price.
P̄

(R)
t is a random mid price centered around the market price calculated at each time step

and with randomness defined by the parameter σ(R).

The volumes bv(R)
t , sv(R)

t are drawn from a binomial distribution, i.e

bv(R)
t = B(n(R), p

(R)
b )

sv(R)
t = B(n(R), p(R)

s ).

The parameters can be tweaked to move the market in a specific direction. For example
increasing p(R)

s relative to p(R)
b would increase the volume of sell orders compared to buy

orders and thus drive the market in a negative direction.

12.3.2 The Investor Agent

Another typical actor that we observe in the financial markets is institutional investors
like pension funds, hedge funds and large asset managers. We will refer to this group of
actors as investors and attempt to model them through the investor agent class. Institu-
tions like pension funds often have a policy, which denies them from taking on negative
position (no short selling), whereas hedge funds often use short selling in their strategies.
When investors enter the market it is usually with the intent of taking on a large position
(positive or negative) to speculate on the development of the asset over a longer horizon.
If the investor went on to place their full order, they would likely clear the entire order
book instantaneously and move the market heavily in an unfavourable direction. Thus
making it more expensive to fulfill their desired position. Thus, investors usually enter a
market using so called execution strategies, which seek to get a position while influencing
the market price as little as possible. A typical execution strategy for investors, and also
the one our investor agent is applying, is the so called time slicing strategy (Durbin 2010).
Here the investor places small orders over time, for example with a fixed time sequence
or with random time increments. When an investor is taking on a position (buying up or
selling out), the same investor can not enter the market again, i.e. start a new sequence
of orders. To model this behavior, we let the investor agent have an intensity parameter
λ(I), which defines the probability that the investor will enter the market, given that they
are not already taking on a position.
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We let the probability that an investor agent enters the market be modelled through
the binomial distribution, i.e:

P
(
Enter market | Not currently taking on position

)
= B

(
1, λ(I)

)
. (14)

The investor also has a boolean argument CanShort, which determines if the investor
can short sell or not. If the investor can short, it will attempt to short sell just after it
attempts to go long, both with success rate given by eq. (14). Note that if the investor
at time t starts buying, it will not attempt to sell as well.

When an investor is in the market at time t it will output an action of the same form as
the other agents. The action of an investor agent at time t is given by

a(I)
t =

[
bp(I)

t sp(I)
t bv(I)

t sv(I)
t

]
.

The prices are calculated as

bp(I)
t = max

{
Pt−1

(
1−m(I)

b

)
, 0
}

(15)

sp(I)
t = max

{
Pt−1

(
1 +m(I)

s

)
, 0
}
, (16)

where m(I)
b ∈ [0, 1] and m

(I)
s ∈ [0, 1] which are buying and selling margin parameters

respectively. They define a margin, as to how far in the unfavorable direction from the
last observed market price the investor is willing to trade.

Since the investor is using time slicing, we have the parameters n(I)
bo and n

(I)
so , which

sets the number of orders the investor will place in a row when it is in the market. The
volumes of each order is given by the volume actions bv(I)

t and sv(I)
t , which are constant

and given by

bv(I)
t = v

(I)
b

sv(I)
t = v(I)

s

Thus if an investor enters the market to buy at time t, with nbo = 10 and bv(I)
t = 5. Then

the investor will place 10 buy orders each with a volume of 5 at time t, t + 1, ..., t + 9
with prices given by eq. (15). The execution algorithm for investor agents, in a simplified
version where it is only possible to buy stocks, is shown in algorithm 10.
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Algorithm 10: Investor Execution Algorithm (no selling)
Input:
• can short sell: CanShort = False
• Intensity: λ(I)

• Buy margin: m(I)
b

• Number of buy orders: nbo
• Buy volume: volume(I)

b

1 Initialize
2 is_buying = 0
3 orders_in_queue = 0
4 for t ∈ 0, 1, ..., T do
5 if is_buying == 1 then
6 orders_in_queue←− orders_in_queue− 1

7 bp(I)
t = max

{
Pt−1

(
1−m(I)

b

)
, 0
}

8 aIt =
[
bp(I)

t NaN volume
(I)
b NaN

]
9 if orders_in_queue == 0 then

10 is_buying = 0
11 end
12 else
13 is_buying = B(1, λ(I))
14 if is_buying == 1 then
15 orders_in_queue = nbo
16 Go to line 5.
17 end
18 end
19 end

12.3.3 The Trend Agent

The third agent in our model is the trend agent, which represents predictors in the fi-
nancial markets. Predictors are actors, which attempts to predict the short or mid term
development of the asset, often through statistical analysis. The trend agent can go both
long and short, and has a strategy based on trends or momentum in the market. The
trend is defined by the relation between two moving averages

Trendt =

1

ma
(T)
1

∑t−1

i=t−ma(T)
1

Pi
1

ma
(T)
2

∑t−1

i=t−ma(T)
2

Pi
,

where ma(T)
1 and ma(T)

2 (ma(T)
1 < ma

(T)
2 ) defines the length of the two moving averages.

If Trend ≥ 1 the trend agent wants to be long in the stock, and if Trend < 1 it wants
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to be short. The position size (positive if long and negative if short) is given by a target
position parameter th(T). This target position reflects the position size that the trend
agent wants to have in the market; either long or short. The agent will buy or sell stocks
until its absolute position size is equal to th(T).

a(T)
t =

[
bp(T)

t sp(T)
t bv(T)

t sv(T)
t

]
,

where the buy and sell volumes are given by an execution algorithm, which is designed
such that the order volume becomes the difference between the desired position size, th(T ),
and the agents current position size. Thus letting ht define the current position size we
get:

bv(T)
t = 1{Trend>1}(th

(T) − ht)
sv(T)
t = 1{Trend<1}(th

(T) + ht)

This way the agent will never get a position larger than desired, and it will often be able
to change position quickly since the target position th(T ) is not meant to be very large.
The prices are calculated as

bp(T)
t = max

{
Pt−1

(
1−m(T)

)
, 0
}

(17)

sp(T)
t = max

{
Pt−1

(
1 +m(T)

)
, 0
}
, (18)

Where m(T) ∈ [0, 1] is a margin parameter, just like the one investors have, which deter-
mines the agents willingness to trade in the unfavorable direction of the market price.

12.3.4 The Market Maker

The last predefined agent type in the market is the market maker. Market makers are
liquidity providers, which means that they add liquidity to the order book. Opposite
the investor agent and trend agents, which desires to get positions and thus take away
liquidity from the order book. Market makers earn their money by constantly having
both buy and sell orders in the market, but with a spread around a target mid price. The
idea is to have a ’high’ sell price and a ’low’ buy price and then constantly trade at the
two prices providing a small steady return. The aim is to keep a market neutral position,
i.e a position close to 0, also opposite the trend and investor agents. This is usually a
fairly low risk strategy, but it is obviously sensitive to large price moves. If for instance
the price increases heavily over a small period, market makers will likely sell at their sell
price, but since the price will follow up they will not get their buy orders executed. A
common market maker strategy is lean your market, which corrects the market makers
mid price in the direction, which increases the probability of trading towards a market
neutral position. At time t the action of a market agent is defined as

a(M)
t =

[
bp(M)

t sp(M)
t bv(M)

t sv(M)
t

]
.

The volumes are constant and equal at each time step

bv(M)
t = sv(M)

t = v(M),
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and the prices are set as

bp(M)
t = max

{
P̄

(M)
t − ζ

(M)
t

2
, 0
}

sp(M)
t = max

{
P̄

(M)
t +

ζ
(M)
t

2
, 0
}
.

P̄
(M)
t and ζ(M)

t are functions respectively representing the market makers mid price and
spread, which are calculated as

P̄
(M)
t (Pt−1, h

(M)
t ) = Pt−1

(
1− γ(M)

1 h
(M)
t

)
ζ

(M)
t (σ

(M)
t ) = σ

(M)
t−1 γ

(M)
2 + c(M),

where c(M) is a constant base-spread, h(M)
t is the agents current position. γ(M)

1 ∈ [0, 1] and
γ

(M)
2 ∈ R+ are sensitivity parameters controlling the market makers level of risk aversion.
γ

(M)
1 determines mid price sensitivity to position size, which comes from the market

leaning strategy. The effect is that if the position is positive the mid price decreases,
which increases the likelihood of selling and decreases the likelihood of buying, motivating
a market neutral position. γ(M)

2 determines the spread sensitivity to volatility. Thus the
agent will create larger spreads and protect itself against large price changes when the
volatility in the market is high. σ

(M)
t is an estimate of the volatility calculated as the

unbiased sample standard deviation of the prices over the last n(M)
σ time steps:

σ
(M)
t =

√√√√∑t−1

i=t−n(M)
σ

(
Pi − P̄

)2

n
(M)
σ − 1

, P̄ =
1

n
(M)
σ

t−1∑
i=t−n(M)

σ

Pi.

12.3.5 Common Agent Attributes

Latencies
When orders are matched in the order book, the matching sequence depends on the
agents latencies. The latency parameter is inspired by Vuorenmaa and Wang 2014. It
is supposed to reflect the aspect that, in reality, actors in the financial markets do not
have the same speed to access the market. Often market makers achieve the fastest
speed (lowest latency) through super computers physically located close to the actual
exchanges. Furthermore it seems reasonable to assume that investors and predictors
have better facilities to access the market than retail investors. We therefore define the
following latency distributions

δ
(M)
t = U(0, 1)

δ
(I)
t = δ

(T)
t = U(1, 2)

δ
(R)
t = U(2, 3).

Thus market makers hit the order book first, followed by trend followers and investors,
and lastly the random actors. The latencies are given by uniform distributions such that

71



a market maker, who may have the lowest latency at time t, does not necessarily have
the lowest latency at time t+ 1.

Calculating Profit and Loss
To measure the performance of the agents we can compare their profit and loss (PnL).
The profit and loss for each agent at time t is calculated as

PnLt = CFt +

{
ht Pt (1− slippage), ht > 0

ht Pt (1 + slippage), ht < 0

where CFt ∈ R is the sum of all cash flows received by the agent at time t and represents
the realized return. For example if an agent purchases 1 stock at the price of 100 it will
have a cash flow of -100 (and +100 if selling). ht ∈ Z is the agents position size at time
t. Further, we have the fee cost that the agent pays whenever it executes a trade. We set
this fee to 0 because, in our model, it will only affect the RL agents desire to buy and
sell, which we will control through the reward function. slippage ∈ [0, 1] is a parameter
deciding the cost of having to buy back (sell off) stock to create a neutral position, i.e. it
is assumed that an agent would have to pay a premium compared to the current market
price in order to neutralize its position. Thus the term in brackets represent the unrealized
return. In this study we will consider a slippage = 0.005, resulting in the agents paying
a 0.5% premium to get rid of their position. In reality the size of the slippage is relative
to the position size, since it is harder to neutralize a big position than a small position.

13 Environment Calibration

13.1 Stylized Facts in High-Frequency Data

Like in part II, we will have the stylized facts in mind when performing simulation of
the financial markets. In this part though, as opposed to part II, we model very high
frequency data. The data is supposed to represent live data and include all trades in the
market. Nevertheless we do still expect stylized facts, though the expectation to some
of them changes a bit. We will again take basis in the 3 empirical facts: absence of
autocorrelation, heavy tails and volatility clustering.

As mentioned the absence of autocorrelation only applies when the time intervals are
larger than 20 minutes. This is indeed not the current case. In high-frequency data,
returns often show negative autocorrelation at low lags. This is usually attributed to the
bounces between bid and ask prices and the micro-structure of modern financial markets
(Cont 2001). The micro-structure refers the way the markets operate, with order books,
quotations, spreads etc.

As for heavy tails and the general distribution of the returns, it happens that the lower
the frequency of data, the more the distribution diverges from the normal distribution.
Thus we will expect our distribution to have even heavier tails than the distributions
examined in part II.
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Volatility clustering is still observed, and as mentioned a natural objective for market
makers is to increase spreads as volatility increases, which has a recursive effect because
larger spreads will make the bounces between ask and bid prices larger.

13.2 Data

We would like our model to reflect real financial markets, therefore we need some real
high-frequency data for comparison. We will use data provided in a recent Kaggle compe-
tition regarding realized volatility prediction, hosted by the market making firm Optiver
(Kaggle, Optiver realized volatility prediction n.d.). The data consists of time period,
price and volume traded at the given price of real stocks, which has been anonymized
through stock_ids. We have selected to focus on stock 0. Figure 19 (a) and (b) shows the
returns of ’stock 0’ and the corresponding density. The returns illustrate that the volatil-
ity clustering is present and the density has a high kurtosis of 429.8 and is right-skewed
with a skewness of 4. Figure 20 (a) and (b) shows autocorrelation of returns and squared
returns respectively. The autocorrelation of the returns is approximately zero. This is
a bit surprising, because literature (Cont 2001) implies an expected negative correlation
on low lags. Even though the referenced article is old and the market facts could have
changed by now, we have only found literature confirming this, e.g. (Vyetrenko et al.
2019). The autocorrelation of the squared returns are positive and decays slowly, as
expected.

(a) Stock 0 returns. (b) Stock 0 density of returns.

Figure 19: Stock 0 returns and corresponding density compared to normal distribution .
We see that the kurtosis is 429.8 and the skewness is 4.
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(a) Stock 0 acf of returns. (b) Stock 0 acf of squared returns.

Figure 20: ACF of returns (left) and squared return (right) from the observed returns in
stock 0. We see little to no autocorrelation of returns, though we expected a negative first lag
according to literature. And we see slow decay of autocorrelation in squared returns as expected.

13.3 Calibration

To calibrate our model we need an objective function to optimize over in order to es-
timate the parameters. We let θABM denote the parameter vector of all parameters
included in the agent based model, i.e. all parameters for individual agents as well
as NRAgents, N IAgents, NTAgents, NMAgents, which respectively represent the number of ran-
dom, investor, trend and market making agents in the environment. Furthermore we let
L(θABM) denote the desired objective function to optimize. A natural objective in our
setting would be to use a loss function reflecting the difference in descriptive statistics of
the target distribution and the ABM distribution. We therefore suggest a loss function
of the structure

`(θABM) =
(
ŷ(θABM)− y

)>
W
(
ŷ(θABM)− y

)
,
∑
i

Wii = 1

where y is a vector with all our statistical targets, and ŷ(θABM) is the corresponding
estimates from the ABM. W is a diagonal weight matrix with i′th diagonal element rep-
resenting the weight of the i′th statistic. Appropriate statistics in our scenario would be
the mentioned stylized facts about kurtosis, autocorrelation of returns and autocorrela-
tion of squared returns. For simplicity we imagine that we only care about one lag for
both autocorrelations: lag = τ . Such that

ŷ(θABM) =

 ˆKurt(θABM)
ρ̂(τ,θABM)
ρ̂abs(τ,θABM)

 , y =

 Kurt
ρ(τ)
ρabs(τ)

 , W =

w1 0 0
0 w2 0
0 0 w3

 ,
where Kurt, ρ(τ) and ρabs(τ) represents the target kurtosis, autocorrelation of returns
with lag τ and autocorrelation of squared returns at lag τ . ˆKurt(θABM), ρ̂(τ,θABM) and
ρ̂abs(τ,θABM) represents their corresponding estimates from the ABM. The loss is easily
extended to include more lags or other statistics.
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We minimize the loss function by grid searching through a specified range of a selected
subset of parameters, while holding the rest fixed. We select a subset because in practice
our ABM simulation is computationally heavy and we select the parameters which we
think has the largest influence on the loss function. An appealing feature of using grid
search is that we get a natural method to standardize each (target, estimate) pair in the
loss function, with respect to the sampled targets. Taking example in kurtosis that is

ˆKurt(θABM
k)

std =
ˆKurt(θABM

k)− µ ˆKurt

σ ˆKurt
, Kurtstd =

Kurt− µ ˆKurt

σ ˆKurt

where θABM
k is the k’th parameter vector and µ ˆKurt and σ ˆKurt are the sample mean and

standard deviation of the estimated kurtosis. Thus after the full grid search, we estimate
the parameter combinations by plugging the standardized (target, estimate) pairs into
ŷ(θABM). In order to avoid too much randomness, for instance because an investor agent
has entered the market multiple times in a row, which has very low probability, we run
through a batch of 5 episodes for each parameter combination θABM

k. We then let the
estimated values be the mean over these 5 episodes.

We choose to calibrate against kurtosis and the first five lags of each autocorrelation
function. We weight it such that the three terms gets weighted equally and that each lag
also gets weighted equally within the autocorrelation term, providing the loss

`(θABM
k) =

1

3

(
ˆKurt(θABM

k)
std −Kurtstd

)2

+
1

15

5∑
τ=1

(
ρ̂(τ,θABM)std − ρ(τ)std

)2

+
1

15

5∑
τ=1

(
ρ̂abs(τ,θABM)std − ρabs(τ)std

)2

.

We strongly believe that the composition of the different agent types will have a large
influence on the environment. Therefore we have selected NRAgents, NTAgents and NMAgents

to be part of the grid. We have not included N IAgents because we wish to keep the number
of investors in the market low, so we fix N IAgents = 2, where one of the agents are allowed
to short sell. We will though add the investor related parameters λ(I), v

(I)
s and v(I)

b . They
control the intensity and aggressiveness of the investors and thus, somewhat compensate
for the not included number of investors parameter. Furthermore we will add n(R) and
c(M), which we have found to be two important parameters for the random agent and
the market maker agent. These two parameters control the amount of volume that the
random agents put in the market and the base spread of the market maker. They both
have a large impact on the number of total trades happening in the market, and thus
strongly defines the amount of movement in the market.

Calibration Results

After the grid search we observed that the losses ranged from 0.5, to 8.5 - which means
that the parameters we have selected does indeed have an influence on the resulting statis-
tics. The final loss minimizing parameter vector θABM∗ is shown in Table 5. The table
includes both the parameters estimated using grid search and the ones fixed in advance.
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We see that especially a high number of market makers were needed, which might be due
to the fact that they are the main liquidity providers. Moreover we have made it such
that both the trend agents and the market maker agents have some randomness such
that they don’t trade exactly the same way. This is done by drawing the ma(T )

1 ,ma
(T )
2

and γ(M)
2 parameters randomly from a uniform distribution for each of the NTAgents and

NMAgents trend and market maker agents.

Table 5: Parameter vector θABM∗ used for simulating the ABM estimated through grid
search. Note that the parameters that are within brackets are upper and lower bounds, where
they are drawn uniformly within those bounds; either drawn as integers or doubles.

Random Investor Trend Market Maker

NRAgents 4 N IAgents 2 NTAgents 4 NMAgents 15
lb(R) 0.0001 λ(I) 0.01 ma

(T)
1 [10, 15] n

(M)
σ 3

ub(R) 0.003 m
(I)
s 0.015 ma

(T)
2 [20, 30] γ

(M)
1 0.00005

σ(R) 0.0025 m
(I)
b 0.015 th(T) 5 γ

(M)
2 [0.5, 0.75]

n(R) 3 n
(I)
bo 8 m(T) 0.005 c(M) 0.1

p
(R)
s 0.5 n

(I)
so 4 v(M) 3

p
(R)
b 0.5 v

(I)
b 20
v

(I)
s 40

The distribution of the returns for the θABM∗ compared to the real distribution from fig-
ure 19 (b), is shown in figure 21. It shows that the distribution of the returns simulated
from the ABM is very narrow and centered, all though the distribution we saw for stock
0 is a bit less narrow and has heavier tails, we still consider these results comparable.
The kurtosis in our ABM is 235.5, which is quite high, but still a bit far from the kurtosis
of 429.8 that we saw in stock 0. Figure 22 shows the acf of returns (a) and squared re-
turns(b) from the calibrated market. The result is not great. The returns have negative
autocorrelation for lag 1,3,4 and it suddenly increases again around the 15-17 lag. The
first lag has a negative acf of approx -0.2, opposite stock 0, which had 0. This reflect
literature, but not the data that we calibrated our model against. The acf of squared
returns seems reasonable for the first lags. It starts high at about 0.4, and decays slowly,
a bit too slowly. What is quite strange though is that it starts to increase again around
the 10th lag. We would have liked to see a slowly decaying function like the one of stock 0.
One thing to keep in mind is that we calibrated the model only weighting the importance
of the first 5 lags. Thus the bizarre patterns that we observe on the higher lags, could
maybe be bettered by including them in the loss function.
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Figure 21: Density comparison of abm simulated returns and real returns from stock 0.

(a) Acf of returns. (b) Acf of squared returns.

Figure 22: Autocorrelation of returns (right) and squared returns (left), from the ABM
simulation using θABM.
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14 A2C Market Maker Agent
As for the market maker RL agent we have decided to use the A2C method (algorithm
7), which utilizes the Actor-Critic framework with advantage as described in Part I.

The idea is to improve the market making agent by applying RL to learn optimal actions.
The RL agent, like any of the other agents, place the action

a(RL)
t =

[
bp(RL)

t sp(RL)
t bv(RL)

t sv(RL)
t

]
,

at time t. To start off, we let the actor choose the entire action space, i.e. buy and
sell prices and volumes. At the same time it was rewarded by change in PnL, which we
quickly changed to a risk-sensitive approach that we will discuss later. We found that
setting volumes gave the agent too much power. Without a limitation to the volumes, the
agent could easily move the market in the desired direction and thus quickly learned that
it could take advantage of this since the slippage was a constant and did not scale with
position size. Then the agent could just keep buying at extremely high prices and keep
doing so, because the more it bought the more it moved the price in the same direction.
In a way it was a positive sign that the agent found this strategy. But it obviously re-
flected a mistake in the model assumptions and especially emphasized the importance of
setting strict model assumptions when using RL algorithms and ABMs. An illustration
of this initial observations is shown in appendix A.1.

As a solution to the volume problem, we changed it such that the RL agent has the
same fixed volume as the MM agents, both for buy and sell volume (a value of 3 after
market calibration):

bv(RL)
t = sv(RL)

t = v(M).

Likewise we set the latency of the RL agent equal to that of the MM agents:

δ
(RL)
t = δ

(M)
t = U(0, 1)

As for the prices we model these with the A2C algorithm. The agent does not set specific
prices, but prices relative to the last observed market prices through margins. The prices
are set as

bp(RL)
t = Pt−1(1 +mb

(RL)
θ (xt))

sp(RL)
t = Pt−1(1 +ms

(RL)
θ (xt))

where mb(RL)
θ (xt) ∈ R and ms(RL)

θ (xt) ∈ R are respectively buy and sell margins. Note
that they are both added to 1; this is because they both can take positive and negative
values. Under normal circumstances we expect mb(RL)

θ (xt) to be negative and ms(RL)
θ (xt)

to be positive, i.e. buy low and sell high. xt is the feature vector extracted from the
information provided by the state st, and is thus dependent on s, but we leave that out
to spare notation. The features consists of the standard key information from the state
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plus an estimated local volatility calculated similarly to that of the Market Maker agent:

σ
(RL)
t =

√√√√∑t−1

i=t−n(RL)
σ

(
Pi − P̄

)2

n
(RL)
σ − 1

, P̄ =
1

n
(RL)
σ

t−1∑
i=t−n(RL)

σ

Pi.

as well as returns from the last k(RL) time steps. Recall that n(RL)
σ denotes the number

of returns used to calculate the local volatility. Thus at time t the feature vector is

xt = {REt−k, REt−k+1, ..., REt−1, TMVt−1, MBPt−1, MSPt−1, TBVt−1, TSVt−1, σ
(RL)
t }.

Because the actions are continuous, we model them in the continuous setting estimating
means in the multivariate normal distribution

πθ(a | s) =
1√

(2π)2|Σ|
exp

(
− 1

2
(a− µ(xt,θ))>Σ−1(a− µ(xt,θ)

)
,

where µ(xt,θ) ∈ R2 is estimated by our actor through a function approximator and
Σ ∈ R2×2 is a diagonal matrix, with predefined fixed variances for both buy and sell price
margin. a denotes the sampled action (buy and sell margin):[

mb
(RL)
θ (xt) ms

(RL)
θ (xt)

]
= a ∼ N

(
µ(xt θ),Σ

)
Recall that the Actor-Critic method is a policy gradient method and that the actor uses
the advantage function as an estimate for the action-value function in the gradient step.
Furthermore the advantage function is approximated by the TD error. Thus the actor
loss function is given by

Lactor = − 1

2nB

∑
i∈B

2∑
j=1

(
log πθ(ai,j|xi) ˆAdvπθ(xi, ai,j)

)

= − 1

2nB

∑
i∈B

2∑
j=1

(
log πθ(ai,j|xi)[Ri+1 + γv̂πθ(xi+1,w)− v̂πθ(xi,w]

)
where nB is the number of observations in our batch B. ai,j represents the estimated ac-
tion given features xi, where j represents the two actions that the agent needs to take; buy
and sell price margins. Note the minus in front of the function. That is because the term
without represents probability times corresponding excess return, which is something we
would like to maximize. We therefore add the minus when the problem is formulated as
minimization problem of a loss function, in contrast to maximization of a performance
measure. When drawing the samples from our batch we draw from all previous time steps
and thus uses the experience replay as explained in Part I.

Recall that the critic estimates the advantage function, which in our case is approxi-
mated by the TD-error. Thus the critic adapts the estimated state-value through the
following loss:

Lcritic =
1

nB

∑
i∈B

(Ri+1 + γv̂πθ(xi+1,w)− v̂πθ(xi,w))2 .
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As for the reward Rt, we still care about risk. Generally market makers want to profit
from the spread and hedge all other risk as much as possible. However since we only
have one tradeable asset, it is not possible to hedge a position in this market. A way
to manage risk is by keeping a position as close to market neutral as possible. Thus we
have included a penalty on the agents position size in the reward function, inspired by
the method of (Ganesh et al. 2020). The reward that the agent receives at time t is:

Rt = PnLt − PnLt−1 − (ht · λ(RL))2,

where λ(RL) is a risk-aversion parameter that we can change accordingly to the amount of
penalty we want the agent to suffer form carrying risk by holding a position in the market.

As for function approximation we use feed-forward neural networks for both the actor
and the critic. To decide the number of hidden layers and hidden units in each layer we
approached the problem in a way similar to Part II.

The final neural networks consist of two hidden layers, each with 256 units and ReLU
activation functions between the hidden layers. The critics output-layer uses a linear
activation function with one dimensional output since we simply use this to approximate
the state-value function, which takes values in R. The actor outputs the mean vector
µ(xt,θ) and uses a output-layer with a modified tanh activation function. Tanh returns
values in [−1, 1], but because we expect the agent to return prices close to the market
price in order to compete and get orders filled we adjust it to

σactor =
1

40

ex − ex

ex + e−x
,

such that the outputted values are in the interval [−0.05, 0.05]. This way we help the
actor to set prices so that it is hopefully able to learn quicker. If we used a normal tanh
activation function the actor would have to figure out itself that the remaining interval
[−1 : −0.05, 0.05 : 1] would either result in a trade not happening with almost certainty
or that the agent is selling (buying) way below (above) the market price, which seems
like a bad idea.

Notice that when the model is up and running it will on an on going basis observe the
market, act and place orders, learn from these actions (hopefully) and adjust its trading
strategy accordingly. This can be seen as a fully automated trading strategy without any
needed input from the modeller through the trading process.

A visualization of the A2C Market Maker agent is shown in figure 23. It illustrates
the relationship between the environment, the actor and the critic.
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Figure 23: Illustration of the A2C market maker agent. The yellow box represents the
financial market and the order book, which sends out stat information to both the actor and the
critic (blue boxes), which extracts their features (green boxes). The critic estimates a TD-Error
(red box), which it sends to the actor, in order for the actor to perform a gradient step. The
actor then calculates a mean for the normal distribution, which spits out the margin used to
calculate buy and sell prices. The prices together with the volumes are then send back into the
order book, and so on it continues.
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15 Results Part III
Running this experiment has been computationally heavy. One episode of 500 time steps
takes approximately 60 seconds through Google Clouds c2-standard-8 engine. The C2
machine family is compute-optimized and is their highest performing engine for single-
core tasks. We did not implement the code so that it could be run in parallel, and thus
using this engine was our best option. Generally when applying RL, a substantial amount
of training is required in order to evaluate whether the agent is learning or not. This
is because the agent needs to explore many states, before it is able to approximate the
value functions. Furthermore our RL agent and our ABM has a lot of hyper parameters.
These factors combined with the slow simulation has caused the tuning of the agent and
the environment very time consuming. Therefore we have not been able to calibrate our
ABM of the environment nor train the actor-critic agent, as much as we would have
liked. Considering that the REINFORCE agent in Part II used approximately 10.000
episodes with 525 time steps before it converged to a strategy, we might need hundreds
of thousands of episodes for this experiment considering the extreme stochastic nature of
the environment alongside the complexity of this agent. Since we weren’t able to train
that many episodes, we tried increasing the agent’s learning rate, but this resulted in
the agent falling into local minimums where either the estimated mean for the buy or
sell price seems to be stuck. To try and mitigate this, we have tested different kinds of
regularization methods as presented in Part I but with no significant improvement. Thus,
our final agent is not ideal, but the results show improvement with respect to reward and
are still helpful for further development of the environment and the agent.

In regards to hyper parameter tuning the agent have shown to be very sensitive to the
penalty that we put on the position size. But setting the λ(RL) hyperparameter have
shown to be very hard, since the ratio between the contribution to the loss from the
position penalty and the contribution from the spread, is in reality influenced by a lot of
other factors:

• The reward from the spread alone is not very high compared to the reward (posi-
tive or negative) from holding a position, i.e. having a large position when the market
moves has a huge impact on return.
• The penalty from holding a position can be adjusted by λ(RL), but the total reward is
also highly influenced by the market movements.

Thus adjusting the position penalty is a hard balance since we want it to actually make
trades while we also want it to keep a low position all the time. But the reward it gains
from the spread is smaller, and thus it is more influenced by the market movements and
the position penalty, than the actual gain reward from good spreads. At some point the
agent even put its buy prices above its sell prices since this resulted in a position size
of approximately 0, which was better than generating a large negative reward from the
position penalty. To fix this we reduced the position penalty, and finally ended up with
training the agent for 24 hours with the hyper parameters seen in Table 6.
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Table 6: Most essential hyper parameter values for the A2C agent

Parameter Value Explanation

κ(RL) 1e− 03 Variance term multiplier
α

(RL)
actor 1e− 07 Learning rate of the Actor NN

α
(RL)
critic 1e− 07 Learning rate of the Critic NN

bv(RL) 3 Buy volume
sv(RL) 3 Sell volume
ε(RL) 0.05 Exploration
k(RL) 5 time steps before t to include returns from
λ(RL) 0.1 Position Penalty
γ(RL) 0.95 Discount factor
σ(RL) 0.0025 Standard deviation in action space (Normal)
σ

(RL)
priceroof 0.025 Max percentage difference from observed price

n
(RL)
B 5 Number of samples used in each gradient step
λ

(RL)
L2 1e− 05 L2 regularization weight
n

(RL)
σ 10 n observations to calculate volatility
pdropout 0.3 Dropout probability for each hidden layer

In figure 24(a) we see that the agent increases it’s reward quite steadily through time,
especially in the beginning, which is a very good sign because it indicates learning. Fur-
thermore we see in figure 24(b) that it’s average position size through time decreases.
This relationship is expected since the position is penalized in the reward function. It
could indicate that the agent simply stopped trading, e.g. by placing prices too far from
the mid-price in order to avoid trades and keep a position of zero. Though this is indeed
not the case. From figure 25 we see a 10 time step rolling average volume contribution
as an average over the first 50 episodes (a) and last 50 episodes (b). We clearly see that
the change in traded volume does not change a lot, if at all.

At first sight we see that the reward is negative (fig 24(a)), but this does not imply
that the actual profit that the agent achieves is negative. Remember that the reward is
a function that includes a penalty on the position size. However the figure might insinu-
ate that it has converged in the far end, but there is still a lot of variation between the
rewards, which lets us believe that the agent still tries out different actions.

Figure 26 show the actor (a) and critic (b) loss functions for each gradient step. When
looking at loss functions in a supervised learning setting we assume that our observations
is sampled i.i.d, but this is not the case in the RL setting. Since the agents actions affect
both the rewards and the states we observe, while the rewards also affect how the agent
acts through the loss functions. Moreover the loss function is highly affected by what the
agent observes. If the agent observes something new, e.g. the first time an investor enters
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(a) A2C agents reward at end of episode. (b) A2C agents position size at end of episode.

Figure 24: The left figure shows the total reward that the A2C agent received at the end of
each episode during training. The right figure shows the A2C agents position size at the end of
the episodes during training.

(a) Average volume contribution first 50 episodes. (b) Average volume contribution last 50 episodes.

Figure 25: Average 10 time step rolling volume contribution over the first 50 episodes
(left figure) and last 50 episodes (right figure). We see that there is not a lot of change in the
distribution of traded volume between the start and end of the training period.

the market. Then it will move the price rapidly, and if the agent has not observed this
before its loss function could potentially spike. We, therefore, expect more randomness
in both loss functions than we would in a standard supervised learning setting. And the
shape of the loss function is not necessarily an indication of increased performance or
convergence. Here it is more telling to look at the reward function.
Both the function approximators and the reward still have a lot of stochasticity, and it
is hard for the agent to reduce this.

Lastly we take a look at how the RL agent performed with respect to risk and return in
comparison to the other agents with a focus on the market maker. These results can be
seen in Figure 27 (a-f). In (a) we see average end of episode return for each agent class.
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(a) Actors loss during training. (b) Critics loss during training.

Figure 26: The left figure shows the Actors loss function value at each gradient step. The
right figure shows the Critics loss function value at each gradient step.

It is clear that the winner is the investor and the losers are the random agent and the
RL agent. In (c) and (e) we respectively see the rolling mean and standard deviation
over 100 episodes of the final PnL. We see that even though the investor clearly has the
highest PnL it comes with a cost of high variance. The RL agent performs worst with
respect to PnL through the entire period, but as we see in (d) it appears to improve
over time. Subfigure b, d and f shows the same pictures as above, but only for the RL
agent and the market maker. In (d) we see that the market maker has a quite steady
PnL above the RL agent, but we also see that the variation of the PnL for RL agent is
large and seems to increase through time. On the other hand we see that the standard
deviation of the RL agents PnL decreases through time, but is higher than that of the
market maker for the full period. The observations that the RL agent increases PnL and
decreases the standard deviation of PnL through time are both good signs and indicate
an overall increase in performance both concerning risk and return.
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(a) PnL all agents. (b) PnL RL vs MM.

(c) Rolling mean PnL all agents. (d) Rolling mean PnL RL vs MM.

(e) Rolling std of PnL all agents (f) Rolling std of PnL RL vs MM

Figure 27: Performance comparison during the 1500 simulated episodes. We see respectively
see PnL, 100 period rolling mean PnL and 100 period rolling standard deviation of PnL for all
agents on the left side (a), (c) and (e). On the right hand side we see the same, but only for the
RL agent and the market maker agent.
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16 Discussion Part III
As we have shown, an important aspect to keep in mind when using RL is that the model
assumptions are crucial. Changing how much volume the agent is allowed to buy and sell
can change everything. The RL agent does not know the rules of the games, and thus if
there is a flaw in the game with a possibility for exploitation - the agent will likely use
it. Furthermore, these aspects underline the importance of being careful and watching
out for flaws when using RL. Additionally, it is often very difficult to interpret why the
actions of the agent are made due to the complexity of the neural networks often used
in the process. And in case of new regulations or market features, it will be impossible
to know how the RL agent will react to these. Thus if an asset manager attempts to
implement RL to optimize strategies, she has to keep in mind that it will be difficult to
explain the reasons behind the executed trades to her superiors.

Even though we see some similarities between the stylized facts of the real market (stock
0), and the pseudo market calibrated using stock 0, there is still a lot of room for im-
provement. Applying either a wider grid search or more advanced optimization methods
would be interesting. It would definitely benefit to invest time implementing code in
a high performance computing language like c++ with a parallelized implementation.
We have only focused on the three stylized facts about heavy tails, autocorrelation in
returns, and volatility clustering to avoid making things too complicated. It could also
be interesting to investigate other stylized facts, such as the order book dynamics, the
volume traded, bid-ask spreads, etc.

Concerning the RL part of the experiment, we have only implemented RL to optimize
market making. It could also be interesting to test implementations with other reward
functions reflecting the other market participants. Furthermore, the market seems to be
in huge favor of the large long term investor and appears to be biased towards their goal.
This is probably a result of the market calibration, where this large power of the investor
happens to reflect the statistics of the stock 0 market best. Here it could be interesting
to dive deeper into the different agents attributes and find a way to reflect the market
better while giving the investor less power.

Since the pseudo market only included one asset, it was not possible for the agent to
hedge its position, therefore we needed to punish its position size heavily in order to
nudge the agent towards gaining profits from spreads rather than random market move-
ments. In the real world there exists multiple markets with multiple assets, and it is
possible to hedge positions. This could also be an interesting topic for further research.

During the experiment we calibrated our ABM simulation in order to reflect a real mar-
ket, and then added our RL agent to find trading strategies. We have not included any
tests of how the addition of the RL agents has affected the stylized facts of the market.
One could even configure the reward function of the RL agent in order to match the
stylized facts of the market. Thus the RL agent would be optimized to trade in order for
the ABM to reflect the real market. This is indeed an interesting study and is currently
being investigated by researchers, see e.g. (Ardon et al. 2021).
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17 Conclusion Part III
In this part we have shown how ABMs can be used to simulate the dynamics of high-
frequency financial time series. We have shown that through ABMs it is possible to
replicate some of the stylized facts about the market. We observed that the composition
of agents and their attributes plays a large role in the replication of these stylized facts.
The heavy tails and volatility clustering seems easier modelled than the autocorrelation
of returns, while we acknowledge that there is much room for improvement on all three.

Furthermore we have shown how RL can be applied in an ABM environment in order to
find systematic market making strategies without any human decision making required
in the trading process. With the goal of achieving a high return, while keeping a low
inventory to mitigate risk, we see that the agent learns through time and increases its
performance. We see that even though the agent learns it has still not achieved a better
performance than the predefined non-learning market maker agent, but we do see clear
indicators that it becomes better through time. Therefore, we will not reject that it is
possible for the agent to learn a better strategy than the predefined agent, if it had more
time. Additionally, we observed that the learning process was slow and likewise that the
run time simulating the environment was slow. Because of this we have not been able to
train the RL agent for as long time as desired.
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Part IV

Conclusion
18 Accomplishments
We have presented modern RL methods to solve financial problems within portfolio op-
timization (Part II) and market making (Part III). In part II we let a risk-averse RE-
INFORCE agent train on simulated prices of the S&P 500 stock index using an AR(1)
+ GARCH(1,1) model. Through time the agent learns and increases its return. The
longer it trains the more it converges towards a buy and hold strategy, probably realizing
the positive drift, which accumulates over time. This is not very surprising because the
simulated model has random increments with almost no serial correlation. It agrees with
classical finance theory, that the markets are unpredictable given only prices and returns.
To investigate if the model could learn an optimal strategy that required a portfolio which
at sometimes was long and sometimes short, we multiplied the simulation with a sinus
curve. In this case the agent quickly learns the statistical arbitrage strategy.

In part III we model the underlying dynamics of the financial markets, where actors
trade with each other through the order book. To do this we have built an ABM with
agents representing retail and institutional investors as well as trend followers and mar-
ket makers. We have calibrated the model to reflect statistical properties of real high
frequency market data. At last we added an actor-critic RL agent attempting to learn
optimal systematic market making strategies. Simulating the environment was essentially
a computationally heavy task, and we have not been able to simulate anywhere near the
amount of episodes that we would have liked. Nevertheless, we observe that the agent
learns through time and improves its risk-averse reward consisting of return and a penalty
to its position size. This is also reflected in increased return and decreased variance of
return through time. Even after 1500 simulations a predefined market maker still has a
better performance than the RL agent. However, as we have clear indications that the
performance of the RL agent is increasing, we will not reject that it could outperform the
predefined market maker if it was trained for a longer period.

19 Future Research
In Part II, we have only included a single traded asset. It could be interesting to include
multiple traded assets across different asset classes.

In Part III, we have only tried to calibrate our simulation model to have no autocorre-
lation of returns, heavy tails and volatility clustering. It could be interesting to attempt
to model more of the stylized facts, for example volumes in the order book. Furthermore
we have only applied RL to train a market making agent, it could also be interesting to
implement RL for other types of investors too.
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(a) Example of A2C agents return during an
episode.

(b) Example of A2C agents position size during an
episode.

(c) Example of market price during an episode.
’

Figure 28: A2C agent strategy, when setting both volume and prices with reward defined by
pnl. This resulted in it setting the highest buy prices in the market and maximizing its volume,
such that it could drive the market upwards.
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