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Abstract: Composite materials have a wide range of applications in emerging eco-friendly environ-
ments. Composites that created from naturally available materials are easily decomposed over time
and very cost-effective. Fly ash and sugarcane fiber are widely available waste materials produced
on a massive scale. This research was aimed to find an optimal mixture of reinforced composites (fly
ash, sugarcane fiber and CNTs) in order to maximize yield strength, ultimate tensile strength and
Young’s modulus using a Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D).
Optimizing one objective may have a negative impact on another objective, so the authors used the
sophisticated MOEA/D algorithm to simultaneously find optimal values on all three objectives. The
Design of Experiments (DOE) method was performed using ANOVA, and then regression equations
were generated. The regression equations were optimized using the MOEA/D algorithm to obtain
optimal values. Using the optimal compositional values produced by the algorithm, materials were
fabricated. The fabricated materials were tested using a Shimadzu UTM machine to cross-validate
the findings. A combination of 0.2 wt.% of fly ash, 2 wt.% of SCF, and 0.39 wt.% of CNTs showed a
maximum yield strength of 7.52 MPa and Young’s modulus of 1281.18 MPa, with a quite considerable
ultimate tensile strength of 10.54 MPa compared with the optimized results obtained through the
response surface methodology.

Keywords: natural fibers; carbon nanotubes; ANOVA; mechanical properties; MOEA/D algorithm

1. Introduction

In the last two decades, lightweight materials have played a vital role in improving
mechanical strength. Composites are substances that have been mechanically or metallur-
gically bound together to combine the advantageous features of many materials. Although
each component’s structure formation and characteristics are preserved, a composite often
has superior qualities. Due to their high stiffness, strength and resistance to wear, composite
materials outperform traditional alloys in a variety of applications. They are generally
applied in various manufacturing components, such as buyer products, electrical rods,
and shipping accessories [1–4]. In recent years, much research has been carried out to
enhance the mechanical properties of composites. For single- and multi-response process
optimization, researchers have used a variety of methodologies, including response surface
methodology, neural networks, the Gray algorithm, the genetic algorithm, and particle
swarm optimization. Process performance is influenced by the optimal setting of the pro-
cess parameters. It is required to evaluate the impact of each process parameter on each
response parameter for multi-response optimization [5].
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Optimization has left its footprint in various engineering domains. Optimization is the
rigorous search of a solution space to attain a better solution. Brute force is a technique that
searches every possibility in a search space, whereas a heuristics-based algorithm uses a guided
random approach to effectively search for a solution in less time [6]. Bio-inspired optimization
algorithms have been applied to many leading industrial problems in the continuous and
discrete domains. Optimization problems are generally classified into two types, i.e., single-
objective optimization and multi-objective optimization. In single-objective optimization, the
algorithm only considers one objective function and the output of the algorithm is a scalar
quantity. In a multi-objective optimization problem, more than one objective function is
mapped in the algorithm [7]. The output of a multi-objective optimization problem is usually
presented in vectors. Each value in the output vector corresponds to an objective function.
The objective function or fitness function is the mathematical model constructed specifically
for the problem instance that is to be maximized or minimized with the aid of optimization
algorithms. The search space comprises all the possible inputs given to an algorithm to
produce an output in the solution space. The search space can be minimized using constraints.
Every optimization algorithm has three working phases, namely: initialization, iteration, and
the identification of the global best solution [8]. In the initialization phase, the parameters
required for the algorithm, the objective function, and the exploration and exploitation weight
vectors are initialized. The initial problem-specific population is generated at random and
evaluated using the objective function. Exploration is the process of searching the entire search
space, whereas exploitation is a way to improve the existing solution. Every bio-inspired
algorithm is designed to run for a number of iterations. The weight vectors are coefficients
that increase or decrease the exploration and exploitation as the iterations proceed. During
the initial iteration, exploration is given more weightage, and as the iteration increases, the
exploration coefficient becomes 0 or minimal and exploitation is given more weightage. If the
exploration coefficient is initialized to a constant, then the algorithm works as a random walk.
The initial population is improved in the iteration phase. The initialization phase remains the
same for most bio-inspired algorithms [9]. The iteration phase is the one that differentiates
a variety of bio-inspired algorithms. For example, the ant colony algorithm uses a different
iteration phase compared with the genetic algorithm. In this phase, unique methodologies are
used to improve existing solutions. During each iteration, the best of all solutions is stored in
an elite population, and it is replaced if any better solutions are found [10].

For a single-objective optimization problem, the identification of a global solution
is conducted by simply comparing the objective values of a resultant population with
the global best values. This phase varies in the case of multi-objective optimization prob-
lems [11]. Naik et al. [12] used the genetic algorithm (GA) to achieve global optima to
minimize the weight of a carbon epoxy composite laminate rather than using gradient
descendant-based techniques. The native reproduction, crossover and mutation operators
were used. It was observed that the gradient-based methods could not be used to find
global minima when a local minimum was found. Gillet et al. [13] implemented a multi-
objective version of the GA to optimize two objective functions to study the influence of
design variables in various standard optimization problems. The adoption of strength
a Pareto evolutionary algorithm was implemented by Zitzler and Thiele [14] to isolate
non-dominated solutions in an entire population. Almeida and Awruch used a modified
version of a reproduction and crossover operator to optimize composite laminated struc-
tures. Minimizations of the weight and cost of materials were simultaneously addressed
through multi-objective optimization. Single-point crossover was used as the reproduction
operator. The random addition or subtraction of values under limits and gene swapping
were used as mutation operators to ensure diversity among the population [15].

Irisarri et al. [16] used GA-based multi-objective optimization for the buckling of
laminated plates. The initial population was initialized with the values obtained from the
maximin design of experiments method to speed up the convergence rather than using
a randomized initial population. Spears and Anand [17] used two-point crossover as a
reproduction operator. Sheyka et al. [18] used a multi-objective genetic algorithm (MOGA)
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to design a blast-resistant composite. Murata et al. [19,20] adapted the GA to address
multiple objectives using weight vectors and summated the objective score to a single value
(weighted sum approach) Alvarez et al. [21] used a MOGA in which the optimization was
constructed without the need of merging the solution by using the concept of domination. A
MOGA extensively searches a solution front to produce multiple Pareto solutions, whereas
the weighted sum approach can only be used identify a solution over the imposition of
weight vectors. Lee et al. [22] presented a work that aimed to minimize the weight of
multilayered composite plates and minimize their maximum displacement. The design
variables included the type, thickness and orientation of the fibers of each layer. Duk
et al. [23] evaluated objective and constraint functions instead of using time-consuming
finite element analysis methods (FEAMs) during the optimization process, while the NSGAII
was employed to find a set of Pareto-optimal solutions of MOO problems. Additionally,
the effects of various boundary conditions and carbon nanotube (CNT) distributions on the
Pareto-optimal solutions of MOO problems were discussed. Toupe et al. [24] investigated the
effect of two different optimization paths on the microstructure and mechanical properties
of flax fiber/postconsumer recycled plastic composites.

Badallo et al. [25] compared the performance of the archive-based micro genetic
algorithm (ABGM), neighborhood cultivation genetic algorithm (NCGA) and non-dominate
sorting genetic algorithm II (NSGA-II) to maximize the critical buckling load and minimize
the mass. Tiwari et al. stated that the ABGM is an improved version of the GA, as the
history of an entire population can be stored in an external archive. Once executed, the
best-performing individuals form the Pareto front. Deb et al. [26,27] confirmed that the
NCGA follows the same flow as the GA, except that crossover is performed between
individuals of closest objective values. Diversity was achieved using extensive mutation
operators. Munck et al. [28] stated that in the NSGA II, the concept of domination is
applied to parent and children populations, and then multiple Pareto fronts are identified
to perform crowding distance calculations. An individual lesser crowding distance denotes
the extensive availability of solutions. The NSGA II only maintains an external archive
with Pareto solutions. The external archive is replaced during every iteration with a better
performing solution. Hwang et al. [29] used a roulette wheel method to select an individual
to be included in a mating pool in which the best-performing individual has a higher
probability of being including in the mating pool than the worst-performing individual.
In this article, the authors used a layer-wise optimization algorithm (ILOA) to design
viscoelastic composite structures.

Gopalan et al. [30] studied the impact of natural fiber content on ultimate tensile
strength. It was observed that fly ash did not affect UTS, but the addition of carbon
nanotubes (CNTs) enhanced other mechanical properties. Gopalan et al. [31] studied the
tensile properties of natural fiber/carbon nanotubes reinforced with EC. Samples were
prepared using the Design of Experiments (DOE) approach with the CCD of the RSM, and
then the effect of the wt.% of each constituent on tensile properties was analyzed with
the ANOVA model. It was observed that YS and YM mainly depended on the wt.% of
sugarcane fiber, whereas fly ash and CNTs contributed to the enhancement of the ultimate
tensile strength. The yield strength, ultimate tensile strength, and Young’s modulus of a
composite of 0.5 weight percent fly ash, 2 weight percent natural fiber and 0.85 weight
percent carbon nanotubes were determined to be 5.53 MPa, 19.62 MPa, and 914.96 MPa,
respectively. Sim et al. [32] evaluated the tensile strength of a fly ash/epoxy-reinforced
polymer matrix composite for different vol.% of fly ash. It was observed that the tensile
strength increased with increases in the content of fly ash to certain limit and then decreased.

Khondker et al. [33] considered composite specimens produced under various process-
ing parameters. Under the identified suitable processing parameters, jute/PP composite
samples exhibited excellent mechanical characteristics. When compared with virgin PP
materials, the unidirectional jute/PP composites’ static mechanical characteristics were
significantly improved.
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The effects of compression process parameters on the tensile properties of composites
reinforced with hemp fiber were investigated by Takemura and Minekage [34]. They dis-
covered that compared with polypropylene bulk, hemp fiber-reinforced polypropylene had
better tensile properties. In comparison with the resin large bulk specimen, the composite
was 2.6 times stronger. The ideal molding temperature and time for hemp fiber-reinforced
green composite were found to be under 180 ◦C and 20 min, respectively. Goleswski et al. [35]
analyzed increases in the early strength of concrete with fly ash through the application of
a specifically formulated chemical nano-admixture (NA) in the form of seeds of the C-S-H
phase. The NA was used to accelerate the strength growth in the concrete. The results
of tests indicate the possibility of using NA in a wide range of management areas in sus-
tainable concrete prefabrication. Khan et al. [36] noted that the application of nano-silica
in cement-based composites was beneficial when used up to an optimal dosage of 2–3%
due to high pozzolanic reactivity and a filler effect, whereas a higher dosage of nano-silica
had a detrimental influence due to the increased porosity and microcracking caused by the
agglomeration of nano-silica particles. The mechanical strength could be enhanced by 20–25%
when NS was incorporated in the optimal amount. The models developed for predicting
the strength of nano-silica-modified concrete exhibited good agreement with experimental
data according to low error values. Zhang et al. [37] observed that geopolymer composites’
flowability and compressive strength were slightly improved when compared with those
without NS. With the increase in the superplasticizer content, the compressive strength of
geopolymer composites showed a slightly decreasing trend on the whole.

Aamir et al. [38] examined the drilling process parameters and their optimization
techniques, as well as the effects of dust particles on human health during the machining
process. They observed that the direction of fibers had an important role in defining the
damage tolerances of composites, chip formation, thrust force, and surface roughness. For
the optimization of process parameters, a multi-attribute decision-making technique has
been used by different researchers; however, the majority have studied the Taguchi method
because it is a simple approach that does not require an expert background in statistics to
form a set of standard designs.

From the literature, it can be observed that a few studies have reported the effects of
various constitutes on the tensile properties of polymer matrix composites but no one has
used a multi-objective evolutionary algorithm to find the optimized wt.% for the mentioned
composites. Hence, in this research, the authors attempted to find out the optimum wt.%
of sugarcane fiber, fly ash and CNTs to achieve maximum tensile properties using a multi-
objective evolutionary algorithm technique that was also validated with the experimental
and ANOVA results listed in a previous study carried out by authors. In this research
work, the authors employed a multi-objective evolutionary algorithm using decomposition
to find an optimal value considering the parameters of yield strength, ultimate tensile
strength and Young’s modulus. These parameters were programmatically embedded as an
objective function in the MOEA/D algorithm. The algorithm produced an output vector
with three values corresponding to each objective function. The concept of domination was
used to identify the best-performing solution among the generated solutions. The worst-
performing solutions were eliminated using the concepts of domination, the remaining
solutions were plotted in a three-dimensional space, and a Pareto front was constructed.
All the solutions in the Pareto front were non-dominated or best-performing solutions.

2. Methodology

A flowchart for the proposed method is shown in Figure 1. In this study, the influences
of the wt.% of fly ash, sugarcane fiber and CNTs on tensile behaviors were studied using
analysis of variance (ANOVA). The tensile test values were fed to the MINITAB software
program to carry out ANOVA. Regression equations, which illustrated the influences of
the wt.% of fly ash, sugarcane and CNTs on the tensile behavior of the composite, were
obtained. The regression equations were optimized using the MOEA/D algorithm to
obtain optimal values. Using the optimal compositional values produced by the algorithm,
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materials were fabricated. The fabricated materials were tested using a Shimadzu UTM
machine to cross-validate the findings.
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2.1. Materials and Methods

The polymer matrix composites were made using epoxy as the matrix. Fly ash was
utilized as one of the fillers and reinforcements since it is a plentiful and accessible substance.
Fly ash with a grain diameter of 50 µm was purchased to create an epoxy polymer matrix
composite. Due to its biodegradability, sugarcane fiber was also used as reinforcement with
the matrix. Dried sugarcane was acquired and processed through a pulverizer to create
a reinforcement for an EPM composite. The sugarcane fiber was filtered in a sieve with a
mesh size of 150 µm after it was ground. As a result, the grain diameter of the sugarcane
fiber used in the epoxy polymer matrix composite was 150 µm. A CNT is a substance that
considerably raises the malleable property of an EPM composite when used as a filler or
reinforcement. MWCNTs purchased from Sisco Research Laboratories Pvt. Ltd., (Chennai,
India) were used to add another filler or reinforcement to the epoxy polymer matrix. The
purchased CNTs had the following specifications: MWCNT type 3, outer diameter of
10–20 nm, and span of 10–30 µm.

For the preparation of samples, the Design of Experiments (DOE) concept was used
to keep track of the variations of all involved factors. Table 1 shows the parameter levels
for the wt.% of the fly ash, sugarcane fiber, and CNTs obtained using the RSM model
CCD (Central Composite Design). The fly ash and sugarcane fiber were ground in a plate
mill pulverizer, and the ground fiber was segregated with 5 different wt% levels of CNT
fillers/reinforcements to form the CCD matrix. The wt.% values for fly ash and sugarcane
fiber ranged from 0 to 2. Similarly, the wt.% values for the MWCNTs were in the range
of 0 to 1. The required proportion of epoxy resin, its hardener, fly ash, sugarcane, and
CNTs were established by weighing them in the machine. An HY951 hardener was added
to the prepared epoxy matrix/reinforcement solution in a proportion of 1:10 by volume.
The solution was carefully stirred for around 10 min. After a few minutes, this solution
started losing its viscosity, and when it again started to gain consistency, the solution was
poured into a tensile mold. It was previously observed that a fly ash (0 to 2 wt.%) and
sugarcane fiber (0 to 2 wt.%) with CNTs (0 to 1 wt.%)-reinforced matrix provides the best
tensile results [31]. This combination also resists crack propagation and improves fracture
toughness. The results of this study showed that there was a remarkable improvement in
the mechanical and thermal stability of the composites following reinforcement.



Nanomaterials 2022, 12, 4112 6 of 15

Table 1. wt.% of fly ash, sugarcane and CNTs at various levels [31].

Parameters
Levels

−2 −1 0 1 2

Wt.% of fly ash 0 0.5 1 1.5 2

Wt.% of sugarcane 0 0.5 1 1.5 2

Wt.% of CNTs 0 0.25 0.5 0.75 1

The solution was allowed to solidify in atmospheric conditions for 3–4 h. The involved
process was exothermic. Once the polymer matrix composite hardened, it was taken out of
the mold. Solidified epoxy matrix composite samples were cured in an oven at 80 ºC for
2 h. A tensile test was carried out with a 50 kN universal testing machine (SHIMADZU
make AG-X plus, Shimadzu Asia Pacific, Pvt.Ltd, Chennai, Tamilnadu, India) at a constant
displacement rate of 2 mm/min at room temperature (see Figure 2) according to the ASTM:
D3039 standard specimen configuration [5]. Generally, a 40 mm length was used from both
sides of each sample for them to be held in the holding fixture. The strain rate maintained
during the testing was 2 mm/min. Accordingly, 20 samples were prepared for different
wt.% of fly ash, sugarcane fiber and CNTs, as listed by the authors in a previous study [31].
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Equations (1)–(3) are the regression equations for yield stress, UTS, and Young’s
modulus, respectively. From these regression equations, values for all 20 samples were
calculated by substituting the corresponding wt.% of fly ash/sugarcane fiber/CNTs in
Equations (1)–(3). Based on the DOE method, the following regression equations were
obtained.

Regression Equation (1):

Yield strength(MPa) = 2.962− 3.338 fly ash−1.631 sugarcane
+1.68 CNT + 2.022 fly ash× fly ash+2.257 sugarcane× sugarcane
−1.971 CNT×CNT− 1.355 fly ash× sugarcane+0.990 fly ash
× CNT − 0.650 sugarcane×CNT

(1)

Regression Equation (2):

UTS(MPa) = 10.99− 1.93 fly ash−9.76 sugarcane+13.72 CNT + 3.969
fly ash× fly ash+3.346 sugarcane× sugarcane + 19.86 CNT × CNT +
2.980 fly ash× sugarcane−23.29 fly ash×CNT− 2.56 sugarcane×CNT

(2)
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Regression Equation (3):

Young′s modulus (MPa) = 537− 615 fly ash−317 sugarcane+401
CNT+341.8 fly ash× fly ash+392.3 sugarcane× sugarcane− 473 CNT ×
CNT − 200 fly ash× sugarcane+196 fly ash×CNT− 128 sugarcane×CNT

(3)

2.2. Development of MOEA/D

For optimization, a multi-objective evolutionary algorithm based on decomposition
(MOEA/D) was adopted. This is a multi-objective version of genetic algorithm workflow
shown in Figure 2. The algorithm’s prerequisites, such as objective functions, number
of objectives, population size, ideal vector, and number of neighbors, are first initialized.
The initial populations are randomly generated to satisfy the input constraints. An ideal
vector is an imaginary solution point in a Euclidean space, and the MOEA/D algorithm
tries to generate the ideal vector during each iteration. Objective functions are problem-
specific computational procedures where the output of the objective function is a scalar
or a vector that needs to be minimized or maximized. A population P may contain n
number of individuals. An initial non-dominated solution is found by evaluating the
population against the objective function. The Tchebycheff method is used to convert the
multi-objective vectors into a scalar quantity. Each of the individuals is evaluated with
randomly generated weight vectors to effectively explore the given search space. The
evaluated individuals are also compared with their neighbors for a better solution. If a
better solution is found, the weight vectors are eliminated and the results are produced.

The best-performing solution in the previous population and one more individual
are selected using roulette wheel selection. The selected individual undergoes a crossover
operation and a mutation operation to generate a new individual. The individual, not
satisfying the constraints, is eliminated from the newly developed population. For each
newly generated individual, the fitness function is calculated in search of improvements
to the solution compared with the previous generation. If any improvement is found, the
individual is once again evaluated with the neighbors of different weight vectors for a better
solution. The concept of domination is applied to the solution vectors to isolate non-dominated
solutions. Non-dominated solutions are the best-performing solutions in all objectives. The
non-dominated solutions are stored in the external population (EP) during each outer loop
iteration (denoted in blue in Figure 3). The non-dominated solutions are appended in the
external population during each iteration. The concept of domination is once again used within
the external population to isolate the best-performing individual in the overall procedure. The
final solutions of the external populations are plotted in the Euclidean plane. A posteriori
expertise is applied to fix the desired solution point among all other solutions. Most MOEAs
only regard the MOP as a whole and rely on domination to measure the quality of solutions,
and these solutions may not be uniformly distributed over the PF. The fitness evaluation
based on a scalar function can be scaled to the number of objectives and strong search ability,
and its computational complexity is not exponentially increased with increases in objectives.
Therefore, many decomposition-based MOEAs have been proposed.



Nanomaterials 2022, 12, 4112 8 of 15Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. The MOEAD algorithm workflow. 

3. Results and Discussions 

3.1. Tensile Test 

The third specimen showed high YS and YM values, whereas the eleventh specimen 

showed the highest UTS value. Specimen 5 showed the lowest YS and YM values, and 

sample 12 showed the lowest UTS value. Adding sugarcane and CNTs improved the com-

posite strength, which verified that the CNTs were strong enough to be used as a rein-

forcement in epoxy composites. The yield strength was low in the 1% fly ash and 1% sug-

arcane at 1% combination, and it was much higher in the 0% fly ash and 2% sugarcane 

combination. The increased tensile strength of the composites following the addition of 

CNTs was due to the fact that CNTs can fill zones in the matrix that cannot be filled by 

fibers, thus leading to greater interactions between the reinforcement and matrix [39]. In 

addition, the increase in the tensile strength of the composite was due to the good inter-

action between the reinforcement, both natural fibers, or CNTs and the epoxy matrix. 

  

Figure 3. The MOEAD algorithm workflow.

3. Results and Discussions
3.1. Tensile Test

The third specimen showed high YS and YM values, whereas the eleventh specimen
showed the highest UTS value. Specimen 5 showed the lowest YS and YM values, and
sample 12 showed the lowest UTS value. Adding sugarcane and CNTs improved the
composite strength, which verified that the CNTs were strong enough to be used as a
reinforcement in epoxy composites. The yield strength was low in the 1% fly ash and
1% sugarcane at 1% combination, and it was much higher in the 0% fly ash and 2% sugarcane
combination. The increased tensile strength of the composites following the addition of
CNTs was due to the fact that CNTs can fill zones in the matrix that cannot be filled by fibers,
thus leading to greater interactions between the reinforcement and matrix [39]. In addition,
the increase in the tensile strength of the composite was due to the good interaction between
the reinforcement, both natural fibers, or CNTs and the epoxy matrix.

3.2. Results of Modelling

The predicted models presented a nonlinear relationship between the design parame-
ters and quality characteristics. As reported in a literature review [22], fiber parameters are
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have significant impact on the quality of products in fiber-reinforced composites. Based
on the established relationship models according to the response surface method, the
MOEA/D algorithm was applied by considering the multi-objective function as yield
strength (YS), ultimate tensile strength (UTS) and Young’s modulus (YM). The initially
found objective parameters {YS, UTS, YM} are listed in Table 2 without any constraint on
input parameters such as fly ash, sugarcane fiber (SCF) and carbon nanotubes (CNTs). The
composite with 2 wt.% of SCF and 0.3854 wt.% of CNTs showed the highest YS and YM
values, whereas the composite with 0.0241 wt.% of fly ash, 2 wt.% of SCF, and 1.6714 wt.%
of CNTs showed the maximum UTS values. It was noticed that the maximum YS and YM
values were achieved with less wt.% of CNTs. On the other hand, the UTS significantly
rose with the addition of CNTs, but the composite could not incorporate the fly ash, which
is the main problem of disposal.

Table 2. Optimizing the objectives {YS, UTS, YM} without any constraints imposed on input parame-
ters {fly ash, SCF, CNT}.

Fly Ash Sugarcane
Fiber CNT Yield

Strength UTS Young’s
Modulus

0.0000 2.0000 0.3854 8.5817 11.1184 1457.8263

0.0000 2.0000 0.4394 8.5145 12.4660 1444.6030

0.0000 2.0000 0.4586 8.4877 12.9753 1439.2135

0.0000 2.0000 0.4586 8.4877 12.9753 1439.2135

0.0000 2.0000 0.4626 8.4820 13.0832 1438.0467

0.0000 2.0000 0.4647 8.4789 13.1393 1437.4367

0.0000 2.0000 0.4768 8.4611 13.4691 1433.8081

0.0002 2.0000 0.4889 8.4417 13.8056 1429.8687

0.0000 2.0000 0.5164 8.3986 14.5919 1420.9335

0.0000 2.0000 0.5672 8.3095 16.1206 1402.2802

0.0001 2.0000 0.5728 8.2983 16.2963 1399.9466

0.0002 2.0000 0.5738 8.2959 16.3245 1399.4750

0.0000 2.0000 0.6491 8.1441 18.8052 1367.0065

0.0000 2.0000 0.6501 8.1419 18.8396 1366.5375

0.0002 2.0000 0.6555 8.1290 19.0212 1363.8128

0.0002 2.0000 0.6734 8.0893 19.6476 1355.2231

0.0000 2.0000 0.6815 8.0715 19.9389 1351.3340

0.0000 2.0000 0.7704 7.8509 23.2671 1303.1678

0.0000 2.0000 0.7733 7.8429 23.3808 1301.4316

0.0000 2.0000 0.7865 7.8075 23.9046 1293.6286

0.0000 2.0000 0.8227 7.7065 25.3722 1271.3319

0.0000 2.0000 0.8366 7.6664 25.9492 1262.4478

0.0000 2.0000 0.8713 7.5629 27.4220 1239.4876

0.0000 2.0000 1.0301 7.0278 34.7887 1119.6232

0.0000 2.0000 1.1885 6.3955 43.1286 976.3933

0.0241 2.0000 1.6714 3.7524 73.8677 376.8456

Now, to reuse fly ash, {fly ash, SCF, CNT} ≥ 0.2 constraint was applied to the input
parameters, and the results obtained regarding {YS, UTS, YM} are illustrated in Table 3. It
was found that the composite with 0.2093 wt.% of fly ash, 2 wt.% of SCF, and 0.5780 wt.%
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of CNTs showed the highest YS and YM values, whereas the composite with 0.2000 wt.% of
fly ash, 2 wt.% of SCF, and 1.2829 wt.% of CNTs showed the maximum UTS. The proposed
combinations enabled the reuse of fly ash and biodegradable sugarcane fiber, making them
environmentally friendly composite materials.

Table 3. Optimizing the objectives {YS, UTS, YM} with constraints imposed on input parameters {fly
ash, SCF, CNT} ≥ 0.2.

Fly Ash Sugarcane
Fiber CNT Yield

Strength UTS Young’s
Modulus

0.2093 2.0000 0.5780 7.2319 14.6589 1224.2724

0.2000 2.0000 0.6566 7.1290 16.9695 1199.8914

0.2010 2.0000 0.7181 6.9935 18.8788 1170.5120

0.2000 2.0000 0.7197 6.9944 18.9424 1170.4461

0.2016 2.0000 0.7205 6.9853 18.9512 1168.8706

0.2000 2.0000 0.7317 6.9670 19.3357 1164.4170

0.2021 2.0000 0.7390 6.9405 19.5532 1159.1280

0.2026 2.0000 0.7397 6.9366 19.5702 1158.4023

0.2019 2.0000 0.7440 6.9297 19.7214 1156.6933

0.2005 2.0000 0.7549 6.9101 20.1045 1152.0019

0.2000 2.0000 0.8001 6.7999 21.6878 1127.4320

0.2000 2.0000 0.8243 6.7365 22.5624 1113.3198

0.2016 2.0000 0.8404 6.6860 23.1372 1102.4820

0.2000 2.0000 0.9602 6.3370 27.9146 1023.6403

0.2000 2.0000 0.9771 6.2821 28.6331 1011.2377

0.2000 2.0000 1.0785 5.9301 33.1704 931.3588

0.2000 2.0000 1.0893 5.8902 33.6772 922.2885

0.2000 2.0000 1.2829 5.0970 43.5611 740.7246

Considering that more use of fly ash leads to disposal issues, one more case was
considered. {Fly ash, SCF, CNT} ≥ 0.5 constraints were applied to input parameters, and
the results obtained for {YS, UTS, YM} are shown in Table 4. A combination of 0.5 wt.% of
fly ash, 2 wt.% of SCF, and 0.6786 wt.% of CNTs showed the highest YS and YM values,
whereas a combination of 0.5273 wt.% of fly ash, 2 wt.% of SCF, and 1.5353 wt.% of CNTs
showed the maximum UTS. It was observed that the maximum YS and YM values were
obtained when the composite contained the minimum wt.% of fly ash and CNTs, and a
maximum wt.% of CNTs led to the highest UTS with a constant wt.% of SCF.
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Table 4. Optimizing the objectives {YS, UTS, YM} with constraints imposed on input parameters {fly
ash, SCF, CNT} ≥ 0.5.

Fly Ash Sugarcane
Fiber CNT Yield

Strength UTS Young’s
Modulus

0.5273 2.0000 1.5353 2.8402 49.2434 298.4288

0.5003 2.0000 1.0391 4.9895 26.1341 791.7830

0.5002 2.0000 0.9459 5.2731 22.7455 856.7120

0.5000 2.0000 0.9306 5.3169 22.2262 866.6686

0.5000 2.0000 0.9201 5.3459 21.8733 873.2882

0.5000 2.0000 0.8442 5.5434 19.4455 918.1744

0.5000 1.9998 0.8327 5.5702 19.0966 924.3141

0.5000 1.9963 0.7745 5.6816 17.4055 950.6806

0.5000 1.9983 0.7461 5.7549 16.6386 966.4199

0.5000 2.0000 0.7364 5.7849 16.3898 972.5752

0.5000 2.0000 0.7362 5.7855 16.3829 972.6952

0.5000 2.0000 0.7362 5.7855 16.3829 972.6952

0.5000 2.0000 0.7327 5.7926 16.2907 974.2889

0.5000 2.0000 0.6919 5.8714 15.2614 991.8523

0.5000 2.0000 0.6786 5.8957 14.9396 997.2479

3.3. Confirmatory Test

Table 5 shows the results for {YS, YM} without considering any constraints on {fly
ash, SCF, CNT}. It was noticed that constant fly ash and sugarcane fiber contents led to
maximum yield strength, Young’s modulus, and UTS values.

Table 5. Optimizing the objectives {YS, YM} without constraints imposed on input parameters.

Fly Ash Sugarcane
Fiber CNT Yield

Strength
Young’s

Modulus UTS *

0.0000 2.0000 0.1598 8.7384 1483.2924 6.7355

0.0000 2.0000 0.3464 8.6231 1465.6664 10.2167

0.0000 2.0000 0.1535 8.7399 1483.3125 6.6427
* UTS was manually calculated based on resultant optimal input values.

Table 6 illustrates that when {YS and YM} was considered with {fly ash, SCF, CNT} ≥ 0.2
constraints applied to the input parameters, the maximum yield strength and Young’s mod-
ulus were obtained for a combination of 0.2 wt.% of fly ash and 2 wt.% of sugarcane fiber,
whereas an increase in UTS was noticed following the addition of CNTs up to 0.6095 wt.%.
The authors recommend using a small amount of fly ash because it creates many problems
during disposal. So, the minimum use of fly ash and the moderate use of SCF and CNTs led
to maximum YS and YM values and a sufficient UTS value. One can see that the relative error
of each response value was less than 8% in the optimization schemes, so the optimization
scheme obtained by combining the response surface method and the MOEA/D algorithm is
highly reliable [39].

Finally, when {fly ash, SCF, CNT} ≥ 0.5 constraints were considered, the maximum
values for objectives {YS, YM} were found as listed in Table 7. A combination of 2 wt.% of
sugarcane fiber and 0.5 wt.% of fly ash and CNTs exhibited the maximum yield strength
and Young’s modulus values, with a considerable UTS.
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Table 6. Optimizing the objectives {YS, YM} with constraints imposed on input parameters {fly ash,
SCF, CNT} ≥ 0.2.

Fly Ash Sugarcane
Fiber CNT Yield

Strength
Young’s

Modulus UTS *

0.3998 2.0000 0.6095 6.3738 1081.4500 14.0438

0.2000 2.0000 0.3984 7.5167 1281.1804 10.5416

0.3296 2.0000 0.4227 6.2962 1076.4423 10.2521
* UTS was manually calculated based on resultant optimal input values.

Table 7. Optimizing the objectives {YS, YM} with constraints imposed on input parameters {fly ash,
SCF, CNT} ≥ 0.5.

Fly Ash Sugarcane
Fiber CNT Yield

Strength
Young’s

Modulus UTS *

0.5000 2.0000 0.5000 6.1543 1053.4000 11.3038

2.0000 1.6414 0.6483 4.1821 733.3386 10.1031

1.9946 1.9946 0.7960 5.3122 930.3963 11.0937

0.6780 1.9180 0.9287 4.3665 712.0578 19.6167

2.0000 1.9803 0.6774 5.3314 941.1743 12.0220

2.0000 2.0000 0.5781 5.4256 961.7629 13.4703

2.0000 2.0000 0.6012 5.4264 961.2842 13.1353

0.7813 1.9717 0.8859 4.5504 753.1745 17.4100
* UTS was manually calculated based on resultant optimal input values.

Table 8 shows the wt. content of fly ash/SCF/CNTs obtained with the algorithm and
optimization via the RSM. The comparative analysis revealed that the optimal solution of
fly ash/SCF/CNTs contents showed a YS of 5.53 MPa and a YM of 914.96 MPa. Based on
observations, the projected parametric combination led to the highest yield strength and
Young’s modulus values without compromising the percentage of fiber content. Therefore,
the design parameters of the scheme were chosen as the optimal parameters. Deviations
in the results based on the RSM and MOEA/D were found to be 26.43% and 28.58%,
respectively. The results were compared with the experimental results of the optimization
by combining the response surface method and the MOEA/D. The combination of 0.2 wt.%
of fly ash, 2 wt.% of SCF, and 0.39 wt.% of CNTs showed a maximum YS of 7.52 MPa and a
maximum YM of 1281.18 MPa, with a quite considerable UTS of 10.54 MPa, compared with
the optimized results obtained through the RSM.

Table 8. Comparison of results obtained with experiments, RSM and multi-objective evolutionary
algorithm (with ≥0.5 constraints) for maximum responses.

Optimization Using (MOEA/D) Algorithm Optimization Using RSM

Fly Ash % (wt.) Yield Strength (MPa) Fly Ash % (wt.) Yield Strength (MPa)

0.2 7.5167 0.5 5.53

Sugarcane fiber % (wt.) Ultimate tensile stress (MPa) Sugarcane fiber % (wt.) Ultimate tensile stress (MPa)

2 10.5416 0.5 19.62

CNT % (wt.) Young’s modulus (MPa) CNT % (wt.) Young’s modulus (MPa)

0.3984 1281.1804 0.5 914.96
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4. Conclusions

From the above investigation, the following conclusions are drawn.

• It is evident that fly ash has many environmental disposal issues. Additionally,
biodegradable composites can be constructed with the use of SCF and recyclable
material such as CNTs.

• A mixture of 0.5 wt.% of fly ash, 2 wt.% of SCF, and 0.5 wt.% of CNTs exhibited
better maximum yield strength, Young’s modulus, and UTS values compared with the
optimized values obtained via the RSM.

• Increasing the wt.% of CNTs improved the ultimate tensile strength, but it did not
influence the composite material’s yield strength and Young’s modulus.

• As the content of fly ash reduced, the YS and YM were increased and the UTS was
somewhat degraded; however, making reusable, biodegradable, and recyclable com-
posites necessitates using waste fly ash.

• The MOEA/D is an efficient and effective algorithm that can be used to solve multi-
response optimization problems including the one considered in the present study, as
it suggests a set of alternate optimal solutions in a short period.

• In this way, the described design parameter combinations are expected to not only ensure
the meeting of product quality specifications but also to enhance stability outcomes.
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Nomenclature

UTS Ultimate Tensile Strength
CNT Carbon Nanotube
YS Yield Strength
YM Young’s Modulus
MOEA/D Multi-Objective Evolutionary Algorithm with Decomposition
DOE Design of Experiment
ANOVA Analysis Of Variance
RSM Response Surface Methodology
SCF Sugarcane Fiber
EP External Population
CCD Central Composite Design
MWCNT Multi-Wall Carbon Nanotube
PF Pareto Front
UTM Universal Tensile Machine
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