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Principal Portfolios

BRYAN KELLY, SEMYON MALAMUD, and LASSE HEJE PEDERSEN*

ABSTRACT

We propose a new asset pricing framework in which all securities’ signals predict
each individual return. While the literature focuses on securities’ own-signal pre-
dictability, assuming equal strength across securities, our framework includes cross-
predictability—leading to three main results. First, we derive the optimal strategy in
closed form. It consists of eigenvectors of a “prediction matrix,” which we call “princi-
pal portfolios.” Second, we decompose the problem into alpha and beta, yielding opti-
mal strategies with, respectively, zero and positive factor exposure. Third, we provide
a new test of asset pricing models. Empirically, principal portfolios deliver significant
out-of-sample alphas to standard factors in several data sets.

THE STARTING POINT FOR MUCH of asset pricing is a signal, Si,t , that proxies
for the conditional expected return for a security i at time t. In the context of an
equilibrium asset pricing model, Si,t may represent the conditional beta with
respect to the market (or the pricing kernel). Alternatively, Si,t may be a pre-
dictor that is agnostic of equilibrium considerations, such as each asset’s val-
uation ratio or its recent price momentum. Standard analyses—for example,
evaluating characteristic-sorted portfolios or asset pricing tests in the spirit
of Gibbons, Ross, and Shanken (1989)—focus on own-asset predictive signals;
that is, the association between Si,t and the return only on asset i, Ri,t+1.

In this paper, we propose a new approach to analyzing asset prices through
the lens of what we call the “prediction matrix.” This approach shows (i) how
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to optimally invest in light of cross-predictability, where optimal refers to the
return-maximizing strategy among a class of linear trading strategies; (ii) how
to find optimal alpha and beta strategies; and (iii) a new test of asset pric-
ing models.

To explain our approach in more detail, we define the prediction matrix as
� = E(Rt+1S′

t ) ∈ RN×N , where Rt+1 = (Ri,t+1)N
i=1 ∈ RN is the vector of returns

and St = (Si,t )N
i=1 ∈ RN is the vector of signals. The diagonal part of the pre-

diction matrix tracks the own-signal prediction effects, which are the focus of
standard asset pricing. For example, if the signal Si,t represents each asset’s
own momentum, then �i,i = E(Ri,t+1Si,t) is the expected profit of trading asset
i based on its own momentum signal. In other words, we can think of the signal
Si,t as the portfolio holding and Ri,t+1Si,t as the corresponding return.

Importantly, the prediction matrix also tracks cross-predictability phenom-
ena. Indeed, the off-diagonal part of the prediction matrix, �i, j = E(Ri,t+1Sj,t ),
shows how asset j’s signal predicts asset i’s return. Cross-predictability ex-
ists very generally in conditional asset pricing models, be they equilibrium in
nature or purely statistical. Knowledge of the entire prediction matrix, as op-
posed to the typical focus on diagonal elements alone, is critical to devising
optimal portfolios and understanding their risk-return trade-off.

Our main contribution is to develop an extensive theoretical understand-
ing of the prediction matrix and the asset pricing information it carries. The
main tools of our analysis are singular-value decompositions, analogous to us-
ing principal component analysis (PCA) to study variance-covariance matrices.
The leading components (singular vectors) of � are defined as those responsi-
ble for the lion’s share of covariation between signals and future returns. This
is where cross-predictability information becomes valuable. Like the diagonal
elements, off-diagonal elements of � are informative about the joint dynamics
in signals and returns.

We refer to �’s singular vectors as “principal portfolios” (PPs). They are a
set of normalized portfolios ordered from those most predictable by S to those
least predictable. The top PPs are thus the most “timeable” portfolios, and as
such offer the highest unconditional expected returns for an investor that faces
a leverage constraint (i.e., cannot hold infinitely large positions).

A key insight of our approach is that applying a singular-value decomposi-
tion directly to � conflates two different and opposing economic phenomena.
We propose first splitting � into a symmetric part (which is equal to its trans-
pose and denoted by �s) and an antisymmetric part (which is equal to minus its
transpose and denoted by �a), and applying separate matrix decompositions
to �s and �a. The symmetry separation of �,

� = 1
2

(� + �′)︸ ︷︷ ︸
�s

+ 1
2

(� − �′)︸ ︷︷ ︸
�a

, (1)

is a powerful device. With eigenvalue decompositions of each part, we can
take a complicated collection of predictive associations in the � matrix and
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Principal Portfolios 349

decode them into a set of well-organized facts about expected returns. These
facts describe (i) the nature of each predictive pattern represented in � and (ii)
the strength of these patterns.

The nature of a predictive pattern is described by its classification as either
symmetric or antisymmetric, which, amazingly, translates into beta and alpha.
In particular, we show that eigenvectors of the symmetric matrix �s are effec-
tive ways to achieve exposure (beta) to the factor based on the signal S, while
eigenvectors of the antisymmetric matrix �a are powerful factor-neutralized
(alpha) strategies with respect to this factor.1 We refer to strategies arising
from eigenvectors of the symmetric component as “principal exposure portfo-
lios” (PEPs) and the strategies arising from the antisymmetric part as “prin-
cipal alpha portfolios.” Once classified as “exposure” versus “alpha,” prediction
patterns are then ordered from strongest to weakest and based on the size of
the principal portfolios’ associated eigenvalues. In particular, we prove that
the unconditional average returns of PEPs and PAPs are exactly proportional
to their respective eigenvalues.

This decomposition has a close connection to equilibrium asset pricing. When
signals are betas to the pricing kernel and there is no-arbitrage, all PAPs must
deliver zero expected excess returns (because they have zero factor exposure)
and all PEPs must deliver nonnegative average returns (because they have
positive exposure to the pricing kernel). These insights are the groundwork for
a new asset pricing test based on eigenvalues of the symmetric and antisym-
metric components of the prediction matrix. If the pricing kernel is correctly
specified, there should not be any alpha relative to the pricing kernel. When
we pick signals that are supposed to be proportional to covariances with the
pricing kernel (e.g., market betas), then the corresponding prediction matrix
should have a zero antisymmetric part—meaning that � should be symmetric
and there should be no alpha portfolios. Moreover, negative eigenvalues of the
symmetric part of � correspond to strategies with negative factor exposure
and positive expected returns, another form of alpha. We thus get the asset
pricing test that � should be symmetric and positive definite. In other words,
when signals capture exposure to the pricing kernel, all PEPs should deliver
nonnegative returns and all PAPs should deliver zero returns.

We also develop theoretical underpinnings for practical empirical usage of
the prediction matrix from the perspective of robust statistics and machine
learning. Our main theoretical results are developed in population, where � is
known, and, with N assets, this requires estimating N2 parameters. Such rich
parameterization can lead to noisy estimates and overfit that reduce the out-of-
sample performance of PPs. In the literature and financial practice, signals are
often analyzed or traded in the form

∑
i Si,tRi,t+1, which essentially restricts

the signal-based analysis to testing a single parameter equal to average own-
predictability,

∑
i E(Si,tRi,t+1). While this may benefit from some robustness,

1 Of course, the decomposition into alpha and beta depends on the benchmark factor with which
they are computed. For example, our principal alpha portfolios (PAPs) deliver alpha with respect
to the factor generated by the signals S, but not necessarily with respect to other factors.
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restricting the analysis to a one-parameter problem is harsh—it forfeits any
and all useful information about heterogeneity in own-predictability or cross-
predictability in the estimated � matrix. PPs are well suited to balance the
joint considerations of exploiting potentially rich information from throughout
� while controlling parameterization to reduce noise and overfit. We show that
low-rank approximations of � and its symmetry-based components �s and �a

offer a means of balancing both considerations in a data-driven way to achieve
robust out-of-sample portfolio performance.

We implement the methodology empirically using several data sets. We con-
duct out-of-sample analyses that, at each date t, estimate the prediction matrix
from past signals and returns (i.e., information that is available through time
t). Estimating the prediction matrix is easy: �̂t = 1

120

∑t−1
τ=t−120 Rτ+1S′

τ , where
we use a backward-looking window of 120 periods in most of our analyses. Hav-
ing estimated the prediction matrix, the singular-value decompositions of � as
well as its symmetric and antisymmetric parts immediately yield PPs, PEPs,
and PAPs, and we track their out-of-sample performance.

As a simple illustration of our method, we first consider the empirical per-
formance of PPs using standard Fama-French portfolios as base assets and
momentum (i.e., past returns) as the trading signal. We find that the leading
PPs deliver significant positive returns out of sample. As further evidence con-
sistent with our framework, PEPs have significant factor exposure while PAPs
have little to no factor exposure and significant alpha. These results are robust
across a number of specifications and alternative samples (international equi-
ties; futures contracts on equity indices, bonds, commodities, and currencies).

We also consider a more comprehensive sample of more than 100 standard
equity factors with more than 100 different trading signals (e.g., accruals,
book-to-market, cash-to-assets, etc.). Our approach can handle only one sig-
nal at a time, so we conduct our PPs analysis one signal at a time. We also
aggregate the resulting PPs for each of these signals into a combined strategy.
We find that factor-timing strategies based on PPs perform well overall and
across the majority of signals. In fact, PPs have significant alpha relative to
standard factor models and relative to the principal components-based factor-
timing approach of Haddad, Kozak, and Santosh (2020).

Our paper is related to several literatures. Our asset pricing test comple-
ments other such tests, including Gibbons, Ross, and Shanken (1989) and
Hansen and Jagannathan (1991) (see Cochrane (2009) for an overview). Our
method to uncover new forms of predictability complements existing meth-
ods based on regressions (see Welch and Goyal (2008) and references therein),
portfolio sorts (see Fama and French (2015) for a recent example), and ma-
chine learning (Gu, Kelly, and Xiu (2018)). We consider factor-timing based on
a host of signals, complementing the work on factor-timing based on value
spreads (Asness et al. (2000), Cohen, Polk, and Vuolteenaho (2003), Had-
dad, Kozak, and Santosh (2020)) and factor momentum (Arnott et al. (2022),
Gupta and Kelly (2019)). Finally, we consider linear trading strategies, which
have also been studied in the context of dynamic trading with transaction
costs by Gârleanu and Pedersen (2013, 2016), Collin-Dufresne et al. (2015),
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Collin-Dufresne, Daniel, and Sağlam (2020), among others. While this litera-
ture focuses on linear-quadratic programming, we instead consider eigenvalue
methods.

In summary, we present a new way to uncover return predictability and test
asset pricing models. We illustrate how the method works empirically with
a wide range of encouraging results for out-of-sample PP performance across
signals and samples.

I. Principal Portfolio Analysis (PPA)

In this section, we lay out our PPA framework. We describe the concept of
linear strategies of predictive signals, show how linear strategies are closely
linked to the prediction matrix, derive optimal strategies, and introduce the
notion of PPs that implement optimal strategies.

We begin by introducing the setting and notation that we use throughout.
The economy has N securities traded at discrete times. At each time t, each
security i delivers a return in excess of the risk-free rate, Ri,t . All excess returns
at time t are collected in a vector, Rt = (Ri,t )N

i=1, and their conditional variance-
covariance matrix is �R,t = vart (Rt+1).

For each time and security, we have a “signal” or “characteristic” Si,t , and all
signals are collected in a vector, St = (Si,t )N

i=1. We can think of these predictive
characteristics as market betas, valuation ratios, momentum scores, or other
observable signals that proxy for conditional expected returns.

A. Linear Trading Strategies

How can an investor best exploit predictive information contained in asset
characteristic S? To address this question in a tractable way, we work in the
context of general linear trading strategies based on S. We then derive an
optimal linear strategy subject to leverage constraints and show the close con-
nection between the optimal linear strategy and the prediction matrix �.

A linear strategy based on S has portfolio weights of the form w′
t = S′

tL. We
refer to L ∈ RN×N as the position matrix because each column of L translates
signals into a portfolio position in each asset. For example, the first column
L1 = (Li,1)N

i=1 of L translates all of the signals into a position in asset 1, S′
tL1.

The return of a linear strategy is naturally the positions times the returns,
that is,

Rwt
t+1 = w′

tRt+1 =
∑

j

(S′
tL j )︸ ︷︷ ︸

position in j

Rj,t+1︸ ︷︷ ︸
return of j

= S′
tLRt+1 . (2)

We see that a linear strategy generally allows the position S′
tL j in any as-

set j to depend on the signals of all assets. Interestingly, these strategies can
potentially exploit both predictability using each asset’s own signal and cross-
predictability using other signals.
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The large majority of return prediction patterns in the empirical literature
focus on strategies that are agnostic of cross-predictability. The literature’s de-
fault portfolio construction based on a characteristic S builds a simple tradable
factor of the form

F̃t+1 =
∑

j

S j,tRj,t+1. (3)

We refer to F̃t+1 as the “simple factor” henceforth. Note that the simple factor
is a linear strategy with identity position matrix (L = Id):

F̃t+1 =
∑

i

Si,tRi,t+1 = S′
tRt+1 = S′

tIdRt+1. (4)

Hence, our framework nests the standard framework and allows for more gen-
eral strategies.

The simplicity of the conventional strategy F̃ makes it a helpful reference
point for the strategies we advocate in this paper. It is a portfolio that relies
only on own-signal predictions with no cross-prediction. Moreover, it imposes
that own-signal predictions enter the portfolio uniformly, abstracting from het-
erogeneity in predictive effects across assets. When a researcher reports that
this type of simple factor has a positive average return, E(F̃t+1) > 0, they are
effectively saying that the signal positively predicts own-asset returns on
average.

B. The Prediction Matrix

A central part of our analysis makes use of what we call the prediction ma-
trix:

� = E(Rt+1S′
t ), (5)

where � encodes predictive information for how the signals predict all returns,
based on assets’ own signals as well as cross-predictability. A strategy that
literally chooses an asset’s position equal to its own signal Si,t earns a return
of Ri,t+1Si,t , and �i,i is the expected value of this return. Likewise, a strategy
that takes a position in asset i based on the signal of another asset j earns
average returns of �i, j.

If Sj,t predicts Rj,t+1 on average across securities, then the prediction matrix
has a positive trace (tr, the sum of its diagonal elements):

E(F̃ ) = E

⎛⎝∑
j

S j,tRj,t+1

⎞⎠ = tr(�) > 0 . (6)

This notion of positive own-predictability on average across securities has
emerged as the standard criterion for measuring predictive signals in the em-
pirical finance literature and is typically evaluated based on the sample aver-
age of the strategy in (3).
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Average own-predictability not only abstracts from information in off-
diagonal elements of �, but also from heterogeneity in own-effects on the
main diagonal. In short, strategies predicated on average own-predictability
are highly constrained in the information they consider regarding the predic-
tive content of S. Proposition 1 shows that the entire � matrix is necessary
(and sufficient!) for understanding the returns of more general linear strate-
gies.

PROPOSITION 1 (Return of Linear Strategies): The expected excess return of a
linear trading strategy w′

t = S′
tL is

E
(
Rwt

t+1

) = E
(
S′

tLRt+1
) = tr(L�). (7)

An interesting linear strategy in its own right is to take positions in every
asset based on the magnitude of its predictability by the signal S, whether that
information comes from its own signal or from another asset’s signal. This
amounts to using � itself as the position matrix (L = �′) or using a positive
multiple of �:

PROPOSITION 2 (Trading the Prediction Matrix): Let M be an arbitrary positive
semidefinite matrix. Then the linear strategy with position matrix L = M�′ has
positive expected excess return:

E(S′
tLRt+1) = tr(M �′�) = tr((�M1/2)′ (�M1/2)) ≥ 0 . (8)

Moreover, the inequality is strict if and only if M1/2�′ is not identically zero.

We see that the prediction matrix plays two important roles. First, � tells us
the return of any linear strategy as seen in Proposition 1. Second, �′ is itself a
return-generating linear strategy as seen in Proposition 2.

C. The Prediction Matrix versus a Predictive Regression

We note that the prediction matrix is closely related to the following regres-
sion of the vector of returns on the vector of signals:

Rt+1 = BSt + εt+1. (9)

Here, the regression coefficient is B = �E(StS′
t )

−1, which depends on the pre-
diction matrix �. One could also try to estimate the mean-variance efficient
portfolio weights,

wmean-variance
t = vart (εt+1)−1Et (Rt+1) = vart (εt+1)−1�E(StS′

t )
−1St, (10)

but this would require the estimation of a large number of parameters and the
inversion of two large estimated matrices. Instead, the factor literature focuses
on the simple linear factor in (3) for tractability.

We seek to enhance the set of linear strategies without going all the way to a
regression-based mean-variance approach. Our approach focuses on finding a

 15406261, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13199 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



354 The Journal of Finance®

linear portfolio L that “works well” across signals. To do so, we consider a novel
objective—defined next—with a tractable solution that lends itself to dimen-
sion reduction. We note that our focus on the prediction matrix implies that our
method is likely closer to the mean-variance solution (10) when signals and re-
turns are properly scaled as discussed further in the empirical section below.2

D. Objective Function

We consider the objective to maximize the expected return of a linear strat-
egy subject to a portfolio constraint on the position matrix L:

max
L:‖L‖≤1

E
(
S′

tLRt+1
)
. (11)

We naturally need a portfolio constraint, since otherwise we can increase the
expected return by simply increasing position sizes, for example, the strategy
2L doubles the expected return of the strategy L. To understand the specific
constraint that we use in (11), note first that we are interested in a constraint
that depends on the position matrix L, not the random portfolio holdings w′

t =
S′

tL, since we are maximizing over position matrices.
Specifically, in (11) we maximize the expected return over the set of all posi-

tion matrices with matrix norm of at most one. We define the standard matrix
norm as ‖L‖ = sup{‖Lx‖ : x ∈ Rm with ‖x‖ = 1}, where ‖x‖ ≡ (

∑
i x2

i )1/2 is the
standard Euclidean norm of a vector x ∈ RN and we note that ‖L‖ = ‖L′‖.

The economic meaning of this constraint is that we consider strategies with
a bounded portfolio size. The linear strategy has portfolio weight S′

tL, which
has a size of ‖L′St‖ ≤ ‖L′‖ ‖St‖ ≤ ‖St‖ when ‖L‖ ≤ 1. So we consider linear
strategies for which the position size is always bounded by the position size of
the simple strategy. Furthermore, if St is normalized such that ‖St‖ = 1 for all
signals, then the linear strategy has a position size that is similarly bounded,
‖L′St‖ ≤ 1.3

We can also interpret the objective function as a robust mean-variance prob-
lem. For example, when the return variance-covariance matrix is given by
�R,t = σ 2Id for some σ ∈ R, the objective function (11) is identical to

max
L

E(S′
tLRt+1) subject to max

S:vart (S′Rt+1 )≤1
vart (S′LRt+1) ≤ 1 . (12)

2 Empirically, we scale signals such that St,i ∈ [− 1
2 , 1

2 ], implying that E(StS′
t ) is closer to being

proportional to the identity matrix. Also, we consider test assets that are hedged (and scaled by
volatility in the case of futures contracts with vastly different risk levels) such that vart (εt+1) is
not too far from being proportional to the identity. These scalings mean that our optimal solu-
tion may approximate the regression-based approach, but none of our theoretical results relies on
these restrictions.

3 Here, we discuss “position size” in terms of the Euclidian norm, whereas the notional leverage
of a position x is normally calculated as ‖x‖1 = ∑

k |xk|. However, the portfolio constraint ‖L‖ ≤ 1
also implies a constraint on notional leverage. Indeed, since ‖x‖1 ≤ ‖x‖n1/2, notional leverage is
bounded: ‖L′St‖1 ≤ ‖L′St‖n1/2 ≤ n1/2.
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In words, we maximize expected returns subject to a risk constraint. This
risk constraint is robust in the sense that we require variance to be bounded
regardless of the signal realization S. This robust objective where we maximize
risk with respect to S, rather than consider the risk conditional on S, is natu-
ral for a linear strategy—since the position matrix L is constant over time and
should “work” for all signals. To see the equivalence of (11) and (12), note that

max
S:vart (S′Rt+1 )≤1

vart (S′LRt+1) = max
S:S �=0

vart (S′LRt+1)
vart (S′Rt+1)

= max
S:S �=0

σ 2‖LS‖2

σ 2‖S‖2 = ‖L‖2 .

(13)
The risk constraint says that the risk of the linear strategy should be at
most as high as that of the simple factor. Another way to get the same
result is to require that the risk be limited when the signals are limited,
maxS:‖S‖≤1 vart (S′LRt+1) ≤ σ 2.

The assumption �R,t = σ 2Id is appropriate if volatilities are similar in the
cross section (or has been made similar, as in our empirical study of futures)
and if the correlation matrix is close to, or has been shrunk to, the identity ma-
trix. Such shrinkage can be useful in an optimization setting (Pedersen, Babu,
and Levine (2021)). In any event, when we have general variance-covariance
matrix �R,t , our portfolio constraint ‖L‖ ≤ 1 still serves to control for risk,
leverage, and the portfolio norm.4 Furthermore, we show how to solve a robust
mean-variance problem for general �R,t in Appendix Section I. In Internet Ap-
pendix Section I, we also show how to solve the mean-variance problem with a
risk penalty driven by risk aversion (instead of the risk constraint used here).5

E. Optimal Linear Strategies

Given the objective (11), the optimal strategy is surprisingly elegant as
shown in the following proposition.

PROPOSITION 3: The solution to (11) is given by L = M�′ with M = (�′�)−1/2

, and

max
L:‖L‖≤1

E
(
S′

tLRt+1
) =

N∑
i=1

λ̄i ,

where λ̄1 ≥ · · · ≥ λ̄N ≥ 0 are the singular values of �, that is, the eigenvalues of
(�′�)1/2 .

Proposition 3 shows that the prediction matrix � is integral to optimal linear
strategies based on the signal St . The solution is given in closed form and of

4 The portfolio constraint ‖L‖ ≤ 1 implies a limit on the portfolio norm by definition, a leverage
limit described in footnote , and the risk limit

max
S:‖S‖≤1

√
vart (S′LRt+1) = ‖�1/2

R,t L′‖ ≤ ‖�1/2
R,t ‖‖L‖ ≤ ‖�̄‖,

when the variance-covariance matrix is bounded, �R,t ≤ �̄.
5 The Internet Appendix may be found in the online version of this article.
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the form described in Proposition 2. Furthermore, the solution depends on the
singular values of �, which in general depend on all of its elements—not just
the diagonal—so it has the potential to outperform the simple factor.

F. Principal Portfolios

We next decompose the optimal solution into a collection of linear strategies
that we refer to as “principal portfolios” of the signal S. PPs are the building
blocks that sum to form the optimal linear strategy in Proposition 3.

The construction of PPs uses the singular-value decomposition of �. Specifi-
cally, let

� = U �̄V ′, (14)

where �̄ = diag(λ̄1, . . . , λ̄N ) is the diagonal matrix of singular values, and
U, V are orthogonal matrices with columns denoted uk and vk, respectively.
Now, the optimal L from Proposition 3 can be rewritten as

(�′�)−1/2�′ = V �̄−1V ′V �̄U ′ = VU ′ =
N∑

k=1

vku′
k .

We define the kth PP as the linear strategy with position matrix Lk = vk (uk)′,
which has a return of

PPk
t+1 = S′

t vk u′
k︸ ︷︷ ︸

Lk

Rt+1 = S′
tvk︸︷︷︸

S
vk
t

u′
kRt+1︸ ︷︷ ︸
R

uk
t

. (15)

We see that there are two interpretations of a PP. First, it is a simple linear
strategy with a position matrix Lk of rank 1. Second, it is a strategy that trades
the portfolio uk (with return Ruk

t ) based on the signal coming from the portfolio
vk (i.e., with signal Svk

t ). This latter interpretation plays a key role when we
discuss the beta components in the next section.

The construction of PPs is actually very simple. All one needs to do is use
their favorite program to compute the singular-value decomposition of � (a
standard feature of most computing programs) and take the column vectors of
U and V.

Decomposing the optimal strategy into its PPs is similar to decomposing
the variance into the principal components. The difference is that PCA decom-
poses the variance, whereas PPA decomposes the expected return. Just like the
variance of each principal component equals its corresponding eigenvalue, the
expected return of each PP is its singular value:

E(PPk
t+1) = tr(� vku′

k) = tr(U �̄V ′vku′
k) = tr(U �̄ eku′

k) = tr(λ̄kuku′
k) = λ̄k .

(16)
The following proposition summarizes the results of this section.
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Principal Portfolios 357

PROPOSITION 4: The expected return of each PP is given by its corresponding
singular value,

E(PPi
t+1) = λ̄i, (17)

and the sum of PPs is the optimal linear strategy

max
‖L‖≤1

E(S′
tLRt+1) = E

(
N∑

i=1

PPi
t+1

)
=

N∑
i=1

λ̄i. (18)

The following example provides some intuition for this result.
Example (Signals are Expected Returns). If signals are equal to conditional

expected returns, Si,t = Et (Ri,t+1), one might question the usefulness of PPs.
But even in this simple setting PPs are insightful about the optimal strategy.
In this case, the prediction matrix reduces to the unconditional second moment
of St , denoted by �S,

� = E(Rt+1S′
t ) = E(Et (Rt+1)S′

t ) = E(StS′
t ) = �S. (19)

Therefore, PPs are given by the principal components of �S. The matrix �S
describes the joint dynamics in conditional expected returns. Its leading prin-
cipal component describes the portfolio of assets with the most variable ex-
pected return. In other words, the first principal component of �S is the most
“timeable” portfolio. It is the most attractive portfolio to trade for an investor
facing a position size constraint and delivers the highest unconditional aver-
age profitability. The second principal component is the next most attractive,
and so on. Singular values of � relate to variability of expected returns, which
explains why unconditional expected returns on PPs are pinned down by the
size of singular values in (17). Moreover, all PPs have positive expected excess
returns (assuming that �S is nondegenerate), so the optimizing investor holds
them all, as in (18). However, if the prediction matrix is estimated with error,
it may be more robust to focus on the top PPs, as discussed in Section IV.

II. Optimal Alpha and Beta Strategies

We next derive the return of the optimal alpha and beta strategies, and show
how these can be decomposed into PPs, just as in the general solution in Propo-
sitions 3 and 4.

A. Alpha-Beta Symmetry Decomposition

To decompose the return into its alpha and beta components, we must first
specify the factor used to compute the beta. In other words, how do we char-
acterize the riskiness of linear strategies? To address this question, Lemma 1
introduces a factor having the special property that Si,t exactly describes asset
i’s conditional exposure to the factor.
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LEMMA 1 (Characteristics as Covariances): Define the factor Ft+1 as

Ft+1 =
(

1
S′

t (�R,t )−1St
(�R,t )−1St

)′
Rt+1. (20)

Ft+1 is the unique tradable factor with the property that

Si,t = covt (Ri,t+1, Ft+1)
vart (Ft+1)

. (21)

This factor, referred to as the “latent factor” henceforth, is an economically
important reference point.6 It has a natural risk factor interpretation—it is
the factor that unifies the expected return interpretation of Si,t and the risk
exposure interpretation of Si,t . No other factor based on S shares this property,
including the literature’s standard “simple factor,” F̃.

To interpret this result, it is again helpful to consider the example in which
St = Et (Rt+1). In this case, Ft+1 is the conditional tangency portfolio and thus
is the tradable representation of the pricing kernel. Moreover, being the tan-
gency portfolio, all assets have zero alpha versus this factor in the absence
of arbitrage. Importantly, while this factor is useful for interpreting some of
our results, none of our results relies on actually observing F—since we do not
observe it. We do not observe F because it depends on the conditional variance-
covariance matrix �R,t , which can only be estimated with noise. Instead, we
develop methods that can beat the simple factor F̃ without relying on observ-
ing, much less inverting, �R,t .

The risk factor interpretation of the latent factor F is helpful in character-
izing the risk and return of signal-based linear strategies. To characterize the
risk and return of linear strategies, recall that any square matrix B ∈ RN×N

can be decomposed into its symmetric part, Bs = 1
2 (B + B′), and its antisym-

metric part, Ba = 1
2 (B − B′), where B = Bs + Ba. The symmetric part equals

its own transpose while the antisymmetric part equals minus its own trans-
pose. Both parts have a number of interesting properties. For example, since
Ba = −(Ba)′, the antisymmetric part has zeros along the main diagonal.

Hence, any linear strategy can be seen as a sum of a symmetric and anti-
symmetric part, L = Ls + La. This decomposition has a deep economic inter-
pretation, as we show next.

PROPOSITION 5 (Alpha-Beta Symmetry Decomposition): The conditional latent
factor exposure and expected return of the strategy Rwt

t+1 = S′
tLRt+1 = S′

tL
sRt+1 +

6 Kelly, Pruitt, and Su (2020a, 2020b) propose a modeling approach and extensive empirical
study of this point. Lemma 1 shows that we can always think of any signals as exposures to a
factor, but it does not necessarily imply that the return predictability embodied by S is “rational”
in the sense that the factor F covaries with risks that investors care about, namely, the pricing
kernel, and that certain eigenvalue bounds are satisfied, as we discuss later.
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S′
tL

aRt+1 is

covt (Rwt
t+1, Ft+1)

vart (Ft+1)︸ ︷︷ ︸
factor beta

= S′
tL

sSt (22)

E(Rwt
t+1) = tr(Ls�s) + tr(La�a) . (23)

This proposition shows that the risk (beta to the latent factor) of a linear
strategy S′

tL is determined entirely by its symmetric part, while the expected
return is determined by both the symmetric and antisymmetric parts via their
interaction with the respective components of the prediction matrix, �s and
�a.

This proposition has wide-ranging implications. First, an antisymmetric
strategy is always factor neutral. Second, an antisymmetric strategy can nev-
ertheless deliver positive returns if �a �= 0. In this case, an antisymmetric
strategy can deliver positive expected return with zero factor exposure, that
is, pure alpha with respect to F. (Of course, while an antisymmetric strategy
always has zero exposure to F, it could have exposure to other factors not con-
sidered here, as we analyze in Internet Appendix III.)

The fact that factor exposures depend only on the symmetric component, Ls,
regardless of the symmetry of � is a direct implication of Lemma 2.

LEMMA 2: For any symmetric matrix B ∈ RN×N and any antisymmetric matrix
A ∈ RN×N, we have tr(BA) = tr(AB) = 0 and x′Ax = 0 for all vectors x ∈ RN.

In other words, antisymmetric matrices nullify certain matrix multiplica-
tions, which translates into factor-neutrality of trading strategies.

Proposition 5 also shows how symmetric strategies can deliver returns via
the interaction with �s. Symmetric strategies have a beta to the factor given
by S′

tL
sSt , which can be positive or negative. A symmetric strategy has posi-

tive factor beta for all possible realizations of the signal vector St if and only
if L is positive definite. Thus, as we analyze in more detail in the next section,
eigenvalues are key to understanding both risk and return. Finally, a sym-
metric strategy that always has negative factor beta corresponds to a negative
definite L.

As an example application of Proposition 5, consider the riskiness of the
simple factor F̃ in (3), which is a linear strategy with identity position ma-
trix (L = Id) as seen in equation (4). This simple factor has expected return
tr(Ls�s) = tr(�s) = tr(�), and it always has positive exposure to the latent
factor, covt (F̃t+1, Ft+1) = vart (Ft+1)S′

tSt > 0.
The optimal linear strategy in Proposition 3 and the corresponding PPs do

not distinguish whether expected returns originate from factor exposure or
alpha. In the remainder of this section, we show that �s and �a lie at the
heart of optimal symmetric and antisymmetric trading strategies. We derive
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symmetric and antisymmetric analogs of PPs, and show that they are the
building blocks of optimal symmetry-decomposed strategies with either pure
factor exposure and no alpha or pure alpha and no factor exposure.

Put simply, symmetry is beta and antisymmetry is alpha. We next derive the
optimal beta and alpha.

B. Symmetric Strategies: PEPs

As shown in equation (4), the simple factor is a simple symmetric linear
strategy that trades each asset based on its own signal. The idea that sym-
metric strategies trade based on their own signals holds more generally. In
particular, any strategy that scales the portfolio position in proportion to the
signal aggregated to the portfolio level—that is, any portfolio that trades on
the portfolio’s own signal—is a symmetric strategy.

To see this, consider a portfolio w ∈ RN . The portfolio w has excess return
Rw

t+1 = ∑
i wiRi,t+1. Aggregating the underlying signals based on these weights

means that the portfolio-level own signal is Sw
t = ∑

i wiSi,t . Trading the port-
folio based on its own signal means using its signal as portfolio weight, which
generates a return of

Sw
t Rw

t+1 = S′
tww′Rt+1. (24)

We see that trading the portfolio based on its own signal is a linear strategy
with a symmetric, positive semidefinite position matrix L = ww′. It’s expected
return is therefore

E
(
Sw

t Rw
t+1

) = E
(
w′StR′

t+1w
) = w′�w = w′�sw, (25)

which shows, in a different way than (23), that the return depends only on the
symmetric part of the prediction matrix (the last equality uses Lemma 2).

All symmetric linear strategies can be represented as combinations of port-
folios traded based on their own signals. This is achieved through the eigen-
decomposition of any symmetric position matrix L based on its eigenvalues λk
and orthonormal eigenvectors wk:

L =
K∑

k=1

λk wk (wk)′ . (26)

Furthermore, the position matrix satisfies our portfolio constraint ‖L‖ ≤ 1 if
|λk| ≤ 1 for all k.

This result provides intuition for why symmetric linear strategies have fac-
tor exposure. They trade portfolios based on the portfolio’s own signal. In this
sense, they do what the signal prescribes, which anchors their behavior to that
of the factor F. For example, if the signal Si,t is each security’s momentum,
then a symmetric linear strategy consists of trading different portfolios based
on their own momentum—in the same spirit as the factor.
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We next consider optimal symmetric linear strategies. We know from (23)
that an optimal symmetric strategy maximizes tr(L�s), so we can use Proposi-
tion 3 with � replaced by �s. The solution can be written simply based on the
eigenvalue decomposition

�s = W�sW ′ =
N∑

k=1

λs
k ws

k (ws
k)′ , (27)

where W = (ws
1, . . . , ws

N ) is the matrix of eigenvectors corresponding to the
eigenvalues λs

1 ≥ . . . ≥ λs
N . We see that the optimal symmetric strategy is

(�s�s)−1/2�s = W |�s|−1W ′ W�sW ′ = Wsign(�s)W ′ =
N∑

k=1

sign(λs
k) ws

k (ws
k)′ .

(28)

The optimal strategy can be decomposed into N components, or PEPs. The kth

PEP is a linear strategy with position matrix ws
k(ws

k)′ and a return of

PEPk
t+1 = S

ws
k

t R
ws

k
t+1 = S′

tw
s
k(ws

k)′Rt+1. (29)

The next result characterizes the returns of PEPs.

PROPOSITION 6: The expected return of each PEP is equal to its corresponding
eigenvalue

E(PEPk
t+1) = E

(
S

ws
k

t R
ws

k
t+1

)
= E

(
S′

tw
s
k(ws

k)′Rt+1
) = λs

k. (30)

Going long PEPs with positive eigenvalues and short those with negative eigen-
values is the optimal symmetric linear strategy:

max
‖L‖≤1, L=L′

E(S′
tLRt+1) =

N∑
k=1

sign(λs
k)E(PEPk

t+1) =
N∑

k=1

|λs
k|. (31)

The first result shows that returns of PEPs equal their eigenvalues. The sec-
ond result shows that the collection of PEPs yields the symmetric linear strat-
egy with the highest unconditional expected return, subject to leverage con-
straint ‖L‖ ≤ 1. This optimal performance is achieved by trading PEPs while
accounting for the direction of their predictability. The optimal strategy takes
long positions of size 1 in all PEPs with positive expected returns (i.e., positive
eigenvalues) and short positions of size −1 in PEPs with negative expected
returns.

We next consider how the PEPs relate to the simple factor F̃.
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PROPOSITION 7 (Beating the Factor): The simple factor, F̃, can be decomposed
as

F̃t+1 =
N∑

i=1

Si,tRi,t+1 =
N∑

k=1

S
ws

k
t R

ws
k

t+1 =
N∑

k=1

PEPk
t+1. (32)

If all eigenvalues are nonnegative, λs
k ≥ 0, then F̃ is the optimal symmetric strat-

egy. Otherwise, F̃ has a lower expected return than buying the subset of PEPs
with positive eigenvalues, which is lower than that of the optimal strategy from
Proposition 6:

E
(
F̃t+1

)
=

N∑
k=1

λs
k ≤

∑
k:λs

k>0

λs
k ≤

N∑
k=1

|λs
k| . (33)

Interestingly, the simple factor equals the sum of all PEPs as seen in (32). In
fact, F̃ can be viewed as the sum of all possible returns of symmetric strategies,
not just the PEPs. Indeed, for any orthonormal basis of portfolios B = {bk}N

k=1,
we have that BB′ = Id and hence

N∑
i=1

Si,t Ri,t+1 = S′
tRt+1 = S′

tBB′Rt+1 =
N∑

k=1

Sbk
t Rbk

t+1 . (34)

Thus, trading the simple factor on stocks is equivalent to trading it on portfolios.
The fact that F̃ equals the sum of PEPs together with equation (30) implies

that the expected excess return of the simple factor equals the sum of the
eigenvalues, E(F̃t+1) = ∑N

k=1 λs
k . Therefore, when a researcher shows that a

simple strategy F̃t+1 has significantly positive average returns, we learn that
the sum of the eigenvalues of �s is positive.

When all eigenvalues are nonnegative, the simple factor is optimal among
all symmetric strategies. Thus, in this case, the simple strategy is not just
simple—our analysis sheds new light on why it is a natural starting point.

When E(F̃t+1) = ∑N
k=1 λs

k > 0, some eigenvalues can nevertheless be nega-
tive. Negative eigenvalues correspond to those surprising PEPs that are neg-
atively predicted by their own signals. When there exist PEPs with negative
eigenvalues, we can beat the simple factor by leaving these PEPs out, buying
only the PEPs that “work.” Trading the PEPs with positive eigenvalues is the
optimal strategy among all linear strategies that always have positive factor
exposure (i.e., among strategies with positive semidefinite L).

If we are willing to have a factor exposure that may switch sign, we can
achieve even higher returns. Indeed, negative eigenvalues also describe useful
prediction patterns, just in the opposite direction. Therefore, an investor can
do even better by also shorting the PEPs with negative eigenvalues, as shown
in equation (33).
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Table I
Analogy between PCA and PPA

This table shows five analogies between principal component analysis (PCA) and principal port-
folio analysis (PPA) for the symmetric part of the prediction matrix. For PCA (PPA): (i) the vari-
ance (expected excess returns) of each component equals its eigenvalue; (ii) different components
k �= l are orthogonal; (iii) the sum of the variances (returns) of individual securities equals that of
the components, and also equals the trace of the variance-covariance matrix (prediction matrix);
(iv) the top K components maximize variance (return) for orthonormal portfolios; and (v) compo-
nent k + 1 maximizes the variance (return) among all portfolios that are orthogonal to the first k
portfolios.

Principal Component Analysis Principal Portfolio Analysis (Symmetric Part)

(i) var(Rπk
t+1) = λk(�R ) E(S

ws
k

t R
ws

k
t+1) = λk(�s )

(ii) π ′
k�Rπl = 0 i.e., cov(Rπk

t+1, Rπl
t+1) = 0 (ws

k )′�sws
l = 0 i.e., E(S

ws
k

t R
ws

l
t+1) + E(S

ws
l

t R
ws

k
t+1) = 0

(iii)
∑

k var(Rk,t+1) = ∑
k var(Rπk

t+1) = tr(�R )
∑

k E(Sk,tRk,t+1) = ∑
k E(S

ws
k

t R
ws

k
t+1) = tr(�s )

(iv) (πk ) = arg maxorthon.{xk}Kk=1

∑
k var(Rxk

t+1) (ws
k ) = arg maxorthon.{xk}Kk=1

∑
k E(Sxk

t Rxk
t+1)

(v) πk+1 = arg maxx⊥{π1,...,πk} var(Rx
t+1) ws

k+1 = arg maxx⊥{ws
1,...,ws

k} E(Sx
t Rx

t+1)

The analogy between PPA and PCA is remarkably close when we focus on
the symmetric part of the prediction matrix as highlighted in Table I. As seen
in the table, PCA and PPA share five key properties. While PCA decomposes
the variance into its components, PPA decomposes the expected excess return.
Both have similar connections to eigenvalues, orthogonality, the trace, and op-
timality across orthonormal portfolios.

Example (Diagonal Prediction Matrix). Suppose there is no cross-
predictability and signals have mean zero (E(Sj,t ) = 0). Then �i j =
E(Ri,t+1Sj,t ) = 0 for all i �= j. Hence, � is symmetric, so there are no antisym-
metric (zero exposure) strategies within �. Furthermore, the PEPs are simply
the unit vectors ws

k = 1k.7 The optimal strategy is long assets with positive
own-predictability and short those with negative own-predictability.

C. Antisymmetric Strategies: PAPs

We now turn to antisymmetric linear trading strategies. The most basic type
of antisymmetric matrix has the form L = xy′ − yx′, which we call rank-2 anti-
symmetric strategies. These building blocks are analogous to the rank-1 sym-
metric trading strategies, L = ww′, that are the basic building blocks of all
symmetric trading strategies. Each rank-2 antisymmetric strategy generates
a return of

S′
t (xjy′

j − yjx′
j )Rt+1 = Sxj

t Ryj

t+1 − Syj
t Rxj

t+1. (35)

The first part of this portfolio is the return to trading the portfolio yj based on
the signal coming from the portfolio xj. In other words, a strong signal for xj

7 Here, 1k = (0, . . . , 1, 0, . . . , 0)′, where 1 is in the kth position.
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(S′
tx j) recommends scaling up the position in yj (y′

jRt+1), and this generates a
return of Sxj

t Ryj

t+1. The second part is similar but flips the roles xj and yj and
shorts the associated strategy (due to the minus sign). Thus, antisymmetric
strategies can be interpreted as long-short strategies that trade two portfolios
against each other based on the strength of each other’s signal.

The next result shows that all antisymmetric strategies can be represented
as a sum of these basic building blocks.

LEMMA 3: Any antisymmetric matrix A has an even number 2K of nonzero
eigenvalues. The nonzero eigenvalues are purely imaginary and come in
complex-conjugate pairs: iλk and −iλk. The corresponding orthonormal eigen-
vectors are zk = 1√

2
(xk + iyk) and the complex conjugate is z̄k = 1√

2
(xk − iyk),

where xk, yk ∈ RN with ‖xk‖ = ‖yk‖ = 1, x′
kyk = 0, and x′

kxl = x′
kyl = y′

kyl = 0 for
all k �= l and k, l ≤ K ≤ N/2. The corresponding eigendecomposition is given by

A =
K∑

k=1

λk(xky′
k − ykx′

k). (36)

This lemma shows how to break any antisymmetric matrix into its basic
building blocks of form xky′

k − ykx′
k for k = 1, . . . , K.8 But why does this result

in zero conditional factor exposure, as guaranteed by Proposition 5? The next
example helps develop intuition for the absence of factor risk in antisymmet-
ric strategies.

Example (Beta-Neutral Strategy). Consider an economy of N assets that sat-
isfies the capital asset pricing model (CAPM), save for asset 1, which has a
positive alpha. That is, Et (Ri,t+1) = α1i=1 + βi,tθt , where9 θt ≥ 0 is the market
risk premium, βi,t is the conditional CAPM beta of stock i, and α > 0. Suppose
further that signals are defined to be the conditional betas, Si,t = βi,t . A stan-
dard beta-neutral strategy to exploit this scenario takes a long position in asset
1 with size equal to one (i.e., the size is set equal to the factor’s beta on itself).
The conditional beta from the long position is equal to β1,t , so beta-neutrality is
achieved with a position of −β1,t = −S1,t in the factor. This strategy is a rank-2
antisymmetric strategy with L = yx′ − xy′. The long position in asset 1 corre-
sponds to x = (1, 0, . . . , 0)′, and the short position in the factor corresponds to
y = (1, 1, . . . , 1)′. In other words, the beta-neutral strategy has zero symmetric
component, nonzero antisymmetric component, and positive expected return,
rendering it an alpha strategy with expected return

E(S′
tLRt+1) = E(β ′

t (yx′ − xy′)Rt+1) = E

(∑
i

βi,tR1,t+1 − β1,t

∑
i

Ri,t+1

)

= αE

(
N∑

i=2

βi,t

)
,

8 An antisymmetric strategy satisfies the portfolio constraint ‖A‖ ≤ 1 as long as |λk| ≤ 1 in (36).
9 Here, 1i=1 equals one if i=1 and zero otherwise.
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Principal Portfolios 365

which is positive as long as betas are positive on average. This is not the only
pure alpha strategy, as a long position in asset 1 can be hedged with any other
asset or combination of assets. Below we show how to construct optimal pure
alpha strategies with respect to the factor F using the eigendecomposition of
�a.

The example illustrates that the fundamental yx′ − xy′ structure underlying
all antisymmetric strategies is closely related to the familiar approach to factor
neutralization. To eliminate factor exposures, the position size in each must be
equal to the factor exposure of the other, with appropriately opposing signs.

Next, we derive optimal antisymmetric strategies. The first step is to ap-
ply the eigendecomposition in (36) to the antisymmetric part of the transposed
prediction matrix, (�a)′. By Lemma 3, the matrix (�a)′ has 2Na nonzero and
purely imaginary eigenvalues, iλa

k and −iλa
k, for some Na ≤ N/2. Their imagi-

nary parts, λa
k ∈ R, can be ordered as

λa
1 ≥ · · · ≥ λa

Na ≥ 0 ≥ −λa
Na ≥ · · · ≥ −λa

1 . (37)

For each eigenvalue λa
j , we denote the corresponding real and imaginary parts

of the eigenvectors by xj and yj, respectively.
We define the jth PAP as the linear strategy based on the jth eigenvectors:

Lj = xjy′
j − yjx′

j for j = 1, . . . , Na. Note that, since Na ≤ N/2, there exist at
most N/2 principal alpha strategies and they are orthonormal (Lemma 3). The
PAP buys portfolio yj based on the signal coming from portfolio xj and simulta-
neously shorts portfolio xj based on the signal from yj. Similar to the result for
PEPs, we find that PAP expected returns are proportional to their eigenvalues
and that the sum of PAPs is the optimal antisymmetric linear trading strategy.

PROPOSITION 8: A principal alpha strategy has expected return E(PAPj
t+1) =

2λa
j and zero factor exposure. The sum of PAPs is the optimal antisymmetric

linear strategy:

max
‖L‖≤1, L=−L′

E(S′
tLRt+1) =

Na∑
k=1

E(PAPk
t+1) =

Na∑
k=1

2λa
j . (38)

The next example helps illustrate the properties of PEPs and PAPs.
Example (Constant Signals). Suppose that signals are constant over time,

St = S.10 In this case, the prediction matrix is especially simple, � =
E(Rt+1S′

t ) = RS′, where we use the short-hand notation R := E(Rt+1). We can
now compute the PEPs and PAPs explicitly.

First, consider the case in which returns align with signals exactly, R = S.
In this case, we have � = SS′. This matrix is symmetric and has a rank of one.

10 As a concrete example, consider sorting stocks into value (book-to-market) deciles, using the
decile portfolios as the baseline assets, and using a value signal defined as the decile number of
each asset as the predictive signal. This is in contrast to, for example, forming assets as value-
sorted portfolios, but using portfolio momentum as the trading signal. In this case, signals are far
from constant over time, and this is what we do empirically.
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366 The Journal of Finance®

Hence, there is a single PEP with a nonzero eigenvalue, namely, the eigenvec-
tor S, and no PAP. Therefore, this PEP is the only meaningful portfolio, and it
is the same as the simple factor, S, with expected return S′R = R′R > 0.

Next, consider the case in which expected returns do not line up perfectly
with the signal. Then, � = RS′ is no longer symmetric. The symmetric part is
�s = 0.5(RS′ + SR′), which has a rank of 2. Hence, �s has at most two nonzero
eigenvalues, λs

1 = 0.5(R′S + ‖R‖ ‖S‖) > 0 ≥ λs
N = 0.5(R′S − ‖R‖ ‖S‖), and

the corresponding PEPs are11

ws
1 = cs

1

(
R

‖R‖ + S
‖S‖

)
, ws

N = cs
N

(
R

‖R‖ − S
‖S‖

)
,

where cs
1, cs

N are constants chosen such that ‖ws
1‖ = ‖ws

N‖ = 1. We see that the
first PEP bets on securities with high average returns and high signals, while
the last PEP bets on securities with high average returns and low signals. The
negative eigenvalue PEP isolates losses due to the erroneous component of S
and exploits them with a short position.

In this example, the prediction matrix also has an antisymmetric part. The
strategy that trades this is L = �a′ = 0.5(SR′ − RS′). To derive the PAP, note
that �a′ has at most two nonzero eigenvalues with purely imaginary parts
λa

1 = 0.5(‖R‖ ‖S‖ − R′S)1/2 ≥ 0 ≥ λa
N = − λa

1 and the corresponding PAP is
the linear strategy with position matrix L = xy′ − yx′, where12

y = ca (R‖S‖2 − S(R′S)
)

, x = S/‖S‖.
The short part of the portfolio (x) is exactly the factor hedge. It is in place to en-
sure that the constraint (zero factor exposure) is satisfied. The remaining part
of the problem is to find the highest average return subject to the constraint.
Since the factor uses all (and only) the information in S, the remaining infor-
mation that the PAP has at its disposal comes from the unconditional mean of
returns. Thus, the long side of the PAP (y) is determined by the information in
R that is missed by S, hence the emergence in y of the difference between R
and S.

Example (Betting against Beta (BAB): PAP is the New BAB). Proceeding from
the prior example, suppose that the signals S are chosen to be the expected re-
turns in an asset pricing model, that is, Sj = cov(−Mt, Rj,t ), where M denotes
the model’s pricing kernel. Suppose further that there is less dispersion in true
expected returns than predicted by the model—for simplicity, suppose that
1′S/N = 1 and suppose that R = 1, where 1 is the vector with all coordinates
equal to one. Then the alpha portfolio arising from the antisymmetric part of
the prediction matrix has portfolio weight w′ = S′(SR′ − RS′) = (S′S)1′ − NS′.
This strategy goes long the equal-weighted portfolio (given by R = 1), while
shorting the beta-weighted portfolio, S. To keep the portfolio beta-neutral, the

11 These eigenvalues and eigenvectors can be verified by checking that �sws
k = λs

kws
k for k =

1, N.
12 Note that ca is determined such that ‖y‖ = 1.
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Principal Portfolios 367

equal-weighted portfolio (which is lower beta) is scaled up relative to the beta-
weighted portfolio,13S′S > N. Hence, this strategy resembles the BAB strategy
of Frazzini and Pedersen (2014). This strategy has expected excess return of
w′R = NS′S − N2 > 0 and a beta of w′S = NS′S − NS′S = 0.

D. Static and Dynamic Bets

In the preceding examples, signals are constant, which makes the math par-
ticularly tractable to illustrate intuitive aspects of PPs. But constant signals
imply that there are only static trading opportunities. In general, signals fluc-
tuate over time, and PPs use information about both static and dynamic trad-
ing opportunities. The prediction matrix can be written as a sum of its static
and dynamic components:

� = E(Rt+1S′
t ) = E(Rt+1)E(S′

t ) + cov(Rt+1, S′
t ). (39)

Suppose that signals do not predict future returns in the sense that
cov(Si,t, Rj,t+1) = 0 for all i, j. In this case, � simplifies to the constant sig-
nal example, � = E(R) E(S′), and we have up to two PEPs and one PAP with
strictly positive expected return, but these are based only on the signals’ time-
series average. The first term on the right side of equation (39) thus embodies
information in the prediction matrix regarding “static bets.”

The second term summarizes information in the prediction matrix regarding
“dynamic bets.” To focus on dynamic bets, we can demean signals in the time
series, looking at S̃i,t = Si,t − E(Si,t ). This redacts static information from �

and concentrates only on dynamic opportunities,

E(Rt+1S̃′
t ) = cov(Rt+1, S̃′

t ) = cov(Rt+1, S′
t ). (40)

Our approach allows both static and dynamic bets since both may be useful.
Static bets are useful if they pick up that certain assets generally have higher
returns; if it is possible to time one’s portfolio positions, then dynamic bets are
profitable. We find in our empirical analysis that many of the effects we see
are driven by dynamic bets.

To summarize, as the examples above illustrate, there are potentially two
ways to earn alpha relative to the factor. The first stems from the observa-
tion that if �s has any negative eigenvalues, then shorting the corresponding
PEPs yields a positive expected return with a negative factor exposure, which
is alpha with respect to the factor. The second is to identify antisymmetric
strategies with positive expected returns. Because an antisymmetric strategy
is guaranteed to have zero factor exposure, it is also alpha to the factor.

13 This result follows from Cauchy-Schwarz, which yields that N2 = (1′S)2 ≤ (1′1)(S′S) = NS′S,
and the inequality is strict since we assume that betas vary across stocks.
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III. Asset Pricing Tests: Positivity Bounds

We next propose a test for whether our signal S is an exposure (i.e., beta)
to the true pricing kernel. Put differently, we wish to test whether the factor
F corresponding to S is proportional to the true pricing kernel, Ft+1 ∝ −Mt+1
(or M’s projection on the tradable space; recall that Lemma 1 shows how F
is related to S). For example, we can consider signals given by betas to the
market return, Rm

t+1, which corresponds to testing that the pricing kernel is
of the form Mt+1 = at − btRm

t+1 for at, bt ∈ R (i.e., the CAPM). Alternatively, we
can consider signals based on exposure to consumption, corresponding to test-
ing that the pricing kernel is of the form Mt+1 = βu′(ct+1)/u′(ct ) (consumption
CAPM).

Specifically, suppose that our signal Si,t is proportional to pricing kernel ex-
posure, covt (Rj,t+1,−Mt+1), where we only assume proportionality (rather than
equality) since we may not know the equity premium in the CAPM or the risk
aversion in the consumption CAPM. Then signals should be closely related
to expected returns. Indeed, the definition of a pricing kernel is a process M
with Et ((1 + Rf

t + Rj,t+1)Mt+1) = 1 for all assets, where Rf
t is the risk-free rate,

which implies14

Et (Rj,t+1) = (1 + Rf
t )covt (Rj,t+1,−Mt+1) = θt S j,t , (41)

where θt > 0 is a factor of proportionality due to the risk-free rate and due to
our assumption that the signal S is proportional to (but not necessarily equal
to) the covariance.

For example, if we are testing the CAPM, then the signal Sj,t is typically
the market beta, β j,t = covt (Rj,t+1, Rm

t+1)/vart (Rm
t+1). In this case, the expected

excess return is Et (Rj,t+1) = Et (Rm
t+1)β j,t , so here θt is the market risk premium,

Et (Rm
t+1). We would like to develop a test that does not require knowledge of

θt because we may not know Et (Rm
t+1) (or the coefficients at, bt in Mt+1 = at −

btRm
t+1).

The key insight is that, when the signal is proportional to the beta to the
pricing kernel, the prediction matrix must be symmetric and positive definite—
regardless of the factor of proportionality, θ . To see this, note that any off-
diagonal element of the prediction matrix is

� j,i = E(Si,tRj,t+1) = E(Si,tEt (Rj,t+1)) = E(θtSi,tS j,t ) = �i, j, (42)

which shows that � is symmetric. Furthermore, we see that the prediction
matrix is positive semidefinite since, for any w ∈ RN ,

w′�w = w′E(θtStS′
t )w = E(θt[w′St]2) > 0. (43)

This finding provides new asset pricing tests as summarized next.

14 To see this result, note that the definition of a pricing kernel applied for the risk-free asset
(which has zero excess return) yields (1 + Rf

t )Et (Mt+1) = 1, which implies that Et (Rj,t+1Mt+1) = 0
for excess returns. Therefore, Et (Rj,t+1) = (1 + Rf

t )Et (Mt+1)Et (Rj,t+1) = (1 + Rf
t )(Et (Rj,t+1Mt+1) −

covt (Rj,t+1, Mt+1)) = (1 + Rf
t )covt (Rj,t+1, −Mt+1).
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Principal Portfolios 369

PROPOSITION 9 (Positivity of Prediction Matrix): If there exists θt ∈ R such that

E(Ri,t+1|θt, St ) = θtSi,t (44)

for all i, then the corresponding prediction matrix � is symmetric. If θt ≥ 0,
then � is positive semidefinite, and, equivalently, all corresponding PEPs have
nonnegative expected returns and all PAPs have zero expected returns.15

The intuition behind this result follows from our earlier portfolio theory. We
know that negative eigenvalues of �s and a nonzero �a give rise to alpha
strategies (Sections II.B and II.C, respectively). Since alpha strategies cannot
exist in an arbitrage-free asset pricing model with a correctly specified pricing
kernel, all eigenvalues of �s must be positive and �a must be zero. In other
words, � must be symmetric and positive semidefinite.

These restrictions provide novel asset pricing tests. One benefit of this ap-
proach is that we do not need to know θt—we just need to observe signals
and returns, and then consider the positivity of the corresponding prediction
matrix. Another helpful feature is that the test is unconditional, that is, it
relies on an unconditional expected value, � = E(Rt+1S′

t ), even if the under-
lying asset pricing model is conditional. Hence, while some tests require an
understanding of how the risk premium varies over time or make assumptions
to get from a conditional CAPM to an unconditional test, we have a test of
the conditional CAPM (and other conditional models) based on an uncondi-
tional moment condition. Furthermore, this restriction also tests cross-asset
effects.

These restrictions are straightforward to implement in practice. To test
symmetry, one can simply calculate average PAP returns and test whether
they are statistically different from zero. To test positive definiteness, we
can test whether all of the eigenvalues of �s are nonnegative or, equiva-
lently, whether the PEP returns are nonnegative. Internet Appendix Section IV
presents Central Limit Theorems (CLTs) that justify this approach. In par-
ticular, Proposition IA.5 provides a CLT for the distribution of eigenvalues
of �s, Proposition IA.6 derives the CLT for �a, and Propositions IA.7 and
IA.8 present CLTs for the returns on trading symmetric and antisymmetric
linear strategies. We note, however, that these CLTs rely on strong assump-
tions that may not hold in practice, so generalizing these results and bench-
marking them to other asset pricing tests are important tasks for future
research.

We implement these tests empirically in Internet Appendix Section VII.B.
Among other things, we find that these tests are powerful and able to reject
the five-factor Fama-French model. We note that our method also works when
signals are noisy, as seen in the next result.

15 The premise (44) holds, for example, if there is no arbitrage so a pricing kernel exists, and
the signal Si,t is proportional to exposures to the pricing kernel as shown in (41).
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370 The Journal of Finance®

PROPOSITION 10 (Noisy Signals): Suppose that Si,t = κtEt[Ri,t+1] + ηi,t , where
κt ∈ R and ηi,t = βtEt[Ri,t+1] + γi,t , with E[γi,tRj,t+1] = 0 for all i, j. Then � is
symmetric and, if κt + βt ≥ 0, then � is also positive semidefinite.

Internet Appendix Section III presents several extensions of these asset pric-
ing tests. First, while Proposition 9 shows that the standard asset pricing con-
dition (44) implies symmetry and positive definiteness, Proposition IA.1 shows
that the reverse is also true. Propositions IA.2, IA.3, and IA.4 show how our re-
sults change when the model is misspecified due to a common alpha in returns
or missing factor exposures.

IV. Robust Strategies: Shrinkage via PPs

Our theoretical analysis thus far takes place in population with a known
prediction matrix. In reality, � is unknown and must be estimated. Unfortu-
nately, this is a highly parameterized framework—it requires estimating N2

parameters. The standard tradable factor approach from the literature (3) es-
sentially restricts the set of linear strategies to a single-parameter problem,
with signals typically assessed based only on their average own-predictability∑

i E(Si,tRi,t+1). This approach can be viewed as a regularization device that
exploits a signal while imposing restrictions to minimize the number of param-
eters. But these restrictions may be unnecessarily severe. They sacrifice any
and all useful information about heterogeneity in own-predictability (differ-
ences among diagonal elements of �) or cross-predictability (differences among
off-diagonal elements).

PPs are ideally suited to balance two considerations: (i) exploiting poten-
tially rich information from throughout the predictability matrix, and (ii) con-
trolling parameterization to reduce overfit and ensure robust out-of-sample
portfolio performance. In this section, we develop robust PP trading strategies
by shrinking the predictability matrix.

The analysis in Sections I and II shows that a singular-value decomposition
of � (or of its symmetric and antisymmetric parts) finds orthonormal portfolios
and orders them from highest expected return to lowest. This eigendecompo-
sition has another advantage in that it lends itself naturally to a convenient
form of regularization. In particular, if we reconstitute the � matrix by retain-
ing only the K largest singular values and zeroing out the rest, we obtain the
matrix of rank K that is as close as possible to the original �. This idea is famil-
iar from PCA, which finds low-rank approximations to a variance-covariance
matrix by zeroing out all but its largest eigenvalues.

The following proposition operationalizes the idea of robust optimal trad-
ing strategies by constraining the parameter space to position matrices with
rank(L) ≤ K. Here, K is a tuning parameter that can be chosen empirically. To
add further generality and another convenient tuning parameter, we introduce
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the Schatten p-norm for a matrix L (see Horn and Johnson (1991)):

‖L‖p =
(

N∑
k=1

|λ̄k(L)|p

)1/p

,

where λ̄k(L) is the kth singular value of L and p ∈ [1,∞]. The limiting case
p = ∞ corresponds to the standard matrix norm ‖L‖ = ‖L‖∞, whereas p = 2
corresponds to the sum of squares of all elements ‖L‖2 = (

∑
k,l L2

l,k)1/2 (Frobe-
nius norm). Interestingly, we show that different matrix norms correspond to
different ways of weighting the PPs. These insights are formalized in the fol-
lowing proposition, which generalizes all of the optimization problems that we
consider above (Propositions 3, 6, and 8).

PROPOSITION 11 (General Solution): Optimal portfolios subject to rank(L) = K
and ||L||p ≤ 1, where p = [1,∞] and q is defined by 1/p + 1/q = 1, satisfy:

(i) The solution with no symmetry constraints depends on the top K singu-
lar values, λ̄k, of �:

max
‖L‖p≤1, rank(L)≤K

E(S′
tLRt+1) =

(
K∑

k=1

λ̄
q
k

)1/q

. (45)

The optimal L is S′
tLRt+1 = c

∑K
k=1 λ̄

q−1
k PPk

t+1, where c = (
∑K

k=1 λ̄
q
k)−1/p.

(ii) The solution when restricting attention to symmetric strategies depends
on the set K of the K largest absolute eigenvalues |λs

k| of �s:

max
‖L‖p≤1, rank(L)≤K, L=L′

E(S′
tLRt+1) =

(∑
k∈K

|λs
k|q
)1/q

. (46)

The optimal L is S′
tLRt+1 = c

∑
K |λs

k|q−1sign(λs
k)PEPk

t+1, where c =
(
∑

K |λs
k|q)−1/p.

(iii) The solution when restricting attention to antisymmetric strategies de-
pends on the eigenvalues λa

k of �a:

max
‖L‖p≤1, rank(L)≤2K, L=−L′

E(S′
tLRt+1) =

(
2

K∑
k=1

(λa
k )q

)1/q

. (47)

The optimal L is S′
tLRt+1 = c

∑K
k=1(λa

k )q−1PAPk
t+1, where c =

(2
∑K

k=1(λa
k )q)−1/p.

Proposition 11 shows that optimal low-dimensional trading strategies are
the same as the general optimality results proven earlier, with the excep-
tion that the strategies use only the leading PPs. This is true regardless
of whether one considers general linear strategies (L), symmetric and hence
factor-exposed strategies (L = L′), or antisymmetric pure alpha strategies
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(L = −L′). By truncating the strategy at the top K PPs, these robust strate-
gies replace the lesser singular values with zeros.16 The lesser components
may be dominated by noise and therefore are likely to have poor out-of-sample
performance. Zeroing them out regularizes the optimal strategy to control
overfit and its adverse out-of-sample impact. The number of PPs included
in a robust strategy, K, determines the extent of regularization. It serves
as a hyperparameter that can be controlled by the researcher or tuned via
cross-validation.

What are the implications of the more general norm ‖ · ‖p in this proposition,
and what economic role does it play? Proposition 11 shows that the optimal
strategy is a weighted sum of PPs for any norm. This result shows that PPs
are very general building blocks. The choice of norm simply affects how the
PPs are weighted, which also illustrates the connection between the tuning
parameters p and K: The less important PPs can be “zeroed out” by the choice
of K and downweighted by the choice of p.

At the same time, the idea of constraining trading strategy leverage in the
optimization problem has a natural economic motivation—risk and institu-
tional frictions impose leverage considerations on every real-world investor.
The way real-world investors manage their leverage concerns is dictated in
part by the performance of the strategies in their opportunity set. This raises
an interesting practical implication of Proposition 11. The norm exponent p
can be treated as a hyperparameter that can be tuned via cross-validation.
An investor that tunes p along with K in effect chooses the form of leverage
constraint that lends itself to robust out-of-sample trading performance.

Interestingly, when p = 2, part (i) of the proposition is similar to trading a
version of the � matrix that has been estimated via a reduced-rank regression
(RRR) (see, for example, Velu and Reinsel (1998)).17 Furthermore, when p =
2 and we do not impose a rank restriction (that is, we let K = N), then the
solution is L = �′/‖�‖2. So, in this case, we uncover the prediction matrix
itself as the optimal strategy. For p = ∞, that is, q = 1, the solution selects
components that are large in absolute value, in the spirit of lasso applied to
singular values, and with no rank restriction we recover Proposition 4.

The results in Sections I through III lay out a theoretical basis for PPs, and
Proposition 11 prescribes a machine learning approach to implementing PPs
in practice. Data-driven choices for hyperparameters K and p can allow a re-
searcher to select the level of PP model complexity best suited for constructing
optimal out-of-sample strategies.

16 Note that singular values of a symmetric or an antisymmetric matrix coincide with the abso-
lute values of its eigenvalues.

17 RRR seeks to minimize the mean squared error E(‖Rt+1 − L′St‖2) = E(‖Rt+1‖2) −
2E(S′

tLRt+1) + E(S′
tLL′St ) under a rank constraint on the matrix L. By direct calculation, this

objective is equivalent to maximizing 2tr(L�) − tr(LL′�S ). Thus, RRR amounts to maximizing the
expected return, tr(L�), with a punishment term for signal variance. If �S = Id, the punishment
term coincides with ‖L‖2

2, and hence RRR is a modification of the problem solved in Proposition 11
for p = 2.

 15406261, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13199 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Principal Portfolios 373

V. Empirical Results

We next present two empirical applications of our method.

A. Fama-French Portfolio Momentum

Our first application uses PPs on the 25 Fama-French portfolios.18 As this
is one of the simplest and most well-studied data sets in finance, it is an ideal
empirical setting for demonstrating properties of our method in a transparent
way. These portfolios are constructed by double-sorting U.S. stocks by their size
(as measured by market capitalization) and valuation ratio (book-to-market),
and we use daily data from July 1963 through the end of 2019.

To have a simple time-varying predictive signal for each portfolio, we use mo-
mentum. A portfolio’s own lagged monthly return is a strong positive predictor
of subsequent monthly returns in a wide range of equity portfolios around the
world (Gupta and Kelly (2019)), as well as in other asset classes (Moskowitz,
Ooi, and Pedersen (2012)). For each asset in each sample, we compute its cu-
mulative return over the past 20 trading days (approximately one month). We
then standardize the signal each period by converting it to a cross-sectional
rank and dividing by the number of assets and subtracting the mean (map-
ping the signal into the [−0.5,0.5] interval).19 We use this rank to predict sub-
sequent monthly (20-day cumulative) returns on each portfolio.20

We estimate the prediction matrix as the sample counterpart of the defini-
tion � = E(Rt+1S′

t ) using a rolling “training window.” The training window is
the past 120 time periods. In our base case, the training period consists of the
past 120 nonoverlapping 20-day periods. The estimated prediction matrix at
period t is

�̂t = 1
120

t−1∑
τ=t−120

Rτ+1S′
τ . (48)

Based on this empirical prediction matrix, we compute its singular vectors to
form PPs and we compute the eigenvectors of its symmetric and antisymmetric

18 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
19 All of our theoretical results apply to cross-sectionally demeaned signals. If we start with

any signal S, we can work with the cross-sectionally demeaned signal: S̃ j,t = Sj,t − 1
N
∑N

k=1 Sk,t .
The corresponding simple factor F̃ is dollar neutral. The eigenvalues of the prediction matrix with
respect to S̃ and S have the same signs, except for at most two eigenvalues (see Proposition IA.9
in the Internet Appendix). Furthermore, demeaning implies that we only exploit cross-sectional
predictability, not time-series predictability, which essentially leads to the “loss” of one eigenvalue
(Proposition IA.11).

20 We cross-sectionally demean returns to focus prediction on cross-section differences in re-
turns rather than time-series fluctuations in the common market component of returns. This ap-
proach corresponds to choosing each test asset to be a long position in portfolio i, hedged by going
short an equal-weighted average of all portfolios (clearly an implementable strategy). In a robust-
ness analysis, we show that our results are similar if we do not hedge out the market return in
this way.
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parts, giving rise to the empirical PEPs and PAPs. We compare these to the
simple factor F̃t defined in (3). To limit the undue effects of illiquidity on our
conclusions, we always add an extra one-day buffer between the last day in the
training sample and the first day in the forecast window.

We investigate whether empirical PPs behave in accordance with our the-
oretical predictions. Figure 1, Panel A shows the singular values of the pre-
diction matrix averaged over time. Recall that, according to the theory, these
singular values correspond to the expected returns of the corresponding PPs.
The realized (out-of-sample) next-month returns of the PPs are plotted in Fig-
ure 1, Panel D, along with their confidence bands. We find that the realized
returns roughly match the shape of the ex ante singular values, with the low-
numbered PPs having large eigenvalues and high realized returns. However,
while this relation would be perfect on an in-sample basis, we naturally see a
degradation of realized returns relative to the eigenvalues when looking out-
of-sample, as reflected in the different y-axes in the left and right panels of
Figure 1.

In a similar vein, Figure 1, Panels B and C show the eigenvalues of the sym-
metric and antisymmetric parts of the prediction matrix, respectively. Figure 1,
Panels E and F report the out-of-sample realized returns of the corresponding
PEPs and PAPs, respectively. Again we see a close relation between the ex ante
predicted returns, and the out-of-sample realized returns. In this sample, only
the first two PPs and first two PEPs appear to have a significant out-of-sample
return, and only the first PAP return is significant.

One might wonder what these portfolios look like? We explore this in the case
of PEPs and PAPs. Figure 2, Panel A plots the out-of-sample weights of the
eigenvector w1 underlying the first PEP. Interestingly, this eigenvector tends
to be long value and short growth stocks, and simultaneously tends to be long
larger stocks and short smaller ones. Recall that PEP1 trades w1 based its
own signal, that is, PEP1 is long or short a size-value bet based on its own mo-
mentum. Put differently, when large value has recently outperformed, PEP1
buys large value, otherwise it buys small growth. To illustrate this strategy
further, Figure 2, Panel B plots the momentum, S′w1, of the eigenvector. Fig-
ure 2, Panel C shows the overall portfolio weight, S′w1w′

1, averaged over time.
Similarly, Figure 2, Panels B, D, and E illustrate the PAP1 trading strategy.

Figure 3 summarizes the risk-adjusted out-of-sample performance of the
PPs, PEPs, and PAPs. For simplicity, we only report the return of the sum of
the top three PPs (among each version: PP, PEP, and PAP), and the combina-
tion of the top three PEPs plus top 3 PAPs.21 In each case, we compare their
performance to that of the simple factor, which is just the sum-product of sig-
nals and returns. When analyzing factor performance, we use the exact same
signal construction for the factor and PPs and evaluate both over the same
forecast horizons, so each group of bars is an apples-to-apples out-of-sample
comparison. We see that the PEP has a similar Sharpe ratio (SR) to that of the

21 When combining PEPs and PAPs, we rescale the PAP component to have the same volatility
as the PEP component, and then take a 50/50 combination.

 15406261, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13199 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Principal Portfolios 375

Figure 1. Prediction matrix eigenvalues. Panels A, B, and C show estimated eigenvalues of
the prediction matrix and its symmetric and antisymmetric components, respectively, averaged
over training samples. Panels D, E, and F show average out-of-sample returns and ±2 standard
error confidence bands for corresponding principal portfolios (PPs), principal exposure portfolios
(PEPs), and principal alpha portfolios (PAPs), respectively. Estimates correspond to predictions of
20-day returns of the Fama-French 25 size and value portfolios based on a 20-day momentum sig-
nal. Each training sample consists of 120 nonoverlapping 20-day return observations. The sample
period is 1963 to 2019. (Color figure can be viewed at wileyonlinelibrary.com)
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Figure 2. Portfolio weights for leading principal portfolios. Panels A and D plot the out-
of-sample eigenvector underlying the first principal exposure portfolio (PEP) and first principal
alpha portfolio (PAP) on the 25 size and value portfolios, averaged over training samples. Panels
B and E plot the scale (in this case, interpreted as portfolio momentum), of the first PEP and PAP.
Panels C and F show the overall portfolio weights averaged over time. Portfolios are constructed
based on a 20-day momentum signal for a 20-day forecast horizon/holding period. Portfolios and
estimates are made on an out-of-sample basis using a rolling training sample of the 120 most
recent nonoverlapping return observations. The sample period is 1963 to 2019. (Color figure can
be viewed at wileyonlinelibrary.com)

simple factor, where SR is the average excess return divided by volatility. The
PAP has a higher SR, and the combination of PEP and PAP is higher yet, at
more than double the SR of the simple factor. The PP strategy performs simi-
larly to PAP, handily beating the simple factor. The best overall performance is
achieved by the combination of PEPs and PAPs. Throughout, when we report
SRs and information ratio (IR)s, we also report ±2 standard error bars around
each estimate based the approximate standard error formula Lo (2002).
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Figure 3. Principal portfolio performance ratios. This figure shows out-of-sample perfor-
mance of principal portfolios in terms of the annualized Sharpe ratio (left set of bars) and the
annualized IR versus the own-predictor strategy and the Fama-French five-factor model (right set
of bars) along with ±2 standard error bands around each estimate. Portfolios are constructed from
the Fama-French 25 size and value portfolios based on a 20-day momentum signal with a fore-
cast horizon (and, equivalently, holding period) of 20 days. The figure depicts performance for the
simple factor (“Factor,” that is, the standard own-signal strategy, included as a benchmark), the
equal-weighted average of the top three principal portfolios (“PP 1-3”), the equal-weighted average
of the top three principal exposure portfolios (“PEP 1-3”), the equal-weighted average of the top
three principal alpha portfolios (“PAP 1-3”), and the equal-weighted average of the top three PEPs
and PAPs combined (“PEP and PAP 1-3”). Each forecast is made on an out-of-sample basis using
a rolling training sample of the 120 most recent nonoverlapping return observations. The sample
period is 1963 to 2019. (Color figure can be viewed at wileyonlinelibrary.com)

Figure 3 also plots the out-of-sample IR and its confidence interval as a mea-
sure of the risk-adjusted return of the PPs. Specifically, the IR is computed by
regressing the return of the PP (or PEP, PAP, or their combination) on the
simple factor (F̃) and the five Fama-French factors (the market MKT, the size
factor SMB, the value factor HML, the profitability factor RMW, and the in-
vestment factor CMA):

PPt = α + β0F̃t + β1MKTt + β2SMBt + β3HMLt + β4RMWt + β5CMAt + εt .

(49)

The IR is the alpha divided by residual volatility, IR= α/σ (εt ), which can be
interpreted as the SR when all of the factors on the right-hand side are hedged
out (i.e., the alpha expressed as an SR).
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Table II
Principal Portfolio Factor Exposures

This table reports regressions of out-of-sample principal portfolio returns on the simple factor
and the five Fama-French factors. Portfolios are constructed from the Fama-French 25 size and
value portfolios based on a 20-day momentum signal. The table reports regressions for the simple
factor itself (the own-signal strategy, F̃ , computed as the sum-product of each asset’s own signal
and return, denoted “Factor”), the equal-weighted average of the top three principal portfolios
(“PP 1-3”), the equal-weighted average of the top three principal exposure portfolios (“PEP 1-
3”), the equal-weighted average of the top three principal alpha portfolios (“PAP 1-3”), and the
equal-weighted average of the top three PEPs and PAPs combined (“PEP and PAP 1-3”). In each
regression, the left-hand-side portfolio is scaled to have the same full-sample volatility as the
excess market return. Results are shown for a 20-day forecast horizon, and each forecast is made
on an out-of-sample basis using a rolling training sample of the 120 most recent nonoverlapping
return observations. The sample period is 1963 to 2019.

Portfolio Factor Mkt-Rf SMB HML RMW CMA Alpha R2

Factor −0.2 0.13 −0.28 −0.26 0.36 9.35 0.08
t-Statistic −4.59 1.9 −3.43 −3.03 2.79 4.12
PP 1-3 0.82 0.03 0.02 0.15 −0.09 −0.02 4.69 0.67
t-Statistic 32.69 1.09 0.53 3.05 −1.63 −0.29 3.38
PEP 1-3 0.94 0.01 −0.02 0.06 −0.13 −0.01 0.89 0.89
t-Statistic 67.00 0.88 −0.76 1.95 −4.4 −0.16 1.14
PAP 1-3 −0.08 0.08 0.19 0.06 0.28 0.06 10.41 0.04
t-Statistic −1.94 1.71 2.65 0.72 3.1 0.42 4.42
PEP and PAP 1-3 0.65 0.07 0.13 0.09 0.11 0.04 8.51 0.41
t-Statistic 19.53 1.93 2.31 1.32 1.58 0.35 4.62

Table II reports results of this regression. As can be seen from Table II
(and the confidence intervals in Figure 3), the PEP does not have a sig-
nificant alpha (or, equivalently, a significant IR), but the PAP is highly
significant (t-statistic of 4.42) and so is the PP strategy and the combination of
PEP and PAP. Interestingly, Table II also shows that PEP has a highly signifi-
cant loading on the simple factor with a high R2, consistent with PEP provid-
ing exposure to this factor. In contrast, PAP has a small and insignificant fac-
tor loading on the simple factor, consistent with PAP providing factor-neutral
alpha. (Some of the loadings on Fama-French factors are significant, but the
overall R2 is low.) In summary, these findings are consistent with the idea that
PEP provides factor exposure while PAP provides nearly uncorrelated alpha.

Extended Momentum Analysis. We report a variety of extensions and ro-
bustness tests in Internet Appendix VII. We find that the out-of-sample PPs
perform even better at shorter forecast horizons (Figure IA.1). PPs also work
across several other data sets: 25 U.S. size and operating profitability portfo-
lios, 25 U.S. size and investment portfolios, the international counterparts of
the three sets of Fama-French portfolios (i.e., developed countries excluding the
United States), and a sample of 52 futures contracts for commodities, equity
indices, sovereign bonds, and currencies (Figure IA.2). We show robustness
with respect to other momentum signals, namely, those based on 40-, 60-, 90-,
120-, and 250-day past returns, following the standard practice of considering
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momentum signals up to one year (Figure IA.3). Finally, we consider sub-
sample analysis by decade (Figure IA.4) and demonstrate robustness of our
findings when we do not cross-sectionally demean signals and returns (Fig-
ure IA.5).

B. Factor-Timing

Our second empirical analysis investigates the power of PPs for factor-
timing using an extensive data set of “anomaly” portfolios. The majority of
empirical asset pricing is focused on long-run average returns of common
factors and their ability to explain differences in long-run average returns
across stocks. However, several recent papers document that the returns of
common factors are predictable. As emphasized by Haddad, Kozak, and San-
tosh (2020), factor return predictability has implications for our understand-
ing of the stochastic discount factor (SDF) due to its close link to conditional
mean-variance efficient portfolios in the market. Furthermore, factor return
predictability implies that a dynamic combination of factors outperforms static
positions in these factors, increasing the unconditional SR and volatility of the
SDF. In doing so, the evidence on factor predictability poses a quantitative
challenge for leading theoretical asset pricing models, which tend to generate
SDFs with only moderate SR and are too smooth.

While the SDF implications due to factor predictability are economically im-
portant, approaches for quantifying factor predictability have only recently
emerged in the literature. The main focus has been on two types of predictors:
factor momentum (Gupta and Kelly (2019), Arnott et al. (2022)) and factor val-
uation ratios (Cohen, Polk, and Vuolteenaho (2003), Kelly and Pruitt (2013),
and Haddad, Kozak, and Santosh (2020)). The method of PPs is well suited
for quantifying predictability in factor portfolios. It allows for more general
predictive associations than considered in the factor-timing literature to date,
such as heterogeneous factor predictability and cross-factor predictive effects,
while maintaining the robustness of low parameterization thanks to its built-
in dimension reduction.

We analyze factor-timing through the lens of PPs and do so for a larger col-
lection of factor predictors than studied in prior literature. We begin with the
large set of 153 U.S. equity characteristics and associated factors from Jensen,
Kelly, and Pedersen (2022).22 We discard 15 factors/signals whose sample be-
gins later than 1963. For each signal, the factor portfolio is formed from a
high-low tercile spread and is value-weighted in each tercile. We construct fac-
tor return predictors by aggregating each of the 138 stock-level signals into a
factor-level characteristic by applying the same factor weighting scheme used
to construct the factor portfolio return.23 Thus, returns for each of the factor

22 Data and code available at https://github.com/bkelly-lab/GlobalFactor.
23 Following standard practice in the literature, stock-level characteristics are cross-sectionally

ranked and mapped into the [−0.5,0.5] interval before they are aggregated to form factor-level pre-
dictors.
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portfolios (e.g., the book-to-market factor) are accompanied by a set of 138 time-
series predictors (e.g., accruals, 12-month momentum, cash-to-assets, book-to-
market, etc., at the factor level). In our application of PPs, the set of base asset
returns corresponds to the 138 long-short anomaly factors, and the set of sig-
nals corresponds to each of the 138 factor-level predictors. Our final data set,
which covers the 684 months from 1963 to 2019, is a balanced panel of 138
factor portfolios (a 684 × 138 array), each possessing 138 different predictor
variables for each factor (a three-dimensional 684 × 138 × 138 array).

We conduct our PPA one signal at a time. For example, we construct the set
of PPs among the 138 factors using the accruals predictor for each factor. We
then construct PPs based only on the book-to-market predictor of each factor.
We proceed in this way, building one set of out-of-sample PP returns for each
predictor. For each predictive signal, we estimate the factor prediction matrix
in a rolling 120-month training sample ending at time t and then use the fitted
parameters to construct out-of-sample PP returns at t + 1.

Figure 4 reports the performance of PPs on average across the 138 differ-
ent signals. We report average SRs for portfolios corresponding to the first
10 eigenvalues of the prediction matrix, and we overlay the average standard
error bar. In Panel A, we see that the leading PP achieves an annualized SR
of 0.6, and performance drops for the second and higher eigenvalue portfolios.
Panel B shows the performance of PEP portfolios corresponding to the top five
and bottom five eigenvalues of the symmetric prediction matrix. The first and
last PEPs earn annualized SRs of 0.4 and −0.4, respectively. This indicates
that own-factor predictability tends to be heterogeneous on average across sig-
nals, with a given signal exhibiting positive own-factor predictability for some
factors and negative own-factor predictability for others. Panel C shows that
the overall performance of PPs is dominated by the leading PAP, which delivers
an out-of-sample SR of 0.7 per annum.

In Panel D, we report the average performance of the simple factor. This fac-
tor restricts portfolio construction to homogeneous own-factor predictions and
produces an average annualized SR of 0.2. We introduce an additional bench-
mark portfolio in Panel D that weights factors based on their historical mean
returns over an expanding sample. Consistent with the findings of Jensen,
Kelly, and Pedersen (2022), the performance of factors is remarkably stable
over time. This suggests that “static bets” overweighting historically success-
ful factors perform well out-of-sample. Indeed, this simple strategy achieves
a SR of 0.5, and it contributes in part to the performance of PPs, which also
detects attractive static bets.

We are interested in whether PPs can successfully exploit return predictabil-
ity to time factors. To this end, we are especially conservative in calculating
IRs of PPs and control not only for the simple factor and the Fama-French five-
factor model but also for the factor portfolio based on historical mean weights.
Indeed, the historical mean weight factor explains the bulk of the performance
of PEP strategies, resulting in small and insignificant IRs. However, the lead-
ing PP and PAP portfolios continue to produce large and significant IRs. The
leading PAP portfolio achieves an IR of 0.8 on average across all signals.
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Figure 4. Average performance of factor-timing strategies based on individual signals.
This figure shows out-of-sample performance of principal portfolios averaged across 138 signals.
We show the annualized Sharpe ratio and the annualized IR versus the own-predictor strategy,
the factor historical mean weight strategy, and the Fama-French five-factor model. Portfolios are
constructed using 138 anomaly factors as base assets, and principal portfolios are constructed
for each of 138 different factor return predictors. The figure depicts performance for the first 10
principal portfolios (PPs, Panel A), the first five and last five principal exposure portfolios (PEPs,
Panel B), and the first 10 principal alpha portfolios (PAPs, Panel C) averaged across signals, along
with the average ±2 standard error bands. Panel D shows the average performance of simple factor
strategies and the performance of a portfolio that weights factors based on their historical mean
return (both of which are used as controls for the IRs of principal portfolios). Each forecast is made
on an out-of-sample basis using a rolling training sample of 120 monthly return observations. The
sample period is 1963 to 2019. (Color figure can be viewed at wileyonlinelibrary.com)

Next, rather than reporting averages of PP strategies based on individual
signals, we study the performance of strategies that combine PPs across all
signals. In particular, we report the performance of equal-weighted averages
of the leading PP, PEP, and PAP across the set of 138 signals. These combined
strategies are shown in Figure 5, where we report annualized SRs and IRs
(controlling for the simple factor, the five Fama-French factors, and the histor-
ical mean weight factor), along with 95% confidence intervals for each. We find
that the equal-weighted combination of leading PPs earns an SR of 0.6. The
IR of the combined strategy is 1.1 and is highly statistically significant. Next,
IRs for equal-weighted combinations of PEPs (the first and last PEP, denoted
PEP 1 and PEP N, respectively) are large and highly significant. The first PEP,
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Figure 5. Performance of factor-timing strategies combined across signals. This fig-
ure shows out-of-sample performance of principal portfolio strategies combined across 138 signals.
We show the annualized Sharpe ratio and the annualized IR versus the own-predictor strategy,
the factor historical mean weight strategy, and the Fama-French five-factor model, along with the
average ±2 standard error bands. Using 138 anomaly factors as base assets, principal portfolios
are constructed for each of 138 different factor return predictors and combined across signals. PP
denotes the equal-weighted average of the first principal portfolio across 138 signals, PEP 1 is the
equal-weighted combination of the first principal exposure portfolio, PEP N is the equal-weighted
combination of the last principal exposure portfolio, and PAP is the equal-weighted combination
of the first principal alpha portfolio across signals. We also report equal-weighted combinations
of HKS factor-timing strategies with and without an inverse covariance matrix adjustment. Each
portfolio is constructed on an out-of-sample basis using a rolling training sample of 120 monthly
return observations. The sample period is 1963 to 2019. (Color figure can be viewed at wileyon-
linelibrary.com)

which hones in on factors with positive symmetric predictability, earns an IR of
0.6 after controlling for benchmark factors. What is more intriguing is that the
last PEP is able to reliably exploit heterogeneity in own-factor predictability.
It identifies a combination of factors that are predicted by the signal with the
opposite sign as the first PEP. An optimizing trader that takes a short position
in the PEP N strategy earns an annualized IR of 1.0. The strongest effect of
combining strategies across signals appears for the PAP combination, which
achieves an out-of-sample IR of 1.3.

To help interpret the contribution of these strategies to the SDF, we analyze
the ex post tangency portfolio using PPs (along with standard asset pricing
factors) as inputs. We consider a set of 11 assets as inputs to the tangency
portfolio. First are the five Fama-French factors. Next are two benchmark fac-
tors defined as the equal-weighted average of simple factors across signals and
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Table III
Ex Post Tangency Portfolios

This table reports ex post tangency portfolio weights using as inputs the five Fama-French factors,
the equal-weighted average of simple factors across 138 signals, a factor portfolio with weights
proportional to the historical means of the 138 underlying anomaly factors, and strategies formed
from combinations of various principal portfolios. PP denotes the equal-weighted average of lead-
ing principal portfolios across 138 signals, PEP 1 is the equal-weighted combination of the first
PEP, PEP N is the equal-weighted combination of the last PEP (multiplied by −1 to make it a
positive expected return strategy), and PAP is the equal-weighted combination of leading PAPs.
To aid interpretation, all portfolios that contribute to the tangency portfolio are scaled to have
the same volatility. * indicates that the portfolio weight is statistically significant at the 1% level
based on the test of Britten-Jones (1999). The first column considers only Fama-French factors as a
benchmark, and the last column restricts tangency weights to be positive. The last row reports the
annualized tangency portfolio SR. Each portfolio input is calculated on a rolling out-of-sample ba-
sis, and the ex post tangency analysis is then conducted from the full time series of out-of-sample
strategies.

Nonnegative
Portfolio FF5 FF5 + PP FF5 + PP

Mkt-Rf 0.29* 0.30* 0.27*
SMB 0.14* 0.19* 0.07
HML −0.03 −0.08 0.04
RMW 0.27* 0.27* 0.21*
CMA 0.32* 0.10 0.16*
Simple Factor −0.26 0.00
Hist. Mean Wts. −0.08 0.00
PP −0.86 0.00
PEP 1 −1.03* 0.00
−1 × PEP N 0.41 0.00
PAP 2.05* 0.26*
Sharpe Ratio 1.09 2.15 1.52

the factor constructed using historical mean weights of the 138 underlying
anomaly factors. Last, we include the equal-weighted combination of the first
PP for all signals, the equal-weighted combination of the first PEP (PEP 1), the
combination of the last PEP (PEP N), and the combination of leading PAPs. To
better interpret the weights, all assets input to the tangency portfolio calcula-
tion are scaled to have the same volatility.

As a frame of reference, the first column of Table III reports the ex post
tangency portfolio weights for the five Fama-French factors alone. We see that
four of the five factors contribute significantly to the tangency portfolio. The ex
post tangency SR of the Fama-French model is 1.1. We interpret this ex post
tangency portfolio as a representation of the benchmark SDF from the asset
pricing literature.

The second column of Table III supplements the Fama-French factors with
the two additional benchmark factors and the PP strategies. Because the ex-
pected return on PEP N is negative, we switch its sign to align it with the
remaining factors, which all have positive expected returns. When including
PPs, the market factor, SMB, and RMW remain significant components of the
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SDF, but HML and CMA become insignificant. The two additional benchmark
factors are also insignificant. By far, we see that the favorite input to the tan-
gency portfolio is the PAP strategy, which the Markowitz solution levers up
with a weight of 2.1. At the same time, the tangency portfolio places a large
negative weight on PEP 1 due to its correlation with other factors.

PPs generate an enormous gain in the mean-variance efficiency of the SDF.
The tangency portfolio SR is 2.2, essentially double that of the Fama-French
five-factor model. To aid interpretation in the face of correlated PP strategies,
the third column estimates tangency portfolio weights with a nonnegativity
constraint. In this case, we see that all PPs other than PAP drop out of the SDF.
The market and PAP portfolios remain the largest contributors to the SDF,
each receiving more than a quarter of tangency weight, followed by RMW and
CMA, which also receive significantly positive weight. With a nonnegativity
constraint, the ex post tangency SR is 1.5, representing a gain in efficiency of
40% versus the Fama-French model.

This evidence indicates that PPs are a potent method for factor return pre-
diction and in turn for constructing factor-timing strategies. Next, we com-
pare this result to a recent advance in factor-timing methodology proposed by
Haddad, Kozak, and Santosh (2020), HKS henceforth. HKS advocate a shrewd
principal components reduction of the cross section of anomaly factors. The
leading principal components among anomaly factors amount to a few port-
folios that account for the bulk of the covariance among anomaly factors. By
focusing their factor-timing analysis on these riskiest dimensions of the fac-
tor space, HKS leverage their economic prior to narrow the search for fac-
tor predictability to the most plausible subspace of anomaly returns. Indeed,
HKS show that returns of the first few anomaly principal component portfolios
are robustly predictable by the book-to-market ratios of those portfolios. While
HKS focus on a single predictor (book-to-market ratio) in their factor-timing
analysis, we extend this by applying their procedure to all 138 predictors in
our data set.

Our implementation of the HKS procedure is designed to produce a factor-
timing strategy that can be compared on an apples-to-apples basis with PP
strategies. We estimate the factor return covariance matrix �̂t = cov(R[t−120:t] )
using a rolling 120-month training window and compute the associated eigen-
value decomposition,

�̂t = QtDtQ′
t .

Here, Qt is the matrix of principal components of Rt+1 that provide an
orthogonal rotation of the factors ordered from highest to lowest variance,
RPC,t+1 = Q′

tRt+1. The predictors are rotated to align with the principal compo-
nent returns using the same Qt matrix, SPC,t = Q′

tSt . Following HKS, we retain
only the five most volatile components, motivated by their prior of “absence of
near-arbitrage.” Next, in the same training window, we estimate predictive re-
gressions of the form

RPC, j,t+1 = aj,t + bj,tSPC, j,t + e j,t+1, j = 1, . . . , 5
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and construct fitted values Êt (RPC, j,t+1) = â j,t + b̂ j,tSPC, j,t . Finally, using the
vector of fitted predictions Êt (RPC,t ) and the training sample return covari-
ance matrix �̂t , we construct the out-of-sample factor-timing portfolio return
at t + 1 as the tangency portfolio of leading components:

HKSt+1 = Êt (RPC,t+1)′�̂−1
t RPC,t+1.

Note that in the construction of PPs, we do not directly use information on the
covariance matrix of returns. For an apples-to-apples comparison with PPs,
we also report a version of the HKS timing strategy that only uses predictive
information and excludes �̂:

HKSNo Cov.
t+1 = Êt (RPC,t+1)′RPC,t+1.

We report results for the HKS methodology on the right side of Figure 5.
As in the case of PPs, we construct an equal-weighted average of HKS factor-
timing portfolios across the 138 possible predictors. As with PPs, we calculate
the annualized out-of-sample SRs for both the HKS and HKSNo Cov. portfolios,
and IRs versus the benchmarks described earlier. The HKS portfolio SR is
nearly identical to that for the PAP portfolio (0.7 in both cases). However, the
IR of HKS drops to 0.4, compared to 1.3 for PAP. The HKSNo Cov. strategy suf-
fers compared to the main HKS portfolio, with an SR of zero and a negative
IR. This suggests that the performance of the HKS strategy derives from co-
variance timing and not expected return timing.

It turns out that the outperformance of PPs relative to the factor-timing
approach of HKS is predicted by theory. A key observation is that the trading
strategies investigated in HKS fit into the class of symmetric linear strategies,
and thus they cannot capture any antisymmetric components of �. As we show
above, it is the PAPs that drive success of PPs strategies. We discuss this and
related theoretical results in Internet Appendix Section V.

VI. Conclusion: The Power of PPA

We present a new method for analyzing return predictability. Our main
contribution is a new theoretical understanding of the prediction matrix, �,
founded on the decomposition of this matrix into PPs. We classify predictive
patterns in � as either symmetric or antisymmetric and derive theoretical re-
sults that translate these patterns into beta and alpha. These results give rise,
in turn, to a novel test of asset pricing models, for which we derive a complete
distribution theory.

Our analysis provides theoretical guidance on how to optimally invest based
on return-predictive signals, even when this predictability involves complex
phenomena such as cross-asset predictability or violations of equilibrium asset
pricing restrictions. We demonstrate the practical impact of this guidance in
an extensive empirical analysis. We find that the leading PPs based on a wide
range of over 100 stock return prediction signals deliver large and significant
risk-adjusted average returns out-of-sample. Our empirical PPs significantly
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expand the mean-variance frontier relative to benchmarks in the literature,
including the Fama-French five-factor model and the factor-timing strategies
of HKS.
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