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Summary
Offshore energy hubs (OEHs), also often called energy islands, are dis-
cussed as becoming a key component of the energy transition in the Nordic
and Baltic region and for Western and Central Europe. The idea involves
the construction of production and conversion hubs far out at sea, where
the wind energy potential is very high. Following the several European
initiatives’ visions (see North Sea Wind Power Hub, 2021) and a decision
by the Danish Parliament (see Energistyrelsen, 2021), the idea is to create
an artificial hub in European waters at a central location in areas of high
renewable energy production—mainly offshore wind. OEHs are a new
concept in the energy sector, and there is not yet extensive expertise and
knowledge about them. Key questions surround optimal design, technol-
ogy mix and connectivity, regulation, market design, and business models.
This thesis develops three articles to answer two main research questions
to contribute to the discussion on OEHs: (1) What are the main tech-
nological, environmental, economic, and societal drivers and challenges
for the development of offshore energy hubs, and what is their impact on
offshore electrolysis?, and (2) how do system configuration and market
design influence the value of electrolysis on offshore energy hubs?

The first article, Risks, Strategies, and Benefits of Offshore Energy
Hubs, develops a survey scheme inspired by multi-criteria analysis to as-
sess the main drivers in the development of OEHs. I propose a definition,
present the scheme, and conduct a survey based on the scheme for the case
of the North Sea offshore energy infrastructure. Applying the suggested
survey method to the context of the North Sea, I identify five trade-offs to
be considered. The significance of the environmental benefits is strongly
linked to the choice of materials and designs; changes to current assump-
tions may flip the system’s benefits and turn the project into a series of
sunk investments; coordinated and integrated planning is key to boosting
the project’s efficiency; offshore energy infrastructure presents a techno-

https://northseawindpowerhub.eu/vision/
https://ens.dk/ansvarsomraader/vindenergi/udbud-paa-havvindmoelleomraadet/danmarks-energioeer/fakta-om-energioeerne
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logical solution to energy system decarbonisation and needs to touch base
with societal desires and behavioural solutions; and OEHs are currently
standalone solutions with no competitors, which makes their benefits im-
possible to compare.

In the second paper, How to Connect Energy Islands?, we investigate
the trade-offs between integrating OEHs via electricity and hydrogen in-
frastructures. We set up a combined capacity expansion and electricity
dispatch model to assess the role of electrolysers and electricity cables in
the availability of renewable energy from the islands. We find that the
electricity system benefits from significant interconnection through the
OEHs and offshore wind farms. In a scenario analysis, when electrolysers
are built onshore, offshore electrolysis plays a smaller role. The energy
system infrastructure offshore converges towards a meshed offshore grid
and an OEH with a large electrolyser capacity. We observe that there
is a chance for nuclear power and biomass to be used as fuel for elec-
trolysers rather than offshore wind. Lastly, the capacity investments in
electrolysers are very sensitive to hydrogen price but less to carbon price
changes.

In a subsequent study, Electrolysis as a Flexibility Resource on Energy
Islands, we discuss the operational role of electrolysers on an OEH. For
OEHs currently under consideration in the North and Baltic Seas, we
assess the potential flexibility contribution of the electrolyser and then
analyse different market integration strategies of the islands. We align
the market integration of the OEH to the current debate and compare
the case of a single offshore bidding zone to one in which the OEH is
integrated into a home market zone. Offshore wind energy is subject to
fluctuations, and flexibility resources must compensate for those by selling
or buying additional electricity in the respective market sequences—that
is, intraday and balancing markets. To contribute to the debate about
electrolysers as a flexible resource and how the combination of fluctuat-
ing wind energy and electrolysers can be integrated into the market, we
develop a two-stage stochastic optimisation model to find a cost-efficient
dispatch for an integrated day-ahead and balancing electricity market.
We find that electrolysers on OEHs will run at low capacity factors and
provide flexibility in 25 %–30 % of their run time. In addition, offshore
electrolysers purchase electricity at slightly higher average costs in an off-
shore bidding zone while having higher capacity factors than the home
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zone market. We conclude that policies for combining offshore wind with
electrolysers on an OEH must consider the value of flexibility resources
offshore and possible mechanisms to allow economic support.

The findings of the three articles summarise in answers to the research
questions. OEHs are likely to evolve within or as part of a meshed
grid and can deliver an environment for competitive hydrogen produc-
tion. The hubs’ specific designs are not yet defined, but first results point
towards the hubs becoming homes for several technologies. The remote
location makes the OEHs especially attractive for large hydrogen pro-
duction, which in our analyses proves to be their main purpose; current
technology costs are not competitive enough yet for flexibility provisions.
Establishing OEHs and bidding zone configurations, and integrating sec-
tor coupling into economic frameworks for electricity markets, could be
crucial for the project to deliver improvements to the energy system trans-
formation.

Keywords: energy islands, energy system modelling, electrolysis, hy-
drogen, flexibility in renewable energy systems, offshore bidding zones,
offshore grid, offshore wind.





Resumé
Energiøer bliver ofte omtalt som en vigtig komponent i den grønne om-
stilling i Norden og Baltikum samt i Vest- og Centraleuropa. Konceptet
beskriver opførelsen af knudepunkter for elproduktion og konvertering
langt ude på havet, hvor vindenergipotentialet er højt. Der findes allerede
en række initiativer på området, herunder North Sea Wind Power Hub
(2021), og Folketinget har ligeledes besluttet at opføre to energiøer fra
2030 (se Energistyrelsen, 2021). Tanken er at skabe et centralt beliggende
kunstigt knudepunkt i europæisk farvand i områder med høj produktion
af vedvarende energi – herunder primært havvind. Energiøer er et nyt kon-
cept, og der findes endnu ikke tilstrækkelig ekspertise og viden på området.
Optimalt design, teknologimix, tilkoblingen til eksisterende netværk, reg-
ulering, markedsdesign og forretningsmodeller er endnu ikke klart de-
finerede, men er retningsgivende for udvikling og profitabilitet. Afhandlin-
gen indeholder tre artikler, der har til formål at belyse følgende to hoved-
forskningsspørgsmål: (1) Hvad er de vigtigste teknologiske, miljømæssige,
økonomiske og samfundsmæssige drivkræfter og udfordringer for udviklin-
gen af energiøer, og hvordan påvirker energiøer elektrolyse på havet? (2)
Hvordan påvirker systemkonfiguration og markedsdesign værdien af elek-
trolyse på energiøer?

I den første artikel, Risks, Strategies, and Benefits of Offshore Energy
Hubs, udvikles en model inspireret af multikriterieanalyse til vurdering
af de vigtigste drivkræfter i udviklingen af energiøer. Heri foreslår jeg
en definition af energiøer, præsenterer modellen og undersøger ved hjælp
af denne offshore energiinfrastruktur i Nordsøen. Jeg identificerer her
fem kriterier, der har betydning for projekternes succes: Miljøgevinsten
ved et projekt er stærkt forbundet med valg af materialer og design; æn-
dringer i de nuværende antagelser kan vende op og ned på fordele og ulem-
per og gøre projekterne til dårlige investeringer; koordineret og integreret
planlægning er nøglen til at øge projekteffektiviteten; energiinfrastruktur
på havet udgør kun den teknologiske løsning på dekarbonisering af ener-
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gisystemer men der er samtidig behov for at medtænke samfundsmæssige
ønsker og behov; endelig er energiøer i øjeblikket enkeltstående løsninger
uden nogen konkurrent, hvilket gør deres fordele usikre på grund af man-
glende sammenligningsgrundlag.

I den anden artikel, How to Connect Energy Islands?, undersøger vi
forskellen på at integrere energiøer via enten elsystemet eller brintinfras-
truktur. Vi udvikler en kombineret kapacitetsudvidelses- og elmarkeds-
model for at vurdere elektrolysens og elkablernes rolle, når der er høj
tilgængelighed af vedvarende energi fra energiøerne. Vi finder, at el-
systemet profiterer af sammenkoblingen mellem energiøer og havvind-
mølleparker. I en scenarieanalyse spiller elektrolyse på øerne en min-
dre rolle, når det samtidig tillades at bygge brintproduktion på land.
Energisystemets infrastruktur til havs konvergerer hen imod et elnet i
havet og energiøer med stor elektrolysekapacitet. Vi konstaterer, at der
er risiko for, at atomkraft og biomasse bliver brugt som brændsel til elek-
trolyse frem for havvind. Desuden er kapacitetsudvidelserne i elektrol-
ysekapacitet meget følsomme over for brintprisen, men mindre over for
ændringer i kulstofpriserne.

I en opfølgende undersøgelse, Electrolysis as a Flexibility Resource
on Energy Islands, diskuterer vi elektrolysens operationelle rolle på en
energiø. For energiøerne, der i øjeblikket overvejes i Nord- og Øster-
søen, vurderer vi brintproduktionens potentielle fleksibilitetsydelse og
analyserer derefter forskellige markedsintegrationsstrategier. Vi tilpasser
markedsintegrationen af energiøerne til den aktuelle debat og sammen-
ligner en enkelt hav-budzone med en situation, hvor energiøen er integr-
eret i en hjemmemarkedszone. Elproduktion fra havvindmøller er forbun-
det med usikkerhed, og fleksibilitetsressourcer skal kompensere herfor ved
at sælge eller købe yderligere elektricitet i de respektive markedssekvenser,
dvs. intraday- og systemydelsesmarked. Med artiklen bidrager vi til de-
batten om hvordan elektrolyse kan udgøre en fleksibel ressource, samt
hvordan kombinationen af fluktuerende vindenergi og elektrolyse kan in-
tegreres i systemet og markedet. Vi udvikler en to-trins stokastisk op-
timeringsmodel for at finde den omkostningseffektive markedsløsning til
et integreret day-ahead og systemydelsesmarked. Vi finder, at elektrol-
yse på energiøer vil køre med lave kapacitetsfaktorer og give fleksibilitet
i 25–30% af deres driftstid. Derudover er det profitabelt at købe elek-
tricitet til lidt højere gennemsnitlige omkostninger i en hav-budzone, så
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elektrolyse køres med højere kapacitetsfaktorer sammenlignet med hjem-
mezonemarkedet. Vi konkluderer, at politik på området bør tage hensyn
til værdien af fleksibilitetsressourcerne på havet og mulige mekanismer til
at give økonomisk støtte.

Undersøgelsen i de tre artikler fører til følgende konklusion på de
overordnede forskningsspørgsmål: Energiøer vil sandsynligvis udvikle sig
inden for eller som en del af et havnet og kan levere et miljø for konkur-
rencedygtig brintproduktion. Øernes specifikke design er endnu ikke de-
fineret, men de første resultater peger i retning af, at energiøer kommer til
at danne grobund for flere teknologier inden for energiproduktion, -lagring,
og -konvertering. Især den fjerne beliggenhed gør energiøer attraktive for
en brintproduktion i stor skala, hvilket i vores analyser også viser sig at
være hovedformålet, da de nuværende teknologiomkostninger endnu ikke
er konkurrencedygtige med hensyn til fleksibilitetsydelser. Budzonekon-
figurationer og skarpe økonomiske rammer for sektorkobling som fremtid-
skoncept kan være afgørende for, at et projekt kan levere forbedringer til
energisystemtransformationen.

Nøgleord: energiøer, energisystemmodellering, elektrolyse, brint, fleksi-
bilitet til bæredygtige energisystemer, budzoner, havanlæg, vindenergi
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CHAPTER 1
Introduction

The past three years of my professional life were dedicated to research-
ing the future and value of offshore energy hubs. The work, conclusions,
prospects, and doubts are merged in this thesis. With the help of three
connected but independent studies, papers A to C, I was able to work
towards answering two overarching research questions that guided the
smaller projects. The following chapters of Part I guide the reader from
a personal motivation to insights into the research questions and conclude
with key findings and a list of exciting future work.

1.1 Motivation
Personal. Growing up close to the sea and in an area with low popu-
lation density, solar photovoltaics (PV) and wind turbines were an early
sight for me. The familiarity came hand in hand with fascination and
the feeling that these enriched nature and added beauty to the land-
scape. Besides the feeling of having so urgently needed renewable energy
sources (RES) always close by, I often felt that this was not enough: in
many places, countries, and regions humans are threatened by the con-
sequences of climate change, suffering from drought, fires, floods, disap-
pearing sources of food, and more. I developed some frustration because
I felt that since the early 1980s, researchers had been highlighting how
increased greenhouse gas (GHG) emissions due to human activity threat-
ened the climate and the natural biosphere of our home. I needed to learn
more about the science and the reasons for delays in implementing solu-
tions. Through my enthusiasm for mathematics,1 I first discovered energy
system models at TU Berlin in the course EW-MOD (Electricity Market
Modelling), and this seemed to be a great link between my curiosity about
climate change mitigation, my fascination with renewable energy technol-
1To cite my 12-year-old self at home, ”Mom, I love numbers!”.
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ogy, and my interest in maths. Great supervision and support and many
touch-points with experienced researchers and academic life when I was
writing my master’s thesis at the Norwegian University of Science and
Technology, on local electricity markets, paved the way for the first steps
of my academic career. Starting my Ph.D. in 2019, I wanted to see if I
could contribute to the discussions about energy system transformation
and support society and businesses with knowledge. Moving to Denmark
for this project made me curious and excited about large-scale energy
systems, and I chose to work on offshore energy systems. On the side,
I continued research activities on decentralised energy solutions. After
three exciting, challenging, and productive years, I am ready to submit
three of my six papers as a Ph.D. thesis—what a journey!

Professional. Commitments and agreements to mitigate climate change
and the idea of reducing natural resource dependence have led to the need
for new technical, economic, and societal solutions. The field of engineer-
ing researches and develops technology using renewable sources such as
wind, sun, and water, and it constantly progresses to improve existing
solutions. Economics works on improving boundary conditions to enable
an efficient, affordable transition while society, with the help of repre-
sentatives, is in the process of navigating and deciding on strategies and
changes to handle the crisis. Solutions for renewable offshore technology
and energy system integration are in the making and will be in demand.
With the interdisciplinary research I have done over the past three years,
I aim to contribute to the academic discussion and to inform political
debates on energy system transformation, providing a service to society.

1.2 Context and Challenges
This thesis developed in the context of energy system transformation to
support climate change mitigation and reduce the use of natural resources
for energy purposes. There are two levels to the work: a very broad place-
ment in the big field of sustainability research in the context of decarbon-
ising the economy, and a narrow placement into the field of research on
offshore energy systems development, specifically tailored to the needs of
Europe.
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Broader Scope. The decarbonisation of the energy system has been
an action item in many countries for many years, not only because of
the Paris Climate Agreement,2 in which 196 parties agreed to limit global
warming to well below 2°C, but also because every year the weather be-
comes more extreme and the impact is directly noticeable in more and
more regions of the world.3 In recent summers (including 2022), wild-
fires reached and burned larger areas each year, underlining that climate
change is real and present. The energy sector is a large contributor (usu-
ally the largest) to GHG emissions, which have been identified as the
main accelerators and causes of global warming (San-Miguel-Ayanz et al.,
2021). As a consequence, and in a world so dependent on energy and
electricity, this sector needs to undergo a transformation to reduce GHG
emissions. One part of the current approach to reducing emissions in the
energy sector is the large-scale deployment of RES in connection with
rethinking the system infrastructure and energy business models. RES
have not only emerged as a means to climate change mitigation, they also
present option for avoiding the fuel crises that develop alongside geopo-
litical conflicts, with the war in Ukraine being the most recent example,
and are the cheapest option.

Narrow Scope. Within the large energy system and its restructuring
in Europe, the idea of an offshore energy hub (OEH) has been presented
as part of the solution. OEHs—which are also called energy islands, and I
use the terms as synonyms—are seen as a point of collection for electricity
generated from offshore winds in their close vicinity and may interconnect
several energy markets and countries (see Paper A). Due to the offshore
nature of the concept, investments and project management for OEHs are
at first relevant to countries with sea access. While offshore energy tech-
nology is experiencing a boost, the European Union (EU) has big plans
for the sea to be of high value, not just for a net-zero emission energy
system, but also a future hydrogen economy (European Commission &
THEMA Consulting group, 2020). Denmark has political plans for OEHs.
A European consortium presented a specific project, and other actors,
for example Germany and Norway, are developing similar ideas for their
2Paris Agreement from December 12, 2015. FCCC/CP/2015/10/Add.1: www.unfcc.int.
3This, of course, does not justify delays to avoid damages to all areas of the world, but it is
part of the sad truth.

https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf
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areas in the North and Baltic Seas. One driver of these projects is the
idea of exploiting large wind resources and benefiting from prospects of
sector coupling at the same time (see Paper B). Winds are strong and
more consistent offshore (Esteban et al., 2011), and sector coupling can
be a way to efficiently decarbonise the transport and heat sectors with
RES (Münster et al., 2020). The projects are also driven by increasing
opposition to onshore infrastructure projects, such as grid expansion, on-
shore wind, and new industrial facilities. A first step at sea would be the
connection of offshore wind using electrolysers (see Paper C) to increase
RES-based electricity generation and the production of green hydrogen.4

Challenges The large-scale exploitation of offshore wind resources is
a new element in the plans for the RES roll-out. The EU’s strategy for
offshore wind is a starting point to harness wind resources in Europe at
sea. But the more innovative the design, the more difficult the implemen-
tation: regulatory frameworks, market designs, and business models must
be updated to push energy efficiency gains to the limits when setting up
offshore infrastructure. The academic literature currently has only a few
studies contributing to the discussion of OEHs. In particular, the subject
of sector coupling offshore and on such OEHs is largely untouched in the
literature, but research is needed to independently inform policymakers
and offer new approaches. In discussions of sector coupling in this spe-
cific offshore context, most ideas target the combination of offshore wind
technology with electrolysis to meet expected hydrogen demand with re-
newable electricity-based hydrogen, but this setup is, to a large extent,
both technically and economically unexplored. Due to the novelty, the
implementation of sector coupling offshore calls for a new stream of liter-
ature to define roles and structures for integrated systems in an offshore
setting with no conventional energy demand. Further, market design and
integration into the electricity and potentially gas markets must be done
efficiently and could require rethinking the current setup. The envisioned
interconnection through offshore wind parks is also unexplored territory,
both technically and economically: the consequences for prices, trade, and
welfare are unknown, and guidance is of high importance to avoid failures,
4Hydrogen is a colourless gas. ”Green” refers to the ecologically clean origin of the electricity
used in electrolysis to split water into hydrogen and oxygen.
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distributional effects, and technical problems.

1.3 Scientific Contributions
With the above-mentioned challenges in mind, and under the assumption
that early sector coupling concepts offshore will connect wind energy with
electrolysers, I posed two guiding research questions for this thesis:

1. What are the main technological, environmental, economic, and so-
cietal drivers of and challenges for the development of offshore en-
ergy hubs, and what is their impact on offshore electrolysis?

2. How do system configuration and market design influence the value
of electrolysis on offshore energy hubs?

Together with my co-authors, I worked on three sub-projects to develop
the knowledge needed to answer these questions. Each sub-project devel-
oped into a scientific article with a different strength and contribution.
The solo-authored Paper A provides the foundational overview of the
topic and analyses the value and risk of OEH projects. The analysis uses
multi-criteria assessment (MCA) to structure and evaluate the literature
on offshore energy, and the results help answer the first research ques-
tion. I identify technological, economic, ecological, and societal risks and
prospects of the projects and conclude by summarising a set of important
trade-offs to be considered. The next two projects take up some of the
identified challenges and apply quantitative and data-driven methods to
find answers. In Paper B, Paul E. Seifert, Ruud Egging-Bratseth, Jens
Weibezahn, and I develop a capacity expansion model to identify the
trade-offs between connecting OEHs via hydrogen, via electricity infras-
tructure, and via a combination of the two. The insights from this study
feed into the discussion of offshore system configuration and potential
drivers for coupling hydrogen and electricity at sea, and thus they pro-
vide knowledge for both research questions. In Paper C , together with
Yannick Werner, Ruud Egging-Bratseth, and Jalal Kazempour, I develop
a market model that includes uncertainty about renewable energy pro-
duction to assess the value of electrolysers for flexibility provision. From
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our analysis, we learned about the interplay of renewable energy produc-
tion, bidding zone configuration, market prices and hydrogen quantities
produced, which I use to support findings in Paper A and Paper B.

The overall outcome of the thesis is three contributions. First, the
articles all include policy guidance, and the last paper specifically formu-
lates four policy recommendations. Second, Paper B and Paper C extend
existing methodological frameworks to hydrogen and electricity market in-
tegration. And third, this work suggests new system design and bidding
zone configurations for offshore energy systems. We find that there are
no comparative projects so far, and therefore we explore how the system
can evolve and what the implications could be for the offshore electrolyser
in one possible design. In our results, we find that a system with OEHs
would develop into a setup combining a meshed offshore grid connecting
close-to-shore wind parks and countries with a hydrogen hub far out at
sea. The role of this hydrogen hub would then mainly be the produc-
tion of gas from available wind energy and the supply of a fair share of
electricity via cables to shore.

1.4 Outline of the Thesis
This thesis has two parts. Part I is organised into four chapters and
presents the framework of the thesis. Part II is a collection of my re-
search articles. In the first part, I give a comprehensive presentation of
the overall work, including a short summary of the second part. Chapter 1
motivates and introduces the topic, provides context, lists contributions,
and gives structural information. Chapter 2 deepens the context pre-
sented in Section 1.2, including a thematic background in Section 2.1 and
a methodological background in Section 2.2. Chapter 3 gives answers to
the research questions, links these answers to the individual papers, and
finally discusses the contributions and insights we gained for the imple-
mentation of OEHs. Chapter 4 summarises the findings, concludes the
three years of research on OEHs and points to research ideas and needs for
further development and progress. It follows Part II with the collection
of my papers.
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1.5 List of Papers and Publications
The papers that form the core of this thesis are listed below and referred to
as Papers A to C. The following table gives the title, author information,
and author contributions for each. The papers are included in Part II of
the thesis as Chapters A to C.

Paper A: Risks, Strategies, and Benefits of Offshore Energy
Hubs
A Literature-Based Survey
Single-author original research article.

Paper B: How to Connect Energy Islands?
Trade-Offs between Hydrogen and Electricity Infrastructure
Co-authored by Alexandra Lüth, Paul Seifert, Ruud
Egging-Bratseth, and Jens Weibezahn.
AL: conceptualisation, data curation, visualisation, writing - orig-
inal draft, writing - review & editing. PS: conceptualisation, data
curation, software, visualisation, writing - original draft, writing - review
& editing. REB: conceptualisation, supervision, writing - review & editing.
JW: conceptualisation, supervision, writing - review & editing.

Paper C: Electrolysis as a Flexibility Resource on Energy Is-
lands
The Case of the North Sea
Co-authored by Alexandra Lüth, Yannick Werner, Ruud
Egging-Bratseth, and Jalal Kazempour. The article is sub-
mitted to Energy Policy.
AL: conceptualisation, data curation, software, visualisation, writ-
ing - original draft, writing - review & editing. YW: conceptualisation,
data curation, software, visualisation, writing - original draft, writing - re-
view & editing. REB: conceptualisation, supervision, writing - review &
editing. JK: conceptualisation, supervision, writing - review & editing.

In addition to the articles included here to answer the research ques-
tions, I worked on three other papers during my Ph.D. studies. The
list below presents these already published articles, which focus on decen-
tralised energy systems and local electricity markets including a digression
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on electrification in the global south. Due to the different topics of papers
D to F, they are not included in the core of this thesis. However, they are
listed and provide contributions to the discussion of the value of small-
scale renewable energy resources and systems. I provide the bibliographic
information and a reference to my contribution.

Paper D: On Distributional Effects in Local Electricity Mar-
ket Designs:
Evidence from a German Case Study
Lüth, A., Weibezahn, J., & Zepter, J. M. (2020). On Distributional Effects
in Local Electricity Market Designs: Evidence from a German Case Study.
Energies, 13(8), [1993]. doi:10.3390/en13081993

AL: conceptualisation, data curation, software, visualisation, writ-
ing - original draft, writing - review & editing. JW: conceptualisa-
tion, data curation, software, visualisation, writing - original draft, writing
- review & editing. JMZ: conceptualisation, data curation, software, visuali-
sation, writing - original draft, writing - review & editing.

Paper E: Crowd Balancing:
A Model for Future Grids
Lüth, A., & Jamasb, T. (2020). Crowd Balancing: A Model for Future Grids.
Oxford Energy Forum, (124), 31-34. www.oxfordenergy.org/wpcms/wp-
content/uploads/2020/09/OEF124.pdf

AL: conceptualisation, visualisation, writing - original draft, writ-
ing - review & editing. TJ: conceptualisation, writing - review & editing.

Paper F: Prosumer Empowerment through Community
Power Purchase Agreements:
A Market Design for Swarm Grids
Dumitrescu, R., Lüth, A., Weibezahn, J., & Groh, S. (2022). Prosumer
Empowerment through Community Power Purchase Agreements: A Market
Design for Swarm Grids. Economics of Energy & Environmental Policy,
11(1), 127-144. doi:10.5547/2160-5890.11.1 .RDUM

AL: conceptualisation, data curation, software, visualisation, writ-
ing - original draft, writing - review & editing. RD: conceptualisation,
investigation, validation, writing - original draft, writing - review & edit-
ing. JW: conceptualisation, data curation, software, visualisation, writing -
original draft, writing - review & editing. SG: conceptualisation, resources,
writing - review & editing.

https://doi.org/10.3390/en13081993 
https://hdl.handle.net/10398/8599096f-9758-406a-aaf3-a947b75fc634
https://hdl.handle.net/10398/8599096f-9758-406a-aaf3-a947b75fc634
https://doi.org/10.5547/2160-5890.11.1.RDUM 


CHAPTER 2
Background

Pathways to completing the energy system transformation to a low-emis-
sion sector have been important and sensitive topics in recent years in
research, as well as in politics and society. There is broad, fundamental
evidence of the need for change, resulting in the emergence of various very
specific fields of research surrounding the energy system transformation.
This thesis focuses on a part of the role of offshore systems in the future
energy system and applies techno-economic analysis in the form of opera-
tions research–based energy system models. The following parts provide
the context in which this work emerged, in Section 2.1, and then the fun-
damentals of the methods used to conduct the analyses, in Section 2.2.

2.1 Topics and Thematic Introduction
Within the large field of research on climate change, decarbonisation of
the economy, and a sustainable future, this work contributes to the dis-
cussions of energy system transformation by way of increasing electricity
generation from RES, specifically from offshore wind. I discuss the use of
large offshore wind hubs in connection with energy conversion at sea in
the context of offshore energy hubs. The following sections provide a the-
matic background, starting with a description of the development of RES
in the energy system in Section 2.1.1. In Section 2.1.2, I describe the role
of offshore wind, and I complete the thematic background in Section 2.1.3
by introducing the concept of OEHs in detail.
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2.1.1 Renewable Energy Sources, Energy Systems, and
Sector Integration

From the late 1990s onward, there has been a consensus among a broad
range of researchers advocating for a transition to clean (low GHG emis-
sion) energy production, entailing a shift from fossil fuels to low carbon
emission fuels. This has been backed by evidence that GHG emissions
accelerate climate change, and that society must ban those to prevent
drastic changes to the climate (IPCC, 2013). In the EU, the energy sec-
tor contributed 1.14 billion tonnes of carbon dioxide emissions in 1990
(30% of total emissions; EEA, 2002), and the sector still produced 780
million tonnes (25.8% of total emissions) in 2020 (Eurostat, 2019).

In a parallel debate, the geopolitics of natural resources and resource
independence gained momentum. Penetration of RES shifted the rules
and relationships of established fossil fuel trading partners (Scholten et al.,
2020). In 2022, due to the war in Ukraine, this topic has been peaking in
relevance, and the reduction of energy dependency is becoming a timely
issue, for example for Germany. RES are part of the solution and an
equally important driver of system transformation, because they have
been shown to support international security and peace (Vakulchuk et al.,
2020). The energy system transformation has, at the time of this writing,
not yet made the desired progress, neither to increase natural resource
independence nor to get significantly closer to mitigating climate change.

The era of RES started with the first PV panels in the early twentieth
century (Perlin, 1999). Wind energy as we know it today made its first
strong developments in parallel to the oil crisis (Kaldellis & Zafirakis,
2011), and its offshore counterpart started large-scale deployment in 1991
(Bilgili et al., 2011). These technologies were initially seen as a way
towards a sector without exhaustible fossil fuels, based entirely on clean
energy sources. Further and still ongoing progress can be observed in a
series of indicators: cost developments and the emergence of new concepts,
system designs, and paradigms. Renewable energy technology has become
significantly cheaper: the cost of solar technology, for example, dropped
by approximately 80% between 2010 and 2020, down to USD 883/kW
(IRENA, 2021). Figure 2.1 shows the cost developments of wind energy
and PV. With this background, the electricity mix changed in recent years
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to a system with more RES (von Hirschhausen et al., 2018, ch. 10). The
decreasing prices led to cost-competitive technology and paved the way
for new and more affordable RES concepts, such as OEHs.
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Figure 2.1. Cost development of renewable energy technology.
Data source: IRENA (2021).

Hand in hand with the new technology, different energy system set-
ups developed, and new community concepts, virtual power plants, and
local markets with aggregators resulted from changes in the size and loca-
tion of energy production. Due to the characteristics of renewable energy
technologies, such as wind, PV, and hydropower, the system architecture
and design were forced to change. Large, centralised power plants (e.g.,
coal, gas, and nuclear based) at gigawatt sizes per unit were replaced
with smaller renewables at the megawatt size per unit. Their placement
no longer depended on the location of the load centre but on areas with
high wind or solar potential—often rural areas at large distances from the
nearest urban or industrial demand hub. Further, certainty in production
was taken away, and dependence on wind and sun became a new determi-
nant in the system, introducing uncertainty in production. Uncertainty
had not been a component at the production level before, and only fuel
prices would fluctuate. RES, however, are cheap in marginal production
costs and introduce new economics to the market.

A RES-based system also implies that future energy systems will be
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electricity-based, and electricity is not as easily storable as oil, gas, or coal.
Besides electricity storage, this leads to the need to exploit technical syn-
ergies to increase energy efficiency. Energy system integration (ESI) is
a particularly relevant concept for this. In the process of energy system
transformation, ESI emerged as an efficient5 approach to large-scale elec-
trification and reduction of GHG emissions in the industry, transport, and
heat sectors. ESI6 is defined as a form of integrated operation and plan-
ning of various energy domains and traditionally separated industries, for
example by joining electricity, heat, gas and mobility, and there are sev-
eral levels to it: technical, institutional, and economic (Ramsebner et al.,
2021; Silvast et al., 2021). ESI enables better and more efficient electrifica-
tion of sectors that still depend largely on fossil fuels, for example heating
and transport (Münster et al., 2020); linking these sectors allows for the
exploitation of synergies and resource-efficient use of available electricity.

In Paper B and Paper C , we work with the concept of ESI and in-
vestigate its offshore potential in large wind power hubs combined with
electrolysis (gas production): an integration of the electricity and gas sec-
tors along with transport based on electricity or renewable gas or other
fuels. We assume that the benefits and prospects of ESI will materialise
in the range of what is shown in studies, and we take this further by inves-
tigating its potential at sea, which so far has only been touched on by Gea
Bermúdez et al. (2021) and Zhang et al. (2022); we focus on infrastructure
development in Paper B and market design in Paper C .

2.1.2 Offshore Energy Systems
In the process of transforming energy systems, production technology
shifted, and the new technology has different needs: strong winds, many
sunny hours, or mountains with large water reserves. Wind energy is
especially important for decarbonization, and at sea the winds blow at a
higher intensity and more stable levels. This invites us to move production
hubs far out to the sea and opens a new era of energy production offshore.
Offshore wind technology started in 1991 in Denmark, where the first
commercial offshore wind park was commissioned in the Baltic Sea (Bilgili
5Possibly also the only solution to decarbonise industry, transport, and heating.
6Energy system integration is often called sector integration or sector coupling, with no defined
difference between the concepts.



2.1 Topics and Thematic Introduction 15

et al., 2011). The technology has undergone major development since,
and by 2018 23 GW were deployed worldwide, with 17 GW added between
2010 and 2018 in the EU (IEA, 2019). In 2020, the European Commission
specified plans and ambitions for offshore wind in a strategy (European
Commission & THEMA Consulting group, 2020).

Another major driver of offshore installations is the growing opposi-
tion to onshore energy infrastructures, which includes NIMBY (not-in-
my-backyard) activism and protests against new infrastructure in rural
areas due to intrusion, land use, and loss of scenic views and biodiver-
sity. As shown in Paper A, offshore energy infrastructure faces similar
biodiversity and land-use problems, but public acceptance is higher, so
resistance and citizen opposition do not delay the process. An important
bottleneck in some countries, for both onshore and offshore processes, is
the bureaucracy around investment and project approval and the lack of
policy certainty (many examples in Germany can be found, but Denmark
is also facing new movements and acceptance problems; see Hevia-Koch
and Klinge Jacobsen (2019)). Paper B and Paper C assume that offshore
wind expansion plans in Europe will go as planned and desired. This im-
plies that the suppositions of a large body of research literature are taken
for granted, including successful offshore wind support policies, materi-
alisation of enhanced offshore interconnection, and adjusted regulatory
frameworks for offshore systems.

Offshore Wind Policy. The liberalised electricity market requires the
operators of wind farms to compete in the market. In their first years,
investment in and operation of wind farms was not profitable and needed
support policies. Poudineh et al. (2017, ch. 4) distinguished two general
approaches: direct and indirect policies. Direct support policies can either
be paid on production, for example with a feed-in tariff when a producer
feeds into the grid, or as a support for investment, with a fixed amount
per unit built. Indirect policies take the form of economy-wide goals
and mechanisms that, for example, make it attractive to emit less GHG
because the cost of emissions has been increased by carbon taxes or the
need to buy emission rights. Theoretically, indirect support polices are
economically more efficient, but Green and Vasilakos (2011) show using
historical examples that tender policies and feed-in-premiums in Denmark
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were the most efficient up to that time.
Today, offshore wind technology has reached a market-competitive

level (Jansen et al., 2020). With competitive technology and offshore
potential, discussions have evolved around whether different market con-
ditions or changes in zone boundaries could enhance development. In a
sandbox case, the offshore wind farm Kriegers Flak was commissioned.
This wind farm connects to two countries, Germany and Denmark, and is
a novel combined solution of RES connection and interconnection (Marten
et al., 2018). The attempt to rethink traditional wind farm-owner-country
connections by reforming offshore bidding zones is also discussed in a
TSO-perspective paper by Energinet et al. (2020) and is picked up here
in Paper C , where we discuss the role of offshore bidding zones. Our ap-
proach follows the structure described by the Nordic TSOs, Weichenhain
et al. (2019) and Kitzing and Garzón González (2020).

The bidding zone discussion has evolved around the question whether
offshore wind hubs at large scales should constitute a separate zone or
be integrated in their home markets, as shown in Figure 2.2. In the off-
shore bidding zone (OBZ) configuration, the wind farm constitutes its own
bidding zone, and exchanges with connected markets take into account
network constraints. In the home bidding zone (HBZ) configuration, the
wind farm participates in the market of the land’s owner, and thus net-
work constraints between hub and shore are neglected. The discussion
of the two concepts has been built around literature on pricing in elec-
tricity markets. Zonal and nodal pricing are the most common concepts.
Markets with nodal pricing are often seen as the economically efficient
benchmark for electricity markets (Brunekreeft et al., 2005; Holmberg
& Lazarczyk, 2015), yet existing markets with zonal structures are not
developing towards nodal pricing. In line with the debate about redefin-
ing market zones in Europe (ACER, 2022) to more efficiently incentivise
investment and reduce congestion management costs, the topic is also
relevant for future offshore energy systems.

There is no consensus yet on how to integrate and connect large off-
shore wind power hubs into the markets. The decision about market inte-
gration, however, will need to be made hand in hand with decisions about
technical system design. Research and industry have been discussing sev-
eral approaches that also veer widely from standard approaches. The
main ideas are described below.
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Figure 2.2. Two different bidding zone configurations for offshore wind power hubs. In
an OBZ, a hub constitutes its own bidding zone, while in an HBZ the hub participates
in Country A.
Source: Author’s illustration.

Integration of Offshore RES. The integration of offshore wind tech-
nology into the electricity system has been under development for a while.
The onshore network expansion needed to deliver electricity from the
coast to customers in urban areas became particularly difficult early on.
But regulatory frameworks also needed to be updated, and markets had
to react to low-cost electricity production with high uncertainty. Tech-
nically, offshore wind farms at large gigawatt sizes are most efficiently
connected to shore by high-voltage direct current lines, as is also the case
for onshore electricity infrastructure over large distances (Flourentzou et
al., 2009). Considering the large area and high RES potential at sea,
research on grid topology for connecting potential wind power hubs, espe-
cially in the North Sea, soon converged on the idea of a meshed offshore
grid (Chen, 2018; Trötscher & Korpås, 2011). This grid would connect
countries via offshore wind farms. In techno-economic analyses, Cole et al.
(2015) and Egerer et al. (2013) identify positive impacts of offshore grids
on the welfare of countries that could connect to them. These effects dif-
fer among studies (Gorenstein Dedecca & Hakvoort, 2016), however, and
the final design and coordinated development will influence the impact
significantly (Dedecca et al., 2019). Besides pure technical characteristics
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and the role of joint planning, the economic framework in a setting with
many cross-border connections will affect and drive developments. Cur-
rently, conventional markets with demand and supply connect through
cross-border lines. An offshore grid would be an electricity network con-
necting countries and markets via production hubs without conventional
demand: an unexplored concept, and one without suitable regulation and
operational guidelines. Research on governance and regulation calls for an
innovative solution and suggests implementing a supra-national operator
(Sunila et al., 2019) subject to more regional economic network regulation
(Meeus, 2015). Any progress in the development of offshore wind regu-
lation and market integration will affect sector coupling offshore as well.
When we deploy more offshore technology, we gain experience and move
along a learning curve. The OEH concept explored in this thesis assumes
that the background above is a solid enough groundwork for the hubs to
materialise.

2.1.3 Offshore Energy Hubs
From offshore wind, interconnection, and offshore grids all the way to
OEHs, the vision of OEHs includes a range of energy technology, gen-
eration, conversion, and storage, all of them placed offshore. The term
offshore energy hub is derived from the idea of energy hubs moved to an
offshore context. The term energy islands is often used for the same idea.
In this thesis, offshore energy hub is the dominant term, but I treat the
terms as interchangeable. All the papers in this thesis discuss different
aspects of offshore energy hubs. Paper A suggests a definition of the
concept and contributes to a research framework for OEHs. To make
the background of the papers comprehensive and complete, the following
paragraphs rephrase the findings of Paper A.

OEH projects are envisioned as bringing advantages such as improved
efficiency, transmission operations, flexibility, and price, similar to on-
shore energy hubs (Geidl et al., 2007). The idea emerged in the context
of offshore wind expansions, and the first specific project proposal was
made by the North Sea Wind Power Hub consortium in 2016.7 The Dan-
ish government announced in 2020 that it would support and require the
7See North Sea Wind Power Hub: www.northseawindpowerhub.eu.

https://northseawindpowerhub.eu/
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development of two equivalent projects in the Danish waters of the North
and Baltic Seas. Industry stakeholders are now in the process of develop-
ing concepts, and researchers are contributing articles to the discussion.
On the basis of the current literature on OEHs and related topics, I de-
velop the following definition of offshore energy hubs in Paper A:

An offshore energy hub is a fully renewable energy resource-
based combination of assets that link at least two services, such
as electricity generation, interconnection, and offshore storage.
These services are relevant to energy system development and
operation and foster decarbonisation of the energy sector while
preserving the environment.

Figure 2.3 visualises this definition and shows one version how an OEH
could look: interconnecting several countries through a hub in a centre of
offshore wind generation, the OEH gathers technology to store, convert,
and condition energy.

wind farm

offshore energy hub

power cable

storage

electrolyser

Country A

Country B

Figure 2.3. An abstract sketch of an OEH following first visions.
Source: Author’s illustration.

2.2 Methodologies
All the analyses in this thesis combine multiple fields and methods, lead-
ing to an interdisciplinary thesis with most of its theoretical content in
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economics and some in operations research. Due to the technical nature
of the energy sector, techno-economic analysis provides prominent advan-
tages in assessing, for example, policies and market design. The following
sections present the theoretical fundamentals relevant to this work. Sec-
tion 2.2.1 (energy economics), Section 2.2.2 (operations research), and
Section 2.2.3 (energy system modelling) present the fields independently
first, and a description of the relevance of combining them for this work
is given in Section 2.2.4.

2.2.1 Energy Economics
Energy economics gives a framework for the topics dealt with in this thesis
and either provides the tools to analyse the research questions or is at the
core of the analysis. To clarify the role of energy economics in this thesis,
the following paragraphs describe the leading concepts that Paper B and
Paper C in particular are based on. I further highlight the relevant key
areas that were decisive in developing Paper A.

The economics of the energy industry follows a set of standard con-
cepts that have their origin in classical and neoclassical economics. Many
analyses in energy economics focus on electricity or energy markets and
use microeconomics. In situations of taxation and high-level policymak-
ing, macroeconomics leads (Harris, 2006). As in other industries, the en-
ergy industry is characterised as having producers and consumers, which
means there are demand, supply, and costs as in classical economic mod-
els. Energy markets are viewed with the underlying idea that the markets
determine the price through rational, optimising agents with stated pref-
erence functions aiming to achieve an equilibrium outcome. According to
Bhattacharyya (2019), energy economics is concerned with the following
points:

1. The economics of energy supply involving exploration, de-
velopment, production, transportation, storage, transfor-
mation and delivery of energy commodities;

2. The economic logic of energy consumption decisions by
various users;
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3. Energy transactions through alternative market arrange-
ments and their governance;

4. The economic dimension of social and environmental im-
pacts of energy use; and

5. The planning, policy and performance of the industries,
actors and governance mechanisms.

taken from Bhattacharyya (2019, p. 2)

To analyse the above concerns, energy economists apply concepts orig-
inating in various economic fields, such as industrial organisation, be-
havioural economics, environmental and resource economics, economet-
rics, and business economics, to name a few. Together with game theory
applied to economics, insights and methods of these fields serve applied
energy economists as a toolbox. To highlight the dominant part of the
theory for this thesis, I summarise the role of industrial organisation and
the specifics of market design below.

Industrial organisation (IO) deals with the functioning of markets and
industries. Its research is often focused on competition and the role of
market power (Cabral, 2017). Concepts of industrial organisation are
of high relevance to the energy industry and energy economists draw fre-
quently from the insights. IO is concerned with consumers, firms, markets,
prices, and market power. Electricity markets combine several firms that
compete on multiple markets offering different products in a repeated
manner. Kellogg and Reguant (2021) provide an extensive overview of
the contributions of IO to understanding energy markets and sector reg-
ulation. Deregulated markets that evolved from a monopolistic structure
are now in the process of immense restructuring and development to ac-
commodate renewable energy resources. The authors highlight that IO
can contribute to developing an efficient sector by using its theory for de-
signing energy markets, investigating the role of emerging industries, such
as the of electric vehicles, and the future of conventional energy technolo-
gies. For Paper B and Paper C , we neglect market power as such, but
are concerned with a functioning, competitive market and evaluate the
impact of different designs by suggesting two bidding zone configurations
for OEHs.
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The decision on the configuration of the bidding zones is part of what
is often called market design. This practice is said to have evolved from
mechanism design and game theory and is now a substantial part of the
development of various marketplaces (Roth & Wilson, 2019). With chang-
ing patterns and characteristics in the energy systems, the framework
for electricity and energy markets changes as well, which invites energy
economists to rethink market rules and boundary conditions. Paul Mil-
grom, who together with Alvin Roth is often referred to as the founder of
this practice, defines market design as ”a kind of economic engineering,
utilising laboratory research, game theory, algorithms, simulations, and
more. Its challenges inspire us to rethink longstanding fundamentals of
economic theory.” (Milgrom, 2009).

For large parts of this thesis, I focus on the economics of the energy
supply in combination with a stiff, inelastic consumption pattern. For
Paper A, I use all the listed points to define the guiding criteria for the
analysis. In addition, Paper C adds a layer of policy recommendations
for the performance of market configurations where economics provides a
set of tools that policymakers can use to realise the guidance, as in Harris
(2006, p. 407). To set up our market model in Paper B and Paper C , we
construct both our production and demand functions by stacking bids side
by side, obtaining the merit order. Clearing the market, we adopt all the
above assumptions about markets and determine a price without includ-
ing market power and disregarding the game theoretic and behavioural
details. OEHs take energy economics into a new area and this thesis
contributes to exploring this highly topical concept.

2.2.2 Operations Research
Besides the foundational economic theory, this thesis makes use of two
models from operations research (OR): Paper B develops a linear program,
and Paper C uses stochastic programming.

The field of OR developed quickly during and after World War II as a
way to increase efficiency in military exercises (Gass & Fu, 2013). In their
summary and elaboration of the history of OR, the authors highlight the
period between 1936 and 1946 as the time of its origin. The following
years, until 1956, then cover the discipline’s expansion and professionali-
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sation with researchers such as George B. Dantzig, Tjalling C. Koopmans,
and Leonid V. Kantorovich. Based on the multi-disciplinary background
of its founders—mathematicians, physicians, economists—OR has traces
in many fields now, too. Applications of OR are aimed at finding the
best ways to improve the efficiency of processes and manage organisa-
tions (Hillier & Lieberman, 2021). OR researchers focus on developing
analytical models and methods to support decision-making. In this the-
sis, I include two papers with applications of two OR methods to conduct
analyses of the energy sector. In the following section, I describe the
theoretical foundations of the two applied models. Linear and stochastic
programs are a subset of mathematical programs, which include among
others integer programs and equilibrium models.

Linear Programming. Among the standard tools of OR is linear pro-
gramming. In the generic form, we can describe a linear program (LP)
in mathematical terms through Equations (2.1)-(2.3) (Vlahos et al., 1995,
p. 7). As the name implies, the problem contains a set of linear equations
and is convex. The objective (Eq. (2.1)) is to find the values for the deci-
sion variables of vector x such that the function is minimised, accounting
for the cost parameters cT . The objective is subject to linear constraints
(Eq. (2.2)) limiting the vector x by a matrix A of multipliers to parameters
in vector b. All the values in x are non-negative (Eq. (2.3)).

min
x

cTx (2.1)
s.t. Ax = b (2.2)

x ≥ 0 (2.3)

A comprehensive introduction to linear programming can be found
in Hillier and Lieberman (2021) and in Dantzig (1963), who also devel-
oped the most common solution method for linear programs, the Simplex
algorithm.

Stochastic Programming. Further in the thesis, we use a two-stage
stochastic program to model uncertainty in renewable energy generation.
A stochastic program (SP) extends the LP described above by including
uncertainty-related adjustments in a second stage. Equations (2.4)-(2.6)
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depict the mathematical formulation of such a problem (Birge & Lou-
veaux, 2011, p. 10). The second stage, in which the adjustments are
made, is represented by Q(x, ξ) = min{qTy|Wy = h − Tx, y ≥ 0} and the
expectation E in dependence of ξ. Q(x, ξ) is the second-stage problem
in which y is the vector of adjustment actions with the cost multiplier qT

for this stage. The constraints for this stage are given by the matrix W ,
restricted by the vector of bounds h and the links to T and the first-stage
decision variables in vector x.

min
x

cTx + EξQ(x, ξ) (2.4)
s.t. Ax = b (2.5)

x ≥ 0 (2.6)

Introductions to stochastic programming and applications can be found
in Birge and Louveaux (2011) and Vlahos et al. (1995). We use a model
type for energy system applications described in Morales et al. (2014,
p. 64).

Capacity Expansion Model. Capacity expansion models add an in-
vestment component to a mathematical program to determine optimal
production capacities (Luss, 1982). The capacity extension can be in-
cluded in an LP or an SP and also in other mathematical programs. In
the context of energy or transport applications, for example, the capacity
determined in the models can also target network capacity expansions,
such as roads, cables, or pipelines (Soroudi, 2017).

2.2.3 Energy System Modelling: Techno-Economic
Analysis

”All models are wrong, but some are useful.” (George Box,
1976)

Models are seldom correct, and their numbers are not exact results,
but they do help us understand. Energy systems are often complex and
combine technical and economic characteristics that it is important to
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keep together. In light of this techno-economic nature, energy system
models emerged as an important tool for policy, decision-making, and
system design in the 1990s (Conejo & Prieto, 2001).

In general, energy system models use mathematical programs to de-
scribe energy systems. Since the late 80s, more and more energy system
and market models have emerged (Conejo & Prieto, 2001; Murphy et al.,
1988), and the literature on mathematical models for electricity markets,
energy markets, and energy systems has grown tremendously. The math-
ematical programs used include linear and stochastic programs with and
without capacity expansion, along with other model types and techniques
of OR. Apart from the literature with applications to the energy system,
there is an extensive body of academic research just on power system and
electricity market modelling.

The many energy models have been developed for various applications
and with differing details. Figure 2.4 shows six types of energy models
sorted by level of detail and scope. Ringkjøb et al. (2018) review en-
ergy system models to provide an overview of existing tools, including a
detailed description and evaluation of methods and characteristics. To
structure the large number of models into categories, Hall and Buckley
(2016) develop a classification scheme for energy system models based on
models developed for the United Kingdom. Lopion et al. (2018) compare
the scheme of Hall and Buckley to two other sets of criteria and iden-
tify 19 characteristics, which can be clustered into the model’s purpose,
technical information, and mathematical detail (Weibezahn, 2020).

Within the large world of modelling, we can fit the models in this
thesis into several categories. The model developed in Paper B belongs
to the group that has defined systems with restricted regional borders
in their scope and touches on a limited number of details. Section 2.2.2
expands on the mathematical framework for this model. General applica-
tions tackle questions about the sizing of power plants, networks, and the
dimensioning of systems. Paper C works with a production model for elec-
tricity with higher detail on technologies and power plant characteristics.
But this paper also includes some characteristics of energy system models
due to the link to hydrogen production. The main decision elements of
the model are the operational restrictions, which reflect more technical
constraints and reduce system flexibility.
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Figure 2.4. Types of of models, characterised by their detail and scope.
Source: Based on illustrations by Lion Hirth and Jens Weibezahn.

2.2.4 An Interdisciplinary Approach
Research in economics can sometimes be enriched by the use of methods of
OR that are well-tailored to analysing consumption, production, and allo-
cation issues (Beilby, 1975), and economics, at its roots, tackled questions
of allocation. The most common applications of OR in economics deal
with game-theoretic problems (Leinfellner et al., 1997), mechanism design
(Myerson, 1989; Vohra, 2011), and auctions (Myerson, 1981; Samuelson,
2002). There is a large body of literature on the uses of and perspec-
tives on economic problems in OR. In addition, we find many overlaps in
policy analysis, finance, game theory, and decision analysis, and sector-
wide questions especially profit from the expertise and methods of OR,
for example, to analyse the impact of policies and to support decisions.

Energy has always been a topic in both economics and OR. This spe-
cific link originates from a two-fold setting. In the early 1990s, the en-
ergy sector went through a heavy restructuring and unbundling process,
introducing competition. This was driven foremost by economics, and
regulation of the sector is still driven by economic theory. On the other
hand, the introduced markets and market clearing align seamlessly with
the theory of OR and use linear and integer models to match supply and
demand (Murphy, 2013). The authors elaborated that the energy sector
has an interesting characteristic: the key for research is to include technol-
ogy choices in the decision, and this is best done using interdisciplinary
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research.
This thesis analyses the impacts on the energy system and market

when hydrogen and electricity solutions are combined in a location be-
tween existing market zones. To identify direction of movement and the
outcomes of different system configurations, we apply standard models of
OR to represent the electricity market clearing. In doing so, we ensure
that our representation of the market clearing follows real markets closely.
Due to the very tight links of technical and economic characteristics with
mathematics, OR models are a suitable tool for including more details
about the technology (to represent physical limits) and economic param-
eters (cost curves, demand patterns, etc.) of the energy systems being
modelled. Due to the technical components, energy models are referred
to as a domain in engineering. As described above, the models are based
on OR methods linked to economic theory and principles. The “engineer”
in this setting should thus be understood as the applied scientist rather
than the technology researcher and developer (Cooper, 1958).

Getting back to aspect five of what energy economics does—planning,
policy and performance of the industries (Bhattacharyya, 2019)—energy
system modelling can make a powerful contribution to analysing, review-
ing, and improve the sector’s performance. Models can be used to explore
the impact of policies and targets, and can also support the formulation
of intermediate goals of political targets (Süsser et al., 2021). Whereas in
many economic disciplines and in parts of energy economics, the goal is
set and we can be certain about the result of introducing a specific mech-
anism, energy system analysis and modelling can provide pathways to
and details of required changes, and thus this comes one step before pol-
icy choices for incentivising specific changes. An additional contribution
is to provide economics research with guiding thresholds, shadow prices,
and the welfare implications of policies and policy instruments.

Paper B develops a system model to identify the trade-off between
hydrogen and electricity infrastructure to connect OEHs. Whereas the
main insights are related to overall capacities and allocations in connect-
ing lines to surrounding countries, we can also learn about the cost of
hydrogen and electricity in this closed setup. The evaluation of differ-
ent scenarios that reflect priorities allows us to determine which of them
comply with political targets for emission reduction and hydrogen pro-
duction. In contrast to the more system-focused approach in Paper B,
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Paper C confirms the views of the economics literature by showing that
the suggested bidding zones result in a more cost-reflective setup. The
interdisciplinary approach of limiting the system through economic and
technical approaches using mathematical tools and techno-economic mod-
elling serves the needs of the current analysis of OEHs.



CHAPTER 3
Towards the Implementation of

Offshore Energy Hubs
Part II of this thesis presents three research articles that are relevant to the
overarching research questions. The thesis deals with the topics presented
above, in Section 2.1, and uses the methods of Section 2.2. To provide
background on each article’s contribution to the research questions, the
following paragraphs summarise the studies and findings separately. In
Sections 3.1 and 3.2, I collect the findings and relate them to the questions
with the help of the three articles. The chapter closes with a summary
of the work’s contributions and a discussion of both the results and the
methods in Section 3.3, and some more subjective perspectives on the
research in Section 3.4.

Paper A: Risks, Strategies, and Benefits of Offshore Energy
Hubs
In the first paper, I explore the vision of using OEHs to exploit offshore
wind potential in northern Europe. These projects are led mainly by
industry and have quickly taken a spot in political discussions at the na-
tional and European levels. Until now, it has remained an open question
what an OEH will look like in detail: What technologies will it be home
to? How will it be integrated into the markets? And can it fulfil the
promise of improving decarbonisation?

In this paper, I first develop a scheme to structurally review and assess
the value of OEHs along four dimensions: technology, economics, envi-
ronment, and society. The scheme is based on multi-criteria analysis and
picks up common criteria for assessing renewable energy projects (Ilba-
har et al., 2019; Wang et al., 2009; Wilkens, 2012). I apply it to survey
literature in the context of OEHs planned in the North and Baltic Seas.
However, the survey shows that the literature on this specific topic is still
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scarce. I extend the literature search and connect findings from related
research on topics such as offshore grids, interconnectors, and sector cou-
pling. On the basis of the survey, I summarise and rate the performance
of the projects, finding that the idea is based on immature offshore tech-
nologies and that high financial risk will be transferred to society due to
the character of public infrastructure projects. I also find that offshore
projects present an opportunity to overcome acceptance problems onshore
and to enhance the interconnection between electricity markets and sys-
tems. In a final assessment and evaluation, I conclude that open questions
remain about the design of the hub itself, its system integration, and the
economic framework around it. The relevant considerations are (i) the
lack of information on environmental benefits and impact, (ii) the high
financial risk, (iii) a strong reliance on coordinated planning, (iv) pure de-
pendence on technology as the solution for energy system transformation,
and (v) the lack of comparison with alternative solutions, such as enhanc-
ing distribution, small-scale resources, and the creation of behavioural
incentives for participation.

Paper B: How to Connect Energy Islands?
The second paper explores the idea of connecting OEHs via both elec-
tricity and hydrogen infrastructures, because electrolysers are one of the
technologies envisioned to be placed on those OEHs. So far, the literature
holds that offshore placement depends on the relationships among elec-
tricity prices onshore, electrolyser expenses, and cable costs (Singlitico
et al., 2021).

In this paper, we investigate in detail the trade-off between integrat-
ing OEHs via electricity and via hydrogen infrastructure. We set up a
combined capacity expansion and electricity dispatch model to determine
how the system evolves under given cost assumptions and location pref-
erences. We use the North and Baltic Sea projects as a case study and
assume that three OEHs will be operational far from shore in 2030. All
currently planned offshore wind farms are clustered along the coasts, and
the way they will be connected to the existing system is part of the optimi-
sation. The case study comprises four parts: (i) a business-as-usual case
without hydrogen infrastructure around OEHs, (ii) a case allowing elec-
trolysis only on the OEHs, not onshore, (iii) an open-investment scenario
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with cable and hydrogen infrastructure allowed both at landing points
and offshore, and (iv) a reference to the planned projects as presented by
COWI (2021).

We find that the electricity system benefits from interconnection with
the OEHs, and that there is a strong interdependence between distance to
shore and investment in offshore electrolyser capacity. In the case study,
when electrolysers are allowed both onshore and offshore, offshore elec-
trolysis is fed solely by the resources around the OEHs and a meshed grid
evolves around the close-to-shore offshore wind parks to feed the onshore
electrolysers. We observe that there is a possibility that nuclear power
and biomass could serve as fuel for electrolysers. Lastly, the capacity in-
vestments in electrolysers are very sensitive to hydrogen prices but less to
carbon prices. In addition, the onshore grid as it is currently planned for
2030 is relatively congested close to shore, and expansions by up to 20%
will increase the use of RES by 5%.

Paper C: Electrolysis as a Flexibility Resource on Energy Is-
lands
The third paper further develops the idea of OEHs as flexibility providers.
The hubs are meant to facilitate offshore sector integration by combining
offshore wind energy with power-to-x technologies and storage.

We investigate the operation of electrolysers on OEHs by first assessing
the potential flexibility contribution of the electrolyser and then analysing
different market integration strategies for the islands. We develop a two-
stage stochastic optimisation model to find a cost-efficient dispatch for
an integrated day-ahead and balancing electricity market. To apply and
verify the model, we set up a case study for the North and Baltic Seas
projects, assuming a set capacity of offshore electrolysers commissioned
by 2030 and 2040 (COWI, 2021; North Sea Wind Power Hub, 2020). For
the market integration of the OEHs, we align our approach to the current
debate and compare the case of a single offshore bidding zone to a case in
which the OEH is integrated into a home market zone (Kitzing & Garzón
González, 2020). We find that electrolysers on OEHs will run at low ca-
pacity factors and provide flexibility in 26%–30% of their runtimes. In
addition, offshore electrolysers produce more hydrogen when allocated to
an offshore bidding zone. This is driven by the lower electricity costs in



32 3 Towards the Implementation of Offshore Energy Hubs

these zones, and thus they earn higher profits. We conclude that combin-
ing offshore wind with electrolysers on an OEH will depend on additional
economic incentives if their main role is to be the delivery of balancing
flexibility.

Paper B: How to Connect Energy
Islands?

- How can OEHs be integrated
with onshore energy systems?

- What are the system implications
of such an integration?

Paper C: Electrolysis as a Flexibility
Resource on Energy Islands

- What is the flexibility potential of
an electrolyser on OEHs?

- How does the offshore bidding
zone configuration influence the
value of offshore electrolysers?

Paper A: Risks, Strategies, and Benefits of Offshore Energy Hubs

- How can we define OEHs?

- How can we assess the value of OEHs?

- Which are the key drivers of value to OEH infrastructure?
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Figure 3.1. Overview of the different papers and their research questions.

The three papers described above contribute to the discussion of OEH
design and development, and each individual paper has its own focus and
research question. Figure 3.1 gives an overview of the research questions
underlying each of the studies. In the following two sections, I combine
their findings to present insights into the two overarching research ques-
tions.

3.1 Drivers and Challenges for the
Development

The first research question concerns the development process for OEHs
and asks what the main technological, environmental, economic, and so-
cietal drivers and challenges are, and what their impact is on offshore
electrolysis. The envisioned projects are very ambitious with regard to
both the timeline and the needs for technical innovation. On the role of
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technology, all three papers find that the currently envisioned technology
mix for OEHs is too expensive to compete with other flexibility sources
and conventional hydrogen production, due to its immaturity. A usable
mix would only materialise with lower technology costs or higher CO2
or hydrogen prices. The discussed OEH projects are part of the first
large-scale roll-out, however, which makes them expensive and challeng-
ing. The progress of technology thus influences the system benefits and
the competitiveness of OEHs.

As for environmental challenges and drivers, Paper A highlights the
chance that OEHs will increase carbon emissions in the short run be-
cause of CO2-intensive construction and the relocation of processes far
from demand and existing infrastructure. Paper B shows that the future
electricity mix will be highly dependent on available offshore resources to
reduce emissions. In addition, Paper C confirms this finding and adds
that emission-free hydrogen production is guided by market and system
design.

From an economic perspective, there are many possible obstacles to
the development of OEHs. Although the offshore and hydrogen strate-
gies used by the EU have set the first goals for a fossil-free energy system,
there are not yet specific economic frameworks. In Paper C , we discuss the
role of bidding zone configurations, an aspect of market design, and show
their importance for capturing the desired value of conversion, flexibility
provision, or hydrogen. Paper B and Paper C both assume that the oper-
ation and ownership of offshore grids will be feasible and attractive, but
there is no consensus yet on how to proceed and speed up a successful im-
plementation. Combined interconnected solutions are disconnected from
the current planning procedures. At the moment, the gas and electricity
sectors work separately and so do the various national system operators.
To converge on an integrated energy system across borders, coordinating
efforts must be increased, as suggested by Dedecca et al. (2019).

Societal drivers include current onshore acceptance issues (Paper A)
and the prospect of more affordable electricity prices in the future (Pa-
per C). Overall, the technology must become economically viable and
sustainable to satisfy society’s desire for just access to cheap electricity.
Whether the OEH projects can achieve this cannot be answered here,
but the findings of Paper B and Paper C suggest that the current radial
connections of offshore RES and the use of onshore electrolysis are only



34 3 Towards the Implementation of Offshore Energy Hubs

part of the solution, and must be complemented with novel approaches.
When we continue the expansion of offshore wind even farther from the
coasts, cost-efficient network extension will develop into a meshed struc-
ture at sea. Paper B highlights how offshore electrolysis can play a role
in far-away electricity production to supply affordable and clean fuel for
hard-to-decarbonise sectors. Yet the economic framework and the viabil-
ity of offshore electrolysis are uncertain.

Offshore electrolysers and OEHs are a new, untested element to be in-
tegrated into energy systems, and this poses a challenge. For offshore elec-
trolysers, we can observe that they are built at moderate sizes (Paper B)
and run at capacity factors of 50%. Whereas Paper B helps us answer
questions about sizing and siting, we assumed a fixed electrolyser capacity
in Paper C that is 90% smaller than the endogenously determined size. In
addition, an endogenous system expansion leads to much better intercon-
nection of offshore generation and conversion assets through large-scale
investments into cable capacity (Paper B). Future OEHs and their sys-
tem integration and design will be sensitive to hydrogen prices but not
so much to CO2 prices (Paper B). The technical infrastructure and cable
connection also influence the mode of operation and the availability of
electricity for hydrogen production. The uncertainty about system de-
velopment as a driver of and challenge for OEHs connects to the second
research question. In the following section, I summarise key insights into
system configuration and market design for offshore electrolysis.

3.2 System Configuration and Market Design
for Offshore Electrolysis

The second research question asks how system configuration and market
design influence the value of electrolysis on OEHs. First, system configu-
ration and market design influence each other. If technology is set up, it
should be integrated and used efficiently. On the other hand, the market
design invites investments in some technologies more than others. OEHs
are currently a vision, and it remains important to explore various options
to guide their implementation. From the three studies in this project, we
can derive some initial indications about trade-offs and driving factors for
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offshore electrolysis.
In general, Paper A gives a clear indication that immature technology

and lack of economic frameworks for the hubs pose a risk. To provide
initial insights, Paper B assumes nodal pricing to reflect the scarcity of
generation and network bottlenecks in costs, and investigates how a sys-
tem with onshore and offshore electrolysis could develop over time. The
results suggest that the system is likely to integrate close-to-shore wind
farms and to build electrolysers at small gigawatt sizes close to the links
between onshore and offshore electricity cables (so-called landing points)
to harvest excess electricity. Paper B further shows that OEHs can be
integrated with onshore electricity systems via offshore wind farms rather
than directly. In this way, OEHs can become importers of offshore wind
energy in periods of strong wind and still deliver electricity to onshore
systems directly when close-to-shore production is low. This finding fol-
lows a body of literature analysing future connections of wind energy and
concluding that combined grid solutions such as Kriegers Flak will be-
come more relevant (see, e.g., Weichenhain et al., 2019 and Marten et al.,
2018).

The study in Paper B is based on nodal pricing, which takes into ac-
count bottlenecks in the system for pricing. Currently, prices in Europe
are set in zones, which in an ideal case would be designed to reflect bot-
tlenecks as zonal boundaries. Recent debates shed light on the problem
that the existing zones may not reflect network constraints well enough
(ACER, 2022). With increasing activity offshore and the common ap-
proach of integrating wind farms into their home countries’ or owner
countries’ market zones, we would move further from nodal prices. We
see in Paper C that this could lead to high-cost congestion management
measures. To investigate the role of OEHs in this setting and learn more
about the impact of bidding zone configurations, we compare the influ-
ence of HBZ and OBZ (see Section 2.1.2) on the value of electrolysers
offshore. The results show that we generate more hydrogen due to lower
prices with OBZs and limit the mismatch between market results and
network-feasible allocations. Besides the production of hydrogen, electrol-
ysers can serve as flexibility assets. Technically, electrolysers are capable
of delivering system services to increase system stability, something they
can also do when located on OEHs. In our stylised two-stage market of
day-ahead and balancing markets, we observe that the use of electrolysers
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for flexibility is not yet the main reason for installing them. However, if
flexibility provision is to become a main task of electrolysers in the system,
this can be incentivised by improving economic support.

Linking the results of Paper B and Paper C , there is a system mis-
match between the endogenously determined system configuration of Pa-
per B and the exogenous system used for analysis in Paper C , which is the
current planning basis for the European projects (COWI, 2021; North Sea
Wind Power Hub, 2020). The main difference between the two systems
is the cable capacity connecting the OEHs to shore or to offshore wind
clusters. Whereas Paper B finds a well-interconnected system suggesting
cable connections from the OEHs via offshore wind farms, Paper C bases
its analyses on direct connections between OEHs and a few market zones
that already integrate their offshore wind power. This neglects the possi-
bility of supplying electrolysers on OEHs with offshore wind energy from
sources other than close-by wind farms directly connected to the hub. The
stronger interconnection between offshore assets, as suggested by solving
the combined dispatch and capacity expansion model, finds a higher us-
age rate of offshore electrolysers. This can be attributed to two factors:8
first, we allow better integration of the OEHs, and second, we include
onshore grid constraints as a limit on the use of RES for direct electricity
consumption.

The main findings on how the system configuration and market design
influence the value of electrolysis on OEHs are summarised in the following
five points:

• Market design and system configuration influence each other heavily
(Paper A).

• Enforcing specific rules for system design implies a preference for
electricity or hydrogen infrastructure (Paper B).

• Market zones and grid bottlenecks influence the siting of electroly-
sers (Paper B and Paper C).

• Bidding zone configuration affects the role of hydrogen production
on OEHs (Paper C).

8We use the same data set on generation capacity and RES availability, and cost parameters
provide the same starting point.
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• Offshore electrolysis’ provision of flexibility in today’s system is not
yet competitive (Paper C).

3.3 Contribution and Discussion
The following section presents the contributions to the literature in a
condensed form and then discusses the methodological shortcomings and
the role of the assumptions. The articles contribute to the still very small
body of scientific literature on OEHs and offshore sector coupling. Besides
discussing the lessons to be considered for projects in the North and Baltic
Seas, I can raise the individual findings to a higher level and deliver the
following broad contributions:

• A generic definition of OEHs that is not bound to a European con-
text and that can help in the development of similar projects in
other parts of the world (Paper A).

• A framework for analysing possible OEH projects in any location
(Paper A).

• Mathematical frameworks for assessing the impact of integrating
OEHs to energy systems (Paper B, Paper C).

• The suggestion to align market design to the technical and economic
characteristics of the system (Paper C).

• Further resulting contributions:

– Landing points for electricity cables from offshore wind farms
are currently more attractive for electrolysis than pure offshore
electrolysis (Paper B).

– The location of OEHs invites some offshore electrolysers and
hydrogen production rather than pure electricity-focused oper-
ations (Paper B).

– Hydrogen production at the centre of wind farms in areas with
high wind potential is economically viable under current and
currently projected costs (Paper B).
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Figure 3.2 combines these contributions in a visual summary. Each
paper discusses OEHs from a different angle and is associated with specific
topics of energy infrastructures. The scope of the papers varies between
theory and implementation-oriented research and targets economic and
technical aspects.
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Figure 3.2. Graphical summary of the contributions.
Source: Author’s illustration.

These contributions are based on stylised models and assumptions. In
the remainder of this section, I discuss and reflect on these assumptions
and the methods used in the thesis.

In Paper A, I use multi-criteria analysis to survey the literature. This
is a well-recognised method in multiple fields. I base the survey criteria
on a review by Ilbahar et al. (2019), who screened assessments of renew-
able energy projects and summarised suitable criteria. However, the list
of investigated criteria is not exhaustive. To fill this gap, a systematic
literature review should be conducted in the future to comprehensively
assess the influence of different criteria.

Paper B and Paper C apply energy system modelling to answer the
research questions. These studies rely heavily on current cost data and
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assumptions about future development. The assumptions on the future
system for both studies originate in the TYNDP 2020 data set, which
was developed by stakeholders in the gas and electricity sectors to map
future system needs. Because of its industry connection, it may have a
bias toward the role of gas and electricity infrastructure, which we con-
trolled for only by upwardly adjusting capacities if they were already too
low today. Projects investigating fully renewable energy systems, such
as openEntrance (see Auer et al., 2020), call for much higher renewable
energy capacities than the data set we used, which would affect the sizing,
siting, and role of electrolysers due to greater RES availability. We have
taken the assumptions about costs from various sources, but mainly the
PyPSA data set by Hörsch et al. (2018). The future price of hydrogen
is especially uncertain, and so is the demand. Many of the other as-
sumptions about costs have already been disrupted by the current energy
crisis, which is also likely to change the boundary conditions for OEH
projects. Further investment in renewable energy projects is increasingly
important to recover affordable energy prices, and that may include the
development of such offshore hubs. With the recent developments in en-
ergy and resource prices and inflation, however, the deployment of these
technologies will face higher costs. The interplay among these develop-
ments is neither reflected or tested in this thesis; together with social and
behavioural components, this is one of the frequently noted shortcomings
of many models (Fodstad et al., 2022; Süsser et al., 2022). In the papers
presented here, the goal and impact of policies are more important than
details of behaviour, and we argue that the findings serve their purpose
of informing policymakers about system design and market setups.

On another level, the applied models and underlying mechanisms are
based on neoclassical economic theory, which some argue has shortcom-
ings for the economy of the future. Other progressive models and theories
of values may provide different results and even more urgently underline
the role of society and behaviour in these problems. We retain this as
a point of consideration regarding the presented results, and we do not
suggest these to be the absolute and correct numbers to base plans on.
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3.4 Further Perspectives on the Presented
Research

This thesis was developed in a multidisciplinary research environment
through frequent exchanges with industry stakeholders, in times of strong
political discourse. This motivates to examine different perspectives on
the research to set it into context. Following is a moderate and vaguely
personal view of the output and usability of the findings.

In Paper A, a qualitative study forms the basis of this thesis, and
the article includes a survey of the existing literature. Moving a step
beyond the available findings, we find a clear lack of environmental as-
sessments and overall sustainability research on the idea of implementing
OEHs. The gains provided by large-scale offshore infrastructure for reduc-
ing greenhouse gas emissions are challenged because most of the visions
entail large construction-related carbon emissions. Projects that need
cross-country coordination are difficult, and capabilities and guidance in-
volved in bringing together players from across borders influences the
outcome of the project. So far, OEH projects are seen as the only option
and have no competitors offshore. This implies that technology remains
the only option to transform the system—an idea to consider in the light
of the role of society and behaviour. Other concepts are related to em-
powering consumers at the household level (Lüth et al., 2020; Lüth et al.,
2018; Zepter et al., 2019) and advocating for a combination of bottom-up
and top-down approaches for a successful transition.

In Paper B and Paper C , we use system models that neglect be-
havioural and social components of the questions posed. Comparing our
study to an analysis by Gea Bermúdez et al. (2021), I see a very differ-
ent picture driven by the number of exogenous and endogenous decisions
included in the model. Taking offshore energy hubs as a set component
of a future system, we find that offshore grids and electrolysis evolve into
an ”optimal solution”. Assuming a Europe-wide market and allowing for
investment into any system component, the authors find very little rele-
vance for offshore electrolysis Gea Bermúdez et al. (2021). The reasons
for this could be manifold, not least among them cost assumptions and
the lack of incorporation of learning curves and political decisions about
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financial support for a specific project or vision.
The current energy price crisis underlines the urgency for wind energy

to replace fossil fuels, or at a minimum to reduce resource dependence
and ensure energy security. OEHs do not present a quick or ad hoc
way to transition to an affordable and sustainable energy system, and
under changing paradigms and societal challenges the role of such projects
needs to be carefully reassessed. Such public infrastructure projects are
often to the burden or benefit of the consumers, a sensitive matter in
times of economic instability, and it calls for an adequate governance
framework for the sector to clarify the allocation of risk between involved
actors. In sum, there are indications about what we can and should learn
about OEH projects. The changing political and economic landscape has
introduced new uncertainties to such public infrastructure projects. All
the studies in this thesis hint at a value of exploiting offshore resources in
a coordinated, large-scale manner. But the numbers are only indicative
and are likely overestimating the value due to data and to political and
economic boundaries.





CHAPTER 4
Conclusion and Further

Research
Offshore energy hubs are currently being publicly discussed as a key com-
ponent of the energy transition of the Nordic and Baltic region. These
hubs are envisioned as exploiting the wind potential at sea for both elec-
tricity and hydrogen production. However, key questions about system
design, technology mix, and market integration remain unanswered. This
thesis gives insights into to two research questions with the help of three
sub-projects. The first question asks about technological, economic, eco-
logical, and societal drivers and challenges for the development of OEHs
and their impacts on offshore electrolysis. The second focuses on the
analysis on system and market boundaries and characteristics for offshore
analysis. From the main findings of the individual articles, I gather in-
sights into the research questions.

With Paper A, I provide guiding insights for future steps and identify
various risks. I note five strategic considerations that will have impacts
on the effects of OEHs in Europe and possibly other regions. In Paper B,
we suggest different options for connecting the OEHs in the North and
Baltic Seas by hydrogen or electricity infrastructures. We find that off-
shore electrolysis is preferably size matched to nearby generation capacity,
and close-to-shore wind energy is best connected to the grid and onshore
electrolysers. Altering hydrogen and carbon prices lead to small differ-
ences in the outcome, but it remains profitable to connect OEHs with a
few selected cables and use close-to-shore wind farms for direct electricity
supplies and onshore electrolysis. In Paper C , we show that OEHs can
produce a fair amount of hydrogen due to low electricity costs offshore.
A setup with offshore bidding zones further enhances this and results in
a more cost-reflective market and hydrogen production price. The idea
of electrolysers being used as large-scale flexibility providers under cur-
rent operating costs is not attractive yet. Technically, however, flexibility
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services from electrolysers are possible.
The key lessons can be summarised in a few sentences. There is some

risk due to financial burdens and immature technology. The lack of com-
parative projects and the value of a diverse approach to mixing strategies
for the energy system transformation means that we cannot yet draw con-
clusions on the overall benefit of OEHs. Once the projects are advancing
towards implementation, the system will ideally evolve into a meshed off-
shore grid and a technology hub with a hydrogen focus (and possibly other
conversion technology as well). And finally, long-distance cables to far-
offshore wind farms should be avoided to the benefit of offshore hydrogen
production. Including huge offshore generation facilities in existing mar-
ket zones will necessitate expensive actions to adjust the market results
to the physical constraints of the power system.

The studies leave room for a lot of exciting follow-up research. Value,
benefits, and costs change with the regulatory framework, market integra-
tion, and policy framework. The definition of bidding zones, for example,
will define the prices at which offshore energy hubs operate, whereas regu-
latory frameworks for ownership and operation might in the end determine
how large the consumers’ share of the costs will be. The risk of failure
needs to be spread among several actors or centralised on one. We will
see the need to find a common framework around the shared region of
the North Sea in order for people to collectively benefit and pay for the
islands, their fuel, and their energy. Challenges in the groundwork of
offshore energy hubs largely concern the policy framework: Subsidies or
not? One operator or several for offshore electricity and hydrogen infras-
tructure? Who pays for the power lines, and to where? In which market
will offshore generation participate? How can we mitigate uncertainty?
The design of policy and regulation will strongly affect costs, benefits,
allocations, and long-term profitability as we move into an unexplored
region.

Besides the regulatory and market frameworks, the methodological
domain can be extended as well. For the system design and capacity ex-
tension study, further analyses should include hydrogen networks in more
detail (both technical and economical) and allocate hydrogen demands to
regions more specifically. This will require currently unavailable data.
For the market analysis, adding detail to the technical characteristics of
electrolysers could indicate whether flexibility services can be provided in
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more than just a day-ahead and a combined balancing market. In line
with previous technical studies (Zheng et al., 2022), we may see more
value to flexibility from electrolysers in market stages closer to real-time.

As a further step, and moving away from specific improvements to the
studies, it will be worth assessing the value of top-down approaches to
the energy transition. The implementation of large-scale hubs continues
to follow the current energy system’s architecture, dominated by big con-
ventional power plants. A growing stream of literature follows the idea of
a bottom-up transformation of the system to empower consumers (Euro-
pean Commission, 2016). This idea includes the goal of matching some
characteristics of renewable energy technology, such as being small-scale,
distributed, decentralised and volatile, to society and the way we use en-
ergy (Friends of the Earth Europe, 2019). Roof-top PV, mid-size batteries,
heat pumps, and electric vehicles together with consumer-centred tariffs
and markets have been argued to support the energy transition. However,
there has been no comprehensive and extensive analysis of which path to
follow, whether an integrated approach combining top-down and bottom-
up transformation is desirable, or how to integrate the two approaches.
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A.1 Introduction
Offshore energy hubs (OEHs)—also called energy islands1—are being han-
dled as a key component for the European Union’s pursuit of decarboni-
sation targets. OEHs have so far not been a major part of research into
future renewable-based energy systems. The idea originated in the Euro-
pean context of energy system transformation, and most examples and
studies have involved European issues. However, the concept is widely ap-
plicable in any context of combining offshore and onshore energy systems
at a large scale.

The vision of OEHs involves the development of large-scale assets in
the sea that will allow the collection of wind energy and energy conversion
and storage (North Sea Wind Power Hub, 2021). Embedded in offshore
grid infrastructures, OEHs will contribute to the decarbonisation of the
energy sector. The term generally refers to a combination of a large num-
ber of recent developments and system configurations moved into a new
context. The main challenge in the development of these hubs is to iden-
tify the components individually and to then translate this knowledge
about these components from the original context to their application
to OEHs. Research into OEHs, must cover topics as for example multi-
energy systems, energy hubs, integrated energy systems, smart energy
systems, energy system integration, and sector coupling, and more tech-
nological elements such as high-voltage direct current systems, offshore
1Especially in the Danish context, energy islands should not be confused with islanded solutions
onshore, where areas have their own energy supplies and are disconnected from the main
electricity network, or with physical islands that aim to have fully renewable energy systems
or have reached full decarbonisation, e.g. Samsø Energy Island or Madeira.

https://www.visitsamsoe.dk/en/inspiration-paa-samsoe/energy-island/
http://insulae-h2020.eu/pilots/lighthouse-island-3-madeira/
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grids, energy conversion technologies, and energy storage.
The contributions of this paper are threefold: (1) It suggests a defini-

tion of offshore energy hubs. (2) It derives a generic assessment scheme to
survey the value of OEHs. (3) It applies the developed scheme to the case
of the North Sea to identify the key drivers of OEH infrastructure and to
point out strategic trade-offs. The definition is based on descriptions in
scientific literature and project reports. The assessment scheme broadly
follows the approach of multi-criteria analysis but leaves out quantitative
work to focus just on the structure and criteria assessment only. Applying
the scheme to the North Sea projects, I find a fair body of literature and
several large research gaps. One main finding is that the concept of OEHs
is built on immature offshore technologies, lacks scientific support for the
construction of the hubs, and involves high technological and financial
risk. On the other hand, I observe that offshore connections that serve as
interconnectors, in particular, can provide value and integrate electricity
systems and markets, leading to improved welfare.

The remainder of the paper is structured as follows: Section A.2 sum-
marises the history of OEHs and presents a clear definition of them. Sec-
tion A.3 describes an assessment scheme along technical, economic, eco-
logical, and social dimensions. I then apply the scheme to survey the
first planned islands in the North and Baltic Seas in Section A.4. I de-
scribe the main trade-offs that I can identify in Section A.4.5. Section A.5
summarises the value of the scheme and the key lessons.

A.2 Conceptualising Offshore Energy Hubs
Offshore energy hubs developed out of a combination of several recent
movements. The discussion started when offshore wind became a key
element in the decarbonisation of energy production. The first offshore
windpark, Vindeby, was built in 1991 in the Baltic Sea and operated by
the Danish company Ørsted (Bilgili et al., 2011; DONG Energy, 2017).
The capacity of offshore wind has been increasing ever since, especially
in Europe. More renewable energy in a system goes hand in hand with
the need for more flexible resources. Using the example of the European
geographic area, I can describe how OEHs evolved and how they can be
defined.
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Traditionally, wind farms are connected by cable to their owner’s mar-
ket zones; Figure A.1(a). In addition, interconnection of countries’ elec-
tricity system has been constantly expanding. Interconnection, as shown
in Figure A.1(b), both allows countries to benefit from cheaper resources
in other countries and creates system stability. The first sea connection
was built in 1961, between France and the U.K., based on high-voltage
direct-current technology, and its successor is still in operation. In 2015,
a goal was set of 10% electricity interconnection in Europe by 2020 (Euro-
pean Commission, 2015), targeting not only continental connections but
also sea cables.

(a) Offshore Wind. (b) Interconnection. (c) Offshore grid. (d) OEHs.

electrolyser

interconnector offshore hub connection

new interconnector existing wind farm

new wind farm

Offshore Energy Hub

battery storage

Figure A.1. Development of offshore strategies and visions, from offshore generation
to OEHs.
Source: Author’s illustration, partially based on ENTSO-E (2021).

For offshore wind parks and interconnectors in Europe, the North and
Baltic Seas quickly came into focus. Discussions of how to connect these
wind farms to shore gained importance (European Commission, 2020).
On the basis of the expansion of offshore wind in the North Sea and Baltic
Sea, various projects2 developed new approaches to the connection of
generation to the existing grids. One leading approach was to abandon the
traditional wind farm-to-owner-country (home country) and country-to-
country (radial) connections by building an offshore grid in an integrated
or meshed structure (Kitzing & Garzón González, 2020; Tosatto et al.,
2021). Radial connections, linking one country to another, are called
2To name a few: PROMOTioN, Baltic InteGrid, NorthSeaGrid.

https://www.promotion-offshore.net/
http://www.baltic-integrid.eu/
http://www.northseagrid.info/
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interconnectors in Europe. In home-country modes, the wind farm is
connected only to the country of its owner.

In addition to simple connections to multiple countries and offshore
wind installations, offshore grids can support the efficient use of offshore
renewable resources (Strbac et al., 2014) and lead to higher interconnec-
tion, which supports fully renewable systems (Schlachtberger et al., 2017;
Spiecker et al., 2013). This provides two main benefits: interconnection
of countries and thus markets, and large-scale integration of offshore en-
ergy technologies (Gorenstein Dedecca & Hakvoort, 2016). The literature
on modelling offshore grids is already improving, and a review by Goren-
stein Dedecca and Hakvoort (2016) sets up a framework for assessing the
different studies.

In light of discussions about building offshore grids instead of radial
connections to improve system efficiency (Chen, 2018; Strbac et al., 2014),
OEHs can naturally evolve at locations where the grid connects large
generation to several surrounding countries and thus serve as power link
islands (Kristiansen, Korpås, et al., 2018) or hubs (van der Meijden, 2016),
see also Figure A.1(d). In general, an energy hub is an entity where energy
conversion, storage, and conditioning take place (Geidl et al., 2007). The
first vision of an offshore version of this ends the timeline in Figure A.1.

Although the idea of OEHs originated in discussions around the North
and Baltic Seas, the underlying concept can be seen as a generic approach
to creating flexibility around power links and generation centres both
offshore and onshore. In broad terms, an OEH can be defined as follows:

An offshore energy hub is a fully renewable energy resource-
based combination of assets that link at least two services, such
as electricity generation, interconnection, and offshore storage.
These services are relevant to energy system development and
operation and foster decarbonisation of the energy sector while
preserving the environment.

Onshore energy and offshore energy hubs are both spaces where differ-
ent energy carriers (wind, sun) are converted and stored, for example in
the form of hydrogen or in batteries. In addition, different infrastructures
are linked on a hub (electricity and most likely gas or heat). The main
difference is the lack of direct conventional and residential load.
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Projects that combine generation and interconnection are often re-
ferred to as hybrid projects, not to be confused with hybrid assets, which
are infrastructure elements with the purpose of transmission and intercon-
nection (North Sea Wind Power Hub, 2020). Examples of hybrid projects
with hybrid assets are Kriegers Flak in the Baltic Sea and the Cobra Ca-
ble in the North Sea (ENTSO-E, 2016). Following this definition, OEHs
can be categorised as hybrid projects, under specific market designs also
be seen as hybrid assets.

A.3 Assessment of Offshore Energy Hubs
OEHs are still a theoretical concept based on a vision. Many details have
not yet been fully explored, for example size, location, and technology.
Since European consortia presented the first ideas in 2016 (North Sea
Wind Power Hub, 2017), researchers have contributed studies of renew-
able offshore energy systems and their impact on markets, welfare, prices,
system stability, marine ecosystems, and decarbonisation. To cluster and
survey these studies around the concept of OEHs, I develop a review
and assessment scheme inspired by multi-criteria assessment (MCA) and
tailored towards organising and analysing literature on offshore energy
infrastructure projects. The structured material can then inform an as-
sessment. Below I describe the scheme, including a suggested workflow
and the criteria for the review of OEH projects.

A.3.1 The Scheme
In general, multi-criteria analysis sets a hypothesis and evaluates a project
on the basis of several criteria (Wilkens, 2012). The relevance of MCA for
renewable energy projects has been recognised and summarised by Wang
et al. (2009), who list many examples of such applications. Munda (2005)
describes a significant driver of sustainability projects as non-monetary
influences on the value of projects; that is, impacts that are hard to mone-
tise such as intrusion, acceptance, and participation. Relevant assessment
criteria are reviewed by Ilbahar et al. (2019), and I use three studies to
identify common criteria: Ilbahar et al. (2019), Wang et al. (2009), and
Wilkens (2012). I use the core of the presented criteria and extend them
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Case
Description

• Define a case.

• Describe the characteristics of the case.

Literature
Survey

• Conduct a literature survey.

• Cluster literature along the presented criteria.

Summary
and Rating

• Summarise the literature and findings.

• Optional: Evaluate the performance of the project for
all criteria.

Assessment • Use the summary to assess benefits.

• Identify risks and trade-offs.

Evaluation • Derive key drivers of the project.

• Highlight strategic considerations.

Figure A.2. Suggested workflow of the survey and assessment scheme for OEH projects.

with drivers that are specifically relevant to offshore energy infrastructure.
The suggested evaluation follows a qualitative approach on an ordinal
scale for each category. I suggest a workflow following Figure A.2.

The assessment starts with a definition of the case to be analysed.
The second step is a literature survey to identify studies using the various
assessment criteria. On this basis, the findings can be summarized, and
the overall outcome for each criterion can also be rated. Then the benefits,
risks, and trade-offs are identified. Finally, all these steps provide input
to derive the key drivers and strategic challenges of the case. Below, I
explain the criteria used to cluster and analyse the literature and the
summary (steps two and three).

A.3.2 Criteria
I cluster the criteria for the survey of OEHs into the most common groups
(Ilbahar et al., 2019) and define technological, economic, ecological, and
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societal criteria. Table A.1 presents the relevant criteria.

Table A.1. Assessment Criteria for OEHs.

Technical Economic Ecological Societal
Efficiency Capital cost Biodiversity & intrusion Acceptability
Maturity Governance & regulation Climate protection Health
Operations &

maintenance Market design Emission (reduction) Job creation

Safety & reliability Ownership & operation Land use &
spatial planning Participation

Risk & uncertainty Resource utilisation Social benefits &
equity

I define four technological criteria that are likely to heavily affect
the performance of OEHs. Energy projects are very technical in character
and require a strong assessment of the chosen technology. This assessment
can be made from system and component points of view, which lead to
different insights and highlights. In line with the literature, I find that
technological maturity can reduce the risks of a project and is thus an
important factor. Technical efficiency drives the competitiveness and
economics of the technology and must be included in any evaluation of
options. Further, safety and reliability are relevant characteristics of the
technological performance to ensure long-term stability. Last, I consider
operations and maintenance to be key for the success: the less cost and
effort, the better.

Energy projects are capital intensive and of high economic importance
in today’s energy dependent economies. I formulate five economic crite-
ria that are relevant to assessing OEHs and their economic performance.
Capital costs are a key value that guiding cost-benefit analyses use as
input, and they thus are a criterion. When projects are operational, their
economic performance depends on markets, rules, and business models.
To reflect the readiness of the economic frameworks for OEH projects, I
include governance and regulation, which provides the framework for op-
eration and leads the way to successful implementation. One part of this
is market design, which I include as a separate criterion in my analysis
to reflect the market’s readiness to absorb new models and setups. In
addition, I regard business setup and ownership and operation as highly
influential due to the allocation of costs and benefits. Last, I need to look
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at economic risk and uncertainty and assess how vulnerable the projects
are.

Decarbonisation of the economy drives the transformation of the en-
ergy system and induces the expansion of offshore energy sources. Yet
emission reduction and climate protection are not the only ecological cri-
teria to consider when looking at the value of OEHs. Besides the non-
negligible factors of emission reduction and climate protection, I present
three more ecological criteria. Offshore energy project are resource in-
tensive, use space, and intrude on untouched marine space. I stick to the
most common criteria from Ilbahar et al. (2019) and add biodiversity and
intrusion, land use and spatial planning, and resource utilisation to the
above. These last three criteria cover the role of competition for space
that is to be shared between nature and humans, and which must be
maintained to ensure functioning ecosystems.

Last, I add five societal criteria to highlight the role of society as
a driver or delayer of these projects. As a society, we depend heavily
on energy and thrive by keeping that dependence while reducing carbon
emissions to mitigate climate change. However, the transformation of this
energy economy to clean sources faces significant other obstacles and has
impacts in many more domains than just the technical, economic, and
ecological. Besides immediate and measurable impacts like job creation
and social benefits and equity, which develop alongside a transition and
projects within it, there are less quantifiable indicators. Among those,
I assess the effects of the projects on health, following the debate about
climate change threatening our habitat. In addition, I value participation
in the projects and add a factor of acceptability as part of this assessment.

A.4 Assessing Sustainability: Survey of
European Progress

I apply the scheme and procedure described in Section A.3 to the case
of the North Sea OEHs. Following the workflow, I describe my case in
Section A.4.1. Section A.4.2 presents the literature survey, including all
the criteria. In Section A.4.3, I summarise the literature and present
an evaluation using an ordinal scale. On the basis of the summary, I
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describe benefits, risks, and trade-offs in Section A.4.4 and derive strategic
challenges in Section A.4.5.

A.4.1 The Case of the North Sea
Europe is currently the world’s leader in offshore wind: Offshore wind po-
tentials in Europe are high in the North Sea region and thus involve many
adjacent countries, such as Belgium, Germany, Denmark, the Nether-
lands, France, Norway, Sweden and the U.K. (Kaldellis et al., 2016).
The North Sea region is not the only part in Europe to develop offshore
wind power, but together with the Baltic Sea it is the frontrunner. With
its offshore renewable strategy (European Commission, 2020), the Euro-
pean Commission formulated a clear direction for a system transformation
based strongly on offshore energy systems.

The Danish government announced two energy islands as part of its
plan for energy and industry to reach 70% reduction of CO2 emissions
by 2030.3 The Danish transmission system operator (TSO) Energinet
has also set up the North Sea Wind Power Hub (NSWPH) consortium4

with the German and Dutch TSO TenneT to promote an OEH in the
North Sea within the TEN-E priority corridor. This priority corridor
allows for EU funding of projects of common interest (PCI).5 Although
the NSWPH is still seeking approval at the European level, the Danish
government passed an agreement on details about the first island in Dan-
ish waters: 210 billion DKK, an artificial island, 3 GW offshore wind, and
interconnection capacities to surrounding countries, to be in the full pack-
age operational by 2030 (Plechinger, 2021). This quickly developed into
the current target of two Danish islands: one in the North Sea and one in
the Baltic with 10 GW and 3 GW of wind energy connected, respectively6;
see Figure A.3.

The Danish projects and the NSWPH are the three leading OEH
projects, but the concept is also relevant to Norwegian offshore energy
(Zhang et al., 2022). All the published visions and concepts follow the
generic approach described in SectionA.2 and consider placing conversion
3cf. Klimaaftale for energi og industri mv., June 2020.
4See North Sea Wind Power Hub: www.northseawindpowerhub.eu.
5See: PCI Project Status.
6cf. Energistyrelsen (2022).

https://fm.dk/media/18085/klimaaftale-for-energi-og-industri-mv-2020.pdf
www.northseawindpowerhub.eu
https://ec.europa.eu/energy/maps/pci_fiches/PciImplementationPlan_1.19.pdf
https://ens.dk/en/our-responsibilities/wind-power/energy-islands/denmarks-energy-islands
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Figure A.3. Overview of current OEH projects in Northern Europe.
Source: Author’s illustration based on COWI (2021) and North Sea Wind Power Hub (2021).

and storage technology close to offshore wind. Analyses to assess the
value, determine the design, help with policymaking and ensure accep-
tance have not been conducted for the case of the North Sea.

A.4.2 Survey
Sections A.4.2.1–A.4.2.4 provide the literature survey. I considered liter-
ature on OEHs, offshore grids, energy islands7, and offshore wind. Wher-
ever I saw a lack in the literature or was able to identify related topics (for
example, studies of sector coupling onshore), I used reviews on renewable
energy projects in general. The following sections present the literature
that is relevant to assessment and evaluation. I structure the literature
along the criteria.

A.4.2.1 Technological Criteria

The technological dimensions of an OEH include all the technologies the
hub is home to or that are connected or related to it. In some loca-
tions, it might be more suitable to create a large wind power hub, while
7This term is often used for islands in the process of decarbonisation, or islanded energy
systems, which led to a fair number of studies being disregarded.
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others invite solar power, conversion, and storage technologies as well. In
designing an OEH, the technical dimensions must include the technical de-
vices installed at and around the OEH, their components and the means
of connection and operation of those, and the system aspects. From a
technological point of view, plans for sizing, mode of connection, and op-
eration can depart from the conventions on energy hubs, virtual power
plants, and multi-energy systems to determine an efficient path.

An OEH is placed offshore and must be connected to the land. As
nodes in a meshed offshore grid would invite OEHs to evolve, there is
a technical overlap between the design of offshore grids and hubs (Chen,
2018) creating synergies. High-voltage grid connections and low-inertia
setups are suitable characteristics that can support OEHs where wind
energy is harvested and collected at a central point (Misyris et al., 2020).
Studies show that the implementation of high-voltage direct current power
lines can support the efficient design and operation of offshore grids (Vrana
& Torres Olguin, 2015).

Although there seems to be a clear consensus that OEHs are the point
to harvest offshore wind energy to send it bundled into an offshore grid,
there is no straightforward plan for what technology should be installed
in addition to this. North Sea Wind Power Hub (2021) envisions an OEH
that is home to electrolysers that produce hydrogen; Siemens, Ørsted
and ITM develop technology to produce hydrogen inside wind turbines,
which would turn each hub into not only a power link but a hydrogen
link island (fch, 2021). Batteries, pump storage, and gas tanks can also
provide flexibility, though their shape, size, and combination have not yet
been investigated and have never been tested offshore. The first results
point to electricity-only production being the most valuable element to
invest in, but the combined operation can also be valuable and feasible
(McDonagh et al., 2020). OEHs in operation are expected to support the
decarbonisation of the energy sector and create a reliable and resilient
infrastructure for operating a fully renewable system. The technology at
the hub must be chosen with respect to technical interaction and opera-
tion to keep costs and maintenance needs low while still extracting the
most value from the new investment. If wind power alone is not consid-
ered definitive of OEHs, insights from research into sector coupling and
system integration can help us determine the specific characteristics of
other power generation, storage, and conversion technologies (Zheng et
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al., 2022a, 2022b).

Efficiency. Conversion technology in the form of power-to-x transforms
electricity into a different energy carrier such as hydrogen, heat, fuel, or
other green gases (Buttler & Spliethoff, 2018; Koj et al., 2019). Whenever
electricity is converted, losses occur, and there is a different target market
with other characteristics and a design that affects the costs, benefits, and
long-term profitability of the installed technology. With the possibility of
electrolysers producing hydrogen on OEHs (potentially even inside wind
turbines), the economics of hydrogen production (Glenk & Reichelstein,
2019) will significantly influence size, operations, locations, and connec-
tion to gas and other network infrastructures. The first studies show a
trade-off between direct electricity use via cable connections and hydro-
gen conversion. Gea Bermúdez et al. (2021) find that cables are preferred
over hydrogen production if there is no specific hydrogen demand. Yet
electrolysers can be a flexibly operated asset (Zheng et al., 2022a) and
serve as balancing component (Lüth et al., 2022).

Maturity. Component-wise, offshore wind is a rather mature technol-
ogy (Jiang, 2021), but offshore electrolysis is still in its pilot phase (Brauns
& Turek, 2020; Buttler & Spliethoff, 2018). Battery storage and other
conversion processes have not yet been tested offshore, nor can they be
related to any similar offshore constructions. Mere oil and gas platforms
are similar in their foundations to one of the options suggested in COWI
(2021), however. Those platforms are well tested around the world and
are more explored than sand constructions.

Operations and Maintenance. Many needed add-ons to offshore wind
technology do not yet exist as commercial hardware. Although energy
generation potential is much stabler and higher offshore, there are disad-
vantages as well: high costs of engineering, installation, and maintenance,
a need for grid expansion, and limited access (Bilgili et al., 2011).

Safety and Reliability. Early research indicates that a meshed grid
structure in the sea can stabilise renewable-based systems, but there is not
yet enough evidence to achieve additional flexibility through the creation
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of technology-combining offshore hubs as Figure A.4 suggests. The value
of shifting those hubs to other highly interconnected areas, such as onshore
landing points, must be gauged before support is granted, similar to what
Singlitico et al. (2020) suggest.

Figure A.4. An illustrative example of an OEH hosting electrolysers, and storage
technology in proximity to offshore wind farms.
Source: Author’s illustration.

A.4.2.2 Economic Criteria

The most efficient technical composition is not always the most econom-
ical. The reasons can be manifold, including lack of policy support, cost
of technology, market rules, and varying demand or supply. To combine
the technical and economic dimensions for an overall efficient outcome,
different trade-offs must be weighed and policy and technology aligned.
Although the technical dimension will decide the choice of technology,
the economic framework must ensure profitability and will need to guide
implementation.

Capital Costs. In the specific case of OEHs, the combined strengths
of hubs and integrated offshore networks let them outcompete radial and
home-country connections (Weichenhain et al., 2019). Coordinated plan-
ning puts pressure on the profitability of large infrastructure investments
in offshore grids: meshed grids lead to lower system costs but depend
heavily on coordinated planning and building efforts (Gea-Bermudez et
al., 2018; Gea-Bermúdez et al., 2020; Kristiansen, Muoz, et al., 2018).
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So far, the development of offshore wind, grids, and interconnection has
remained a national task (Gorenstein Dedecca & Hakvoort, 2016). In an
international setup, difficulties arise among partners, and the task is to
develop along national or regional plans (Dedecca et al., 2019). Traber
et al. (2017) argue that the harmonisation and coordination of efforts at
grid expansion and capacity building can have a positive long-term effect
on costs in general and with respect to offshore infrastructure projects.
The interconnection of strong markets with asymmetric renewable capac-
ity is seen as stabilising prices in the connected markets (Alavirad et al.,
2021).

Market Design. Besides coordinated planning and investment, mar-
ket design is crucial to success. Market design for OEHs includes ques-
tions about the owner and operator of the technology, pricing rules, and
regulatory frameworks. Due to the renewable energy generation around
hubs, the market design will need to be in line with the requirements for a
high-renewables scenario that unites intermittent resources with necessary
levels of competition while either addressing or avoiding market failures
(Djørup et al., 2018; Newbery et al., 2018). OEHs are just another com-
ponent of the renewable offshore setting and add a layer of complexity to
it. In general, two market design options seem to have become the leading
concepts: designs of home markets and offshore bidding zones have been
suggested by Weichenhain et al. (2019) on behalf of the European Com-
mission. These designs have been taken up by the North Sea Wind Power
Hub (2020) and were commented on by Energinet et al. (2020). Using
a system model, Kitzing and Garzón González (2020) evaluate the two
designs for a Danish energy island with only wind energy connected and
conclude in favour of the offshore bidding zone. Lüth et al. (2022) add
hydrogen production to the OEH and show that offshore bidding zones
lead to more hydrogen production at slightly higher prices offshore while
keeping onshore production prices stable. Singlitico et al. (2021) present
an approach to determining offshore production costs for hydrogen and
show that offshore placement can make the wind parks more economical
through peak shaving production, and Gea Bermúdez et al. (2021) argue
that offshore hydrogen production will play a small role.
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Governance and Regulation. Offshore wind projects need grid ac-
cess, and instead of farm-to-shore connections, a meshed infrastructure
could support the integration of far-out offshore wind projects. The regu-
latory models for grid infrastructure to connect such farms differs around
Europe and even around the Baltic Sea (Sunila et al., 2019) and North
Sea (Meeus, 2015). Whereas harmonisation towards a more competition-
oriented model would enhance offshore wind projects, harmonisation to-
wards a TSO-model that supports advanced connection planning would
be more beneficial (Meeus, 2015). The key to the overall process is the
alignment of rules. Due to the variety of policies around Europe, Sunila
et al. (2019) suggest the creation of a supra-national TSO for a pure
offshore grid: a single operator of an offshore grid as a fully European
solution under EU regulations, rather than coordinated and cooperative
approaches.

Ownership and Operation. Today, the literature focuses on economic
regulation and market design for offshore wind, offshore grids, and OEHs
with solely wind energy connected. An OEH might include further tech-
nologies such as batteries, pump storage, or electrolysers. For now, there
is evidence supporting offshore grids and wind power islands being valu-
able to the system, which highlights the need to allow for their emergence
through market design and economic regulation. Kitzing and Garzón
González (2020), among others, provide give first indications to how this
can be done. Meeus (2015) and Sunila et al. (2019) present ideas for ad-
dressing the difficulties about the ownership and operation of the offshore
grid. In the presence of conversion technologies such as electrolysers, the
economics of renewable energy conversion (Glenk & Reichelstein, 2019)
will be a key driver. The produced and available quantity of hydrogen af-
fects the path to integration with the gas sector, which will add a market-
and system-integration component to the energy island. This will open
a discussion about several modes of operation and ownership structures
surrounding power-to-x, which is already heavily discussed for onshore
technologies (Xiong et al., 2021).

Risk and Uncertainty If technical analysis shows value added by stor-
age or electrolysers on OEHs, the economic framework will need to catch
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up with this recommendation and investigate whether support schemes
are needed to extract this value. Financing schemes for offshore wind
energy have shown that the support scheme influences the deployment of
the technology and must be adjusted to the rolled-out capacity (González
& Lacal-Arántegui, 2016). Yet the whole concept of OEHs is new and
carries uncertainty in many variables.

A.4.2.3 Ecological Criteria

OEHs are being developed to help decarbonise the energy sector, and it
seems like an obvious assumption that the projects will support green
transition. To verify this, I summarise existing studies on the environ-
mental and ecological impacts of OEHs. Each OEH will be different and
thus have a different impact.

Resource Utilisation. The first studies evaluate various foundations,
such as the construction of sand islands, caisson islands, or a platform
(North Sea Wind Power Hub, 2019). Denmark has decided to use sand
islands (Plechinger, 2021). COWI (2021) evaluated the impact of each
foundation type on behalf of the Danish Energy Agency and found that
the chosen sand island solution (sænkekasseø) has the highest additional
carbon footprint due to material production. An analysis of repurposing
existing offshore infrastructure has not been conducted.

Emission Reduction and Climate Protection. Effects of construc-
tion might counteract the environmental benefits of an energy island. The
concrete industry has the largest industry emissions in Denmark (Klima,
Energi- og Forsyningsministeriet, 2020), and scarcity of sand must also
be considered for large new constructions (Gavriletea, 2017; Padmalal &
Maya, 2014). Cables as a connecting infrastructure emit electromagnetic
waves, and phases of construction can disturb natural processes in the
sea.

Land Use and Spatial Planning. Onshore wind installations quickly
led to public opposition, and offshore wind farms were thought to resolve
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problems of visual and environmental impact, planning, and spatial con-
siderations (Haggett, 2008). The same considerations will be necessary
with respect to OEHs. The more technology is added to the hub, the more
we will need to move these industrial centres away from the shore. But
though this might resolve public acceptance problems, there are trade-offs
in space, ecosystems, biodiversity, health implications, and the use of re-
sources. The sea seems to provide large space and unlimited possibilities,
but sea area is limited, and marine spatial planning is important when
increasing offshore activities: shipping, energy transport and generation,
tunnel and bridge building, fishing and farming, and maintenance of nat-
ural recreation areas and ecosystems. With OEHs, we add capacity for
energy transport, generation, and storage. Well-designed incentives from
policymakers are needed to prevent congestion but use the available space
for infrastructure efficiently.

Biodiversity and Intrusion. Species under the sea and in the air
are affected by the building of offshore wind generation (Soukissian et
al., 2017). The phase of construction threatens submarine wildlife, such
as fish and molluscs, the most. Once construction is completed, new
ecosystems can evolve, and they have done so in the North Sea (Gimpel
et al., 2020). However, the long-term effects remain unknown. Frequent
interventions in the sea can destroy newly developed ecosystems, another
point of consideration in the construction of energy islands and the choice
of size.

A.4.2.4 Societal Criteria

In the long term, society will profit from investments in clean energy
technology. An energy-driven lifestyle can help societies develop while
preserving air quality and lowering environmental pressures. Whether
investments in OEHs will benefit society as a whole depends on all the
aforementioned criteria: technical and economic design and consideration
of environmental impacts.

Acceptability. Offshore wind parks developed fast when land for on-
shore wind became scarce (Esteban et al., 2011) and public opposition
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to onshore wind farms increased (Haggett, 2008). The more stable winds
and greater space justified the expansion of offshore installations. Public
acceptance is said to increase with participation (Tobiasson & Jamasb,
2016), which in the case of OEHs will not take place. The costs of ac-
ceptance are high, and in some cases outweigh the high investment costs
(Hevia-Koch & Klinge Jacobsen, 2019).

Health. There is a wide consensus that cleaner air is beneficial to health
(Kampa & Castanas, 2008; Pope et al., 1995). Energy production and
industry-related CO2 emissions reached a global high of 36.3 gigatonnes in
2021, with coal in the lead (IEA, 2021). These record emissions contribute
about 40% of global greenhouse gas emissions and thus add significantly to
air pollution. The adoption of clean technology will have health benefits
for the population and reduce health system pressure and costs.

Participation. OEHs have met high acceptance rates so far, but accep-
tance is not triggered by participation, as in other top-down approaches.
Local and decentralised concepts often encourage acceptance through par-
ticipation (Dumitrescu et al., 2022; Lavrijssen & Carrillo Parra, 2017;
Lüth et al., 2018). Centralised, large-scale projects such as OEHs and
large offshore wind farms, centralised power-to-x plants, and big stor-
age units do not involve citizens but require infrastructure development,
which may affect acceptability.

Social Benefits and Job Creation. Under current designs, the costs
and benefits of these integrated solutions will be distributed unevenly
unless policy implements reallocation mechanisms (Egerer et al., 2013;
Huppmann & Egerer, 2015; Konstantelos et al., 2017). The allocation of
costs and benefits among the ideally involved parties influences willingness
to participate. In the absence of re-allocation mechanisms parties may
withdraw and bring significant disadvantages to the overall venture. Job
creation in the renewable energy sector was seen early on as an economic
opportunity (Lehr et al., 2012; Wei et al., 2010), and it is needed to
compensate for job losses in the sectors that are replaced (Oei et al.,
2020).
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A.4.3 Summary and Rating
The first studies of OEHs discuss problems and aim to answer to emerging
questions about the concept. The above details of the criteria defined in
Section A.3 present a first glance at the obstacles to developing OEHs in
the North Sea. To summarise the main items in the different categories,
I structure them along the scheme presented in Table A.4.3. Column 2
indicates the performance of the concept in my assessment. I add a note
to explain the assessment and add the references. In the assessment,
I distinguish five levels: poor (– –), weak (–), fair (◦), good (+), and
excellent (+ +).

For the technological assessment, I conclude that the North Sea OEHs
can benefit from efficient wind energy conditions offshore and fairly ma-
ture offshore wind technology. Interconnection allows for stabilisation of
the broader European electricity system, but experience with intercon-
nected wind farms is limited and the system stability impact is not large,
so I rate it at fair quality but not excellent. Sector integration is one
of the main work items at the moment and suffers from immaturity de-
spite great working examples. Offshore electrolysis is not operational at
all, and the immature technology poses a high risk and relies on heavy
effort for operations and maintenance work. Overall, the maturity and
efficiency of offshore wind energy invite to proceed with the project. First
experiences with system stability through increased interconnection have
provided good prospects. Immature offshore technology, increased main-
tenance effort, and lack of sector coupling success are currently the weak
points of the projects.

As for the economic parts of the projects, most are not yet defined
or adjusted to facilitate system and market integration. Governance and
regulation in Europe are focused on onshore national solutions, but for
OEHs they will need to extend their scope to multinational solutions and
legal frameworks. I therefore cannot evaluate the performance of OEHs
with respect to governance, ownership, operation, and market design, and
I highlight the fact that changes and future frameworks for offshore en-
ergy projects will influence the success of OEHs. The lack of guiding
European regulations is one source of risk and uncertainty. High capital
costs, immature technology, and lack of experience are others where the
projects rate as poor.
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The ecological assessment has a two-part result. The use of offshore
wind as a resource leads to emission reduction and faces less competition
in offshore areas, and I will need less space and technology offshore due
to higher capacity factors. However, OEHs with added hub components
have undefined benefits. Construction of the island itself creates addi-
tional carbon emissions, and construction and decommissioning destroy
and intrude into new areas. In addition, the construction of an OEH
requires resources, and if existing offshore constructions from oil and gas
extraction in the North Sea cannot be repurposed, additional emissions
will be created.

Society benefits largely from reduced emissions improving health, and
the transition to renewable energy creates many jobs along coasts and at
harbours in the North Sea region. The long-term effects on society and
equity cannot be evaluated yet, but early insights propose that welfare
will increase. A public project is a risk that society might need to pay
for if it fails. The acceptability of OEHs can be rated as sufficiently high
because of their distance from humans. General participation in OEHs is
low, and this presents a downside.

Overall, for each category, I can identify benefits and weaknesses. I use
the assessment to derive opportunities, risks, and barriers in the following
sections.
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A.4.4 Assessment
OEHs open for opportunities for market integration across countries
and for enhancing the interconnection of the involved parties to construct
the island. Interconnection has been shown to stabilise the energy sys-
tems and belongs to the priority corridors for the electricity grid (Euro-
pean Commission, 2021). The bundling of offshore resources with the
development of grid infrastructure can allow the harvesting of large unex-
ploited offshore resources while being less space-intense. If OEHs include
energy storage and power-to-x, possibilities for energy system integration
and emerging synergies can be exploited. High acceptance rates and job
creation further support the North Sea project.

I can also identify barriers to OEH projects. Those can be overcome
with policy instruments, advances in research and development, and ed-
ucation and participation. The first step, of identifying the ideal loca-
tion for an OEH, is one barrier. The topic is highly political (Puka &
Szulecki, 2014), and there is a risk of strong disagreement or opposition.
In the current situation, there is a front runner (the North Sea region) and
bottom-up development (industry-led) in a system with mostly top-down
regulation, similar to the case of offshore grids (Härtel et al., 2018). But
in addition to geopolitics and interference with national plans, there is a
lack of clear guiding research on this topic. The first studies have emerged
discussing offshore grids and market design, but the smart approach to
OEHs has not been explored. Policymakers rely on information and ed-
ucation by researchers to create sustainable and valuable frameworks for
the development of such projects. In the absence of studies, progress will
be slowed by lack of information.

Just as for offshore grids, the optimal design of OEHs within an in-
tegrated grid structure might not be reachable in the desired shape: in-
tegrated and coordinated planning over a long time horizon brings risks
and uncertainty, and it is not required by any regulation such as TEN-E
(Gorenstein Dedecca et al., 2017). An integrated system design including
well-connected OEHs can have significant benefits. But to reach this ideal
scenario, the planning and building must be integrated to ensure that the
gradual development of large-scale infrastructure is well coordinated, and
the optimal layout can be reached by passing several milestones. Radial
connections might still need to be part of the system (Gorenstein Dedecca
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et al., 2017). Other risks involve financing strategies, influences of inter-
est rates and on immature electrolysis and offshore technology, and un-
certainty about the acceptability of supporting such large infrastructure
projects.

A.4.5 Strategic Considerations for Offshore Energy Hubs
In planning OEHs, I can use this analysis to identify key drivers and
strategic considerations. Although the time frame for the Danish light-
house OEH is set, the joint international project for the North Sea is still
pending. Research into a generic design as well as the specific design of
the Danish OEH is still scarce, but future projects will be able to make
use of the lessons of the first project in Danish waters. In general, there
are still challenges to be faced in the case of the North Sea as well as for
other hubs. Research might provide answers quickly, but at this point,
I draw qualitative conclusions from my analysis, with five main strategic
considerations to be answered for such projects. These are derived from
trade-offs that I identified following the assessment scheme.

1. Significance of environmental benefits
Although the vision of OEHs is in line with the decarbonisation
of the energy sector to mitigate climate change, it remains unclear
how much they will contribute to the targets of reducing emissions.
One critical element is the construction phase: The building sector
produced 40% of global emissions in 2019 (UNEP & IEA, 2019)
and must follow a targeted decarbonisation strategy to make the
hub more beneficial than an onshore setup without the need for ex-
tensive foundation building, steel, or concrete (Padmalal & Maya,
2014). It has not been determined whether OEHs will have a posi-
tive impact through the creation of a circular economy (Geissdoerfer
et al., 2017).

2. System benefits vs. sunk investments
Once OEHs are operational, they are expected to provide flexibility,
cheap electricity, and grid services, and to stabilise a fully renew-
able energy system. The first calculations show that OEHs have
significant benefits for energy systems in operations and decarboni-
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sation (North Sea Wind Power Hub, 2021; Weichenhain et al., 2019).
However, if one or more of the current assumptions (e.g., degree of
connection, scale of power connected, capacity of interconnection)
do not hold, this picture will change. The impact of changing as-
sumptions remains unclear, but the risk of sunk investments being
borne by society is large. In addition, markets and governance will
play crucial roles. Unless policy sets the right framework, market
failures (Newbery et al., 2018) could harm profitability.

3. Reliance on coordinated planning
An OEH is to a large extent an add-on to the discussion of meshed
grid infrastructure in the sea. The first research on meshed offshore
grids has shown that such a project is highly sensitive to uncoor-
dinated planning (Gea-Bermúdez et al., 2020; Gorenstein Dedecca
et al., 2017). An OEH has common grounds with regulated system
operators and players in the competitive market, i.e. electricity gen-
erators. In addition, the projects involve many countries in the ben-
eficial cases of reaching high levels of interconnection. Economies
of coordination will be a crucial factor to make investment, own-
ership and operation turn into a coherent system. Policymakers
will need to assess the trade-off of unbundling versus economies of
coordination carefully.

4. Technology as solution
Technological change and adaptation have been the main focus lately
in the discussion of mitigating climate change. Although many so-
lutions are technical, the social and behavioural aspects of tackling
decarbonisation are often overlooked. IEA (2010) presents an out-
look on CO2 emission reduction in which end-use fuel switching and
efficiency gains contribute a share of 43%, which includes end-users.
The impact of a rebound effect is not consistently quantified, ex-
cept for direct rebound being within a range of 0%–30% (Sorrell
et al., 2009). The rebound effect in energy clearly counteracts the
full exploitation of efficiency gains and increases the need for addi-
tional energy. Strong policies in favour of energy saving and energy
sufficiency (Darby & Fawcett, 2018) do not clearly support the cur-
rent layout of the energy industry, but they can relieve society of
expenses for the decarbonisation of the energy sector.
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5. OEHs as the best or the only option?
OEHs represent a clear vision. In the light of strong challenges and
the long path to full decarbonisation, this vision gives a clear pic-
ture of a solution. Beyond the image of OEHs, the vision becomes
blurry. The options for hitting the targets have not been compared
extensively. Although the focus of OEH creation is bundling central-
ized generation and storage, other ideas aim at a solution aligned
with the distributed and decentralised character of renewable energy
generation: local and small solutions such as peer-to-peer electric-
ity markets (Giotitsas et al., 2015; Lüth et al., 2018). It is unclear
whether these approaches are alternatives or complements. Small
solutions at the end-user level or close to it can lead to greater
acceptance due to larger involvement (Morstyn et al., 2018).

A.5 Conclusions and Outlook
The vision of OEHs will move quickly towards implementation. It remains
unclear what the first hub will look like and whether the concept will take
off and expand outside Northern Europe or remain a one-time project.
Investment costs are high, so societal benefits need to be large too.

This paper presents a scheme for assessing OEHs. It discusses as-
pects of the planning, structuring, and design processes and suggests
a literature-based analysis of the relevant criteria using a multi-criteria
assessment-inspired structure. I find that OEHs combine immature tech-
nologies that pose a high risk. The economic frameworks are not yet
settled and make evaluations of the benefits impossible. Experience, how-
ever, does suggest that the economics of those projects drives their viabil-
ity. The capital costs for large infrastructure projects (and the necessary
research and development) are high and the payback is uncertain. The
development of economic frameworks and regulations is the key to cre-
ating an efficient technical system: not only the cost of each item, but
the regulatory framework and market design are decisive in creating a
long-term, sustainable OEH. For the environment and society, the im-
pact is scattered: the project might lead to cleaner energy supplies and
better health and job situations, but it could damage wild waters in ways
that are not measurable today. Although optimal technical and economic
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solutions seem feasible, the environmental aspects will determine the im-
pact on the overall target of a socially acceptable, cheap, environmentally
sustainable transition to a low-carbon society.

The survey of the literature on OEHs leads to conclude with five strate-
gic considerations, including the trade-offs we must make in deciding to
implement OEHs: The environmental benefits are unidentified, and there
is no benchmark to measure alternatives against. The project is subject to
high financial risk, and we cannot preclude sunk investments, especially
due to reliance on coordinated planning. The ideas presented on OEHs
suggest that technology will be the path to energy system transformation
by letting us move projects out of areas with little public acceptance. This
stands against other solutions, however, and no studies have compared
systemic approaches, such as decentralised and behavioural solutions, to
centralised technological ones. These considerations arise in part due to
the lack of research and therefore of present research opportunities. That
said, further research must address the characteristics and design features
outlined here to further identify profitable and smart specifics. This could
involve analysing the choice of technologies, the design and specifications
of those technologies, and the operational modes. This survey lists a large
number of questions and items to be researched, and Table A.4.3 gives
these insights in terms of evaluations of the North Sea projects that allow
for improvements. The chosen method allowed for a guiding, forward-
looking survey of the light body of literature to create an overview and
definition of the topic. In the presence of more studies, a more structured,
full-scale literature review might be able to build up common knowledge.
However, in this study I do contribute by providing a solid and structured
groundwork to begin working on knowledge gaps.
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CHAPTER B
How to Connect Energy Islands?

B.1 Introduction
Offshore wind energy in Europe is developing fast, and plans to build
large capacities in the available waters are evolving rapidly; see for exam-
ple the recent Esbjerg and Marienborg declarations of the littoral states
of the North and Baltic Seas. Anticipated cost reductions in the technol-
ogy and avoiding not-in-my-back-yard issues create a major opportunity
for supporting the decarbonisation efforts in Europe. Together with solar
photovoltaics (PV) generation, large-scale offshore wind energy has been
declared to fill the power supply gap that the shutdown of nuclear and
fossil fuel plants will leave behind (Victoria et al., 2020). Some countries
have made considerable progress over the last decade. For example, the
German electricity system saw a wind share of 24.4%, and a total inter-
mittent renewable energy sources (RES) share of 32.9% in 2020 (Bun-
desnetzagentur, 2021). The integration of these significant RES shares
has been relatively easy to manage, refuting older predictions of disrup-
tions in the reliability of the power system due to increasing shares of
fluctuating sources (Castillo & Gayme, 2014). However, this integration
still causes higher costs and curtailment (Joos & Staffell, 2018) that are
undesirable and hinder the decarbonisation of the energy system.

Among the solutions are the provision of flexibility by grid extensions,
storage technologies, and sector coupling (Gerbaulet & Lorenz, 2017;
Pilpola & Lund, 2019). With the publication of the hydrogen strategy,
there are major plans in the European Union (EU) to create a hydrogen
economy and develop the necessary conversion capacities, including the
extension of power-to-gas (PtG) via electrolysis. PtG can serve both pur-
poses: providing flexibility to the electricity system and producing hydro-
gen to meet demand from other sectors like industry and transportation.
When wind farms are moved offshore, production will be affected by fluc-
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tuations at sea. To balance those, electrolysis can also be moved close to
the generation to so-called energy islands.

Energy islands are a European-born idea. The term is typically used
for projects in the waters of Denmark and the UK, e.g., the North Sea
Wind Power Hub or VindØ. The design of these islands is currently under
development, but Figure B.1 shows early ideas for energy islands that host
conversion equipment for sector coupling, such as electrolysers. Energy
islands are expected to be valuable for providing demand-side flexibility
with electrolysis to reduce curtailment, lower stress on the electricity grid,
and produce hydrogen offshore for industry. In addition, they can serve
as inter-country electricity connections, which are beneficial for balancing
electricity flows (Schlachtberger et al., 2017).

Besides the electricity- and hydrogen-focused projects in Denmark
(VindØ and Bornholm) and the North Sea Wind Power Hub, AquaVentus
has gathered more than 90 partners to develop a related family of projects
around the German Island of Heligoland. Here, 10 GW of offshore wind
capacity will be developed by 2035 for the offshore production of hydro-
gen, including the necessary transportation infrastructure. In this case,
though, no electricity connection to shore is currently envisaged.

With this paper, we contribute to the discussion of how to design
and plan offshore energy infrastructure, specifically around energy islands,
and analyse the trade-offs between offshore electricity and hydrogen in-
frastructure. Our guiding research question asks how energy islands can
be integrated with onshore energy systems and what the system impli-
cations of such an integration would be. With the help of an integrated

Country 1

Country 2

Country 3

H2

Figure B.1. An abstract sketch of an energy island following first visions presented in
COWI (2021).

https://northseawindpowerhub.eu/
https://northseawindpowerhub.eu/
https://www.windisland.dk/
https://aquaventus.org/


B.2 Literature and Background 99

capacity expansion and electricity dispatch model, including a detailed
grid representation, we identify economically viable investment options
in cables to and between energy islands, and in electrolysers offshore and
onshore. We find that the role of offshore electrolysis is to limit invest-
ments in expensive long-distance cables between distant offshore wind
sites and the mainland. The current cost of electrolyser technology makes
it worth using existing nuclear power for hydrogen production if this is
not restricted. We find that investments are sensitive to future hydrogen
prices but less so to an increase in CO2 prices. Using network data for
2030 without further expansion possibilities influences the electricity and
hydrogen infrastructures built in the model, and exogenously increasing
onshore network capacity leads to lower system costs due to lower curtail-
ment and more direct consumption of electricity leading to less hydrogen
production and electrolyser capacity.

The remainder of this paper is structured as follows: Section B.2
presents related literature on offshore energy systems, system modelling,
and electrolysis. In Section B.3 we describe the model framework, data
sources, data handling, and the case study. The results, a discussion of
them, and a sensitivity analysis are given in Section B.4, and we sum-
marise the main findings and provide an outlook on future research in
Section B.5.

B.2 Literature and Background
Energy islands are seen to establish offshore in centres of large-scale wind
power production. The literature on this topic is not extensive yet but
builds on the idea of setting up ”power link” islands in a meshed offshore
grid (Kristiansen et al., 2018). Meshed offshore grids describe the con-
nection of countries via offshore wind farms and interconnecting offshore
wind farms among themselves (Dedecca et al., 2019). Early research on
meshed offshore grids has developed model frameworks to analyse the
impact of offshore grids (Trötscher & Korpås, 2011) and allow project
consortia such as Kriegers Flak1 to examine the impact of interconnected
wind farms. Connecting wind farms and countries at the same time also
1See Kriegers Flak: en.energinet.dk/Infrastructure-Projects/Projektliste/KriegersFlakCGS.

https://en.energinet.dk/Infrastructure-Projects/Projektliste/KriegersFlakCGS
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takes market integration one step further. Traditionally, wind farms are
connected only to the country they were built in, or there are radial con-
nections between two countries that act as interconnectors. In a meshed
grid, those two traditional structures converge towards interlinked sys-
tems (Gorenstein Dedecca et al., 2017). Interconnection has been called
a pillar of renewable energy systems and leads to greater utilisation of
renewable resources (Schlachtberger et al., 2017). Market integration will
influence welfare and price development in the connected countries. Early
studies agree that offshore grids increase welfare (Egerer et al., 2013; Str-
bac et al., 2014). The benefits, however, are allocated asymmetrically
among the connected countries: suppliers in high-price areas and con-
sumers in low-price areas will see some negative impacts (Egerer et al.,
2013). The idea of energy islands was developed by industrial consortia
around 2016 and has a lot of characteristics in common with offshore
grids and interconnections. Like offshore grids, energy islands will affect
market prices and welfare.

Tosatto et al. (2022) build on the welfare analysis and investigate the
impacts of a North Sea energy island on the European electricity system.
In a setting without sector coupling and with electricity production only,
their results show that overall welfare will increase but the distribution
of benefits will be asymmetric: consumer welfare will increase while pro-
ducers’ welfare in exporting countries will be adversely affected, which
is well in line with the findings for offshore grids. Zhang et al. (2022)
model offshore wind hubs in the North Sea to decarbonise the Norwegian
continental shelf. Establishing a cost-minimising, mixed-integer linear
investment planning and operations model, they develop scenarios for in-
vestment into renewable generation, storage, electricity transmission, and
offshore hubs with hydrogen conversion equipment under specific CO2
prices and argue that offshore wind and a cable connection to shore can
halve current emissions in a scenario of moderate CO2 prices.

Singlitico et al. (2021) were the first to analyse the combination of elec-
tricity and hydrogen production from offshore wind plants on large energy
islands. In a pre-defined setting of cable connection and electrolyser size,
the authors tested different operating modes in which conversion to hy-
drogen or transport via electrical infrastructure was prioritised. They
find that offshore placement can be advantageous, and that a hydrogen-
powered operating mode can reduce the levelised cost of hydrogen to the
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point that it competes with hydrogen from fossil fuels. Gea Bermúdez
et al. (2021) find in a capacity expansion model (CExM) that forcing
hydrogen offshore will lead to higher system costs and onshore hydrogen
production is more likely to be cost-efficient due to patterns following PV
generation. Their analysis is based on a zonal market representation with
cross-border flows. This approach is likely to underestimate inner-zonal
congestion which could lead to an overestimation of electricity flows across
zones.

Although analyses of offshore grids, which form the infrastructure for
energy islands, are more mature, the role, sizing, and siting of electrolysers
have not been explored extensively. In combination with multi-country
cable connections, new options for linkages with existing energy systems
are opening up. Jansen et al. (2022) analyse the role of the North Sea
Wind Power Hub, an energy island in the North Sea, and iteratively as-
sess the roles of connections by cable and hydrogen pipelines under certain
assumptions. In a bottom-up cost assessment, they find that large con-
nected wind generation capacities can make an energy island profitable.
But their analysis is based on exogenous capacity assumptions about wind
farm and electrolyser sizes. Our study makes use of an integrated capac-
ity expansion and dispatch model to endogenise the decision whether to
connect energy islands by cable or pipeline and at what capacity.

B.3 Model and Setup
We develop an integrated capacity expansion and electricity dispatch
model with high spatial and temporal resolution and including physical
constraints on the power network. The model is set up as a cost minimi-
sation problem and allows for investments in hydrogen production or in
cables to connect offshore energy production hubs with either onshore elec-
tricity systems or other offshore wind farms. Hydrogen is sold at an exoge-
nously fixed price. This model was inspired by the techno-economic model
ELMOD (Leuthold et al., 2008) and the cost minimisation approach of a
later version of dynELMOD (Gerbaulet & Lorenz, 2017). The investment
model is based on LIMES-EU by Nahmmacher et al. (2014) and Alharbi
and Bhattacharya (2014). To limit the solution space, exogenous scaling
of RES, demand, and conventional generation for a multi-year represen-
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tation is applied as in Weibezahn et al. (2020). The time series reduction
and scaling are based on Göke and Kendziorski (2022) and Poncelet et al.
(2017).

min day-ahead generation costs
+ cost for electrolysis infrastructure
+ cost for electricity connections
- profits from hydrogen sales

s.t. nodal power balance
generator capacity limits
storage limits
electrolyser production limits
network constraints (DC load flow)

Figure B.2. Schematic overview of our model. The mathematical equations are found
in Appendix B.5.

Figure B.2 presents the structure of the model. The objective is to
minimise the costs of electricity dispatch and endogenously determined
capacity expansions in electrolysers and DC power connections to the
proposed energy islands. In the dispatch, we include short-run marginal
costs for thermal power plants, cost of curtailing load, and a discharge
penalty for storage. In addition, we subtract income from hydrogen pro-
duction. RES do not incur marginal costs. Investments in electrolysers
and connecting power lines are allowed at specific costs. For electroly-
sers, we include annual operation and maintenance costs. We limit the
model by a set of operational constraints, including capacity limits for
generators, electrolysers, and storage, and network constraints including
a power flow approximation. See Appendix B.5 for a full description of
the model equations.

The main endogenous decisions of the model are the dispatch, the pro-
duced quantity of hydrogen, the capacity investments in electrolysers, and
the cable infrastructure around energy islands and offshore wind parks.
The decisions are based on and matched to the exogenous parameters.
For this model, the grid characteristics of an existing power grid and
the generation capacities, profiles, and cost parameters are the limiting
factors.

This capacity expansion model can be applied to any setup with a
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combined investment decision into hydrogen and electricity infrastructure.
In the following, we apply it to analyse the plans for energy islands in the
North and Baltic Seas. We run the model for the years 2030, 2035, and
2040 allowing for investments in each time step.

B.3.1 Energy Islands in Northern Europe
The islands are expected to be built close to the Danish island of Bornholm
in the Baltic Sea, off the eastern coast of Denmark, on the Dogger Bank
in the North Sea, and off the western coast of Denmark. Each project is
expected to be slightly different in wind park size, interconnection, and
technology placed on the island. The first estimates for connections and
technologies have been presented by project stakeholders and the Danish
government (COWI, 2021). With this in mind, we analyse the trade-off
between interconnecting power lines and electrolysis on the energy island.
We add the North Sea energy islands as done by Tosatto et al. (2022)
and the Bornholm Energy Island in accordance with the latest project
proposal (COWI, 2021). In Table B.1, we list the projected wind park
capacities at the three energy islands, the countries they can connect to,
and the abbreviation we use for them (NSEI1, NSEI2, BHEI). We locate
the islands following the first feasibility studies by COWI (2021) and the
North Sea Wind Power Hub Consortium. The Danish Energy Agency
designated specific areas2 in Danish waters for the projects and we use
the centre of each area as our location for the hub.

B.3.2 Data
The model is set up as an integrated capacity expansion and dispatch
model, which needs technical data on the electricity system, and informa-
tion on production and investment expenditures. This section describes
the data collection and processing for our case study. We structure it into
a part on creating a grid representation with generation units of different
energy carriers (Subsection B.3.2.1), a summary of scaling paths (Subsec-
tion B.3.2.2) for the future system, and an overview of the financial input
2See Danish Energy Agency (2022): ens.dk/en/our-responsibilities/wind-power/energy-
islands.

https://ens.dk/en/our-responsibilities/wind-power/energy-islands
https://ens.dk/en/our-responsibilities/wind-power/energy-islands
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data (Subsection B.3.2.3). Because the problem exceeds current computa-
tional capabilities, we reduce the time series and describe the assumptions
behind our method in Subsection B.3.2.4.

B.3.2.1 Data Set

We start our data set generation by collecting a base data set for 2030.
The grid and locations of conventional power generation units published
by Hörsch, Hofmann, et al. (2018) serve as a basis. This data set includes
a 1024-node representation of the European power grid with load and
conventional power plant capacities matched to all included nodes. We
extend the available grid with new infrastructure projects from the Ten-
Year Network Development Plan (TYNDP) 2020 project list3 and include
the energy islands as shown in Table B.1. Figure B.6 in the Appendix
shows the resulting grid. Planned offshore wind power projects4 and their
capacities are clustered in 19 groups along the coasts of the North and
Baltic Seas. Each cluster can connect to the existing onshore grid. The
capacity expansion part of the model endogenously determines sizes and
points of connection.

Wind and PV generation potential at a nodal level are also taken
from Hörsch, Hofmann, et al. (2018). We normalise the potentials with
the currently installed capacities available from ENTSO-E5 This way, we
maintain the ratio of geographical distribution and ensure the correct sum
at a bidding zone level. We use the high resolution of the Open Power
System Data by Schlecht and Simic (2020) in Germany, Denmark, and
the UK to replace the generation assets listed in Hörsch, Hofmann, et al.
(2018). Together with the normalised potentials, we aggregate and match
each to the closest node of the respective bidding zone.

The aggregated renewable energy generators obtain time series based
on their locations and types from renewables.ninja (Pfenninger & Staffell,
2016; Staffell & Pfenninger, 2016), with hourly resolution. To translate
wind speed into the power output of a generator, we use the power curve
of a Vestas V80 2000 generator with a hub height of 100 meters. For PV,
we assume a 45° tilt angle and strict south-facingness.
3See TYNDP2020 Project List: tyndp2020-project-platform.azurewebsites.net.
44C Offshore - Global Offshore Map (2022): map.4coffshore.com.
5See ENTSO-E (2022): transparency.entsoe.eu.

https://tyndp2020-project-platform.azurewebsites.net/projectsheets/transmission
https://map.4coffshore.com/offshorewind/
https://transparency.entsoe.eu/
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Table B.1. Summary of important input data. The upper part describes the parameters
used in the model. The lower part lists the relevant characteristics of each energy island.

Parameter Description Unit Value
cD penalty for lost load e/MWh 3,000

cE e/MW offshore: 645,000
onshore: 450,000

cL cost for line expansion e/(MW·km) 1,950
cO

e cost for electrolyser operation % of CAPEX 2
cS cost for storage depletion e/MWh 0.1
pCO2 carbon price e/t 80, 120, 160
q discount factor 1.04
r interest rate % 4
rH
e hydrogen sales price e/MWh 108

t model years 2030, 2035, 2040
ηH electrolyser efficiency 0.75
ηS storage efficiency 0.8
v transmission reliability margin 0.7

countries BE, CZ, DE, DK, FI,
NL, NO, PL, SE, UK

reference year 2018

Island Model name Connections Wind park size
NSWPH NSEI1 NO, DE, DK, NL 10 GW
Danish EI NSEI2 BE, DE, DK, NL, UK 10 GW
Bornholm BHEI DE, DK, PL, SE 3 GW

Hydropower plants in our data set are based on the open-source data-
base by the European Commission, Joint Research Centre (JRC) (2019).
The hydropower plants are matched to the nearest node in the grid. We
distinguish run-of-river, reservoir, and pumped hydro. Run-of-river hydro
is treated as a renewable resource with zero marginal cost, and its pro-
duction potential is based on a time series from EMPIRE6 (Backe et al.,
2022). Reservoirs are dispatchable resources with an upper electricity pro-
duction limit within the chosen time horizon, which is based on historical
production data available on ENTSO-E’s Transparency Platform5. We
estimate the round-trip efficiency of pumped hydro to be 80% (Hameer
& van Niekerk, 2015). Data on load, renewable energy production, and
hydropower follows patterns from the historical time series of the year
6openEMPIRE is available on GitHub: github.com/ntnuiotenergy/OpenEMPIRE.

https://github.com/ntnuiotenergy/OpenEMPIRE
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2018 and is scaled to match the expected sum of future years.

B.3.2.2 Scaling Paths

Starting with the base data set that we compiled from the sources listed
above, we expect demand profiles, generation from renewable energy
sources, and installed conventional generation capacity to change over
the modelled time horizon from 2030 to 2040. We use scaling factors
to adjust current capacities to future projections, using data from the
TYNDP 20207 and work with the Gradual Development scenario. For
each generation technology and year, the TYNDP 2020 value divided by
the current bidding zone value determines a scaling factor and is used to
match the projections for future years. Demand scaling follows the same
principle. This scaling preserves the geographical distribution of load and
demand within the bidding zones. When new technologies are introduced,
the projected capacity is distributed equally over all the nodes in the bid-
ding zone. In some cases, the offshore wind clusters we added from the
list of planned projects exceed the projections of the TYNDP. In those
cases, the offshore clusters remain in our data set as they are planned,
and we reduce capacities at other offshore nodes in the bidding zone to
match the overall projections for the zone.

B.3.2.3 Financial Parameters

Prices and costs are the main driving factors in the model. We use fuel
prices provided in the PyPSA data set (Hörsch, Hofmann, et al., 2018)
to calculate production costs for each generation technology. Table B.1
summarises the techno-economic parameters used in the model. Below,
we explain the origin of the data and some additional assumptions.

RES are assumed to incur no marginal costs. At the end of 2021, fuel
prices reached record highs, but this did not change the merit order of
power plant use. Recent price peaks resulting from the Russian invasion
of Ukraine have not been incorporated in any scenario in this study.

In our model, we assume that capital investments are financed by an-
nuity loans over the lifetime of the assets. The interest rate is fixed at
7Ten Year Network Development Plan 2020,European Network of Transmission System Oper-
ators for Electricity (2020).

https://2020.entsos-tyndp-scenarios.eu/scenario-results/
https://2020.entsos-tyndp-scenarios.eu/scenario-results/
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4%. The model calculates every five years from 2030 to 2045, and pay-
ments are discounted to the reference year 2030. The connection cables
are planned as DC connections. This is done for most big offshore wind
parks in the North Sea, with the advantage of coupling non-synchronous
countries, for example Sweden with Germany or Poland. The integration
of a DC cable requires converter stations on both sides. We use costs
of e1950/(MW·km) for our connections (Lauria et al., 2016). Discharg-
ing storage induces a small cost of e0.1/MW to prevent simultaneous
charging and discharging by the model.

We use alkaline electrolysers, and we differentiate between onshore and
offshore installation. Onshore electrolysers have capital costs of e450/kW,
and 2% of capital costs occur as annual operational expenditure (Danish
Energy Agency, 2022). Offshore electrolysers are more expensive because
of transport, marine conditioning, pipeline construction, and additional
operating costs and sum to e645/kW. The efficiency of offshore and on-
shore technology is set to 75% and the lifetime is estimated to be 30 years
(Danish Energy Agency, 2022). For hydrogen, we use the lower heating
value of 33.33 kWh/kg.

We keep the expenditures for electrolyser capacity investments fixed at
the 2030 predictions. We are aware that our model’s hydrogen investment
results depend heavily on the imposed price development paths and power
flow changes in the power system.

In the objective function, hydrogen sales act as income to incentivise
investments in electrolysers. The price predictions for carbon emission-
free hydrogen, also referred to as ”green hydrogen”8, have a wide range.
An overview of the results of scientific publications can be found in the Ap-
pendix, in Table B.8. We set the price for our analysis to e3.25/kg (equiv-
alent to just above e100/MWh) as in Glenk and Reichelstein (2019).

B.3.2.4 Time Series Reduction

Capacity expansion models can become quite complex as detail is added.
Some models apply methods to reduce time series and determine a repre-
sentative period to reflect the full time horizon (Hoffmann et al., 2020).
8Hydrogen is in fact a colourless gas and all hydrogen is a gas with identical chemical charac-
teristics independent of the method of generation.
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The choice of reduction technique influences the outcome and affects com-
putational complexity and implementation efforts (Göke & Kendziorski,
2022; Kotzur et al., 2018; Poncelet et al., 2017; Schütz et al., 2018).

Especially when estimating the demand for storage in high-RES sce-
narios, time-series reduction methods must preserve fluctuations in gen-
eration, both long and short term, to obtain optimal capacities. To test
existing principles, Göke and Kendziorski (2022) analyse different reduc-
tion methods for their adequacy for a capacity expansion model. Due
to the absence of additional variables for the optimisation problem, they
find speed advantages of chronological-sequence algorithms over grouped-
period algorithms.

On the basis of these findings, we use the method of Poncelet et al.
(2017), which bases the time series selection on an optimisation problem.
The algorithm compares the approximated and original duration curves
and minimises the difference in equal sized sections called bins. Both
curves’ load spans are segmented into a finite number of intervals, and all
the deviations form an error term that is minimised in a mixed-integer
problem for all examined RES curves.

We use 20 bins and chronological sequencing with re-scaling without
changing the length of the periods to shorten the year to 21 representa-
tive days. The time series reduction method of Poncelet et al. (2017) is
computationally costly, especially on our data set, with simultaneous op-
timisation of 544 nodes with RES infeed. For capacity expansion models
of energy systems, the objective values of the model run with shortened
time series deviate only slightly from the full time series objectives, ac-
cording to Zatti et al. (2019). We can confirm this with the results of
running over longer and reduced periods.

B.3.3 Case Setup
We set up four different cases and compare their results. Table B.2 pro-
vides an overview of the cases. The first is a reference case, BAU, in
which all wind farms are placed in accordance with current proposals (see
Table B.1) and we only determine cable connections to the surrounding
countries. To analyse the trade-offs between electrolysers and cable expan-
sions, we add options for electrolysis (as opposed to cable investment only)
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in three further cases. In the second case, OFFSH, we allow investment
in offshore electrolysers on the energy islands. In case three, COMBI, we
allow additional investment in onshore electrolysis at the landing points—
the points of connection between the onshore and offshore networks. In
case four, STAKE, we limit the cable expansions to shore for each island
to the maximum capacity planned by the stakeholders.

Table B.2. Overview of cases defined for the analysis, including abbreviations.

Case Name Investable line capacity Investable electrolyser capacity
reference BAU unlimited none
offshore H2 OFFSH unlimited unlimited offshore only
offshore & onshore H2 COMBI unlimited unlimited

stakeholder STAKE ≤ 10 GW for both NSEI1-2, unlimited≤ 3 GW for BHEI

B.4 Results and Discussion
In this section, we describe the results of the case study, analysing energy
hubs in the North and Baltic Seas. In the first part, we describe the
overall results and identify the main findings. In Section B.4.2, we focus
on offshore electrolysers and why they are being built. In Section B.4.3,
we present sensitivity studies to test the impact of the assumptions made
about carbon and hydrogen prices and the electricity grid.

B.4.1 Main Findings
This section presents the main results for the four cases and describes
Table B.2. We start by looking at overall system costs and then discuss
cable expansion and electrolyser investments for each case separately.

The combined investment and dispatch costs scaled up to annual costs
differ among the cases. COMBI is the cheapest at e112 billion. STAKE
has about the same cost. The most expensive is BAU at e140 billion
(25% higher than COMBI). OFFSH is the second most expensive, with
costs about 1.8% higher than COMBI. This suggests that sales from hy-
drogen production can visibly lower system costs, despite the significant
investment expenditures that must be paid off. Offshore cable capacity
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Table B.3. Case study results: % changes relative to the case with more restrictions
in the lines above.

Electrolyser
capacity [GW]

Hydrogen
production [TWh]

Curtailment
[TWh]

Conventional
generation [TWh]

2030 2035 2040 2030 2035 2040 2030 2035 2040 2030 2035 2040
BAU

offshore – – – – – – 6.8 6.4 6.7 – – –
onshore – – – – – – 67.5 75.9 87.9 437.1 430.6 473.6

OFFSH
offshore 49.8 54.6 60.9 215.8 222.7 251.0 1.8 1.3 1.3 – – –

rel. change to BAU – – – – – – -73.8% -79.2% -80.5% – – –
onshore – – – – – – 8 13.3 20.1 471.6 448.5 492.6

rel. change to BAU – – – – – – -88.2% -82.5% -77.1% 7.9% 4.2% 4.0%
COMBI

offshore 21.5 21.5 21.5 97.0 94.5 97.4 1.6 1.3 1.2 – – –
rel. change to OFFSH -57.0% -60.7% -64.8% -55.0% -57.6% -61.2% -7.8% 0.7% -8.7% – – –

onshore 34.6 39.6 47.3 126.9 137.8 165.2 7.3 12.3 18.5 474.9 452.1 496.2
rel. change to OFFSH – – – – – – -8.9% -7.6% -8.2% 0.7% 0.8% 0.7%

STAKE
offshore 22.6 22.6 22.6 99.1 95.2 102.4 1.6 1.3 1.2 – – –

rel. change to COMBI 5.3% 5.3% 5.3% 2.1% 0.7% 5.1% 0.3% -1.6% -1.0% – – –
onshore 33.5 38.4 46.2 125.0 137.2 160.3 7.3 12.3 18.5 475.1 452.2 496.3

rel. change to COMBI -3.1% -2.9% -2.4% -1.5% -0.4% -3.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

is built in all cases, and whenever it is allowed, significant electrolyser ca-
pacities are placed either onshore or offshore to produce and sell hydrogen.
The positioning of electrolysis on the energy islands influences the cable
allocation. Table B.3 summarises the results of all four cases and the
relative changes between successive cases. 9 Together with Figures B.3
and B.4 and Table B.4, it serves as the basis for the following analysis.
Figure B.3 pictures the cable capacities, Figure B.4 maps electrolyser size
and location, and Table B.4 summarises the data on offshore grids.

B.4.1.1 Reference Case: BAU

In BAU, an aggregated 17.5 GW of cable connections are built in 2030 to
connect the energy islands to shore (Table B.4). All countries are con-
nected from the first period. Over the years, aggregate capacity increases
very modestly to 18.0 GW in 2035 and 18.2 GW in 2040. In addition
to direct cables, a strong offshore grid develops between the wind farm
clusters, the islands, and the shores; see Figure B.3(a).
9Since cases two and three step-wise allow more investment compared to case one, and the
fourth case provides a reality check for the third, we believe that these comparisons provide
the most insight.
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(a) BAU. (b) OFFSH.

(c) COMBI. (d) STAKE.
Bus
Energy island

Cable connection
Grid

Figure B.3. Comparison of cable connection capacity between the energy islands and
shore in the different cases in 2040. The thickness of the red lines indicates the capacity
of the constructed connection.

B.4.1.2 Offshore Electrolysis Only: OFFSH

Allowing electrolysis on the energy islands only results in lower direct
power cable capacities to shore. In Table B.4, we see capacities of 5.1 GW
in 2030 (70 % lower than BAU in the same year), 6.8 GW in 2035 and
9.7 GW in 2040 to connect the islands. The aggregate offshore electrolyser
capacity is 49 GW in 2030 and increases evenly in every period to 60.9 GW
in 2040. Most of the electrolyser capacity is built in the North Sea, specif-
ically at NSEI1 (our reference to the North Sea Wind Power Hub), which
is well-positioned between many countries and closer to their shores than
NSEI2. Figure B.4(a) maps the electrolyser capacities in 2040 for the dif-
ferent cases to the locations. Comparing Figures B.3(a) and B.3(b), we
see that NSEI1 not only develops more electrolyser capacity but is also
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better connected to shore than NSEI2. Although all direct connections
from the islands to shore aggregate to no more than 10 GW, Figure B.3(b)
also shows that connections from the offshore wind clusters to the islands
are important. Allowing offshore electrolysis lowers the need for power
cable capacity of the energy islands and the wind clusters to shore but
leads to higher offshore cable connections between wind clusters and the
energy islands. The aggregated capacity of electricity cables connecting
offshore wind clusters and energy islands adds up to 46.8 GW in 2030,
52.1 GW in 2035, and 58.8 GW in 2040. Specifically, the wind farms off
the coast of the Netherlands are connected by large cables to the energy
islands.

(a) OFFSH. (b) COMBI. (c) STAKE.

0 5 10 15 20 25 30 35 40
Electrolyser capacity in GW

Figure B.4. Comparison of electrolyser locations and capacities in the different cases
in 2040.

Hydrogen production from the offshore electrolysers in 2040 adds up to
215 TWh, which is in line with the European industrial demand predicted
by Agora Energiewende and AFRY Management Consulting (2021). In
2030, about half of the hydrogen production originates in avoided RES
curtailment. However, electricity production from nuclear and biomass10
is higher than in BAU (see Table B.10 in the Appendix), which is con-
nected to the electricity-based hydrogen production. This suggests that
existing nuclear capacities can generate at costs that are competitive for
electrolysis.
10The model does not consider alternative use of biomass, e.g., direct gasification, but it only
assumes direct power generation.
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Table B.4. Capacity of cable connections at sea for each case and year.

Energy island
to shore

[GW]

Wind cluster
to island

[GW]

Wind cluster
to shore

[GW]
2030 2035 2040 2030 2035 2040 2030 2035 2040

BAU 17.5 18.0 18.2 19.6 20.9 21.4 71.8 73.6 74.9
OFFSH 5.1 6.8 9.7 46.8 52.1 58.8 68.0 71.5 72.9
COMBI 7.7 8.7 9.4 11.7 14.2 16.8 98.6 103.3 106.3
STAKE 5.0 5.9 6.5 10.7 13.2 16.7 99.6 104.4 107.7

B.4.1.3 Combined Onshore and Offshore Electrolysis: COMBI

The option to invest in onshore electrolysis is represented in our COMBI
case. In comparison to OFFSH, the aggregated capacity of cables directly
connecting energy islands to shores are slightly higher; see Table B.4.
However, they are much below BAU (about 55% lower in 2030, and com-
parably lower in 2035 and 2040). In COMBI, a meshed offshore grid
or strong connections between the energy islands and the offshore wind
clusters are not a significant part of the optimal system solution. In Fig-
ure B.3(c), we see that the offshore wind clusters are mostly connected
to shore, meaning that landing points receive larger cables compared to
OFFSH. Electrolysers in this case are mainly built onshore. Offshore elec-
trolysers have 57% lower aggregate capacity and reach an aggregate size
of 21.5 GW, split unevenly among the three islands. This entire offshore
capacity is invested in the first period, and all is located in the North Sea
on NSEI1 and NSEI2. Aggregate onshore electrolysis is greater than ag-
gregate offshore capacity in OFFSH. In addition to offshore electrolysers,
34.6 GW of onshore electrolyser capacity is invested in by 2030 in COMBI.
The aggregate capacity increases to 39.6 GW in 2035 and 47.3 GW in 2040,
which is about a 10% increase per period. Aggregate hydrogen production
is slightly higher in COMBI than in OFFSH due to the generally higher
capacity of electrolysers. Onshore electrolysers are built at all landing
points; the ones in the UK and Poland have the smallest capacities; see
Figure B.4(b). The locations and development of electrolysers over the
years follow RES expansion projects in the countries. Curtailment and
conventional generation are at similar levels to OFFSH. Also here hydro-
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gen is produced from electricity generated from nuclear and biomass (see
Table B.10) that is not needed to satisfy electricity demand, similar to
BAU.

B.4.1.4 Restricting Cable Connections: STAKE

In our last case, we consider current plans for cable capacities to connect
the islands. In STAKE, cable expansion capacity is restricted to currently
planned capacities: 1 GW of cable per GW of wind farm commissioned
(c.f., COWI, 2021). This restriction does not change the results much and
is comparable to the COMBI case with respect to both electrolyser and
cable capacity; see Figures B.8 and B.9 in the Appendix.

B.4.1.5 Comparison of Cases

BAU leads to the highest need for cable investment in direct shore-island
connections. Only allowing electrolyser capacity offshore requires strong
connections between offshore wind farms and the energy island. Allowing
the installation of electrolysers both onshore and offshore, as in COMBI
and STAKE, we observe moderate direct cable connections from shore
to islands. These cases allow for onshore electrolysis investments, which
are assumed to be cheaper than building the assets offshore. The op-
tion of cheaper onshore electrolysis does not eliminate offshore electrolysis
but lowers the capacity of energy-island-to-shore cable connections. How-
ever, by 2040, a strong offshore grid develops with capacities of 125 GW
through cables in the sea. BAU leads to the highest curtailment and the
lowest conventional technology use in 2040 because there is no electricity
usage by electrolysers. Among the other cases, we see that eliminating
onshore electrolysis leads to lower total electrolyser capacity being built
and higher curtailment. The largest electrolyser capacities are built in
2040, in COMBI. This results in the highest hydrogen production and
the lowest curtailment among all cases. We summarise our main findings
as follows:

• Restricting electrolysis to offshore results in higher cable capacities
connecting the energy islands to offshore wind farms.
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• Limiting cable expansions according to project plans does not show
much effect, and the results for COMBI and STAKE are very simi-
lar.

• Allowing investment in electrolysers both offshore and onshore low-
ers the curtailment of RES significantly.

• Electrolysis on the energy island of Bornholm (BHEI) is relevant
only in the absence of onshore electrolysis or cable capacity expan-
sion limitations.

• We observe higher use of nuclear power plants and biomass for elec-
tricity generation for cases with hydrogen production.

In addition to capacity expansions, the model shows trade patterns
between the market zones. Interestingly, the energy islands in the North
Sea both become net importers in all cases in the first two periods (but
not in the third). The more the system changes towards a RES-based
system the more electricity is used for direct consumption. In all cases,
the same countries are net importers or net exporters: Germany, Poland,
the UK, and Sweden are net exporters, and Belgium, the Netherlands,
Denmark, the Czech Republic, Finland, and Norway are net importers.
The wind park clusters built off the coasts of the respective countries
require large investments in electricity infrastructure, and in the cases of
Germany and the UK, the planned RES capacities exceeds what onshore
grids can integrate (see Figure B.7 in the Appendix). Therefore, the wind
parks are integrated with other markets through combined grid solutions,
which connect two countries via a wind farm or other system assets, often
also called hybrid assets (cf. Marten et al., 2018).

B.4.2 The Role of Electrolysers on Energy Islands
In this study, we analyse and discuss the trade-off between electricity
and hydrogen infrastructure to integrate energy islands into the existing
energy system. To identify possible trade-offs, we zoom in on the specific
drivers of hydrogen production and on its location in the different cases.
In general, electrolysis can cut down curtailment due to grid congestion
and increase the use of available renewable energy technology.
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Table B.5. Capacity factors of electrolysers ([%], weighted average).

Offshore Onshore
2030 2035 2040 2030 2035 2040

BAU – – – – – –
OFFSH 49.4 46.6 47.1 – – –
COMBI 51.6 50.3 51.8 41.8 39.7 39.8
STAKE 50.0 48.1 51.7 42.5 40.8 39.6

As described above, when we only allow electrolyser capacity invest-
ment offshore, on the energy islands, we see (1) higher system costs, (2)
higher cable capacities in the seas in Northern Europe, and (3) higher
curtailment than when we allow both offshore and onshore electrolysis.
However, from Table B.3 we also see that generation from nuclear and
biomass gets rises as the aggregated electrolyser capacity increases. The
capacity factor is an important metric for the profitability potential of in-
vestments in and operation of electrolysers, independently of their place-
ment. Conventional generation may be cheap enough to use for hydrogen
production, such that the capacity factor increases. Cable connections
between offshore wind clusters and energy islands are very large in the
pure OFFSH case. Here, the additional cables also contribute to fuelling
the electrolyser on the islands from onshore power generation, making
offshore electrolysis more profitable. The offshore electrolysers operate at
an average capacity factor of 49.4% in 2030 and 47.1% in 2040; see Ta-
ble B.5. For the COMBI case with smaller cable connections, the offshore
electrolysis capacity factors are slightly higher: 51.6% in 2030, 50.3% in
2035, and 51.8% in 2040. Onshore electrolysers, however, are operated
at capacities of only around 40 % on average. The lower investment ex-
penditures allow them to be profitable already at lower usage rates. In
STAKE, electrolysis capacity and capacity factors both onshore and off-
shore are similar to those of COMBI. Our results are aligned with other
sources indicating that electrolysers need a capacity factor of at least 35%
to operate economically (IRENA, 2019).

A closer look at our results reveals a system of coordinated joint hydro-
gen and electricity production. So far in Europe, RES capacities have been
mostly installed onshore (PV and wind), and at present offshore wind is
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typically connected radially to shore, not going through an energy island.
Radially connecting offshore wind farms leads to higher RES availability
and excess production onshore than if conversion assets are also placed
offshore. Endogenising the decision about the placement of electrolysers
results in a combination of large onshore capacities and about 10 GW of
aggregated electrolysis capacity offshore. This finding differs from those
of, for example, Gea Bermúdez et al. (2021) and Singlitico et al. (2021),
who argue that offshore electrolysis will not play a role. An important
contribution of our work is that our model includes a detailed onshore
grid representation. In contrast, Gea Bermúdez et al. (2021) consider a
zonal approach in their model, neglecting inner-zonal congestion and fore-
see large electricity import from southern Europe to reach electrolysers
onshore along the coasts.

When the model allows it, most electrolysis capacity is installed on-
shore despite the lower capacity factors. At the same time, conventional
generation is higher showing that it is economical to produce hydrogen
from nuclear power, at least given its modest short-term marginal costs.
In the model, the onshore grid capacities are fixed for the entire horizon,
only including projects through the early 2030s that are already planned
today. This possibly restricts access to RES from other geographic loca-
tions, having a two-fold impact: (1) the only technologies for stabilising
the capacity factors are conventional power plants because they are effec-
tively located with respect to current grid topology, and (2) curtailment
cannot be lowered further due to onshore congestion. To address this
limitation, we include a sensitivity analysis to assess the impact of on-
shore grid expansions on curtailment, conventional power plant use, and
combined system costs.

B.4.3 Sensitivity Analysis
Here we perform a two-fold sensitivity analysis. The first part considers
hydrogen and carbon prices. The second considers a fundamental basis of
the model, the power network, and extends the onshore grid in an attempt
to remove congestion. For the sensitivity analysis, we work with the setup
and assumptions of the COMBI case of the main analysis, which had the
lowest overall costs. Numeric results of the sensitivity analysis can be
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found in Table B.9 in the Appendix. The hydrogen and carbon prices
used in the sensitivity analysis are presented in Table B.6.

Table B.6. Price parameter changes of the sensitivity analysis.

Prices in [e] CO2 price H2 price
Scenario 2030 2035 2040 2030 2035 2040
initial configuration 80 120 160 108 108 108
lower H2 price 80 120 160 81 81 81
higher H2 price 80 120 160 135 135 135
higher CO2 price 130 250 480 108 108 108
grid extension 80 120 160 108 108 108

B.4.3.1 Price Variations

In this first sensitivity analysis, we change the hydrogen price and the
carbon price. First, we vary the hydrogen price by lowering and raising it
by 25%, from the original e108 per MWh to e81 and e135, respectively,
while keeping the CO2 prices at the level of our original case study: e80,
e120, and e160 respectively in years 2030, 2035, and 2040. We compare
the results of our sensitivity analysis to COMBI of the main analysis and
list the key values in Table B.9 in the Appendix.

A 25% lower hydrogen price results in 12% less aggregated electrolyser
capacity with onshore electrolysis seeing the largest reduction. In addi-
tion, there is a lower direct cable capacity to shore when hydrogen prices
are lower, as it is less interesting to bring power generated onshore to the
islands. We still see 20 GW of offshore electrolysis, which implies that a
larger part of the hydrogen is produced on the energy islands. In addi-
tion, conventional power production is lower in all years; see Figure B.5.
This suggests that lower hydrogen prices decrease the value of hydrogen
production and more renewable electricity is used for direct consumption
resulting in more cable connections from the offshore wind clusters to
shore and lower shares of fossil fuels and nuclear in the electricity mix.
In the scenario with a 25% higher hydrogen price, we see the opposite.
Higher aggregate electrolysis capacity is invested, and a relatively larger
share is built onshore. Cable connections between island and shore and
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between wind clusters and shore are larger than in COMBI of our main
analysis, which suggests that larger electricity cables can be refinanced
by higher sale prices for hydrogen. Conventional power production is at
a similar level in the main analysis and for low and high hydrogen prices.
Similarly to the main analysis, in both cases conventional technology con-
tributes to hydrogen production. When changing the hydrogen price, we
observe that the lower price reduces electrolyser capacities and leads to
less hydrogen production, see Figure B.5. The additional revenue from
selling hydrogen makes mainly a combination of cable connections and
onshore electrolysis economical. This lowers curtailment and results in
more hydrogen production.
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Figure B.5. Comparison of conventional power plant usage and electrolyser capacity
in the different parts of the sensitivity analysis. Bars represent energy produced by
conventionals and lines the electrolyser capacity developments over the years.

In the second sensitivity analysis, we change the CO2 prices to e130
in 2030, e250 in 2035, and e480 in 2040 for each ton emitted. These
values correspond to values in the openEntrance11 1.5°C scenario Techno
Friendly (Auer et al., 2020). The higher carbon price not only increases
system costs but leads to higher aggregate cable capacity between energy
island and shore and between energy island and wind cluster from the first
period onward (20 % more than in the main analysis from 2030 onward).
With increasingly higher CO2 prices, it would be valuable to invest earlier
to increase the use of RES in the system and avoid carbon emissions as
11openEntrance is a research project mapping the energy system transformation to reach cli-
mate goals. See: openentrance.eu/.

https://openentrance.eu/
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much as possible. Electrolysis becomes slightly less attractive and is 5%
lower each year compared to the main analysis. Figure B.5 shows that
in comparison to the main analysis, an increased carbon price will lead
to lower use of conventional generation but a similar aggregate electrol-
ysis capacity. This scenario would very likely change further if it were
combined with onshore grid expansion.

B.4.3.2 Onshore Network Capacities

From our main analysis, we can identify onshore power lines and intercon-
nectors that are often congested. Figure B.7 in the Appendix shows the
share of hours the depicted lines exceed 99% of their available capacity
and we therefore consider them congested. For this sensitivity analysis,
we assume a line to be limiting and prone to extension if the share of
congested hours over the entire time horizon exceeds 70%. To relieve the
bottlenecks, we add 20% multiplied by the share of congested hours to the
existing capacity of each expanded line, consequently between 14% and
20%. We keep all other values and prices as in the original analysis. Here
we present new results for the COMBI case in 2040 with an extended
onshore network. Exogenously relieving the congestion from the grid this
way lowers the combined investment and dispatch costs (5% below the
main analysis) and leads to the lowest curtailment of all the cases. The
reinforced grid leads to a similar integration of offshore resources by ca-
ble but a 10% lower electrolyser capacity; see Table B.9. Conventional
power production is also at its lowest level because the larger transmission
capacities bring larger shares of RES to consumption nodes and reduce
curtailment. In suammery, onshore grid expansion leads to higher usage
of RES and lower system costs (however not considering the cost of the
exogenous grid extension) and has comparable system characteristics to
COMBI.

B.4.4 Discussion of Model Assumptions
All the generation capacity in 2030 and the onshore grid are based on
exogenous assumptions, as are the scaling paths to 2040. Not allowing
endogenous capacity extension in the existing and projected power gen-
eration fleets restricts the construction of a theoretically optimal system



B.5 Conclusions 121

design and influences the sizing of cables and electrolysers. For invest-
ment expenditures, we assume linearity, neglecting economies of scale
and scope and learning rates. Furthermore, we assume that the islands
are in the locations chosen by the reference projects, which may be a bias
and could over- or underestimate the distance to onshore grid connection
points. Offshore hydrogen production requires transportation by vessels
or pipeline connections, which we include with a fixed cost markup per
unit of capacity only. Together with the assumption of the islands’ loca-
tions, this could slightly distort the costs and trade-off between hydrogen
and electricity infrastructure. Hydrogen offtake is modelled via a fixed
price rather than endogenised demand. But given the amount of hydro-
gen produced in the model compared to hydrogen demand projections
for Europe, we view this assumption as uncritical. Furthermore, we have
specifically addressed the sensitivity of hydrogen prices.

Last, we assume there will not be any integration with other sectors,
such as heat—that is, no consideration of the use of excess heat from
electrolysis. However, this is arguably equally relevant to the efficiency of
onshore and offshore electrolysis. In the onshore case, it could increase the
process efficiency by utilising heat to satisfy local heat demand. Offshore
heat can be used for desalination processes to produce distilled water
for electrolysis. The reduced time horizon and the reduced time series
used for this model may affect the representative accuracy of demand
and production patterns. Diving deep into the results and examining
each capacity expansion, we also observe that there are some small cables
(smaller than 500 MW) built between different offshore nodes. We assume
that such small capacities would not be built in reality. For the combined
case of onshore and offshore infrastructure, this could reduce the number
of countries connecting directly to energy islands.

B.5 Conclusions
In this paper, we study the trade-off between investments in offshore
electrolysers and in cable connections between energy islands and both
offshore wind farms and shore, and more generally the trade-off between
electricity transmission and hydrogen production infrastructures offshore.
For the analysis, we developed an integrated capacity expansion and elec-



122 B How to Connect Energy Islands?

tricity dispatch model with power grid representation, which allows the
energy islands to be connected by electricity cables to shore or to host
hydrogen production.

In our main analysis, which adds hydrogen infrastructure investment
options step by step to a system of electricity infrastructure only, we
find that onshore electrolysis plays a larger role than its offshore counter-
part. Offshore electrolysers, however, are especially relevant for using the
electricity produced on energy islands, reducing curtailment, and keeping
cable connections at a low level. All countries developing wind farms off
their coasts build electrolysers onshore with capacities in the range of 5
to 10 GW. Based on our sensitivity analysis, we argue that this is also
caused by congestion in the onshore grid. Nuclear and biomass also serve
as fuels for hydrogen production, which is driven mainly by the low short-
run marginal costs of these technologies and drive up capacity factors
and thereby make larger electrolyser capacities profitable. Higher CO2
prices drive out fossil-fuel-based hydrogen. This leads to lower hydrogen
production and higher system costs overall. Exogenously reinforcing the
network by increasing onshore grid capacities to remove congestion shows
a higher usage of RES onshore to meet electricity demand rather than
conversion.

In summary, investment in electrolysis capacity is sensitive to future
hydrogen prices and the costs of technology. On the question of the trade-
off between hydrogen and electricity infrastructure for energy islands, we
conclude that electricity from offshore wind is more valuable than hydro-
gen for reducing carbon emissions from generation. Onshore electrolysis
can benefit from efficiency gains through sector coupling and heat usage.
In contrast, a lack of public acceptance of wind farms and electrolysis
plants could drive up costs and favour offshore locations (Kaldellis et al.,
2016). Offshore, on the other hand, excess heat could be used for seawa-
ter desalination (Wageningen University and Research, 2022). Onshore
grid developments influence offshore development significantly, and the
siting of electrolysers is sensitive to congestion in the grid. First mover
expenses, however, will be higher, and the result on sizing presented here
must be looked at with caution since they are initially a political decision
that is not fully market-driven.

The presented analysis and results depend on assumptions and model
limitations. We do not consider all the technical features and constraints
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of the generation technologies (e.g., unit commitment and ramping), and
we disregard market sequences that might have an impact on trading
activities, prices, and the availability of electricity in the system. The pa-
rameters for cost of electricity production, hydrogen infrastructure, and
hydrogen markets are subject to large uncertainties, as is the production
from renewable energy. This analysis could benefit from a stochastic
approach to balance and hedge decisions considering uncertainty in pro-
duction, prices, and technology cost development. Furthermore, the ge-
ographical scope of the model may be extended to include countries in
the second row behind the seas, for example, France and also the Baltic
countries. In the current results, offshore and onshore electrolysers are
profitable and worth investing in at comparatively low capacity factors.
Another source of distortion may be neglecting any costs for the energy
island itself, for example, general costs for land use, or network charges
and taxes. Further, we ignore the fact that cables come in predetermined
sizes per unit and considering this, e.g., by using binary variables to reflect
fixed costs and bundle sizes, may change the outcome. In addition, power
prices in the current markets in Europe are not based on nodal pricing,
which we use in this model. Generally, a zonal market set up will result
in different market prices and may change the attractiveness of invest-
ing in electrolysers due to higher power purchasing prices. Being aware
of the limitations in our approach, we do believe that the insights are
generalisable beyond the limits of the specific case studies that we have
analysed. Offshore power transmission and hydrogen production infras-
tructure complement each other in bringing energy to shore, mitigating
RES intermittency, and reducing curtailment. Both will have a signifi-
cant role in the integration of offshore wind energy into the north-western
European energy system.
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Appendix to Paper B

Model Description
Table B.7 presents the nomenclature used in the paper. Sets are expressed
in script, parameters in lowercase, and variables in uppercase italic letters.

Table B.7. Designated sets, parameters, and variables of the mathematical model.
Sets
N set of nodes: n, m
G set of conventional power plants: g
R set of RES: r
W set of reservoirs: w
S set of storages: s
E set of electrolyser: e
A set of AC transmission lines: a ∈ (n, m)
D set of DC transmission lines d ∈ (n, m)
L subset of D, lines to the EI l ∈ (n, m)
T set of time slices: t
Y set of years: y
O set of A − N + 1 cycles: o
Z set of bidding zones: z

Parameters
α/β/γn,y scaling factor for capacity development of conventional generation/RES/demand
δ scaling factor for time series reduction
ηE/S efficiency of electrolyser/storage units
bn,a incidence matrix entry of node n at line a
ho,a cycle incidence matrix entry of cycle o and line a
cD penalty for loss of load
cM

g,y marginal cost of power plant in e/MWhel
cO

e operational and maintenance cost for electrolyser in % of capital expenses
cS costs for storage depletion
cE cost of electrolyser in e/MW
cL cost for transmission line in e/(MW·km)
dn,t,y demand at node n of year y
jy discount factor of year y

kE/L annuity factor electrolyser/line
gi length of the electricity line i in km
s+
s capacity of storage s in MWhel

f+
d DC line capacity in MWel

f+
a AC line capacity in MWel

p+
g/r/s maximum power generation of conventional generation/RES/storage in MWel

p+
z maximum energy production from hydro reservoir in MWhel

p−
s maximum power consumption of storage in MWel
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q discount factor (1 + interest rate)
rE
e revenue from selling hydrogen in e/MWh

v TRM between 0 and 1
xa reactance of AC line a in Ω

Decision Variables
IE

e,y installed capacity of the electrolyser e in year y in MWel
IL

l,y installed capacity of the electricity connection line l to the EI in year y in MWel
F A

a,t,y AC line flow of line a in MWel
F L

l,t,y EI connection line flow of line l in MWel
F D

d,t,y DC line flow of line d in MWel
SL

s,t,y storage level of storage unit in MWhel
P C

g,t,y generated conventional power in MWel
P D−

n,t,y demand loss of load at node n in MWel
P R

r,t,y generated RES power in MWel
P W

w,t,y generated power from reservoir in MWel
P R−

n,t,y RES curtailment at node n in MWel
P E

e,t,y electrical power to the electrolyser in MWel
SD

s,t,y generated power from storage discharge in MWel
SC

s,t,y power withdrawal from storage charge in MWel

Objective. The objective function Eq. (B.1) minimises the cost for dis-
patch and capacity extensions. In the dispatch we include marginal costs
cM for dispatching thermal power plants P C, cost cD for curtailing load
P D−, and a discharge penalty cS for storage P S. In addition, we subtract
income rE from producing hydrogen P E. RES do not incur marginal costs.
Investments in electrolysers IE and connecting power lines IL are allowed
at specific costs cE/L adjusted by an annuity factor kE/L (Eq. (B.2)). For
electrolysers we include annual operation and maintenance costs cO

e .

min
∑
y

δ ·
∑

t

∑
g

cM
g,y · P C

g,t,y + cD ·
∑
t

∑
n

P D−
n,t,y (B.1)

+cS ·
∑
t

∑
s

P S
s,t,y −

∑
t

∑
e

rE
e · P E

e,t,y · ηE


+cE ·
∑
e

(kE + cO
e ) · IE

e,y + kL · cL ·
∑

l

gl · IL
l,y

 · jy
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kE/L = q

1 −
(

1
1+q

)Lifetime (B.2)

The model runs for a reduced time series. δ scales the representative
days to the full set of 8760 time steps and is consequently approximated
to be 8760

t rounded to ten decimals. For the horizon of multiple (five-year)
periods y, we use a discount factor jy (Eq. (B.3)) to discount all costs to
the reference period.

jy = 1
(1 + q)5·y (B.3)

Energy Balance. We limit the model by a set of constraints. Eq. (B.4)
introduces the supply-demand balance for each node: the sum of the
power generation by conventional power plants P C, RES P R, reservoirs
P W, storage flows SC/D, electrolyser consumption P E, and load d must
always equal the nodal power injections F by the connected AC and DC
transmission lines. A variable for loss of load P D− allows load shedding.

∑
g∈∆G

n

P C
g,t,y +

∑
r∈∆R

n

P R
r,t,y +

∑
w∈∆W

z

P W
w,t,y (B.4)

+
∑

s∈∆S
n

SD
s,t,y −

∑
s∈∆S

n

SC
s,t,y −

∑
e∈∆E

n

P E
e,t,y

+
∑
m

F D
m,n,t,y −

∑
m

F D
n,m,t,y +

∑
a

bn,l · F A
l,t,y

= γy · dn,t,y − P D−
n,t,y n ∈ N, t ∈ T, y ∈ Y

Investments. The DC power connections to the energy islands are en-
dogenously decided by the model. Flow F L is limited by the installed
capacities (Eq. (B.5) and Eq. (B.6)). Line capacities can only be ex-
tended and Eq. (B.7) ensures that no decommissioning should take place.
On all lines, there is a transmission reliability margin v deducted from
full capacity.

F L
l,t,y ≤ IL

l,y · (1 − v) l ∈ L, t ∈ T, y ∈ Y (B.5)
F L

l,t,y ≥ −
[
IL

l,y · (1 − v)
]

l ∈ L, t ∈ T, y ∈ Y (B.6)
0 ≤ IL

l,y−1 ≤ IL
l,y l ∈ L, y ∈ Y (B.7)
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Electrolyser capacity can only be expanded in the next period and
cannot be decommissioned, Eq. (B.8).

0 ≤ IE
e,y−1 ≤ IE

e,y e ∈ E , y ∈ Y (B.8)

Operational Constraints. Conventional power plants P C and RES
P R including run-of-river hydropower can only operate below their max-
imum electricity output or installed capacities p+, respectively. Due to
multi-period optimisation, scaling factors α and β adjust the installed
capacities, see Eq. (B.9) and Eq. (B.10).

0 ≤ P C
g,t,y ≤ αy · p+

g g ∈ G, t ∈ T , y ∈ Y (B.9)
0 ≤ P R

r,t,y ≤ βy · p+
r,t r ∈ R, t ∈ T , y ∈ Y (B.10)

For evaluation purposes the RES curtailment P R− is defined as the dif-
ference between the possible RES generation p+ and the actual dispatch
P R.

0 ≤ P R−
n,t,y = βy · p+

r − P R
r,t,y r ∈ R, t ∈ T , y ∈ Y (B.11)

Additionally, hydropower reservoirs are limited in their maximum pro-
duction in the chosen period and bidding zone to ensure a more realistic
representation of water availability, Eq. (B.12).

∑
t∈T

∑
w∈∆W

z

P W
w,t,y ≤ p+

z ∀ z ∈ Z, y ∈ Y (B.12)

Storage (i.e., batteries and pumped hydropower) usage SC/D is limited
by maximum charge p+

s (Eq. (B.13)) and discharge p−
s (Eq. (B.14)) rates

as well as an upper capacity limit s+
s (Eq. (B.15)). Eq. (B.16) defines

the filling level of the storage SL taking into account efficiency losses.
Eq. (B.17) and Eq. (B.18) fix the starting and ending levels of a storage
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to half its capacity, respectively.

0 ≤ SC
s,t,y ≤ p+

s s ∈ S, t ∈ T : t > 1, y ∈ Y (B.13)
0 ≤ SD

s,t,y ≤ p−
s s ∈ S, t ∈ T : t > 1, y ∈ Y (B.14)

0 ≤ SL
s,t,y ≤ s+

s s ∈ S, t ∈ T : t > 1, y ∈ Y (B.15)
SL

s,t,y = SL
s,t−1,y − SD

s,t,y + ηS · SC
s,t,y s ∈ S, t ∈ T : t > 1, y ∈ Y (B.16)

SL
s,t,y = 0.5 · s+

s − SD
s,t,y + ηS · SC

s,t,y s ∈ S, t ∈ T : t = 1, y ∈ Y (B.17)
SL

s,t,y = 0.5 · s+
s s ∈ S, t ∈ T : t = 8760, y ∈ Y (B.18)

For the electrolysis capacity built in the model, there is a maximum
power inflow restriction constraint to the maximum installed capacity
(Eq. (B.19)).

0 ≤ P E
e,t,y ≤ IE

e,y e ∈ E , t ∈ T , y ∈ Y (B.19)
Lost load can never exceed the actual load of the node (Eq. (B.20))

0 ≤ P D−
n,t,y ≤ γy · dload

n,t,y n ∈ N, t ∈ T, y ∈ Y (B.20)

Network Representation. To represent power flows in the AC net-
work, we use the cycle-based formulation of Kirchhoff’s voltage law, which
leads to the sum of all potential changes in each cycle to be zero (Hörsch,
Ronellenfitsch, et al., 2018). We take the cycle incidence matrix ho,l and
the line reactance xa to calculate the line flows F A and obtain a represen-
tation in our model as in Eq. (B.21).

∑
l

ho,l · xa · F A
a,t,y = 0 o ∈ O, t ∈ T, y ∈ Y (B.21)

The flows F on the AC and DC lines in the model must then not exceed
thermal capacity limits p+ reduced by the transmission reliability margin
v. This holds true for positive and negative flow directions (Eq. (B.22)-
Eq. (B.25)).

F A
a,t,y ≤ p+

a · (1 − v) l ∈ A, t ∈ T , y ∈ Y (B.22)
F A

a,t,y ≥ −
[
p+

a · (1 − v)
]

l ∈ A, t ∈ T , y ∈ Y (B.23)
F D

d,t,y ≤ p+
d · (1 − v) d ∈ (D \ L), t ∈ T , y ∈ Y (B.24)

F D
d,t,y ≥ −

[
p+

d · (1 − v)
]

d ∈ (D \ L), t ∈ T , y ∈ Y (B.25)
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In the past, national grid operators defined net transfer capacity mar-
gins limiting transfers between countries and allowing the national entities
to adjust to their local optimum, which is especially problematic in con-
gestion management because it does not fully utilise the physical potential
(Hagspiel et al., 2014). Additionally, the concept lacks a mechanism for
fast net transfer capacity adjustments to the weather and generation sit-
uation (Finck, 2021). Net transfer capacity mechanisms have been grad-
ually replaced since 2015 with flow-based market coupling (FBMC) and
brought higher capacity allocations to the system. This utilises the infras-
tructure to a higher degree and is consequently more efficient. However,
transmission system operators (TSOs) restrict commercial exchange to
solve national grid congestion leading to lower than optimal capacity in-
tegration (Weinhold, 2021). Naturally, this is not optimal in a European
context. For reasons of simplification, with the chosen nodal European
dispatch, we neglect national considerations for the dispatch.

General Assumptions. Given the trade-off between complexity, accu-
racy, and computation time the model does not predict the full European
generation landscape in the investigated years but sketches scenarios un-
der given assumptions. The assumptions are simplified and subject to
high uncertainty, which is not accounted for in this model. Furthermore,
political decisions affect the future generation and transmission landscape
and are subject to social and economic considerations of the actors in-
volved. The most critical assumptions are listed and shortly explained in
the following.

• Construction time: any time between investment decision and
completion is neglected in the model.

• Cross border exchange: the model does not allow for exchange
with nodes or zones that are not included. Market boundaries are
not considered as we solve the model on a nodal basis.

• Grid: power lines are aggregated to create a less complex grid
structure and prevent loop flows. A TRM is introduced as in Hörsch,
Ronellenfitsch, et al. (2018). Line losses are neglected.

• Ramping: no ramping of any technology is considered in the model.
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• Must-run obligation and unit commitment: we disregard unit
commitment and must-run obligations of for example combined heat
and power plants (CHPs).

• Storage: hydrogen storage is neglected.

• Hydrogen: hydrogen is expected to be sold at a fixed price. Any
considerations regarding transport and consumption are not reflected.

• Economics: interest rate and cost parameters are assumed to be
constant over time.

• Decommissioning: decommissioning does not take place or incurs
a cost.

Hydrogen Price Predictions
Hydrogen price forecasts vary significantly depending on the sources. Ta-
ble B.8 provides an overview about different price ranges.

Table B.8. Hydrogen prices from electrolysis.

Source Base year Hydrogen price
[e/kg]

Dinh et al. (2021) 2030 5
Haumaier et al. (2020) 2020 6.2–20.2
Meier (2014) 2014 5.2–106.1
Brunner et al. (2015) 2015 1.4–6.8
Bristowe and Smallbone (2021) 2030 3.4–5.7
Babarit et al. (2018) 2025 2.34
ICCTa 2050 6.79b

aAssessment of Hydrogen Production Costs from Electrolysis: United States and
Europe. The International Council on Clean Transportation (2020)

bMedian of European grid connected projects, collected from public sources

https://theicct.org/sites/default/files/publications/final_icct2020_assessment_of%20_hydrogen_production_costs%20v2.pdf
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Further Results

Table B.9. Key values for the sensitivity analysis. Offshore and onshore electrolysis
and non-restricted cable extension included.

Objective
value

Aggregated
electrolyser

capacity [GW]

Aggregated cable
capacity

[GW]

Curtailment
[TWh]

Conventional
generation

[TWh]
2030 2035 2040 2030 2035 2040 2030 2035 2040 2030 2035 2040

COMBI Offshore 1.12E+11 21.5 21.5 21.5 11.7 14.2 16.8 1.6 1.3 1.2 – – –
Onshore 34.6 39.6 47.3 7.7 8.7 9.4 7.3 12.3 18.5 474.9 452.1 496.2

Low H2
Offshore 2.08E+11 19.9 19.9 20.0 14.0 15.9 17.4 1.6 1.3 1.2 – – –
Onshore 29.9 35.3 42.9 8.9 9.9 10.7 7.3 12.3 18.5 474.9 452.1 496.2

High H2
Offshore 1.23E+11 20.9 20.9 20.9 13.3 13.3 15.9 1.6 1.3 1.2 – – –
Onshore 57.5 57.5 59.5 10.8 10.8 11.1 7.3 12.3 18.5 474.9 452.1 496.2

High CO2
Offshore 2.08E+11 20.3 20.3 20.3 15.5 19.0 25.1 1.5 1.1 0.6 – – –
Onshore 33.3 38.7 45.0 9.9 12.3 13.8 7.6 14.1 23.7 453.7 443.5 434.1

Network Offshore 1.07E+11 20.4 20.4 20.4 11.3 14.9 18.0 1.4 0.9 0.9 – – –
Onshore 30.4 35.5 43.8 8.3 9.2 9.6 7.2 12.0 18.0 440.9 416.1 461.7

Tile © Esri, Esri, DeLorme, NA

Line Bus

Figure B.6. Representation of the grid including all possible connections between
energy island and shore.
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Tile © Esri, Esri, DeLorme, NAVTEQ

Average hours with 
 line congestions

0% - 10%
10% - 20%
20% - 30%
30% - 40%
40% - 50%
50% - 60%
60% - 70%
70% - 80%
80% - 90%
90% - 100%
Bus

Figure B.7. Line congestions in the main analysis.
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Figure B.8. Aggregated line capacity in the different cases.
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Figure B.9. Aggregated electrolyser capacity in the different cases.
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CHAPTERC
Electrolysis as a Flexibility

Resource on Energy Islands

C.1 Introduction
With a rising share of intermittent renewable energy sources in electric-
ity systems, the need for operational flexibility is increasing. At the same
time, there is a growing demand for low-carbon fuels in sectors where elec-
trification is expensive or infeasible. Electrolysis based on green electricity
is envisioned as a solution to both problems.

Electricity production from offshore wind in the North and Baltic Seas
has developed rapidly in recent years (Wind Europe, 2021) due to its high
potential and social acceptance (Kaldellis et al., 2016). The European
Commission’s strategy for offshore wind further highlights its importance
for the future energy system (European Commission, 2020). Despite tech-
nological advances and declining costs of power transmission, transfer-
ring electricity from offshore wind farms via sub-sea cables remains costly
(IRENA, 2019). One way to reduce the cables required is to convert part
of the generated electricity into hydrogen and then transport it to shore
via less costly hydrogen pipelines (Singlitico et al., 2021). This idea has
been incorporated into the discussions of energy islands (Tosatto et al.,
2022). The Danish government and various industrial consortia are now
investigating options for integrating hydrogen production from electroly-
sis with electricity generated at offshore wind farms on potential energy
islands.1

In our analysis, we assume that the energy islands that are currently
under consideration for the North and Baltic Seas will be built and will
host electrolysers. We then investigate two possible drivers: flexibility and
1For example, see North Sea Wind Power Hub (www.northseawindpowerhub.eu) and the Dan-
ish Islands (www.windisland.dk or www.northseaenergyisland.dk/).

https://northseawindpowerhub.eu
https://www.windisland.dk
https://northseaenergyisland.dk/
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profitability. The proximity of the electrolysers to large-scale intermittent
wind power generation and the significant distances to load centres and
flexibility resources suggests that offshore electrolysers will act as opera-
tional flexibility providers in addition to producing cheap hydrogen. In
the broader energy system, energy islands could also constitute their own
bidding zones in the pan-European electricity market instead of being in-
tegrated into existing zones. We summarise our research interests in the
following two research questions: (1) What is the flexibility potential of
an electrolyser on an energy island? (2) How does the offshore bidding
zone configuration influence the value of offshore electrolysers?

To answer these questions, we assess operational patterns, market re-
sults, and prices in a setting that incorporates uncertainty in electricity
production from renewable energy sources. We do this by developing a
two-stage stochastic optimisation model that solves the day-ahead and
balancing electricity market clearing problems simultaneously for bidding
zones connected by net transfer capacities. Flexibility in our balancing
market stage relates to adjustments prior to calling frequency contain-
ment reserve and other reserves. Joint market clearing of day-ahead and
balancing markets does not happen in today’s market operations, so our
setup presents an ideal benchmark, likely overestimating the effects. Mar-
ket power, strategic bidding, and network constraints in bidding zones
are not taken into account.

We apply the model to the case of the energy islands in the North
and Baltic Seas to answer our research questions for the European con-
text. Our case study includes the projects currently planned by the North
Sea Wind Power Hub consortium, the Danish Energy Island (DEI), and
the one at Bornholm (Denmark) with their planned wind energy and ca-
ble connection capacities and integrates them into the European energy
market zones.

For the year 2030, under a moderate renewable expansion scenario,
we find that electrolysers do not in general provide significant balancing
flexibility, and that offshore electrolysers do not produce large amounts
of hydrogen overall. However, offshore bidding zones do make offshore
hydrogen production financially more attractive. For the 2040 analysis,
we find that the reduction in hydrogen prices outweighs the reduction in
electricity cost. This leads to overall lower average run times for the elec-
trolysers (defined as lower capacity factors) and reduces their profitability
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on energy islands. Despite using a specific case in Northern Europe, we
make generic assumptions that are applicable to other potential energy
islands. For sites with a restricted interconnection capacity to shore and
close to large offshore generation facilities, we expect similar patterns.

The remainder of the paper is structured as follows. Section C.2 sum-
marises the literature and background of analysis. In Section C.3, we
present the modelling framework. The case study, including data and
assumptions, follows in Section C.4, and then the results are given in
Section C.5. We discuss the economic viability of electrolysers on energy
islands and the impact of our assumptions, and we provide a sensitivity
analysis in Section C.6. We present our conclusions and policy recommen-
dations in Section C.7.

C.2 Background and Literature Review
Scientific literature on energy islands is still scarce. In the following,
we collect studies of offshore grids and power link islands, the systemic
foundations for energy islands, and summarise the few studies on offshore
electrolysis and market design for large-scale offshore wind power hubs.

The concept of energy islands emerged around 2016 and was at first
driven by the North Sea Wind Power Hub (NSWPH) consortium, which
was planning to build an energy island in the North Sea on the Dogger
Bank (North Sea Wind Power Hub, 2020). In June 2020, the concept
was taken to Danish waters when the government of Denmark decided to
build two energy islands, one in the North Sea and one in the Baltic.2 In
consequence, other countries started discussing the feasibility of energy
islands, for example, Norway (Zhang et al., 2022) and Germany.3 All
of these ideas are based on the heavy expansion of offshore wind power,
which the European Commission envisions as a key part of the energy
system transformation (European Commission, 2020).

When power production from offshore wind energy is expanded, the
infrastructure in the sea must be expanded simultaneously. One poten-
tial way to connect large-scale offshore wind to shore is via integrated
2See Klimaaftale by the Danish government (2020): https://fm.dk/media/18085/klimaaftale-
for-energi-og-industri-mv-2020.pdf.

3See AquaVentus: www.aquaventus.org.

https://fm.dk/media/18085/klimaaftale-for-energi-og-industri-mv-2020.pdf
https://fm.dk/media/18085/klimaaftale-for-energi-og-industri-mv-2020.pdf
https://aquaventus.org/en/
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offshore grids (Strbac et al., 2014; Trötscher & Korpås, 2011). These
are potentially meshed grid structures in the sea connecting countries
through wind farms. They support offshore energy access at several levels
(Gea-Bermudez et al., 2018), enable better interconnection to stabilise a
renewable energy based system (Schlachtberger et al., 2017), and increase
overall welfare through greater and more efficient use of renewable energy
(Egerer et al., 2013). Furthermore, offshore grids can connect markets
with asymmetric renewable power capacities, which can stabilise prices
in those markets (Alavirad et al., 2021). No offshore grids have been
commissioned yet, as guidance on design and topology is needed to con-
struct a technically efficient system (Chen et al., 2018), and the economic
framework must define operational and ownership rules to incentivise ef-
ficient development (Meeus, 2015; Sunila et al., 2019). As an integrating
element of offshore grids, Kristiansen et al. (2018) describe power link
islands as an efficient component of offshore grids. Power link islands can
be seen as the precursor to energy islands, or offshore energy hubs4, which
are generally defined by their offshore location, large surrounding wind
capacities, cable connections to land, and possibly storage and conversion
technologies (Lüth, 2022). In general, energy hubs are places where multi-
ple energy carriers are converted or stored (Geidl et al., 2007). In light of
discussions of a hydrogen economy, electrolysis or power-to-x might act as
a conversion technology offshore, and adding power-to-x to a power link
island would turn it into an energy island (Gea-Bermúdez et al., 2022).
Figure C.1 illustrates how renewable electricity produced locally or nearby
can be stored or converted on an energy island.

The concept of energy islands is still at an early stage of development.
Some industrial actors have discussed offshore sector integration, includ-
ing hydrogen production at sea, whereas techno-economic studies find
either that the potential for electrolysis offshore is small (Gea Bermúdez
et al., 2021; Gea-Bermúdez et al., 2022) or that it relies on the benefit of
avoiding the cost of power cable connections (Singlitico et al., 2021). If
electrolysers are placed offshore despite the higher capital and operational
costs and the uncertainty in regulatory frameworks, it would be best to
place them at a centralised location, such as a hub instead of spreading
them out (Ibrahim et al., 2022; Singlitico et al., 2021).
4In this paper, we use energy islands, but the terms can be used interchangeably.
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Country 1

Country 2

Country 3

H2

Figure C.1. Sketch of an energy island in the most recent visions.
Source: Authors’ illustration.

Research on the technical feasibility of flexible electrolyser operation
has also found that temperature and power consumption influence the effi-
ciency and availability of electrolysers for flexibility provision and system
services (Qi et al., 2021; Zheng et al., 2022a, 2022b). They further show
that electrolysers are technically capable of quickly adjusting their power
output in response to fluctuations in renewable power supply. The au-
thors present models and tools for incorporating technical characteristics
and temperature dependencies for planning investments and operational
strategies regarding electrolysers.

In general, coupling wind farms and hydrogen production increases
the cost efficiency and competitiveness of wind power (Grüger et al., 2019;
Thommessen et al., 2021). This is tightly linked to our research questions
about the profitability and operations of electrolysers on energy islands.
In this analysis, we focus on market outcomes and price impacts in an
offshore setting. For the onshore case, studies show that power-to-gas
in connection with re-electrification can be a viable operating strategy
(Grueger et al., 2017), stabilise market prices (Li & Mulder, 2021), and
aid congestion management (Xiong et al., 2021). The effect of hydrogen
production on flexibility and market prices offshore has not been thor-
oughly investigated yet.

Several studies have looked into market design and bidding zone config-
urations for offshore wind energy hubs without electrolysis. These studies
usually compare two concepts: offshore bidding zone (OBZ) and home bid-
ding zone (HBZ). In an OBZ, the power hub constitutes its own bidding
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zone; see Figure C.2(a). Consequently, its market price always matches
that of the connected bidding zone with the lowest price. An HBZ (see
Figure C.2(b)) represents the business-as-usual case in which wind farms
sell electricity in their home markets (Kitzing & Garzón González, 2020;
Tosatto et al., 2022). The studies suggest that offshore bidding zones
reflect a more efficient electricity market (Kitzing & Garzón González,
2020), but that the distribution of benefits and costs is asymmetrical
among the connected actors (Tosatto et al., 2022).

OBZ

BZ2

BZ1

EI

(a) Offshore bidding zone (OBZ) configu-
ration.

BZ2

BZ1

HBZ

EI

(b) Home bidding zone (HBZ) configura-
tion.

Figure C.2. Two bidding zone configurations for offshore wind power hubs and energy
islands. In an OBZ, an energy island constitutes its own bidding zone. In an HBZ, the
energy island participates in BZ2.

The idea of an offshore bidding zone for power hubs was developed in
the context of so-called hybrid projects, in which interconnectors between
countries are also connected to wind farms; for example, Kriegers Flak
(Marten et al., 2018) which has been operational since 2020. Hybrid
projects are fairly new to the system, but in a report for the European
Commission, Weichenhain et al. (2019) identify multiple locations where
these could be more beneficial than traditional radial connections to the
owners’ home markets only. In this paper, we make use of the insight
that a more cost-reflective offshore bidding zone is preferable and analyse
the impact of bidding zone configurations on the operations of offshore
electrolysers.

C.3 The Model
We develop a two-stage stochastic optimisation model to analyse the op-
eration and potential of offshore electrolysers as flexibility resource from
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a systems point of view. The model is based on methods described by
Morales et al. (2014) and Conejo et al. (2010). It allows us to observe
market prices and quantities sold on the electricity market in the presence
of uncertainty in production from renewable energy.

Using the model, we can analyse the value of electrolysers for hydro-
gen production, functioning as flexible demands, elastic to the price. All
power-producing units sell electricity into, and electrolysers demand elec-
tricity from, a day-ahead market, the first trading stage of the model. In
addition, the units decide whether to bid into a balancing market, the
second stage, which is used to compensate for deviations from the day-
ahead schedule of renewable power plants. Note that this market is an
aggregated and idealised representation of all trading actions between the
day-ahead market and the reserve market. This implies that balancing ex-
cludes primary, secondary and tertiary reserves and thereby differs from
the approach of Energinet (2022). We assume that hydrogen can be sold
at any time and volume for a given price without storage or transportation
constraints. The capacity of electrolysers is exogenous. To keep the main
text succinct, because large parts of the model are quite standard in the
power systems literature, we do not include the mathematical formulation
here. We explain the structure, objective, and restrictions briefly, and we
present and explain the full mathematical model, including constraints
and limitations, in Appendix C.7. Figure C.3 summarises the model.

min Generation costs (day-ahead + balancing market)
- profits from hydrogen sales

s.t. Zonal power balance for each stage
Generator capacity limits
Storage limits
Ramp limits
Electrolyser production limits
Net-transfer capacity limits

Figure C.3. Schematic overview of our model. The equations can be found in Ap-
pendix C.7.

The objective function of the model minimises the expected costs of
day-ahead dispatch and balancing actions under uncertainty. The un-
certainty in the model stems from renewable energy production. In our
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day-ahead dispatch, generators have only a forecast of available renewable
power production. In the balancing stage, a set of scenarios represents
potential realisations of production. In the first stage, conventional power
production and hydrogen production incur costs. In the second stage, the
expected costs of balancing originate from conventional power plants ad-
justing their operational schedules in reaction to deviations in renewable
energy production from the forecast. The model has five groups of con-
straints limiting the solution space. Both stages have a supply-demand
balance to ensure that production equals demand. We add a set of ca-
pacity restrictions for conventional and renewable energy technology to
limit maximum production to installed capacity. For storage (battery
and hydropower), we introduce charging and discharging restrictions and
a maximum storage level. To avoid an overestimation of operational flex-
ibility, we include ramping constraints for all conventional power plants.
Finally, we add more detail on the electrolysers to restrict their maximum
production levels and account for efficiency in production.

C.4 The Case of the North Sea
Our model is suitable for analysing energy islands in any geographical
region. It replicates market zones and transfer capacities between them
for a day-ahead and balancing stage considering uncertainty in renewable
energy production. Although the model framework is generic, we focus
on the North and the Baltic Seas and the planned energy islands off the
coast of Denmark and the Netherlands. Figure C.4 provides an overview
of the islands we include in our analysis. DEI and Bornholm are projects
led by Danish partners. The North Sea Wind Power Hub involves Danish,
Dutch, and German partners and is a Project of Common Interest.5 In the
following two sections, we describe our input data and main assumptions.

C.4.1 Data
We include the 13 countries around the North Sea and the Baltic Sea,
which comprise 24 bidding zones in total (see Figure C.13 in the Ap-
5See the annex to C(2021) 8409 final by the European Commission: SWD(2021) 335 final.

https://ec.europa.eu/energy/sites/default/files/fifth_pci_list_19_november_2021_annex.pdf
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Figure C.4. Energy island projects considered in this study.
Source: Authors’ illustration based on COWI (2021) for Energistyrelsen.

pendix). Energy islands are planned to be operational at full capacity in
2040. The first milestones in wind power capacity and interconnection
will be reached in 2030. We consider both years in separate analyses.

For each country, we retrieve estimated future capacities for conven-
tional and renewable power plants from the TYNDP 2020 National Trends
scenario.6 To compare and crosscheck values, we made use of the ENTSO-
E Transparency Platform, and the national system operators’ websites,
and data published by Kendziorski et al. (2020). For a sensitivity analysis,
we use the 1.5 ° C scenario Directed Transition developed in the openEn-
trance project7 as our climate case. It shows significantly higher renew-
able capacities in Europe—about twice the TYNDP2020 projections (see
Figure C.12 in the Appendix).

Generation from renewable energy sources is subject to fluctuations
and therefore not available at full capacity in all time steps. We use
historical generation profiles for wind and solar energy, which were re-
trieved from renewables.ninja8 for the year 2018 (Pfenninger & Staffell,
2016; Staffell & Pfenninger, 2016). Muehlenpfordt (2020) provides spa-
tially and intertemporally correlated day-ahead forecasts and real-time
6See TYNDP Data (2020): www.tyndp.entsoe.eu/maps-data/.
7See openEntrance (2022): www.openentrance.eu/.
8See renewables.ninja (2022): www.renewables.ninja.

https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://renewables.ninja
https://tyndp.entsoe.eu/maps-data/
https://openentrance.eu/
https://renewables.ninja
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realisations which we use to calculate hourly forecast errors for wind and
solar power in each country for the years 1980–2019. After dropping the
information about the underlying year, we can generate 40 scenarios, each
containing renewable power generation forecast errors for all technologies
and countries considered over 8760 hours. We apply those forecast errors
to the historical generation profiles from 2018 to produce our second-stage
scenarios. The probabilistic power production forecast from onshore wind
and solar energy for Germany for a selected time period is shown in Fig-
ure C.5.

For reservoir hydro power, we derive a limit for the maximum cumula-
tive production during the selected time of a year from historical produc-
tion data published on the ENTSO-E Transparency Platform.9 Run-of-
river hydro power operates on the basis of historical availability from the
EMPIRE model10 (Backe et al., 2022). We restrict technologies’ ramping
capability on the basis of the technology catalogue by the Danish Energy
Agency (2022) and historically observed ramping rates for the aggregated
power plant portfolio of each fuel type from ENTSO-E’s Transparency
Platform.

Electricity demand is expected to increase in the coming years towards
2050. We use demand projections from the National Trends scenario of
the TYNDP 2020 input data. In the process of developing the TYNDP,
9See: www.transparency.entsoe.eu/.
10OpenEMPIRE is available on GitHub: https://github.com/ntnuiotenergy/OpenEMPIRE.

(a) Onshore Wind (b) Solar energy

Figure C.5. Probabilistic power generation forecast from wind and solar power in
Germany for a selected time period. Each of the 40 lines corresponds to an individual
scenario.

https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://transparency.entsoe.eu/
https://github.com/ntnuiotenergy/OpenEMPIRE
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the ENTSOs also gathered data on current net-transfer capacity (NTC)
and established projections. We use their projections for 2030 and 2040
as our power exchange capacities between zones in the respective years.

Cost assumptions are a significant driver in an energy system model.
Conventional energy technologies have three cost components in our model:
marginal production costs, fuel costs, and emission costs. Marginal pro-
duction costs for conventional power plants can be found in the technology
catalogue by the Danish Energy Agency (2022). We use fuel prices for
gas, oil, lignite, and hard coal from the TYNDP 2018 input data.11 For
the base case, we adopt the CO2 price from the same input data, using
e84.3/ton in 2030 and e126/ton in 2040. Our ambitious climate case has
a price of e350/ton in 2030 and e700/ton in 2040, based on the Directed
Transition scenario of the openENTRANCE project (Auer et al., 2020).

Another significant economic component in our model is income from
selling hydrogen. Costs for hydrogen production from renewable energy
depend on the cost of electricity and the investment cost of the electrol-
yser. Investment costs for alkaline electrolysers are estimated to decrease
from e750/kW in 2020 to e350/kW in 2050 (Danish Energy Agency,
2022), and variable operations and maintenance (VOM) costs range be-
tween e7.2/MWh in 2030 and e5.6/MWh in 2040 onshore. We assume
that offshore VOM costs are 50% higher, with e10.8/MWh in 2030 and
e8.4/MWh in 2040. For hydrogen prices, Glenk and Reichelstein (2019)
estimate e3.23/kg for 2025 and e2.50/kg for 2040. For production from
dedicated wind farms, Meier (2014) estimates hydrogen production costs
of e5.2/kg. In later years, assuming existing oil and gas platforms can
be reused as bases for renewable offshore hydrogen production, this is
projected to decline to e2.50/kg. We use a value of e4.5/kg in 2030 and
e3/kg in 2040, which translate to e150/MWh and e100/MWh respec-
tively.

All our data and the model itself are available on GitHub.12 The model
is implemented in Julia 1.6.1 (Bezanson et al., 2017) using JuMP v1.0.0
(Dunning et al., 2017), and solved with Gurobi v9.5.1.
11See ENTSO-E map (2022): www.tyndp.entsoe.eu/maps-data.
12Find the model here: https://github.com/yannickwerner/EnergyIslands.

https://tyndp.entsoe.eu/maps-data
https://github.com/yannickwerner/EnergyIslands
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Table C.1. Parameter values in the model.

Parameter Notation Unit 2030 2040 Source
Fuel prices
Lignite e/MWh 8.28 8.28 EUCO: REF 2020 Technology
Hard coal e/MWh 15.48 15.48 EUCO: REF 2020 Technology
Natural gas e/MWh 28.84 35.28 EUCO: REF 2020 Technology
Heavy oil e/MWh 52.56 72.00 EUCO: REF 2020 Technology
Light oil e/MWh 73.80 87.84 EUCO: REF 2020 Technology
Biomass e/MWh 11.88 14.40 EUCO: REF 2020 Technology
Uranium e/MWh 1.69 1.69 EUCO: REF 2020 Technology
CO2 price e/ton 84.3 126 TYNDP 2020
Electrolyser cost
VOM onshore mce,y e/MWh 7.2 5.6 Danish Energy Agency (2022)
VOM offshore mce,y e/MWh 10.8 8.4 Danish Energy Agency (2022)
Electrolyzer efficiency ηe 66% 66% Danish Energy Agency (2022)
Hydrogen price pH2 e/MWh 150 100 Glenk and Reichelstein (2019)
Onshore electrolyser capacity
Denmark MW 3473.4 4681.7 Klima-, Energi-og Forsyningsministeriet (2021)
The Netherlands MW 3000 6000* Government of the Netherlands (2020)
Germany MW 5000 10000 BMWi (2020)
Belgium MW 500 500 FPS Economy Belgium (2021)
United Kingdom MW 5000 8000* HM Government (2020)
Poland MW 2000 4000 Ministry of Climate and Environment (2021)
Sweden MW 5000 10000* Energimyndiheten (2021)
Norway MW 750 1500* NVE (2021)
France MW 6500 13000 BDI (2020)
* Value extrapolated for 2040 on the basis of estimates given in the sources.

C.4.2 Model Assumptions
We assume that an electrolyser with an exogenously defined size of 0.5 GW
(1 GW) and 0.25 GW (0.5 GW) will be placed at DEI and Bornholm
respectively, in 2030 (2040); see Figure C.4. The electrolyser on the
NSWPH is assumed to be installed with a capacity of 1 GW in 2040.
Furthermore, hydrogen can be sold at a fixed price without quantity re-
strictions. Costs for transport, storage, and distribution of hydrogen are
not taken into account explicitly, irrespective of the electrolyser’s location.
However, we assume that operational and maintenance costs for the off-
shore electrolyser are 50% higher than onshore (as given in Table C.1) to
account for these factors, and for space restrictions, environmental condi-
tions, and the distance to shore. We further assume that all electrolysers
that are not built on energy islands are built onshore.

Furthermore, losses on power cables and transmission lines are ne-
glected inside as well as between bidding zones. We consider inflexible,

https://ens.dk/sites/ens.dk/files/Analyser/technology_data_for_renewable_fuels.pdf
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price-inelastic demand for electricity. Demand-side management is not
considered in the current state of the model. Unit commitment and mini-
mum power generation restrictions are generally not included in the model.
However, we do include a time-varying minimum load for combined heat
and power plants based on heat-delivery obligations. We approximate this
minimum load by using residential heat demand data from 2013 (Ruhnau
et al., 2019; Ruhnau & Muessel, 2022) and increase it by 30 percentage
points to account for households that are not connected to district heating
grids. Market power, strategic bidding, and network constraints within
bidding zones are therefore not taken into account.

It is not possible to run the model for the whole time horizon with a
large number of scenarios. To test robustness, we have executed model
runs for various numbers of scenarios on a reduced time horizon. We
found that neither the balancing service provision nor the capacity factors
of the electrolysers change significantly when the number of scenarios is
increased beyond ten. Therefore, we use only ten out of forty randomly
selected scenarios in order to be able to run the model for longer time
horizons. We consider the same probability for each of the ten selected
scenarios in our optimisation model.

Due to the computational complexity of the model, we need to split
up the full-time horizon of 8760 hours into six segments of equal length
(1460 hours). To avoid depletion of pumped hydro and battery storage
at the end of each segment, we force the initial and final storage levels to
be exactly 50% of the storage capacities.

C.5 Results
We run the model with the described data for the years 2030 and 2040.
Our two research questions ask about (1) the flexibility potential of an
electrolyser on an energy island, and (2) how bidding zone configuration
affects the value of the offshore electrolyser. Following these, we structure
the presentation of the results in two parts: Section C.5.1, on flexibility
and Section C.5.2 on bidding zones and market analysis. We discuss the
results and the shortcomings of the model in Section C.6.
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C.5.1 Flexibility of Offshore Electrolysers
Flexibility is needed in the model to compensate for real-time deviations
from the day-ahead schedule of renewable energy sources. The system has
a set of flexibility resources available for balancing purposes: conventional
power plants, hydro power reservoirs, biomass, storage technologies (bat-
tery and pumped hydro storage), and electrolysers. Looking at a period
of four days in one of the scenarios, in Figure C.6, we see that hydropower
and storage units contribute the most to balancing while the electrolysers’
contributions (in red) are marginal.

Taking a more regionally disaggregated perspective, Figure C.7 com-
pares the capacity factors over the whole time horizon for the years 2030
and 2040 for the total electrolyser capacity in each bidding zone. For
2030, we observe that most electrolysers are used only for a few hours
in the balancing market. Participation in balancing markets is modest
for electrolysers on the energy islands (DEI, NSWPH, Bornholm) and
even lower for onshore electrolysers. This is due to the availability of
cheaper flexibility resources, such as hydro power and storage units, in
most onshore bidding zones. Sweden and Norway have especially cheap
dispatchable, renewable power generation in the form of hydro, which re-

Figure C.6. Balancing of the aggregated system-wide deviation from the day-ahead
schedule of renewable power generation in a specific scenario.
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sults in low contributions of the electrolysers to the balancing actions in
those countries’ zones. When we include the day-ahead market, we see
that most electrolysers run at rather low capacity factors, below 50% on
average and even lower for the offshore electrolysers. Taking a deeper look
at the results, we find that hydrogen is produced in fewer hours offshore
than onshore, and the average electricity consumption cost per unit of hy-
drogen produced is much lower for offshore electrolysers. This indicates
that it is usually more valuable for the system to transfer electricity to
shore and either use it directly or convert it into hydrogen there at lower
variable cost, than produce hydrogen offshore.
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Figure C.7. Expected electrolyser capacity factors for the OBZ configuration in 2030
and 2040. Each bar corresponds to a bidding zone.

Comparing the results for 2030 and 2040, we find that several coun-
tries face decreasing capacity factors for their electrolyser fleets despite
significantly higher shares of renewable energy capacity in 2040. Although
most areas with decreasing capacity factors experience drops in electricity
prices, these cannot compensate for the decrease in hydrogen prices and
therefore leads to less profitable hydrogen production overall. This is vis-
ible in Belgium (zone BE00) and the United Kingdom (zone UK00). One
exception is Poland, which experiences high electricity prices in 2030 due
to a mostly fossil fuel-based power system but transforms into a renewable-
based system with low electricity prices in 2040. We, therefore, see much
higher electrolyser capacity factors there, and an increased contribution
in the balancing market.

Overall, we find that the expected offshore electrolysers are used in the
provision of balancing services for only about 26%-30% of their total run-
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time. Relatively low capacity factors overall also indicate that operators
will face economic challenges to contribute to meeting projected European
hydrogen demand in this market setup. Hence, in the next section, we
analyse whether an alternative bidding zone configuration would increase
the value of offshore electrolysers.

C.5.2 Bidding Zone Configurations
With our second research question, we target the impact of bidding zone
configuration on the capacity factors and flexibility contributions of elec-
trolysers. We explore whether zonal boundaries change operational pat-
terns for offshore electrolysers, and if so how. Radial connection of off-
shore wind farms is the traditional approach to integrating offshore energy,
and energy islands in their first operational years could be connected sim-
ilarly to their home countries, leading to a home market approach. Over
the years, this might develop into hybrid projects (see Section C.2), or the
islands could come to constitute their own bidding zone. In the follow-
ing, we compare the case of offshore bidding zones to the standard case
of home bidding zones to investigate the role of market zones and their
impacts both on the market prices in general and on the energy islands’
resources.

In the HBZ, we add the wind farm capacity and electrolysers of each
of the three energy islands to its owner country’s nearest bidding zone.
Figure C.8 compares the capacity factors in 2030 for the two configura-
tions. In the HBZ configuration, electrolysers in the DKW1 and DKE1
zones have slightly higher capacity factors than in the OBZ. In the Dan-
ish energy islands, DEI and Bornholm, we observe a decrease in offshore
electrolyser capacity factors. However, because the onshore electrolyser
capacities are much greater than offshore ones, total hydrogen production
increases. We identify two reasons. First, electricity generated offshore is
transported to shore and used there, and is preferred over costly offshore
electrolysis. Second, in high production hours, none of the hub-shore con-
necting transmission capacity constraints is binding (a consequence of the
HBZ configuration), and less offshore generation is curtailed. Although
the flexibility provision by the electrolyser on DEI increases, that of the
electrolyser on Bornholm decreases. Those changes are less than one per-
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Figure C.8. Expected electrolyser capacity factors for 2030 for the OBZ and HBZ
configurations.

centage point and do not affect hydrogen production significantly. Nev-
ertheless, there is no strict tendency in how flexibility provision changes
under an HBZ configuration, though it seems to depend on the power
plant portfolios of the countries the energy island is connected to.

The differences between the two bidding zone configurations are caused
by the way transmission constraints between the energy islands and the
mainland are accounted for. Although these constraints impose actual
physical limitations in the real operations of the power system, the mar-
ket itself facilitates a higher electricity exchange between the energy island
and its home zone when they are neglected (as in HBZ).

In the following part, we focus on DEI in the North Sea, which is
integrated into zone DKW1 (Western Denmark) when the bidding zone
configuration is changed. We chose DEI because it is the first island en-
visioned to be operational by 2030 and it has the most consistent reports
and studies available on location, size, and interconnection. Figure C.9(a)
illustrates the expected electricity exports from DEI to its home zone of
DKW1 in the OBZ and HBZ configurations. The horizontal line shows
the projected physical transmission limit of the corresponding intercon-
nector in 2030. In the HBZ case, this limit is expected to be violated in
2429 hours, or about 28% of the time, requiring generally expensive con-
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(a) Expected electricity flow from DEI to
DKW1 over the whole year.

(b) Expected day-ahead prices during the
congested hours only.

Figure C.9. Interconnector flow and prices during congested hours for DEI and zone
DKW1.

gestion management. For the OBZ, the interconnector capacity is only
binding in 320 hours (4%) over the year, indicating that the dispatch
changes drastically when the energy islands become part of an HBZ con-
figuration. These findings also highlight the sensitivity of the system-wide
dispatch to the capacity of the interconnectors between the energy islands
to shore. In general, the connection from DKW1 to the energy island is
barely used for the export of electricity to DEI, where it could be further
transported to another connected bidding zone.

Relaxing capacity constraints also affects market prices. Figure C.9(b)
shows the power prices on DEI and DKW1 in the OBZ and HBZ configu-
rations when there is congestion in the OBZ case. Note that in an HBZ,
DEI is part of DKW1, and thus there is a single day-ahead price. One
can see from the graph that electricity prices in the integrated bidding
zone fluctuate less than in the OBZ case. Furthermore, the price on DEI
in the HBZ configuration (blue) is generally higher than in the OBZ con-
figuration (orange) for the same hours. However, for some hours the price
on DEI is much lower in the HBZ configuration. This indicates that the
dispatch may be significantly different when the transmission constraint
is neglected.
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C.6 Discussion
The flexibility and profitability of an electrolyser might work in opposite
directions. Although for profitability reasons it is desirable that the elec-
trolysers have high capacity factors, acting as a flexibility resource and
participating in the balancing market could be beneficial for the overall
system but also reduce their total hydrogen production and eventually
their expected profits. In our cases, some flexibility is delivered to the
system by the offshore electrolysers, but not as their major service. In
general, the capacity factor of offshore installations is lower than that of
their onshore counterparts, independently of bidding zone configuration.

From the findings, we identify three points for further investigation:
the business case for offshore hydrogen production, discussed in Section C.6.1,
the sensitivity of installed capacities and sizing of assets, analysed in Sec-
tion C.6.2, and finally the model characteristics, reviewed in Section C.6.3.

C.6.1 Business Case
For an offshore hydrogen producer, it is important how much hydrogen
can be produced and how expensive the corresponding electricity is. Ta-
ble C.2 shows hydrogen quantities produced on the energy islands and
their expected electricity and marginal13 costs. With DEI, we observe
small differences for the two bidding zone configurations. Despite a
slightly higher expected electricity cost in the OBZ, a larger hydrogen
13We take into account 20% reduced and increased marginal costs, for upward- and downward-
balancing services, respectively.

Table C.2. Operational electrolyser statistics for the year 2030, based on the model
results.

Energy Configuration Hydrogen Expected Expected Profit
island production marginal cost electricity cost

GWh e/MWh e/MWh million e
DEI OBZ 1535.22 12.06 51.79 82.88
DEI HBZ 1358.11 12.20 48.64 79.57
Bornholm OBZ 649.64 12.15 46.36 40.24
Bornholm HBZ 584.85 12.12 46.23 36.41
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production leads to a 4% higher expected profit. To evaluate the ex-
pected profit of e82.88 million of the electrolyser on DEI in the OBZ
configuration, we compare it to the estimated electrolyser investment
costs. Based on an investment cost of e0.45 million/MWel in 2030 (Dan-
ish Energy Agency, 2022), the annuity for the 0.5 GW electrolyser on
DEI is e20.24 million.14 This indicates that investment in an electrol-
yser under the assumptions made here might be profitable. Electrolysers
onshore face higher expected electricity consumption costs, around e60–
e90/MWh. Hence, they need more full-load hours to achieve the same
return on investment. Note that we neglect any infrastructure costs for
hydrogen transport and assume that hydrogen can be sold at any time
and quantity for a price of e150/MWh or e100/MWh in 2030 or 2040,
respectively.
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Figure C.10. Expected electrolyser capacity factors for 2030 for the TYNDP and the
openENTRANCE data set in the OBZ configuration.

C.6.2 Sensitivity Analyses
The results may be sensitive to two main input parameters: the installed
capacities of conventional and renewable energy technologies, and sizes of
the assets on and connecting to the energy islands, so we vary these two
14We calculate the annuity a on the basis of overnight investment costs I0 for the year 2030
with an interest rate i of 4% and a lifetime T of 15 years as a = I0 · i·(1+i)T

(1+i)T −1 .
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parameters. As discussed above, and due to the better representation of
the system and the value of scarcity in the OBZ, we perform the sensitivity
analysis for the OBZ configuration only.

C.6.2.1 Installed Capacities

The data set from TYNDP 2020 provides a rather conservative outlook
on renewable energy capacities in 2030 and 2040. To verify our analyses,
we contrast the outcomes with those obtained when using the openEN-
TRANCE project data, which feature much higher capacities (Auer et
al., 2020); see Figure C.12 in the Appendix. We refer to this as our
Climate Case. With significantly higher installed renewable energy ca-
pacities but unchanged electrolyser capacities, we observe in Figure C.10
that the electrolyser capacity factors increase to around 90%. There
is an increase in hydrogen production on the energy islands, of around
141% (from 1535 GWh to 3691 GWh) on DEI and 183% (from 650 GWh
to 1839 GWh) on Bornholm. At the same time, the average expected
electricity cost declines by nearly 55% to almost e21/MWh, and the ex-
pected profit increases by 350% to e373.34 million on DEI and by 363%
to e186.51 million on Bornholm. Hence in a climate-compatible devel-
opment of the power system with large-scale deployment of additional
renewable energy sources, the business case for offshore electrolysers is
significantly stronger.

C.6.2.2 Sizing of Electrolysers and Cable Connections

As shown in Figure C.9(a), transfer capacity and line sizing significantly
affect hydrogen production. The reference cases originate in industry-led
studies of the configuration of energy islands (COWI, 2021; North Sea
Wind Power Hub, 2020). To analyse the influence of the chosen intercon-
nector capacities, we consider an increase of 20% and decreases of 20%
and 40% in the capacities of the interconnectors connected to the energy
islands. The results are shown in Figure C.11 for the OBZ configuration
in 2030. Although the capacity factors of the onshore electrolysers in the
connected bidding zones decline, those of the electrolysers on the energy
islands increase. When interconnector capacities are reduced by 20%, the
total capacity factors of the electrolysers on DEI and Bornholm increase



164 C Electrolysis as a Flexibility Resource on Energy Islands

by 19.8 and 5.2 percentage points, respectively. Similarly, reducing the
interconnector capacity to 60% of its original value increases the total ca-
pacity factors by 31.26 and 15.9 percentage points, respectively. In some
peak wind production hours, there is not enough interconnector capacity
available to balance fluctuations on the energy islands solely by adjusting
trade flows. This leads to increased participation in the balancing market
by the electrolyser, of around 1 percentage point. Increasing the inter-
connector capacity so that the total line capacity connected to the energy
islands exceeds its wind production capacity does not affect the capacity
factors of the electrolyser.
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Figure C.11. Electrolyser capacity factors for varying energy island interconnector
capacities, adjusted by 20% for OBZ in 2030.

C.6.3 Model Characteristics
Our model follows a frequent approach to analysing stochastic infeed from
renewable energy sources in electricity markets. In setting up the model,
we make assumptions that affect the results. For instance, to pursue com-
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putational tractability, we disregard unit commitment constraints. This
means that we neglect any minimum power generation limits, downtimes,
necessary minimum run time requirements, and outages, which increases
the flexibility of the dispatchable units in the model. To compensate for
the risk of having extensively overestimated flexibility from conventional
power plants, we include restrictions on the maximum ramp rates based
on historical data for 2017 taken from the ENTSO-E Transparency Plat-
form.

We use a net-transfer capacity approach to estimate interconnector ca-
pacities. In particular, for cables connecting the energy islands to shore,
we assume that their maximum transmission capacity is available at all
times. In practice, flow-based market coupling is currently used in Cen-
tral Western European markets and will likely be adopted across Europe
until 2030 (Tosatto et al., 2022). Flow-based market coupling allocates
transmission capacities to the interconnectors that have the highest value
for the system in the time period considered. Because energy islands host
only zero-marginal-cost power production, it is very likely that a flow-
based market coupling algorithm will allocate the maximum capacity to
the interconnectors connecting those islands to shore. Hence for those in-
terconnectors, flow-based market coupling and the simplified net-transfer
capacity scheme adopted here will likely lead to the same outcome. Never-
theless, due to the zonal setup in the model and the net-transfer capacities
between the zones, we neglect network constraints within the zones and
may overestimate the available grid capacities behind the interconnectors.
Refer to Seifert (2022), for instance, who concludes that the national grid
plans for 2030 are not yet equipped to accommodate foreseeably large
shares of renewable energy and need upward adjustments following na-
tional expansion plans.

Lastly, we simulate two market stages only, which do not reflect all
stages of the current market frameworks of most European countries. The
well-established sequences are the day-ahead market, cleared up to 36
hours before real-time, the intraday market for adjusting to improved
forecasts, balancing markets for flexibility, and technical reserves, and
for some countries a market-based redispatch or congestion management
actions. In this model, we consider a day-ahead market clearing and a
real-time balancing adjustment only.

The model’s characteristics influence the results to some extent. Where-

https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
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as using the full net-transfer capacities between countries for trade might
be closer to the results of a model with flow-based market coupling, the
impact of the reduced technical detail of dispatchable technology over-
estimates their flexibility potential. For all conventional technologies,
reservoir hydropower, and biomass, we include ramp rates but neglect
unit commitment and must-run obligations. In addition, for the case of
biomass, some regulatory frameworks, for example in Germany and Den-
mark, incentivise high capacity factors and a price-inflexible operation.
Our model allows full adjustment ranges within ramp rates for all tech-
nologies, which could lead to an overestimation of the flexibility potential
in the system.

C.7 Conclusion and Policy Implications
The concept and implementation of energy islands are driven by several
players in governments and industry. The construction of energy islands
has not started, and many details are not yet defined. Assuming that
those islands will be places for wind energy collection and hydrogen pro-
duction, we analyse the role of offshore electrolysers.

Our first research question targets the electrolysers’ contribution to
flexibility. We conclude that flexibility in the system stems mainly from
other, cheaper dispatchable sources. Offshore electrolysers do make a
modest contribution to balancing services on the energy island, however.
Looking at the impact of bidding zone configuration on the operation
of the electrolyser, we find that offshore bidding zones lead to slightly
higher electrolyser capacity factors and reduced need for congestion man-
agement. From our sensitivity analyses, we conclude in summary that
(i) significantly higher shares of renewables onshore lead to much higher
capacity factors of all electrolysers, but especially of those on the energy
islands, and make electrolysers a highly profitable investment, and (ii)
reducing the size of the cable connections of energy islands significantly
increases the capacity factors of electrolysers and their balancing actions
on the islands.

On the basis of our study, we formulate four policy recommendations
affecting the role of electrolysers on energy islands:
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1. Flexibility: Electrolysers can technically react to changes in elec-
tricity production and have a broad potential to provide flexibility.
But if that potential is to be exploited, economic incentives are
needed to make flexibility-oriented operation economically viable.
We show that capacity factors are low offshore, and investments in
electrolysers as flexibility resources only will need to be supported.

2. Bidding zone configuration: Offshore bidding zones reflect the
costs and scarcity of energy better than home bidding zones. For
electrolysers on energy islands, the OBZ configuration allows higher
hydrogen production at lower average electricity costs. This config-
uration also prevents misalignment between physical network con-
straints and market solutions, reducing possibly expensive redis-
patch measures. This suggestion is in line with the conclusions
of Kitzing and Garzón González (2020) who consider offshore wind
hubs only.

3. Hydrogen supply: Discussions of a hydrogen economy are gaining
momentum. The European Commission foresees a production of
10 million tonnes in Europe by 2030.15 If hydrogen is to be produced
locally as part of the strategy and is to be prioritised, the costs
of electricity for electrolysis should reflect local production costs.
Offshore bidding zones can make hydrogen production more viable.

4. Renewable energy targets: The renewable energy capacity pro-
jections presented in the TYNDP 2020 do not meet renewables tar-
gets. Our results indicate that the projected capacities are insuffi-
cient to supply the hydrogen needed by low-carbon industry. Na-
tional and European efforts must therefore incorporate incentives
and plans for dedicated and system-based hydrogen production.

This analysis uses a two-stage operational model to analyse the flexi-
bility provision of an offshore electrolyser and the impact of bidding zone
configurations on its profitability. The approach can be extended by
including unit commitment to obtain a better representation of the oper-
ational characteristics of large conventional units. For the representation
15See COM(2020) 301 final.

https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf
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of the electrolyser operation, Flamm et al. (2021) suggest using a mixed in-
teger program for higher accuracy, and Zheng et al. (2022b) highlight the
importance of including operational details on temperature dependence
and changes of state in the model. Extending the model by adding details
of all the technologies could provide further insights. Due to uncertainty
in hydrogen demand and prices, further analysis of the impact of both on
the viability and on offshore electrolysers will allow a better understand-
ing of how offshore assets can contribute to hydrogen demand and system
stability. So far, we have disregarded market power and strategic bidding.
However, such bidding might occur around energy islands when operators
of wind farms and electrolysers are both aiming for high profits. In partic-
ular, ownership structures may influence strategic behaviour. It could be
worth analysing the cases of different structures and contracts: Owning
and operating wind farms and electrolysers jointly might lead to different
market outcomes than when having separate owners and operators. Last,
we suggest investigating the impact of current and planned power grids on
the role and operation of offshore electrolysers on energy islands. We base
our analysis on modelling bidding zones, and we restrict net-transfer ca-
pacities. In a follow-up study, examination of flow-based market coupling
and inner-zone congestion management will provide further insights.

References
Alavirad, S., Mohammadi, S., Golombok, M., & Haans, K. (2021). Interconnection and

generation from a North Sea power hub – A linear electricity model. International
Journal of Electrical Power & Energy Systems, 133, 107132. https://doi.org/10.
1016/j.ijepes.2021.107132

Auer, H., Crespo del Granado, P., Oei, P.-Y., Hainsch, K., Löffler, K., Burandt, T.,
Huppmann, D., & Grabaak, I. (2020). Development and modelling of different
decarbonization scenarios of the European energy system until 2050 as a contri-
bution to achieving the ambitious 1.5 C climate target—establishment of open
source/data modelling in the European H2020 project openENTRANCE. e & i
Elektrotechnik und Informationstechnik, 137(7), 346–358. https ://doi .org/10.
1007/s00502-020-00832-7

Backe, S., Skar, C., del Granado, P. C., Turgut, O., & Tomasgard, A. (2022). EMPIRE:
An open-source model based on multi-horizon programming for energy transition
analyses. SoftwareX, 17, 100877. https://doi.org/10.1016/j.softx.2021.100877

https://doi.org/10.1016/j.ijepes.2021.107132
https://doi.org/10.1016/j.ijepes.2021.107132
https://doi.org/10.1007/s00502-020-00832-7
https://doi.org/10.1007/s00502-020-00832-7
https://doi.org/10.1016/j.softx.2021.100877


References 169

BDI. (2020). National strategy for the development of decarbonised and renewable hy-
drogen in France. Bretagne Développement Innovation. https://www.bdi.fr/wp-
content/uploads/2020/03/PressKitProvisionalDraft-National-strategy-for-the-
development-of-decarbonised-and-renewable-hydrogen-in-France.pdf

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach
to numerical computing. SIAM review, 59(1), 65–98. https://doi.org/10.1137/
141000671

BMWi. (2020). Die Nationale Wasserstoffstrategie. Bundesministerium für Wirtschaft
und Energie. https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-
nationale-wasserstoffstrategie.html

Chen, Q., Rueda Torres, J. L., Tuinema, B. W., & van der Meijden, M. (2018). Compar-
ative Assessment of Topologies for an Offshore Transnational Grid in the North
Sea. 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), 1–6. https://doi.org/10.1109/ISGTEurope.2018.8571824

Conejo, A. J., Carrión, M., & Morales, J. M. (2010). Decision Making Under Uncertainty
in Electricity Markets (Vol. 153). Springer US. https://doi.org/10.1007/978-1-
4419-7421-1

COWI. (2021). Cost benefit analyse og klimaaftryk af energiøer i Nordsøen og østersøen.
https ://ens .dk/sites/ens .dk/files/Vindenergi/a209704- 001_cost_benefit_
analyse_endelig_version.pdf

Danish Energy Agency. (2022). Technology Data for Renewable Fuels. https://ens.dk/
sites/ens.dk/files/Analyser/technology_data_for_renewable_fuels.pdf

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A Modeling Language for Math-
ematical Optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/
15M1020575

Egerer, J., Kunz, F., & Hirschhausen, C. v. (2013). Development scenarios for the North
and Baltic Seas Grid – A welfare economic analysis. Utilities Policy, 27, 123–134.
https://doi.org/10.1016/j.jup.2013.10.002

Energimyndiheten. (2021). Förslag till Sveriges nationella strategi för vätgas, elektro-
bränslen och ammoniak. https://lighthouse.nu/wp-content/uploads/2021/11/
Fo%CC%88rslag-till-nationell-strategi-25-nov.pdf

Energinet. (2022). The Value of Flexibility for Electrolyzers. https : // energinet . dk/
El/Systemydelser/Nyheder - om- systemydelser/2022 - 07 - 01 - Flexibility - from-
electrolysis

European Commission. (2020). An EU Strategy to harness the potential of offshore
renewable energy for a climate neutral future. COM(2020)741/F1. https://ec.
europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-741-F1-EN-MAIN-
PART-1.PDF

Flamm, B., Peter, C., Büchi, F. N., & Lygeros, J. (2021). Electrolyzer modeling and
real-time control for optimized production of hydrogen gas. Applied Energy, 281,
116031. https://doi.org/10.1016/j.apenergy.2020.116031

FPS Economy Belgium. (2021). View and strategy Hydrogen. https://economie.fgov.
be/sites/default/files/Files/Energy/View-strategy-hydrogen.pdf

https://www.bdi.fr/wp-content/uploads/2020/03/PressKitProvisionalDraft-National-strategy-for-the-development-of-decarbonised-and-renewable-hydrogen-in-France.pdf
https://www.bdi.fr/wp-content/uploads/2020/03/PressKitProvisionalDraft-National-strategy-for-the-development-of-decarbonised-and-renewable-hydrogen-in-France.pdf
https://www.bdi.fr/wp-content/uploads/2020/03/PressKitProvisionalDraft-National-strategy-for-the-development-of-decarbonised-and-renewable-hydrogen-in-France.pdf
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html
https://doi.org/10.1109/ISGTEurope.2018.8571824
https://doi.org/10.1007/978-1-4419-7421-1
https://doi.org/10.1007/978-1-4419-7421-1
https://ens.dk/sites/ens.dk/files/Vindenergi/a209704-001_cost_benefit_analyse_endelig_version.pdf
https://ens.dk/sites/ens.dk/files/Vindenergi/a209704-001_cost_benefit_analyse_endelig_version.pdf
https://ens.dk/sites/ens.dk/files/Analyser/technology_data_for_renewable_fuels.pdf
https://ens.dk/sites/ens.dk/files/Analyser/technology_data_for_renewable_fuels.pdf
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1016/j.jup.2013.10.002
https://lighthouse.nu/wp-content/uploads/2021/11/Fo%CC%88rslag-till-nationell-strategi-25-nov.pdf
https://lighthouse.nu/wp-content/uploads/2021/11/Fo%CC%88rslag-till-nationell-strategi-25-nov.pdf
https://energinet.dk/El/Systemydelser/Nyheder-om-systemydelser/2022-07-01-Flexibility-from-electrolysis
https://energinet.dk/El/Systemydelser/Nyheder-om-systemydelser/2022-07-01-Flexibility-from-electrolysis
https://energinet.dk/El/Systemydelser/Nyheder-om-systemydelser/2022-07-01-Flexibility-from-electrolysis
https://ec.europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-741-F1-EN-MAIN-PART-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-741-F1-EN-MAIN-PART-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-741-F1-EN-MAIN-PART-1.PDF
https://doi.org/10.1016/j.apenergy.2020.116031
https://economie.fgov.be/sites/default/files/Files/Energy/View-strategy-hydrogen.pdf
https://economie.fgov.be/sites/default/files/Files/Energy/View-strategy-hydrogen.pdf


170 C Electrolysis as a Flexibility Resource on Energy Islands

Gea Bermúdez, J., Pedersen, R. B. B., Koivisto, M. J., Kitzing, L., & Ramos, A. (2021).
Going offshore or not: Where to generate hydrogen in future integrated energy
systems? (preprint). https://doi.org/10.36227/techrxiv.14806647.v2

Gea-Bermudez, J., Pade, L.-L., Papakonstantinou, A., & Koivisto, M. J. (2018). North
Sea Offshore Grid - Effects of Integration Towards 2050. 2018 15th International
Conference on the European Energy Market (EEM), 1–5. https://doi.org/10.
1109/EEM.2018.8469945

Gea-Bermúdez, J., Kitzing, L., Koivisto, M., Das, K., Murcia León, J. P., & Sørensen,
P. (2022). The Value of Sector Coupling for the Development of Offshore Power
Grids. Energies, 15(3), 747. https://doi.org/10.3390/en15030747

Geidl, M., Koeppel, G., Favre-Perrod, P., Klockl, B., Andersson, G., & Frohlich, K.
(2007). Energy hubs for the future. IEEE Power and Energy Magazine, 5(1), 24–
30. https://doi.org/10.1109/MPAE.2007.264850

Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydro-
gen. Nature Energy, 4(3), 216–222. https://doi.org/10.1038/s41560-019-0326-1

Government of the Netherlands. (2020). Government Strategy on Hydrogen. government.
nl/documents/publications/2020/04/06/government-strategy-on-hydrogen

Grueger, F., Möhrke, F., Robinius, M., & Stolten, D. (2017). Early power to gas applica-
tions: Reducing wind farm forecast errors and providing secondary control reserve.
Applied Energy, 192, 551–562. https://doi.org/10.1016/j.apenergy.2016.06.131

Grüger, F., Hoch, O., Hartmann, J., Robinius, M., & Stolten, D. (2019). Optimized
electrolyzer operation: Employing forecasts of wind energy availability, hydrogen
demand, and electricity prices. International Journal of Hydrogen Energy, 44(9),
4387–4397. https://doi.org/10.1016/j.ijhydene.2018.07.165

HM Government. (2020). The Ten Point Plan for a Green Industrial Revolution. https:
/ / assets . publishing . service . gov . uk / government / uploads / system / uploads /
attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf

Ibrahim, O. S., Singlitico, A., Proskovics, R., McDonagh, S., Desmond, C., & Murphy,
J. D. (2022). Dedicated large-scale floating offshore wind to hydrogen: Assess-
ing design variables in proposed typologies. Renewable and Sustainable Energy
Reviews, 160, 112310. https://doi.org/10.1016/j.rser.2022.112310

IRENA. (2019). Renewable power generation costs in 2018. International Renewable
Energy Agency. https : / / www . irena . org/ - /media / Files / IRENA / Agency /
Publication / 2019 / May / IRENA _ Renewable - Power - Generations - Costs - in -
2018.pdf

Kaldellis, J., Apostolou, D., Kapsali, M., & Kondili, E. (2016). Environmental and social
footprint of offshore wind energy. Comparison with onshore counterpart. Renew-
able Energy, 92, 543–556. https://doi.org/10.1016/j.renene.2016.02.018

Kendziorski, M., Zozmann, E., & Kunz, F. (2020). National generation capacity. https:
//doi.org/10.25832/NATIONAL_GENERATION_CAPACITY/2020-10-01

Kitzing, L., & Garzón González, M. (2020). Market arrangements for offshore wind
energy networks. Danmarks Tekniske Universitet. https : / / orbit . dtu . dk / en /
publications/market-arrangements-for-offshore-wind-energy-networks

https://doi.org/10.36227/techrxiv.14806647.v2
https://doi.org/10.1109/EEM.2018.8469945
https://doi.org/10.1109/EEM.2018.8469945
https://doi.org/10.3390/en15030747
https://doi.org/10.1109/MPAE.2007.264850
https://doi.org/10.1038/s41560-019-0326-1
government.nl/documents/publications/2020/04/06/government-strategy-on-hydrogen
government.nl/documents/publications/2020/04/06/government-strategy-on-hydrogen
https://doi.org/10.1016/j.apenergy.2016.06.131
https://doi.org/10.1016/j.ijhydene.2018.07.165
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://doi.org/10.1016/j.rser.2022.112310
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf
https://doi.org/10.1016/j.renene.2016.02.018
https://doi.org/10.25832/NATIONAL_GENERATION_CAPACITY/2020-10-01
https://doi.org/10.25832/NATIONAL_GENERATION_CAPACITY/2020-10-01
https://orbit.dtu.dk/en/publications/market-arrangements-for-offshore-wind-energy-networks
https://orbit.dtu.dk/en/publications/market-arrangements-for-offshore-wind-energy-networks


References 171

Klima-, Energi-og Forsyningsministeriet. (2021). Regeringens Strategi for Power-to-X.
https://kefm.dk/Media/637751860733099677/Regeringens%20strategi%20for%
20Power-to-X.pdf

Kristiansen, M., Korpås, M., & Farahmand, H. (2018). Towards a fully integrated North
Sea offshore grid: An engineering‐economic assessment of a power link island.
WIREs Energy and Environment, 7(4). https://doi.org/10.1002/wene.296

Li, X., & Mulder, M. (2021). Value of power-to-gas as a flexibility option in integrated
electricity and hydrogen markets. Applied Energy, 304, 117863. https://doi.org/
10.1016/j.apenergy.2021.117863

Lüth, A. (2022). Risks, Strategies, and Benefits of Offshore Energy Hubs - A Literature-
Based Survey.

Marten, A.-K., Akmatov, V., Sørensen, T. B., Stornowski, R., Westermann, D., & Brosin-
sky, C. (2018). Kriegers flak‐combined grid solution: Coordinated cross‐border
control of a meshed HVAC/HVDC offshore wind power grid. IET Renewable
Power Generation, 12(13), 1493–1499. https://doi.org/10.1049/iet-rpg.2017.0792

Meeus, L. (2015). Offshore grids for renewables: Do we need a particular regulatory
framework? Economics of Energy & Environmental Policy, 4(1). https://doi.org/
10.5547/2160-5890.4.1.lmee

Meier, K. (2014). Hydrogen production with sea water electrolysis using Norwegian
offshore wind energy potentials: Techno-economic assessment for an offshore-
based hydrogen production approach with state-of-the-art technology. Interna-
tional Journal of Energy and Environmental Engineering, 5(2-3), 104. https :
//doi.org/10.1007/s40095-014-0104-6

Ministry of Climate and Environment. (2021). 2030 Polish Hydrogen Strategy. https:
//ec.europa.eu/energy/sites/default/files/documents/8_-_polish_hydrogen_
strategy_draft_presentation.pdf

Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., & Zugno, M. (2014). Integrating
Renewables in Electricity Markets (Vol. 205). Springer US. https://doi.org/10.
1007/978-1-4614-9411-9

Muehlenpfordt, J. (2020). Time series. https://doi.org/10.25832/TIME_SERIES/2020-
10-06

North Sea Wind Power Hub. (2020). Vision \textbar North Sea Wind Power Hub. https:
//northseawindpowerhub.eu/vision

NVE. (2021). Langsiktig Kraftmarkedsanalyse 2021 – 2040. https://publikasjoner.nve.
no/rapport/2021/rapport2021_29.pdf

Pfenninger, S., & Staffell, I. (2016). Long-term patterns of European PV output using
30 years of validated hourly reanalysis and satellite data. Energy, 114, 1251–1265.
https://doi.org/10.1016/j.energy.2016.08.060

Qi, R., Qiu, Y., Lin, J., Song, Y., Li, W., Xing, X., & Hu, Q. (2021). Two-stage stochas-
tic programming-based capacity optimization for a high-temperature electrolysis
system considering dynamic operation strategies. Journal of Energy Storage, 40,
102733. https://doi.org/10.1016/j.est.2021.102733

https://kefm.dk/Media/637751860733099677/Regeringens%20strategi%20for%20Power-to-X.pdf
https://kefm.dk/Media/637751860733099677/Regeringens%20strategi%20for%20Power-to-X.pdf
https://doi.org/10.1002/wene.296
https://doi.org/10.1016/j.apenergy.2021.117863
https://doi.org/10.1016/j.apenergy.2021.117863
https://doi.org/10.1049/iet-rpg.2017.0792
https://doi.org/10.5547/2160-5890.4.1.lmee
https://doi.org/10.5547/2160-5890.4.1.lmee
https://doi.org/10.1007/s40095-014-0104-6
https://doi.org/10.1007/s40095-014-0104-6
https://ec.europa.eu/energy/sites/default/files/documents/8_-_polish_hydrogen_strategy_draft_presentation.pdf
https://ec.europa.eu/energy/sites/default/files/documents/8_-_polish_hydrogen_strategy_draft_presentation.pdf
https://ec.europa.eu/energy/sites/default/files/documents/8_-_polish_hydrogen_strategy_draft_presentation.pdf
https://doi.org/10.1007/978-1-4614-9411-9
https://doi.org/10.1007/978-1-4614-9411-9
https://doi.org/10.25832/TIME_SERIES/2020-10-06
https://doi.org/10.25832/TIME_SERIES/2020-10-06
https://northseawindpowerhub.eu/vision
https://northseawindpowerhub.eu/vision
https://publikasjoner.nve.no/rapport/2021/rapport2021_29.pdf
https://publikasjoner.nve.no/rapport/2021/rapport2021_29.pdf
https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.1016/j.est.2021.102733


172 C Electrolysis as a Flexibility Resource on Energy Islands

Ruhnau, O., Hirth, L., & Praktiknjo, A. (2019). Time series of heat demand and heat
pump efficiency for energy system modeling. Scientific Data, 6(1), 189. https :
//doi.org/10.1038/s41597-019-0199-y

Ruhnau, O., & Muessel, J. (2022). When2heat. https://doi.org/10.25832/when2heat/
2022-02-22

Schlachtberger, D., Brown, T., Schramm, S., & Greiner, M. (2017). The benefits of
cooperation in a highly renewable European electricity network. Energy, 134,
469–481. https://doi.org/10.1016/j.energy.2017.06.004

Seifert, P. E. (2022). The Value of Large-Scale Offshore Distribution Islands: Benefits of
Sector Coupling and Multi-Country Connections using the Example of Bornholm
Energy Island (Master’s thesis). TU Berlin.

Singlitico, A., Østergaard, J., & Chatzivasileiadis, S. (2021). Onshore, offshore or in-
turbine electrolysis? Techno-economic overview of alternative integration designs
for green hydrogen production into Offshore Wind Power Hubs. Renewable and
Sustainable Energy Transition, 1, 100005. https://doi.org/10.1016/j.rset.2021.
100005

Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current
and future wind power output. Energy, 114, 1224–1239. https://doi.org/10.1016/
j.energy.2016.08.068

Strbac, G., Moreno Vieyra, R., Konstantelos, I., Aunedi, M., & Pudjianto, D. (2014).
Strategic Development of North Sea Grid Infrastructure to Facilitate Least-Cost
Decarbonisation. Imperial College London. https://doi.org/10.25561/28452

Sunila, K., Bergaentzlé, C., Martin, B., & Ekroos, A. (2019). A supra-national TSO
to enhance offshore wind power development in the Baltic Sea? A legal and
regulatory analysis. Energy Policy, 128, 775–782. https://doi .org/10.1016/j .
enpol.2019.01.047

Thommessen, C., Otto, M., Nigbur, F., Roes, J., & Heinzel, A. (2021). Techno-economic
system analysis of an offshore energy hub with an outlook on electrofuel applica-
tions. Smart Energy, 3, 100027. https://doi.org/10.1016/j.segy.2021.100027

Tosatto, A., Beseler, X. M., Østergaard, J., Pinson, P., & Chatzivasileiadis, S. (2022).
North Sea Energy Islands: Impact on national markets and grids. Energy Policy,
167, 112907. https://doi.org/10.1016/j.enpol.2022.112907

Trötscher, T., & Korpås, M. (2011). A framework to determine optimal offshore grid
structures for wind power integration and power exchange: A framework to de-
termine optimal offshore grid structures. Wind Energy, 14(8), 977–992. https :
//doi.org/10.1002/we.461

Weichenhain, U., Elsen, S., Zorn, T., Kern, S., & European Commission. (2019). Hybrid
projects how to reduce costs and space of offshore developments: North Seas
Offshore Energy Clusters study. https://doi.org/10.2833/416539

Wind Europe. (2021). Offshore Wind in Europe. https://proceedings.windeurope.org/
biplatform/rails/active_storage/blobs//WindEurope-Offshore-wind-in-Europe-
statistics-2020.pdf

Xiong, B., Predel, J., Crespo del Granado, P., & Egging-Bratseth, R. (2021). Spatial
flexibility in redispatch: Supporting low carbon energy systems with Power-to-

https://doi.org/10.1038/s41597-019-0199-y
https://doi.org/10.1038/s41597-019-0199-y
https://doi.org/10.25832/when2heat/2022-02-22
https://doi.org/10.25832/when2heat/2022-02-22
https://doi.org/10.1016/j.energy.2017.06.004
https://doi.org/10.1016/j.rset.2021.100005
https://doi.org/10.1016/j.rset.2021.100005
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.25561/28452
https://doi.org/10.1016/j.enpol.2019.01.047
https://doi.org/10.1016/j.enpol.2019.01.047
https://doi.org/10.1016/j.segy.2021.100027
https://doi.org/10.1016/j.enpol.2022.112907
https://doi.org/10.1002/we.461
https://doi.org/10.1002/we.461
https://doi.org/10.2833/416539
https://proceedings.windeurope.org/biplatform/rails/active_storage/blobs//WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf
https://proceedings.windeurope.org/biplatform/rails/active_storage/blobs//WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf
https://proceedings.windeurope.org/biplatform/rails/active_storage/blobs//WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf


References 173

Gas. Applied Energy, 283, 116201. https://doi.org/10.1016/j.apenergy.2020.
116201

Zhang, H., Tomasgard, A., Knudsen, B. R., Svendsen, H. G., Bakker, S. J., & Grossmann,
I. E. (2022). Modelling and analysis of offshore energy hubs. Energy, 261, 125219.
https://doi.org/10.1016/j.energy.2022.125219

Zheng, Y., You, S., Bindner, H. W., & Münster, M. (2022a). Incorporating optimal
operation strategies into investment planning for wind/electrolyser system. CSEE
Journal of Power and Energy Systems. https://doi.org/10.17775/CSEEJPES.
2021.04240

Zheng, Y., You, S., Bindner, H. W., & Münster, M. (2022b). Optimal day-ahead dis-
patch of an alkaline electrolyser system concerning thermal–electric properties
and state-transitional dynamics. Applied Energy, 307, 118091. https://doi.org/
10.1016/j.apenergy.2021.118091

https://doi.org/10.1016/j.apenergy.2020.116201
https://doi.org/10.1016/j.apenergy.2020.116201
https://doi.org/10.1016/j.energy.2022.125219
https://doi.org/10.17775/CSEEJPES.2021.04240
https://doi.org/10.17775/CSEEJPES.2021.04240
https://doi.org/10.1016/j.apenergy.2021.118091
https://doi.org/10.1016/j.apenergy.2021.118091


174 Appendix to Paper C
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Model Formulation
The following section describes the modelling framework that we para-
phrase in Section C.3. The paragraphs explain the mathematical model
and its characteristics, and Table C.3 provides the nomenclature. Vari-
ables are denoted in capital letters, scalars and parameters in small letters.

Table C.3. Designated sets, parameters, and variables of the mathematical model.
Sets
n ∈ N zone n in set of zones N
t ∈ T hour t in time horizon T
i ∈ I ⊂ U technology i of all conventional technologies I
j ∈ J technology j of all renewable plants J
e ∈ E electrolyser e of all electrolysers E
s ∈ S storage unit s of all storage units
r ∈ R ⊂ U technology r of all reservoirs
u ∈ U ⊃ I, R technology u of all dispatchable technologies for balancing
d ∈ D demand d of all demands D
f ∈ F line f of all lines F
ω ∈ Ω scenario ω of all scenarios

Parameters
gtot

ω,r maximum total production for reservoir r in scenario ω over all t

gmax
u maximum generation capacity of unit u

r
down/up
u maximum downward/upward ramping capacity of dispatchable unit u

r
down/up,G
s maximum downward ramping capacity of storage s

r
down/up,L
s maximum upward ramping capacity of storage s

greal
j,t renewable energy production of unit j in time step t

lmax
e maximum consumption of electrolyser e

lel
d,t demand of load d in time step t

mcu/j/e marginal production cost of unit u/j/e per MWh
pH2 price per kWh hydrogen sold
pup,B

i/e marginal upwards balancing cost of unit i/e per MWh
pdown,B

i/e marginal downwards balancing cost of unit i/e per MWh
pLOL value of lost load per kWh
ntcn,m net transfer capacity on line from n to m
smin

s /smax
s lower/upper storage level of storage s

η
G/L
s discharge/charge efficiency of storage s

ηe conversion efficiency of electrolyser e
πω,t probability of occurrence of scenario ω in time step t
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Decision Variables
Ff,t ∈ R+ flow on line f from zone n and m in time step t
Gu,t ∈ R+ generation by unit u in time step t
Gs,t ∈ R+ generation by storage s in time step t
GS

j,t ∈ R+ scheduled renewable generation from unit j in time step t

Le,t ∈ R+ load of electrolyser e in time step t
Ls,t ∈ R+ load/charge of storage s in time step t
Bup

ω,u/e,t ∈ R+ upwards balancing of unit u/e in time step t

Bdown
ω,u/e,t ∈ R+ downwards balancing of unit u/e in time step t

Bup,G
ω,s,t ∈ R+ upwards balancing of discharging storage s in time step t

Bdown,G
ω,s,t ∈ R+ downwards balancing of discharging storage s in time step t

Bup,L
ω,s,t ∈ R+ upwards balancing/reduced consumption of storage s in time step t

Bdown,L
ω,s,t ∈ R+ downwards balancing/increased consumption of storage s in time step t

F adj
ω,f,t ∈ R adjusted flow on line f from n and m in time step t

GCU
ω,j,t ∈ R+ curtailed renewable energy from unit j in time step t

Lshed
ω,d,t ∈ R+ shedded load d in time step t

Sω,s,t ∈ R+ storage level of storage s in time step t
Bramp

u/s,t,ω ∈ R ramping of unit u/s in timestep t and scenario ω

Objective. The objective is to minimise the expected total operational
costs for electricity generation adjusted for the profit from hydrogen pro-
duction for each hour t ∈ T in a co-integrated market comprising day-
ahead and balancing markets. Let i ∈ I, j ∈ J , s ∈ S, r ∈ R, e ∈ E
denote the sets of conventional, intermittent renewable, storage, hydro
reservoir, and electrolyser technologies, respectively. For simplicity, we
aggregate all power plants of the same technology in each country to a
single unit so that every country hosts at maximum one power plant of
each technology. Furthermore, we assume that all power plants of an indi-
vidual technology have exactly the same operational characteristics—cost
structure, technical constraints, and so forth. All inflexible price-inelastic
demands denoted by d ∈ D are also treated the same and incur the same
load-shedding cost. We introduce scenarios ω ∈ Ω in the second stage to
represent different power production levels from renewable energy sources.

Eq. (C.1) minimises the sum of costs for the first-stage decision CDA
t

and the costs for the second stage balancing CBA
ω,t . The costs in the second

stage are represented by the sum over all scenarios ω weighted by their
probability πω,t.

min
∑
t∈T

CDA
t +

∑
ω∈Ω

(
πω,t · CBA

ω,t

) (C.1)
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Costs in the first stage include the sum of costs for conventional power
production and hydrogen production costs related to the day-ahead sched-
ules; see Eq. (C.2). For the day-ahead market, we account for the marginal
cost mci for the dispatchable generation Gi,t of all conventional genera-
tors i. Hydro power reservoirs and storage technologies are assumed to
have zero marginal cost. Le,t denotes the power demand of the electrol-
yser and ηe < 1 the power-to-hydrogen efficiency of electrolyser e. Term
(ηep

H2 − mce) denotes the income from producing and selling of hydrogen:

CDA
t =

∑
i∈I

(mci · Gi,t) −
∑
e∈E

(ηe · pH2 − mce) · Le,t, ∀ t ∈ T (C.2)

Costs in the second stage of the model arise from providing balancing
energy in response to system needs in each scenario ω. Eq. (C.3) is thus
built similarly to the first-stage costs but adds the costs for upwards and
downwards balancing for the available technologies that have non-zero
marginal costs of production. For conventional technologies and electrol-
ysers, we include upwards Bup

ω,i,t, Bup
ω,e,t and downwards Bdown

ω,i,t , Bdown
ω,e,t . For

conventional technologies, we assume that upward (downward) balancing
costs are 20% above (below) their marginal costs. For electrolysers, we
additionally include revenues (losses) for additional (reduced) hydrogen
production in the case of downward (upward) balancing service provi-
sion. For further explanation of the derivation of the balancing bid prices
see Appendix C.7. In real-time operations, it is also possible to shed
loads Lshed

ω,d,t at a (sufficiently high) cost pLOL to ensure that this action
is taken only when the supply–demand balance cannot be achieved oth-
erwise. Power production from renewable energy sources is assumed to
have zero marginal cost and can be curtailed without a penalty.

CBA
ω,t =

∑
i∈I

(
pup,Bi · Bup

ω,i,t − pdown,Bi · Bdown
ω,i,t

)
(C.3)

+
∑
e∈E

(
pup,Be · Bup

ω,e,t − pdown,Be · Bdown
ω,e,t

)
+

∑
d∈D

pLOL · Lshed
ω,d,t, ∀ ω ∈ Ω, t ∈ T

The decisions on day-ahead and real-time power production are re-
stricted by a set of constraints. We introduce a supply–demand-balance
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for each stage, ensuring that electricity supply equals demand at all times.
For all technologies, the model includes a constraint to limit their max-
imum power output to their installed capacity and considers ramping
limits for the change of power production between time steps. Exchange
capacities between the zones are limited to a maximum net-transfer capac-
ity. Storage units have a constraint on maximum storage level and charge
and discharge rates. The electrolysers are modelled as power consuming
units similar to battery storage in charging mode.

Supply-demand balances. For the first stage, the supply-demand bal-
ance given in Eq. (C.4) must hold: in each zone, the generation from
dispatchable units Gu,t, scheduled renewables GS

j,t, storage Gs,t, and trade
Ff,t (incoming and outgoing) have to equal the demand for loads leld,t, hy-
drogen production Le,t, and storage charge Ls,t.

∑
u∈∆G

n

Gu,t +
∑

s∈∆S
n

Gs,t +
∑

j∈∆J
n

GS
j,t (C.4)

−
∑

d∈∆D
n

leld,t −
∑

e∈∆E
n

Le,t −
∑

s∈∆S
n

Ls,t

−
∑

f∈Fout
n

Ff,t +
∑

f∈F in
n

Ff,t = 0, ∀ n ∈ N , t ∈ T

For the second stage, deviations from forecasted values for stochas-
tic generation must be balanced. We introduce uncertainty through sce-
narios ω in this stage in Eq. (C.5). In this model, deviations of sched-
uled intermittent production GS

j,t from greal
ω,j,t are to be balanced by ei-

ther curtailing renewables GCU
j,t , using balancing services of dispatchable

technologies u for up- or downwards adjustments Bup
ω,u,t, Bdown

ω,u,t , increasing
or decreasing the output of an electrolyser Bup

ω,e,t, Bdown
ω,e,t or storage units

Bup,L
ω,s,t, Bdown,L

ω,s,t , Bup,G
ω,s,t , Bdown,G

ω,s,t . Note that we explicitly allow storage units
to not only adjust their day-ahead market schedules in the same direction,
but to change the operational mode in the balancing stage. For example,
if a storage unit is charging in the day-ahead market, we allow it to fully
revert this action and additionally discharge in the balancing stage.

Apart from that, net exchange with neighbouring zones F adj
ω,f,t can be
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adjusted and load can be shedded Lshed
ω,d,t.

∑
j∈∆J

n

(greal
ω,j,t − GS

j,t − GCU
ω,j,t) (C.5)

+
∑

u∈∆U
n

(BU
ω,u,t − BD

ω,u,t) +
∑

e∈∆E
n

(Bup
ω,e,t − Bdown

ω,e,t )

+
∑

s∈∆S
n

(Bup,G
ω,s,t + Bup,L

ω,s,t − Bdown,G
ω,s,t − Bdown,L

ω,s,t )

+
∑

d∈∆D
n

Lshed
ω,d,t −

∑
f∈Fout

n

F adj
ω,f,t +

∑
f∈F in

n

F adj
ω,f,t = 0, ∀ω ∈ Ω, n ∈ N , t ∈ T

Capacity constraints for conventional and reservoir units. Gen-
eration capacities for all units are limited in size. To represent these limits,
we enforce a series of capacity constraints on the model’s stages.

For renewable energy, the scheduled energy production GS
j,t cannot

exceed its installed capacity gmax
j . Curtailment GCU

ω,j,t in the second stage
cannot be larger than the realisation of renewable greal

ω,j,t production.

GS
j,t ≤ gmax

j ∀ j ∈ J, t ∈ T (C.6)
GCU

ω,j,t ≤ greal
ω,j,t ∀ ω ∈ Ω, j ∈ J , t ∈ T (C.7)

For conventional technologies, including hydro power reservoirs, gener-
ation Gu,t including balancing capacity Bup

ω,u,t and Bdown
ω,i,t must lie between

zero and the maximum installed capacity gmax
u , as displayed in Eq. (C.8)

and Eq. (C.9).

Gu,t + Bup
ω,u,t ≤ gmax

u ∀ ω ∈ Ω, u ∈ U , t ∈ T (C.8)
Gu,t − Bdown

ω,u,t ≥ 0 ∀ ω ∈ Ω, u ∈ U , t ∈ T (C.9)

Reservoir. For generation from water reservoirs, we restrict the sum of
generation over the time horizon to a scenario-specific maximum gtot

ω,r.
∑
t∈T

(Gr,t + Bup
ω,r,t − Bdown

ω,r,t ) ≤ gtot
ω,r, ∀ ω ∈ Ω, r ∈ R (C.10)

Combined heat and power plants. Let c ∈ Ic ⊆ I denote the set
of combined heat and power (CHP) plants that are often subject to heat
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delivery contracts and therefore have limited flexibility. We include a
time-varying minimum run requirement in our model to reflect this:

Gc,t − Bdown
ω,c,t ≥ gc,t, ∀ ω ∈ Ω, c ∈ Ic, t ∈ T (C.11)

Exchange constraints and load shedding. In the model, we allow
for exchange between different zones n ∈ N given a specific line (inter-
connector) capacity. Let F denote the set of interconnectors, where inter-
connector f connects zones n, m ∈ N . For simplicity, we use f = (n, m)
interchangeably. We further define one interconnector for each direction,
so that f = (n, m), f̂ = (m, n), where f, f̂ ∈ F . We also define
subsets Fout

n , F in
n ⊂ F that collect all interconnectors f and f̂ that start

and end at zone n, respectively. We use net transfer capacities to limit
the maximum flows on interconnectors between zones in accordance with
Eq. (C.12) – Eq. (C.13).

0 ≤ Ff,t ≤ ntcf ∀ t ∈ T, f ∈ F (C.12)
0 ≤ Ff,t + F adj

ω,f,t ≤ ntcf ∀ ω ∈ Ω, t ∈ T, f ∈ F (C.13)

Electrolyser. Eq. (C.14) and Eq. (C.15) restrict hydrogen production
from power consumption Le,t including balancing energy Bdown

ω,e,t and Bup
ω,e,t

to stay between the limits of zero and maximum installed electrical ca-
pacity gmax

e .

Le,t + Bdown
ω,e,t ≤ lmax

e ∀ ω ∈ Ω, e ∈ E, t ∈ T (C.14)
Le,t − Bup

ω,e,t ≥ lmax
e ∀ ω ∈ Ω, e ∈ E, t ∈ T (C.15)

Storage Equations. Storage units operate similarly to conventional
electricity generation technologies in their discharge mode and similarly
to electrolysers in their charge mode. To reflect all the characteristics of a
storage unit with regard to balancing, Eq. (C.16) and Eq. (C.17) restrict
power consumption Ls,t, including activated balancing capacity Bdown,L

ω,s,t

and Bup,L
ω,s,t to stay between the limits of zero and maximum installed charge

capacity lmax
s . Further, Eq. (C.19) and Eq. (C.18) address the capacity

boundaries of generation (discharge) from storage Gs,t and the balancing
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adjustments Bdown,G
ω,s,t and Bup,G

ω,s,t to keep within the physical boundaries at
maximum gmax

s .

0 ≤ Ls,t + Bdown,L
ω,s,t ≤ lmax

s ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.16)
0 ≤ Ls,t − Bup,L

ω,s,t ≤ lmax
s ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.17)

0 ≤ Gs,t + Bup,G
ω,s,t ≤ gmax

s ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.18)
0 ≤ Gs,t − Bdown,G

ω,s,t ≤ gmax
s ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.19)

Eq. (C.20) limits the stored energy Sω,s,t between a lower and upper
storage bound smin

s and smax
s .

smin
s ≤ Sω,s,t ≤ smax

s , ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.20)
The storage level Sω,s,t in each time step and scenario is determined by

the storage level of the previous time step Sω,s,t−1, adjusted by charged
energy (Ls,t + Bup,L

ω,s,t − Bdown,L
ω,s,t ) and discharged energy (Gs,t + Bup,G

ω,s,t −
Bdown,G

ω,s,t ). The charging and discharging efficiencies are denoted as ηL
s and

ηG
s , respectively.
Sω,s,t = Sω,s,t−1 + ηL

s · (Ls,t − Bup,L
ω,s,t + Bdown,L

ω,s,t ) (C.21)

− 1
ηG

s

· (Gs,t + Bup,G
ω,s,t − Bdown,G

ω,s,t ) ∀ ω ∈ Ω, s ∈ S, t ∈ T

Ramping. Conventional power plants and hydro turbines have techni-
cal limits on their ability to adjust their power output. We incorporate
these limits by including ramping constraints for all dispatchable power
plants u ∈ U and storage units s ∈ S:

− rdown
u ≤ Gu,t − Gu,t−1 ≤ rup

u , ∀ u ∈ U , t > 1 (C.22)
Bramp

u,t,ω = Bup
ω,u,t − Bdown

ω,u,t , ∀ ω ∈ Ω, u ∈ U , t ∈ T (C.23)
− rdown

u ≤ Gu,t − Gu,t−1 + Bramp
u,t,ω − Bramp

u,t−1,ω ≤ rup
u , ∀ ω ∈ Ω, u ∈ U , t > 1 (C.24)

− rdown,G
s ≤ Gs,t − Gs,t−1 ≤ rup,G

s , ∀ s ∈ S, t > 1 (C.25)
Bramp,G

s,t,ω = Bup,G
ω,s,t − Bdown,G

ω,s,t , ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.26)
− rdown,G

s ≤ Gs,t − Gs,t−1 + Bramp,G
s,t,ω − Bramp,G

s,t−1,ω ≤ rup,G
s , ∀ ω ∈ Ω, s ∈ S, t > 1 (C.27)

− rdown,L
s ≤ Ls,t − Ls,t−1 ≤ rup,L

s , ∀ s ∈ S, t > 1 (C.28)
Bramp,L

s,t,ω = Bup,L
ω,s,t − Bdown,L

ω,s,t , ∀ ω ∈ Ω, s ∈ S, t ∈ T (C.29)
− rdown,L

s ≤ Ls,t − Ls,t−1 + Bramp,L
s,t,ω − Bramp,L

s,t−1,ω ≤ rup,L
s , ∀ ω ∈ Ω, s ∈ S, t > 1 (C.30)
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where rdownu , rupu are the maximum ramping capabilities for downward
and upward ramping, respectively, of conventional generator u. For stor-
age s, rdown,G

s and rup,G
s and rdown,L

s , rup,L
s are the maximum ramping ca-

pabilities for upward and downward ramping in discharge and charging
mode, respectively. Furthermore, we define auxiliary variables Bramp

u,t,ω ,
Bramp,G

s,t,ω , Bramp,L
s,t,ω to capture the generation adjustments in the balancing

stage.

Balancing Costs
We assume that the costs of dispatchable units u in the balancing markets
are chosen in a way that reflects the additional costs of adjusting the
power output away from the day-ahead schedule. Hence we assume that
for upward balancing services (generator produces more power), the cost
pB,U

g equals mcu · (1 + µ), where µ is chosen to be 20%. Similarly, the
cost for downward balancing services (generator produces less power) is
assumed to be pB,D

g = mcu · (1 − µ). By contrast, the electrolyser faces
some gained or lost profits on the hydrogen market if it produces more
or less hydrogen by consuming more or less power. Following a similar
argument for dispatchable generators, we assume that the bid price for
upward balancing services (electrolyser consumes less power) is pB,U

e =
ηep

H2−mce·(1−µ). Analogously, the cost for downward balancing services
(electrolyser consumes more power) is pB,D

e = −(ηep
H2−mce·(1+µ)). Note

that in contrast to dispatchable units, the electrolyser not only takes its
marginal production cost into account, it further includes its opportunity
cost to produce an increased or reduced amount of hydrogen.
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Additional Graphs and Data
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Figure C.12. Installed Capacities from TYNDP and OpenEntrance Scenarios.
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Die Welt könnte wieder ein Paradies werden. Alles ist möglich.

— Erich Kästner in Pünktchen und Anton.
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