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A B S T R A C T

In this paper, we make Cluster Analysis more interpretable with a new approach that simultaneously allocates
individuals to clusters and gives rule-based explanations to each cluster. The traditional homogeneity metric
in clustering, namely the sum of the dissimilarities between individuals in the same cluster, is enriched
by considering also, for each cluster and its associated explanation, two explainability criteria, namely, the
accuracy of the explanation, i.e., how many individuals within the cluster satisfy its explanation, and the
distinctiveness of the explanation, i.e., how many individuals outside the cluster satisfy its explanation. Finding
the clusters and the explanations optimizing a joint measure of homogeneity, accuracy, and distinctiveness
is formulated as a multi-objective Mixed Integer Linear Optimization problem, from which non-dominated
solutions are generated. Our approach is tested on real-world datasets.
1. Introduction

Researchers and practitioners need to interpret the results of black-
box machine learning models for model selection (Baesens et al., 2003;
Bertsimas and King, 2016; Carrizosa and Romero Morales, 2013; Car-
rizosa et al., 2021; Hazimeh and Mazumder, 2020; Mišić, 2020), as
well as to comply with legal and ethical requirements (European Com-
mission, 2020; Goodman and Flaxman, 2017; Rader et al., 2018; Ro-
drigues, 2020). This explains the growing literature on Interpretable
Machine Learning, such as transparent neural networks (Samek et al.,
2021), interpretable random forests (Bénard et al., 2019), or sparse
support vector machines (Benítez-Peña et al., 2019; Carrizosa et al.,
2016; Jiménez-Cordero et al., 2021). In this paper, we contribute
to the literature of Cluster Analysis (Aloise et al., 2012; Kaufmann
and Rousseeuw, 1990), which is important in applications arising in,
e.g., security (Corral et al., 2009), internet traffic (Morichetta et al.,
2019), finance (Gibert and Conti, 2016), sales profiling (Thomassey
and Fiordaliso, 2006), or astronomy (Ma et al., 2018). Our goal is to
enhance the interpretability of Cluster Analysis by providing accurate
and distinctive explanations for the clusters.

Two different scenarios are considered. In the first one, clusters are
externally given, as is the case in Balabaeva and Kovalchuk (2020),
Carrizosa et al. (2022), Davidson et al. (2018), De Koninck et al. (2017),
Kauffmann et al. (2022) and Lawless et al. (2022). The goal of the
problem is to find a rule-based explanation for each cluster, such that
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the explanation is as accurate and distinctive as possible. In the second
scenario, both clusters and rule-based explanations are to be found,
seeking for each cluster intra-homogeneity as well as an explanation
that is as accurate and distinctive as possible.

Throughout this paper, we assume we are given a set of auxiliary
features to construct the explanations of the clusters, as is done in other
Data Analysis tools (Carrizosa et al., 2020; Taeb and Chandrasekaran,
2018). We explain clusters by a combination of rules defined by these
features, and joined with the AND operator. To ensure these expla-
nations are easily understood, we limit to a small number 𝓁 (in our
numerical results 𝓁 = 2) the number of rules to be concatenated by the
AND operator.

As a running example, we will use the housing dataset, one
the datasets used in our numerical section, where the observations
correspond to houses characterized by the thirteen features found in
Table 2. Records in the housing dataset are labeled, and their label
identifies the cluster. In this case we are thus assuming that (two)
clusters are already defined, and that we are interested in associating
to them an explanation. With our methodology, a possible explanation
for cluster 1 will be (RM > 5.9505) AND (LSTAT ≤ 13.33), while a
possible one for cluster 2 would be (RM ≤ 6.75) AND (LSTAT > 7.765),
see Table 4.

The first contribution of this paper is to design a procedure to
explain existing clusters in a post-hoc fashion with our rule-based
vailable online 2 March 2023
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Fig. 1. The post-hoc explanations provided by CART for the housing dataset for clusters (classes) 1 and 2.
explanations. Since clusters are already given, we can see the problem
as a supervised classification problem in which we want to link via rules
the features with the clusters labels. To address this problem, any rule-
based supervised classification methodology, such as Classification and
Regression Trees (CART), could be used to obtain the rules explaining
the clusters. This is illustrated in Fig. 1 for the housing dataset. CART,
in general, provides explanations which are long with several rules
joined with AND and OR operators, while the goal of our approach
will be to derive easy to understand explanations using only a few rules
joined by the AND operator that are not necessarily arranged in a tree
hierarchical structure. The second contribution of this paper is a novel
clustering approach to simultaneously find clusters and a rule-based
explanation for each of them.

There is a stream of literature on approaches, where interpretability
is sought by constructing unsupervised decision trees, see Bertsimas
et al. (2021), Basak and Krishnapuram (2005) and Fraiman et al.
(2013) and references therein. A set of features is used to measure the
intra-homogeneity of the clusters, as well as to define explanations for
the clusters. The leaf nodes of the tree define the clusters, while the
splitting rules at the branch nodes are used to explain the clusters. In
the simplest case, in which each cluster is assigned to a single leaf node,
the explanation will correspond to the conjunction of the rules found in
2

the path from the root node to the leaf node. If a cluster is split across
different leaf nodes, the explanation will combine the path rules using
the OR operator. The goal is to construct an unsupervised decision tree,
as well as the K clusters and their explanations, such that a measure
of their intra-homogeneity of the clusters is minimized. Alternatively,
in Dasgupta et al. (2020), the authors construct an unsupervised de-
cision tree with the goal of making as few changes as possible to the
clusters obtained by K-means, measuring the intra-homogeneity of new
clusters using the original K-means centers. Finally, see, e.g., Chen
et al. (2016), Kim et al. (2014) and Saisubramanian et al. (2020) for
rule-based explanations not necessarily arranged in a tree hierarchical
structure.

The quality of the explanations is measured through their accuracy
(number of true positive cases) and their distinctiveness (number of
false positive cases). Indeed, we would like to ensure that the ex-
planation of cluster 𝑘, 𝑒𝑘, is accurate, and thus true for most of the
individuals in the cluster, but also that the explanation is distinctive
to the individuals in cluster 𝑘 versus the rest, and thus 𝑒𝑘 is not true
for too many of the individuals outside the cluster. We therefore first
count the number of individuals in cluster 𝑘 that satisfy its explanation,
i.e., the true positive cases of explanation 𝑒𝑘. Second, we count the
number of individuals outside cluster 𝑘 that satisfy explanation 𝑒 ,
𝑘
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i.e., the false positive cases of 𝑒𝑘. Let us illustrate these two criteria in
the housing dataset, when the clusters are given by the class labels
mentioned above. Let us focus on cluster 1 and assume that this is
explained by the rule 𝑒1 of length two (RM > 5.9505) AND (LSTAT ≤
3.33). There are 214 out of the 274 individuals in cluster 1 that satisfy
1, while 42 of the individuals outside cluster 1, i.e., in cluster 2, satisfy
his explanation. Thus, in relative terms, the quality of the explanation
ssigned to cluster 1 is the true positive rate (TPR), 214

274 = 0.78 (1 being
the ideal value), and the false positive rate (FPR), 42

232 = 0.18 (0 being
he ideal value).

In this paper, we propose a mathematical optimization formulation
or each of the problems described above. In the first formulation, we
imultaneously split the individuals into K clusters using a dissimilarity
to measure the intra-homogeneity of the clusters, and choose the rule-
ased explanations of length at most 𝓁. We consider three objectives,
amely, the maximization of the intra-homogeneity of the clusters,
y minimizing the sum of the dissimilarities between individuals in
he same cluster, the maximization of the accuracy of explanations,
y maximizing the total number of true positive cases across all clus-
ers, and the maximization of the distinctiveness of explanations, by
inimizing the total number of false positive cases across all clusters.
e address this multi-objective optimization problem using a weighted

pproach and formulate it as a Mixed Integer Linear Programming
MILP) problem. In the second formulation, in which the clusters are
iven, the accuracy and the distinctiveness of the explanations are
ptimized.

The paper is organized as follows. In Section 2, we introduce the
athematical optimization model that clusters individuals and assigns

ule-based explanations to them. In Section 3, this model is tailored
o the post-hoc setting in which the clusters are given and we just
eek an explanation for each of them. In Section 4, we illustrate the
erformance of these two models on real-world datasets. By solving
he MILP formulations with different weights, different non-dominated
olutions of clusters and explanations are obtained. In Section 5 we
rovide some conclusions and discuss future lines of research. The
aper ends with an appendix, containing some of the numerical results
rom Section 4.

. Building simultaneously clusters and explanations

In this section, we introduce a mathematical optimization model
hat finds clusters and explanations for them simultaneously. We as-
ume that we have at hand a dissimilarity between the individuals,
𝑖𝑗 , and that, in addition, the individuals have associated a set of
uxiliary features. The dissimilarity can be a distance-based one, such
s the squared Euclidean distance, but also a dissimilarity violating e.g.
he triangle inequality (Kaufmann and Rousseeuw, 1990). Moreover,

does not need to be based on the features used to build rules and
xplanations.

With the features, we can build N, a collection of N if-then rules. We
ssume that N is split into S groups, N = ∪S

𝑠=1N𝑠 and N𝑠 ∩ N𝑠′ if 𝑠 ≠ 𝑠′,
nd define the possible explanations for a cluster as the combination of
t most 𝓁 rules joined with the AND operator, where we select at most
ne rule from each set N𝑠. To ensure that the explanations are easy to
nderstand, 𝓁 should be small, ideally 𝓁 ≤ 2. The group N𝑠 is composed
f the rules relating to one feature, but they could be associated with
group of features, such as socio-economic features or demographic

nes. In our numerical section, we have 13 groups for the housing
ataset, one per each feature in Table 2.

Below we introduce the notation used in this section relating to the
ndividuals, the dissimilarity between them, the rules based on features
haracterizing the individuals, and whether the individuals satisfy the
ules or not. In addition, we also present the notation for the decision
ariables in our mathematical optimization formulation of the problem,
amely, decisions on the cluster membership for each individual, the
hoice of the rules composing the explanation of maximum length 𝓁 for
ach cluster, and decision variables about the true positive cases and
he false positive cases of the explanation assigned to each cluster.
3

Indices and sets
𝑘 ∈ {1,… ,K} for clusters,
𝑖, 𝑗 ∈ {1,… , I} = I for individuals,
𝑠 ∈ {1,… ,S} for groups of rules,
𝑛 ∈ {1,… ,N} = N = ∪S

𝑠=1N𝑠 ∶ N𝑠 ∩ N𝑠′ = ∅ for rules,
Data
𝜹 Matrix of dissimilarities 𝛿𝑖𝑗 between each pair of individuals

𝑖 and 𝑗,

b𝑖𝑠𝑛 =

{

1, if individual 𝑖 is explained by rule 𝑛 ∈ N𝑠

0, otherwise
,

Decision variables

𝑥𝑘𝑖 =

{

1, if individual 𝑖 belongs to cluster 𝑘
0, otherwise

,

𝑧𝑘𝑠𝑛 =

{

1, if rule 𝑛 ∈ N𝑠 is chosen for cluster 𝑘
0, otherwise

,

𝛼𝑖 =

⎧

⎪

⎨

⎪

⎩

1, if individual 𝑖 is a true positive case to the
explanation assigned to its cluster

0, otherwise
,

𝛽𝑘𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if individual 𝑖 is outside cluster 𝑘 and is a
false positive case to the explanation
assigned to cluster 𝑘

0, otherwise

,

Parameters
𝜃1 ≥ 0 Weight for true positive cases across the K clusters,
𝜃2 ≥ 0 Weight for false positive cases across the K clusters,
𝓁 Maximum length of the clusters’ explanations.

In the following, we provide a mathematical optimization formulation
to cluster the individuals in I using the dissimilarity 𝜹 while select-
ing for each cluster a rule-based explanation of maximum length 𝓁
combining the rules of N𝑠, 𝑠 = 1,… , 𝑆:

min
𝐱,𝐳,𝜶,𝜷

K
∑

𝑘=1

I−1
∑

𝑖=1

I
∑

𝑗=𝑖+1
𝛿𝑖𝑗𝑥𝑘𝑖𝑥𝑘𝑗

− 𝜃1
I

∑

𝑖=1
𝛼𝑖 + 𝜃2

K
∑

𝑘=1

I
∑

𝑖=1
𝛽𝑘𝑖 (1)

s.t.
K
∑

𝑘=1
𝑥𝑘𝑖 = 1, 𝑖 = 1…I (2)

∑

𝑛∈N𝑠

𝑧𝑘𝑠𝑛 ≤ 1, 𝑘 = 1…K, 𝑠 = 1…S (3)

1 ≤
S
∑

𝑠=1

∑

𝑛∈N𝑠

𝑧𝑘𝑠𝑛 ≤ 𝓁, 𝑘 = 1…K (4)

𝛼𝑖 + 𝑥𝑘𝑖 +
∑

𝑛∈N𝑠

(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 ≤ 2, 𝑖 = 1…I, 𝑘 = 1…K,

𝑠 = 1…S (5)
𝛽𝑘𝑖 + 𝑥𝑘𝑖

+
S
∑

𝑠=1

∑

𝑛∈N𝑠

(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 ≥ 1, 𝑖 = 1…I, 𝑘 = 1…K (6)

𝑥𝑘𝑖 ∈ {0, 1}, 𝑖 = 1…I, 𝑘 = 1…K (7)
𝑧𝑘𝑠𝑛 ∈ {0, 1}, 𝑠 = 1…S, 𝑛 ∈ N𝑠,

𝑘 = 1…K (8)

𝛼𝑖 ∈ [0, 1], 𝑖 = 1…I (9)

𝛽𝑘𝑖 ∈ [0, 1], 𝑖 = 1…I, 𝑘 = 1…K. (10)

The objective function (1) consists of three terms: the minimization
of intra-homogeneity of clusters, the maximization of the total true
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Table 1
Description of the datasets used to illustrate the quality of the explanations provided
by (CinterP) and (InterP).

Name of dataset #Individuals (I) #Classes (𝐶) #Features (𝑑)

housing 506 2 13
breast cancer 683 2 10
PIMA 768 2 8
abalone 835 2 8
wine 178 3 13
glass 214 6 9

Table 2
Description of the features in the housing dataset and the 𝐶 = 2 classes.

Feature Description

CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS Proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX Nitric oxides concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centres
RAD Index of accessibility to radial highways
TAX Full-value property-tax rate per $10,000
PTRATIO Pupil–teacher ratio by town
B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population

Class Higher (class 1) or lower (class 2) than the median value of
owner-occupied homes in $1000’s

positive cases weighted by the parameter 𝜃1, and minimization of
the total false positive cases by weighted by the parameter 𝜃2. The
ntra-homogeneity can take different forms (Rao, 1971; Basak and
rishnapuram, 2005), and we have considered here the sum of the
issimilarities within each cluster. We now discuss the constraints, and
ote that the correctness of the formulation is driven by the direction
f the optimization, as we will see below. Constraints (2) ensure that
ach individual is assigned to exactly one cluster. For each cluster,
onstraints (3) ensure that at most one rule of group 𝑠 is chosen, while
onstraints (4) impose that at least one rule is chosen for each cluster
ut no more than 𝓁. Constraints (5) and (6) ensure that 𝛼𝑖 and 𝛽𝑘𝑖 are
ell-defined. Because of the direction of the objective function, we only
eed to ensure that 𝛼𝑖 = 0 and 𝛽𝑘𝑖 = 1 are well-defined. Let us start with
𝑖 = 0 and note that ∑𝑛∈N𝑠

(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 ≤ 1. Thanks to this inequality,
onstraints (5) are redundant if individual 𝑖 does not belong to cluster
, 𝑥𝑘𝑖 = 0. If individual 𝑖 belongs to cluster 𝑘, 𝑥𝑘𝑖 = 1, and it is not

explained by the explanation assigned to this cluster, then for each
𝑠, 𝑛 ∈ N𝑠 such that 𝑧𝑘𝑠𝑛 = 1, we have that b𝑖𝑠𝑛 = 0. This means that

𝑛∈N𝑠
(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 = 0, yielding 𝛼𝑖 ≤ 0. This, together with the fact

hat 𝛼𝑖 cannot be negative, ensures that 𝛼𝑖 = 0. We now analyze the
ase of 𝛽𝑖𝑘 = 1. If individual 𝑖 does not belong to cluster 𝑘, 𝑥𝑘𝑖 = 0, but
atisfies the chosen explanation for that cluster, then ∀𝑠, 𝑛 ∈ N𝑠 such
hat 𝑧𝑘𝑠𝑛 = 1 we have b𝑖𝑠𝑛 = 1. With this ∑S

𝑠=1
∑

𝑛∈N𝑠
(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 = 0,

nd thus 𝛽𝑘𝑖 ≥ 1, which together with the upper bound on 𝛽𝑘𝑖, ensures
hat 𝛽𝑘𝑖 = 1. The integrality of the decision variables 𝐱 and 𝐳 is enforced
y constraints (7) and (8). Decision variables 𝛼𝑖 and 𝛽𝑘𝑖 were defined
s integer variables, but as seen above we can assume them to be
ontinuous without of loss of optimality, see constraints (9)–(10).

The intra-homogeneity term contains the product of binary decision
ariables 𝐱. We linearize them by adding new decision variables 𝑦𝑘𝑖𝑗 =
𝑘𝑖𝑥𝑘𝑗 and new constraints. With this the clustering and interpreting
roblem can be written as the following MILP formulation:

min
𝐱,𝐳,𝜶,𝜷,𝐲

K
∑

𝑘=1

I−1
∑

𝑖=1

I
∑

𝑗=𝑖+1
𝛿𝑖𝑗𝑦𝑘𝑖𝑗 − 𝜃1

I
∑

𝑖=1
𝛼𝑖 + 𝜃2

K
∑

𝑘=1

I
∑

𝑖=1
𝛽𝑘𝑖,

s.t. (2)–(10)
𝑥 + 𝑥 − 𝑦 ≤ 1, 𝑖 = 1…I − 1, 𝑗 = 𝑖 + 1…I, 𝑘 = 1…K
4

𝑘𝑖 𝑘𝑗 𝑘𝑖𝑗
𝑦𝑘𝑖𝑗 ∈ [0, 1], 𝑖 = 1…I − 1, 𝑗 = 𝑖 + 1…I, 𝑘 = 1…K.

e will refer to this MILP formulation as (CinterP), which has I+K(2+
+ SI + I + I(I−1)

2 ) linear constraints, (I + N)K binary decision variables,
and I(1 + K + K(I−1)

2 ) continuous decision variables between 0 and 1.
The formulation (CinterP) can be enriched with desirable properties

on the explanations associated with the clusters. In the pursue of dis-
tinctiveness, we discuss below two possibilities. For instance, one could
impose that a feature (or one group of them) is used to explain at most
one cluster. Alternatively, one could wish that a rule is associated with
a cluster and that its complement is associated with another cluster.
For instance, we could have (TAX > 398) associated with one cluster
and (TAX ≤ 398) with another one. These constraints can be easily
incorporated into (CinterP), while still being an MILP formulation.

3. Constructing explanations when clusters are given

Our proposed methodology can be used in a post-hoc step, where
the goal is to explain the clusters that have been built previously with
a Cluster Analysis approach, or that are simply available to the user in
the form of cluster membership labels of the individuals. This means
that we are given the set of individuals already split into K clusters,
i.e., I = ∪K

𝑘=1I𝑘 with I𝑘 ∩ I𝑘′ with 𝑘 ≠ 𝑘′. In the following, we
present the mathematical optimization formulation that selects rule-
based explanations for the clusters, that are accurate and distinctive,
of maximum length 𝓁 combining the rules of N𝑠, 𝑠 = 1,… ,S.

The decision variables 𝑧𝑘𝑠𝑛 are defined as above, but we use slightly
different decision variables to measure the quality of the explanations,
i.e., the total number of true positive cases across all the clusters, as
well as the false positive ones. Let 𝛾𝑘𝑖 be a binary decision variable.
Let us assume that 𝑖 is in cluster 𝑘. The decision variable 𝛾𝑘𝑖 is equal
to 1 if individual 𝑖 satisfies the explanation assigned to cluster 𝑘, and
otherwise zero. For 𝑘′ ≠ 𝑘, 𝛾𝑘′𝑖 is equal to 1 if 𝑖 satisfies the explanation
chosen for cluster 𝑘′ and 0 otherwise. The model for interpreting
clusters I𝑘, for 𝑘 = 1,… ,K, reads as follows:

min
𝐳,𝜸

−
K
∑

𝑘=1

∑

𝑖∈I𝑘

𝛾𝑘𝑖 + 𝜃
K
∑

𝑘=1

K
∑

𝑘′=1
𝑘≠𝑘′

∑

𝑖∈I𝑘′
𝛾𝑘𝑖 (11)

s.t.
∑

𝑛∈N𝑠

𝑧𝑘𝑠𝑛 ≤ 1, 𝑘 = 1…K, 𝑠 = 1…S

(12)

1 ≤
S
∑

𝑠=1

∑

𝑛∈N𝑠

𝑧𝑘𝑠𝑛 ≤ 𝓁, 𝑘 = 1…K

(13)

𝛾𝑘𝑖 +
∑

𝑛∈N𝑠

(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 ≤ 1, 𝑖 ∈ I𝑘, 𝑘 = 1…K, 𝑠 = 1…S

(14)

𝛾𝑘𝑖 +
S
∑

𝑠=1

∑

𝑛∈N𝑠

(1 − b𝑖𝑠𝑛)𝑧𝑘𝑠𝑛 ≥ 1, 𝑖 ∈ I𝑘′ , 𝑘, 𝑘
′ = 1…K, 𝑘 ≠ 𝑘′

(15)
𝑧𝑘𝑠𝑛 ∈ {0, 1}, 𝑠 = 1…S, 𝑛 ∈ N𝑠, 𝑘 = 1…K

(16)
𝛾𝑘𝑖 ∈ [0, 1], 𝑖 = 1…I, 𝑘 = 1…K.

(17)

The objective function (11) maximizes total true positive cases and
minimizes total false positive cases weighted by the parameter 𝜃 ≥
0. Constraints (12)–(13) are exactly the same as constraints (3)–(4).
Constraints (14)–(15) resemble constraints (5)–(6), but they are slightly
different since the cluster membership is known, and ensure that 𝛾𝑘𝑖 is
well defined. The nature of decision variables is specified in constraints
(16)–(17), where, as before, we can assume that 𝛾 is a continuous
𝑘𝑖
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Table 3
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the housing dataset, with
K = 2 clusters, explanations of a maximum length of 𝓁 = 2 constructed with N = 187 rules using the deciles of the continuous
features and all attributes of the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

2−1 20 0.6 ⋅ 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

2−1 21 0.6 ⋅ 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

20 2−1 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

20 20 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

20 21 0.6 ⋅ 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

21 2−1 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

21 20 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

21 21 0.6 ⋅ 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8
variable. Model (11)–(17), hereafter (InterP), is an MILP problem with
K (S + 2) + I (S + 1) constraints, KN integer decision variables and K I
ontinuous decision variables between 0 and 1. Please note that (InterP)
s separable yielding an MILP for each cluster. Nevertheless, when in-
orporating the two desirable properties on the explanations to enhance
heir distinctiveness, namely, a feature can be used by at most one
luster or the complementarity of the explanations of two clusters, the
roblem is not separable anymore.

The sizes of (CinterP) and (InterP) depend on the number of rules
vailable to construct the explanations of the clusters, i.e., N. For

continuous features, the number of rules can be controlled by choosing
the level of granularity of the thresholds defining these rules. First,
in the most granular case, one can use all possible thresholds corre-
sponding to all distinct values of the features in the dataset. This may
lead to a redundancy since many values may be very close to each
other, and thus yielding the same accuracy and distinctiveness of the
explanation. Second, in a less granular case, we could use as thresholds
some percentiles of the features, say, the deciles. This dramatically
reduces the number of rules we start with, but it also enhances the
interpretation of the rule, by saying that this is the value of the feature
that leaves 10% of the observations in the dataset above (respectively,
below), if the ninth decile is chosen. These different sources of if-then
rules will be tested in the numerical section. For (InterP), where the
clusters are given, there is another alternative to generate the rules.
They can be extracted from an additive tree model based on stumps,
such as an XGBoost of depth 1, which uses the cluster labels as the
class labels. In this way, we expect more granularity in some features
than in others because they are more relevant to explain the clusters.

4. Numerical section

In this section, we illustrate our methodology on well-known real-
world datasets from the UCI Repository (Dua and Graff, 2017). In
Section 4.1, we present the benchmark datasets and the rules used to
build the explanations. In Section 4.2, we focus on our novel clustering
and interpreting model in which we perform these two tasks simul-
taneously, namely (CinterP). We discuss the intra-homogeneity of the
clusters, the accuracy and the distinctiveness of our explanations. In
Section 4.3, we focus on our post-hoc model in which the clusters are
given and we aim to explain them, namely (InterP). We discuss the
accuracy and the distinctiveness of our explanations and compare them
5

to those obtained with CART. In Section 4.4, the impact of the source of
the rules used to construct the explanations on (CinterP) and (InterP) is
analyzed. To enhance the clarity of the presentation, some of the tables
and figures have been placed in the Appendix.

For interpretability purposes, we limit the maximum length of
explanations to 𝓁 = 2 for both (CinterP) and (InterP). In (CinterP),
we take as dissimilarity 𝛿𝑖𝑗 the squared Euclidean distance between
the (normalized) feature vectors of individuals 𝑖 and 𝑗. To solve the
optimization models we use 𝐺𝑢𝑟𝑜𝑏𝑖 (Gurobi Optimization, 2020) with
𝑃𝑦𝑡ℎ𝑜𝑛 (Python Core Team, 2015) on a PC Intel®Core TM i7-8665U,
16 GB of RAM. For each instance of (CinterP), we impose a time limit
of 10 min, which allows us to get solutions in which the clusters and ex-
planations show a good tradeoff in the three criteria optimized, namely
intra-homogeneity, accuracy and distinctiveness of the explanations.
For (InterP), all the instances were solved in less than 10 s.

4.1. The datasets and the set of rules

The benchmark datasets are from Supervised Classification, with
𝐶 = 2, 3 and 6 classes. We use these 𝐶 classes as the clusters to be
explained in the post-hoc approach (InterP), while our clustering and
interpreting model (CinterP) ignores this information and constructs
the 𝐶 clusters and their corresponding explanations. The description
of the datasets can be found in Tables 1, 2 and Tables A.7–A.11.
Table 1 contains information on the name of the dataset, the number
of individuals, the number of classes and the number of features used
to construct the rules, while Tables 2 and A.7–A.11 contains a brief
description of each of these features and the classes.

We make two observations on these datasets. First, all features
are continuous except for the housing dataset that has one binary
feature and abalone that has one categorical variable with three
categories, for which we have constructed a binary feature for each
category. Second, the dataset abalone has been obtained by drawing
a random sample from the original dataset, which has more than 4000
observations.

The rules we consider in Sections 4.2 and 4.3 are of the following
form. We have a group of rules for each feature, i.e., S = 𝑑. If feature
𝑠 is continuous, we consider the rules: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 >
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 takes on the deciles of 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. For binary
features, the two rules are defined as 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 0. This

choice of rules is further analyzed in Section 4.4.
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Table 4
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the housing dataset, with K = 2 clusters, explanations of a
maximum length of 𝓁 = 2 constructed with N = 187 rules using the deciles of the continuous features and all attributes of the categorical
features.
𝜃 Cluster TPR FPR Explanations

25 1 0.45 0.00 RM > 6.376 AND LSTAT ≤ 7.765
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

24 1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

23 1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

22 1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.41 0.05 CRIM ≤ 10.753 AND LSTAT > 15.62

21 1 0.70 0.06 RM > 6.086 AND LSTAT ≤ 11.36
2 0.70 0.15 CRIM ≤ 10.753 AND LSTAT > 11.36

20 1 0.70 0.06 RM > 6.086 AND LSTAT ≤ 11.36
2 0.81 0.23 AGE > 26.95 AND LSTAT > 11.36

2−1 1 0.78 0.18 RM > 5.9505 AND LSTAT ≤ 13.33
2 0.97 0.40 RM ≤ 6.75 AND LSTAT > 7.765

2−2 1 0.98 0.83 PTRATIO ≤ 20.9
2 0.99 0.46 LSTAT > 7.765

2−3 1 0.98 0.83 PTRATIO ≤ 20.9
2 0.99 0.46 LSTAT > 7.765

2−4 1 1.00 1.00 All in
2 0.99 0.46 LSTAT > 7.765

2−5 1 1.00 1.00 All in
2 1.00 0.63 LSTAT > 6.29

CART 1 0.75 0.12 LSTAT ≤ 9.95 AND RM > 6.12 OR LSTAT > 9.95 AND TAX ≤ 302
2 0.88 0.25 LSTAT ≤ 9.95 AND RM ≤ 6.12 OR LSTAT > 9.95 AND TAX > 302
4.2. Illustrating the clustering and interpreting model (CinterP)

The results of (CinterP) can be found in Tables 3 and B.12–B.16,
where a table is devoted to each benchmark dataset. For each dataset,
the corresponding table shows the value of the three objectives in
(CinterP) and the explanations obtained for each cluster. For the first
objective, we report the total intra-homogeneity, while for the other
two objectives, namely the accuracy and the distinctiveness, we report
those in relative terms, i.e., the true and false positive rates for each
cluster.

Model (CinterP) has two parameters, 𝜃1 and 𝜃2, which are weights of
he accuracy and the distinctiveness of the explanations, respectively.
o have both objectives in roughly the same scale, we divide the intra-
omogeneity by the constant I2 max𝑖𝑗 𝛿2𝑖𝑗 , while the other two objectives

are divided by I. Once this is done, we consider a grid of parameters,
namely, (𝜃1, 𝜃2) ∈ {2𝑝}𝑝=−1,0,1 × {2𝑝}𝑝=−1,0,1. We first solve (CinterP)
for the smallest value of 𝜃1 and each value of 𝜃2, the latter taken in
increasing order. We continue in a similar fashion with the values of
𝜃1 taken in increasing order. For each problem, we start with an initial
solution: clusters and explanations. We consider two options and give
to the solver the one with the best objective function. Initial clusters
can be constructed using K-means clustering or can be simply the ones
obtained when solving (CinterP) with the previous combination of 𝜃1
and 𝜃2 in our grid. We use these clusters in (InterP) to obtain the
corresponding initial explanations, with 𝜃 = 𝜃2∕𝜃1.

Let us start discussing the results for the housing dataset found in
Table 3. The intra-homogeneity stays the same for all the combinations
of the parameters in the grid, namely, 0.6 ⋅ 105. After inspecting the
clusters, we note that those are the ones from the initial solution,
namely the 𝐾-means solution. As we will see below, when we enlarge
the number of rules, problem (CinterP) will yield different partitions.
The explanations obtained for these clusters are very good in terms of
the accuracy and distinctiveness of the explanations. Indeed, the true
6

positive rate of the first cluster ranges from 90% to 100% and the false
positive rate from 0% to 4%, while for the second cluster, the true
positive rate ranges from 97% to 100% and the false positive rate from
0% to 9%. As we will see below, (CinterP) will slightly improve these
metrics when we enlarge the number of rules.

Similar conclusions can be drawn for the other datasets. For
breast cancer, for the best value of the intra-homogeneity, the
explanations have a true positive rate of 97% and 90%, respectively,
and a false positive rate of 2% in both clusters. For PIMA, for the second
best value of the intra-homogeneity, the explanations have a true
positive rate of 80% and 100%, respectively, and the false positive rate
is perfect, i.e., 0% in both clusters. For abalone, for the second best
value of the intra-homogeneity, the explanations have a true positive
rate of 82% and 100%, respectively, and a false positive rate of 16%
and 0%, respectively. For wine, we obtain perfect explanations for
all three clusters. To end, for glass, for the best value of the intra-
homogeneity, the explanations have a true positive rate of 80%, 100%,
95%, 100%, 100% and 50%, respectively, and a false positive rate of
3%, 0%, 9%, 1%, 2% and 0%, respectively.

To end, we note that we have not been able to obtain a proof of
optimality for the solutions above within the time limit of 10 min.
Indeed, for housing, the MIPGAP ranges from 3.05% to 11.77%,
for breast cancer from 1.60% to 9.76%, for PIMA from 3.65% to
25.76%, for abalone from 8.93% to 62.30%, for wine from 1.89%
to 10.06%, for glass from 8.84% to 41.42%. This is not surprising
since it is known that clustering is already a difficult problem, and
(CinterP) here needs to cluster approximately hundreds of individuals,
and, in addition, explain the clusters, all within the same mathematical
optimization model.

4.3. Illustrating the interpreting model (InterP)

To illustrate (InterP) and its natural benchmark, namely CART, we
assume that the clusters are given by classes reported in Tables 2 and

A.7–A.11. To make the comparison fair, we train a CART of depth 2
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Fig. 2. The housing data:the interpretability results obtained by (InterP).
Fig. 3. The post-hoc explanations provided by a CART of depth 2 for the housing dataset for clusters (classes) 1 and 2.
for these benchmark datasets with 𝐶 = 2 classes, while for wine and
glass, the chosen depth is 2 and 4, which is the minimum one to
ensure that all classes are represented in the leaf nodes.

The explanations provided by (InterP) and CART for these clusters,
as well as the accuracy and distinctiveness can be found in Tables 4 and
Tables C.17–C.22. These two criteria are depicted in Figs. 2 and C.4–
C.8 for both methodologies. The CART trees can be found in Figs. 3 and
C.9–C.13.

For the only parameter in (InterP), namely 𝜃, we consider the grid
of values 𝜃 ∈ {2𝑝}𝑝=−5,…,5. We solve the problem instances of (InterP)
in increasing order of 𝜃. For each value of the parameter, we give to the
solver as the initial solution the one obtained with the previous value
of 𝜃.

We focus on the housing dataset, as the results for the rest datasets
are similar. From Table 4 and Fig. 2, we can see that the true positive
7

rate of the first cluster ranges from 45% to 100% and the false positive
rate from 0% to 100%. For the second cluster, the true positive rate
ranges from 14% to 100% and the false positive rate 0% to 63%. The
low (respectively the high) values of the grid are not very interesting,
since they correspond to extreme solutions with a very low true positive
rate (respectively very high false positive rate). Indeed, they provide
explanations that are hardly satisfied by any member of the cluster
(respectively explanations that are satisfied by all clusters marked as
‘‘all in’’). Therefore, we focus on the central values of the chosen
grid. There, we find a good tradeoff between the accuracy and the
distinctiveness for both clusters. Indeed, we see that for cluster 1 the
explanation (RM > 6.086) AND (LSTAT ≤ 11.36) has a true positive
rate of 70% and a false positive rate of 6%, while for cluster 2 (AGE
> 26.95) AND (LSTAT > 11.36) has a true positive rate of 81% and
a false positive rate of 23%. This is a similar performance to that of
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Table 5
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the housing dataset, with
K = 2 clusters, explanations of a maximum length of 𝓁 = 2 constructed with N = 5646 rules using the unique values of the
continuous features and all attributes of the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 6.03 ⋅ 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

2−1 20 6.04 ⋅ 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

2−1 21 6.04 ⋅ 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 2−1 6.03 ⋅ 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 20 6.03 ⋅ 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 21 6.04 ⋅ 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 2−1 6.03 ⋅ 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 20 6.03 ⋅ 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 21 6.03 ⋅ 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647
h
c
a

CART, with more complex explanations, namely ((LSTAT ≤ 9.95) AND
(RM > 6.12)) OR ((LSTAT > 9.95) AND (TAX ≤ 302)) for cluster 1,

ith a true positive rate of 75% and false positive rate of 12%, and
(LSTAT ≤ 9.95) AND (RM ≤ 6.12)) OR ((LSTAT > 9.95) AND (TAX >
02)) for cluster 2, with a true positive rate of 88% and false positive
ate of 25%. These explanations, linking rules by an OR operator, seem
o imply that the given clusters are not the natural clusters, since no
onjunctive explanation is found out to explain the whole cluster. This
npleasant fact observed in CARTs is, by construction, impossible in
ur approach. In addition, our explanations above use as thresholds
he deciles, as opposed to CART that may use any possible value of
he features in the dataset. This lower granularity we have chosen may
ffect the two metrics measuring the quality of the explanations, i.e., it
ay lower the accuracy and/or the distinctiveness, but it will enhance

he interpretability of these thresholds.

.4. Source of rules

In this section we present the results of (CinterP) and (InterP) with
lternative sources of explanations for the housing dataset. We would
ike to understand the impact of increasing the granularity of the rules
sed to construct the explanations. We test (CinterP) and (InterP) when
ll distinct values of the features in the dataset are considered as
hresholds. This increases the total number of rules from N = 187 to
= 5646.
With the increase of granularity, (CinterP) now improves the true

ositive rate of the first cluster, yielding explanations that are almost
erfect for a 4% false positive rate of the second cluster, see Table 5. For
InterP), small improvements are also reported for the most granular
ption, see Table 6.

. Conclusions

In this paper, we have introduced an MILP model to simultaneously
luster individuals and provide rule-based explanations for the clusters.
e have assumed that we have at hand a dissimilarity between the

ndividuals. We have also assumed that we have rules based on features
haracterizing the individuals, which are to be combined with the AND
perator to obtain explanations for the clusters. We have measured the
uality of the clustering by minimizing the total dissimilarity between
ndividuals in the same cluster, while the goodness of the explanations
8

as been pursued by maximizing the number of true positive cases
Table 6
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the
ousing dataset, with K = 2 clusters, explanations of a maximum length of 𝓁 = 2
onstructed with N = 5646 rules using the unique values of the continuous features and
ll attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25 1 0.51 0.00 RM > 6.31 AND LSTAT ≤ 8.61
2 0.14 0.00 LSTAT > 11.25 AND PTRATIO > 20.9

24 1 0.58 0.00 Al ≤ 1.146 AND Si ≤ 72.132
2 0.14 0.00 Mg ≤ 2.805 AND Ca > 10.443

23 1 0.64 0.01 RM > 6.144 AND LSTAT ≤ 9.93
2 0.14 0.00 LSTAT > 11.25 AND PTRATIO > 20.9

22 1 0.64 0.01 RM > 6.144 AND LSTAT ≤ 9.93
2 0.45 0.05 LSTAT > 14.81 AND CRIM ≤ 10.6718

21 1 0.70 0.04 RM > 6.12 AND LSTAT ≤ 11.66
2 0.70 0.14 LSTAT > 11.66 AND CRIM ≤ 11.1604

20 1 0.73 0.06 RM > 6.059 AND LSTAT ≤ 11.66
2 0.80 0.20 LSTAT > 11.66 AND CRIM ≤ 37.6619

2−1 1 0.78 0.19 LSTAT ≤ 11.66 AND B > 172.91
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−2 1 0.98 0.80 PTRATIO ≤ 20.9 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−3 1 1.00 0.90 PTRATIO ≤ 21 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−4 1 1.00 0.97 PTRATIO ≤ 21.2 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−5 1 1.00 0.97 PTRATIO ≤ 21.2 AND B > 6.68
2 1.00 0.53 LSTAT > 6.73 AND PTRATIO > 14.4

across all clusters and minimizing the number of false positive cases.
Our approach can be applied in a post-hoc fashion to interpret the
clusters of any Cluster Analysis approach or the clusters available to
the user in the form of cluster membership labels.

To end, it would be interesting to sharpen the corresponding math-
ematical optimization formulation for (CinterP), as well as to model
alternative forms of intra-homogeneity of the clusters. Another line of
future research that is worth considering is the modeling of fairness
constraints (Abraham et al., 2020).



Computers and Operations Research 154 (2023) 106180E. Carrizosa et al.

o

D

A

H
P
1
p
w
M

A

Table A.7
Description of the features in the breast cancer dataset and the 𝐶 = 2 classes.

Feature Description

Thickness Clump Thickness
Size Uniformity of Cell Size
Shape Uniformity of Cell Shape
Adhesion Marginal Adhesion
Epithelial Size Single Epithelial Cell Size
Nuclei Bare Nuclei
Nuclei Bland Chromatin
Normal Nucleoli Normal Nucleoli
Mitoses Mitoses

Class Benign (class 1) or malignant (class 2)

Table A.8
Description of the features in the PIMA dataset and the 𝐶 = 2 classes.

Feature Description

Pregnancies Number of times pregnant
Glucose Plasma glucose concentration a 2 h in an oral glucose

tolerance test
BloodPressure Diastolic blood pressure (mm Hg)
SkinThickness Triceps skin fold thickness (mm)
Insulin 2-Hour serum insulin (mu U/ml)
BMI Body mass index (weight in kg/(height in m)2)
DiabetesPedigree Diabetes pedigree function
Age Age (years)

Class Diabetes (class 2) or not (class 1)

Table A.9
Description of the features in the abalone dataset and the 𝐶 = 2 classes.

Feature Description

Sex Sex
Length Length
Diameter Diameter
Height Height
Whole weight Whole weight
Shucked weight Shucked weight
Viscera weight Viscera weight
Shell weight Shell weight

Class Higher (class 2) or lower (class 1)
than the median value of the number of the rings
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ppendix A. Description of the features and classes in the datasets

See Tables A.7–A.11.
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Table A.10
Description of the features in the wine dataset and the 𝐶 = 3 classes.

Feature Description

Alcohol Alcohol
Malic acid Malic acid
Ash Ash
Alcalinity of ash Alcalinity of ash
Magnesium Magnesium
Total phenols Total phenols
Flavanoids Flavanoids
Nonflavanoid phenols Nonflavanoid phenols
Proanthocyanins Proanthocyanins
Color intensity Color intensity
Hue Hue
OD280andOD31ofdilutedwines OD280/OD315 of diluted wines
Proline Proline

Class Type of wine (𝐶 = 3)

Table A.11
Description of the features in the glass dataset and the 𝐶 = 6 classes.

Feature Description

RI Refractive index
Na Sodium
Mg Magnesium
Al Aluminum
Si Silicon
K Potassium
Ca Calcium
Ba Barium
Fe Iron

Class Type of glass (𝐶 = 6)

Table B.12
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈
{2𝑝}𝑝=−1,0,1, for the breast cancer dataset, with K = 2 clusters, explanations of a
maximum length of 𝓁 = 2 constructed with N = 83 rules using the deciles of the
continuous features and all attributes of the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 1.73 ⋅ 105
1 1.00 0.00 Thickness ≤ 3
2 1.00 0.00 Thickness > 3

2−1 20 0.67 ⋅ 105
1 0.97 0.02 Size ≤ 4 AND Nuclei ≤ 4
2 0.90 0.02 Size > 2 AND Nuclei > 2

2−1 21 1.1 ⋅ 105
1 0.97 0.00 Nuclei ≤ 4
2 1.00 0.00 Size > 2 AND Nuclei > 4

20 2−1 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

20 20 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

20 21 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 2−1 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 20 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 21 1.24 ⋅ 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

Appendix B. The results for (CinterP) from Section 4.2

See Tables B.12–B.16.

Appendix C. The results for (InterP) and CART from Section 4.3

See Tables C.17–C.22 and Figs. C.4–C.13.
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Table B.13
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the PIMA dataset, with K = 2 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 135 rules using the deciles of the continuous features and all attributes of
the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 0.48 ⋅ 105
1 0.75 0.03 Pregnancies > 3 AND Age > 33
2 1.00 0.05 Pregnancies ≤ 5 AND Age ≤ 42.6

2−1 20 0.48 ⋅ 105
1 0.72 0.01 Pregnancies > 4 AND Age > 33
2 1.00 0.04 Pregnancies ≤ 5 AND Age ≤ 42.6

2−1 21 0.57 ⋅ 105
1 0.80 0.00 BMI > 33.7
2 1.00 0.00 BMI ≤ 32

20 2−1 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –

20 20 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –

20 21 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –

21 2−1 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –

21 20 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –

21 21 1.22 ⋅ 105
1 1.00 0.00 All in
2 – – –
Table B.14
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the abalone dataset, with K = 2 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 130 rules using the deciles of the continuous features and all attributes of
the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 2.17 ⋅ 105
1 0.82 0.16 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I

2−1 20 2.17 ⋅ 105
1 0.82 0.16 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I

2−1 21 2.16 ⋅ 105
1 0.56 0.00 Sex = M
2 0.93 0.00 Sex = I

20 2−1 2.52 ⋅ 105
1 0.95 0.40 Whole weight > 0.3625 AND Shell weight > 0.103
2 1.00 0.00 Sex = I AND Length ≤ 0.54

20 20 2.52 ⋅ 105
1 0.90 0.22 Length > 0.415 AND Viscera weight > 0.10775
2 1.00 0.00 Sex = I AND Length ≤ 0.54

20 21 2.52 ⋅ 105
1 0.82 0.07 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 2−1 2.52 ⋅ 105
1 0.98 0.65 Whole weight > 0.1955 AND Viscera weight > 0.04
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 20 2.52 ⋅ 105
1 0.95 0.40 Whole weight > 0.3625 AND Shell weight > 0.103
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 21 2.52 ⋅ 105
1 0.90 0.22 Length > 0.415 AND Viscera weight > 0.10775
2 1.00 0.00 Sex = I AND Length ≤ 0.54
Table B.15
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the wine dataset, with K = 3 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 235 rules using the deciles of the continuous features and all attributes of
the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

2−1 20 5.22 ⋅ 103
1 1.00 0.00 Ash ≤ 2.61 AND Totalphenols > 2.05
2 1.00 0.00 Ash ≤ 2.61 AND Totalphenols ≤ 2.05
3 1.00 0.00 Ash > 2.61

2−1 21 6.15 ⋅ 103
1 1.00 0.00 Malicacid > 1.247 AND Proline ≤ 742
2 1.00 0.00 Malicacid ≤ 1.247
3 1.00 0.00 Malicacid > 1.247 AND Proline > 742

20 2−1 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

(continued on next page)
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Table B.15 (continued).
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

20 20 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

20 21 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 2−1 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 20 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 21 4.99 ⋅ 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881
Table B.16
The clusters and the explanations provided by (CinterP), 𝜃1 ∈ {2𝑝}𝑝=−1,0,1 and 𝜃2 ∈ {2𝑝}𝑝=−1,0,1, for the glass dataset, with
K = 6 clusters, explanations of a maximum length of 𝓁 = 2 constructed with N = 139 rules using the deciles of the continuous
features and all attributes of the categorical features.
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

2−1 2−1 7.79 ⋅ 102

1 0.77 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.95 0.08 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.96 0.01 Mg ≤ 0.6 AND Ba > 0
6 0.44 0.00 Si ≤ 71.773 AND Ca ≤ 8.6

2−1 20 9.17 ⋅ 102

1 0.53 0.02 Al ≤ 1.146 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.04 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.44 0.00 RI ≤ 1.51869 AND Si ≤ 71.773

2−1 21 8.59 ⋅ 102

1 0.24 0.00 Mg > 3.757 AND K ≤ 0.19
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.04 K > 0.492 AND Fe ≤ 0.07
4 0.90 0.00 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.40 0.00 Si ≤ 71.773 AND Ca ≤ 8.6

20 2−1 7.79 ⋅ 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.15 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.92 0.01 Mg ≤ 0.6 AND Ba > 0
6 0.67 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

20 20 9.07 ⋅ 102

1 0.75 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.97 0.07 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.60 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

20 21 9.07 ⋅ 102

1 0.75 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.97 0.07 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.60 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

21 2−1 7.75 ⋅ 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.16 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.96 0.02 Al > 1.748 AND Ba > 0
6 0.63 0.00 RI ≤ 1.51735 AND Si ≤ 72.132

(continued on next page)
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Table B.16 (continued).
𝜃1 𝜃2 Intra-homogeneity Cluster TPR FPR Explanations

21 20 7.73 ⋅ 102

1 0.83 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.16 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 1.00 0.02 Al > 1.748 AND Ba > 0
6 0.50 0.00 RI ≤ 1.51735 AND Si ≤ 72.132

21 21 7.71 ⋅ 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.95 0.09 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 1.00 0.02 Al > 1.748 AND Ba > 0
6 0.50 0.00 RI ≤ 1.51735 AND Si ≤ 72.132
Table C.17
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the breast cancer dataset, with K = 2 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 83 rules using the deciles of the continuous features and
all attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25 1 0.85 0.00 Epithelial Size ≤ 3 AND Nuclei ≤ 1
2 0.68 0.00 Size > 4 AND Adhesion > 1

24 1 0.85 0.00 Epithelial Size ≤ 3 AND Nuclei ≤ 1
2 0.68 0.00 Size > 4 AND Adhesion > 1

23 1 0.90 0.01 Epithelial Size ≤ 3 AND Nuclei ≤ 2
2 0.68 0.00 Size > 4 AND Adhesion > 1

22 1 0.90 0.01 Epithelial Size ≤ 3 AND Nuclei ≤ 2
2 0.72 0.01 Size > 4

21 1 0.93 0.03 Shape ≤ 3 AND Chromatin ≤ 3
2 0.88 0.04 Size > 1 AND Nuclei > 2

20 1 0.96 0.07 Size ≤ 4 AND Nuclei ≤ 4
2 0.95 0.07 Size > 2 AND Shape > 1

2−1 1 0.99 0.14 Size ≤ 4 AND Nuclei ≤ 9
2 0.95 0.07 Size > 2 AND Shape > 1

2−2 1 0.99 0.14 Size ≤ 4 AND Nuclei ≤ 9
2 0.98 0.12 Size > 1 AND Shape > 1

2−3 1 0.99 0.19 Thickness ≤ 9.8 AND Size ≤ 4
2 0.98 0.12 Size > 1 AND Shape > 1

2−4 1 0.99 0.19 Thickness ≤ 9.8 AND Size ≤ 4
2 0.98 0.12 Size > 1 AND Shape > 1

2−5 1 1.00 0.52 Thickness ≤ 9.8 AND Normal Nucleoli ≤ 9
2 0.99 0.23 Shape > 1

CART 1 0.95 0.09 Size > 2.5 AND Shape ≤ 2.5 OR Size ≤ 2.5 AND Nuclei ≤ 5.5
2 0.96 0.02 Size > 2.5 AND Shape > 2.5 OR Size ≤ 2.5 AND Nuclei > 5.5
Fig. C.4. The breast cancer data: the post-hoc interpretability results obtained by (InterP) and CART.
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Fig. C.5. The PIMA data: the post-hoc interpretability results obtained by (InterP) and CART.

Fig. C.6. The abalone data: the post-hoc interpretability results obtained by (InterP) and CART.

Fig. C.7. The wine data: the post-hoc interpretability results obtained by (InterP) and CART.
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Fig. C.8. The glass data: the post-hoc interpretability results obtained by (InterP) and CART.

Fig. C.9. The post-hoc explanations provided by a CART of depth 2 for the breast cancer dataset for clusters (classes) 1 and 2.

Fig. C.10. The post-hoc explanations provided by a CART of depth 2 for the PIMA dataset for clusters (classes) 1 and 2.
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Table C.18
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the PIMA dataset, with K = 2 clusters, explanations of a maximum
length of 𝓁 = 2 constructed with N = 135 rules using the deciles of the continuous features and all attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25 1 0.14 0.00 Glucose ≤ 102 AND BMI ≤ 25.9
2 0.04 0.00 Glucose > 167 AND SkinThickness > 40

24 1 0.19 0.00 Glucose ≤ 102 AND BMI ≤ 28.2
2 0.04 0.00 Glucose > 167 AND SkinThickness > 40

23 1 0.30 0.02 BMI ≤ 30.1 AND Age ≤ 27
2 0.10 0.00 Glucose > 167 AND SkinThickness > 31

22 1 0.45 0.07 Glucose ≤ 117 AND Age ≤ 29
2 0.23 0.02 Glucose > 167 AND BMI > 28.2

21 1 0.68 0.25 Pregnancies ≤ 7 AND Glucose ≤ 125
2 0.23 0.02 Glucose > 167 AND BMI > 28.2

20 1 0.88 0.49 Glucose ≤ 147 AND BMI ≤ 41.5
2 0.55 0.13 Glucose > 125 AND BMI > 30.1

2−1 1 0.98 0.76 Glucose ≤ 167
2 0.68 0.23 Glucose > 117 AND BMI > 28.2

2−2 1 0.98 0.76 Glucose ≤ 167
2 0.90 0.51 Glucose > 95 AND BMI > 25.9

2−3 1 1.00 1.00 All in
2 0.96 0.73 Glucose > 85 AND BMI > 23.6

2−4 1 1.00 1.00 All in
2 1.00 1.00 All in

2−5 1 1.00 1.00 All in
2 1.00 1.00 All in

CART 1 0.88 0.21 Glucose ≤ 127.5 OR Glucose > 127.5 AND BMI ≤ 29.95
2 0.56 0.23 Glucose ≤ 127.5 AND BMI > 29.95
Table C.19
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the abalone dataset, with K = 2 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 130 rules using the deciles of the continuous features and
all attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25 1 0.19 0.00 Sex = I AND Height ≤ 0.085
2 0.09 0.00 Sex = M AND Shell weight > 0.41125

24 1 0.19 0.00 Sex = I AND Height ≤ 0.085
2 0.20 0.00 Shell weight > 0.41125

23 1 0.34 0.01 Sex = I AND Height ≤ 0.105
2 0.20 0.00 Shell weight > 0.41125

22 1 0.50 0.04 Sex = I AND Height ≤ 0.135
2 0.42 0.05 Height > 0.16 AND Shell weight > 0.3065

21 1 0.50 0.04 Sex = I AND Height ≤ 0.135
2 0.65 0.14 Diameter > 0.4 AND Shell weight > 0.268

20 1 0.71 0.18 Height ≤ 0.14 AND Shell weight ≤ 0.23475
2 0.76 0.23 Diameter > 0.365 AND Shell weight > 0.23475

2−1 1 0.88 0.41 Height ≤ 0.16 AND Shell weight ≤ 0.3065
2 0.86 0.34 Whole weight > 0.521 AND Shell weight > 0.19

2−2 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 0.97 0.63 Whole weight > 0.1955 AND Shell weight > 0.103

2−3 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.78 Whole weight > 0.1955 AND Viscera weight > 0.04

2−4 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.80 Whole weight > 0.1955 AND all in

2−5 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.80 Whole weight > 0.1955

CART 1 0.73 0.27 Shell weight ≤ 0.217
2 0.8 0.2 Shell weight > 0.217
15
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Table C.20
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the wine dataset, with K = 3 clusters, explanations of a maximum
length of 𝓁 = 2 constructed with N = 235 rules using the deciles of the continuous features and all attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

24
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

23
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

22
1 0.86 0.01 Flavanoids > 2.46 AND Proline > 742
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

21
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.83 0.01 Alcohol ≤ 12.76 AND Colorintensity ≤ 4.69
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

20
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.83 0.01 Alcohol ≤ 12.76 AND Colorintensity ≤ 4.69
3 0.98 0.02 Flavanoids ≤ 1.738 AND Hue ≤ 0.91

2−1
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.89 0.07 Alcohol ≤ 13.05 AND Colorintensity ≤ 4.69
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−2
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.94 0.17 Proline ≤ 1048 AND Colorintensity ≤ 4.69
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−3
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−4
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−5
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

CART

1 0.97 0.02 Proline > 755.0 AND Flavanoids > 2.165
2 0.86 0.09 Proline ≤ 755.0 AND OD280andOD31ofdilutedwines > 2.115
3 0.96 0.02 Proline > 755.0 AND Flavanoids ≤ 2.165

OR Proline ≤ 755.0 AND OD280andOD31ofdilutedwines ≤ 2.115
Fig. C.11. The post-hoc explanations provided by a CART of depth 1 for the abalone dataset for clusters (classes) 1 and 2.
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Table C.21
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the glass dataset, with K = 6 clusters,
explanations of a maximum length of 𝓁 = 2 constructed with N = 139 rules using the deciles of the continuous features
and all attributes of the categorical features.
𝜃 Cluster TPR FPR Explanations

25

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

24

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

23

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

22

1 0.14 0.01 Mg > 3.39 AND Ca > 9.57
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

21

1 0.43 0.07 Mg > 3.39 AND Ca > 8.6
2 0.33 0.04 Mg > 3.48 AND Ca ≤ 8.12
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

20

1 0.76 0.17 RI > 1.51735 AND Mg > 3.39
2 0.54 0.12 Mg > 2.805 AND Ca ≤ 8.339
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.67 0.01 Si ≤ 72.79 AND K ≤ 0
6 0.79 0.00 Na > 14.018 AND Ba > 0
Fig. C.12. The post-hoc explanations provided by a CART of depth 2 for the wine dataset for clusters (classes) 1, 2 and 3.
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Table C.22
The clusters and the explanations provided by (InterP), 𝜃 ∈ {2𝑝}𝑝=−5,…,5, for the glass dataset, with K = 6 clusters, explanations of a maximum
length of 𝓁 = 2 constructed with N = 139 rules using the deciles of the continuous features and all attributes of the categorical features (cont.).
𝜃 Cluster TPR FPR Explanations

2−1

1 0.86 0.23 RI > 1.51735 AND Mg > 2.805
2 0.62 0.20 Mg > 2.805 AND Ca ≤ 8.482
3 0.12 0.01 Na > 13.3 AND Fe > 0.22
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.805
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−2

1 0.93 0.35 Al ≤ 1.488 AND Ca ≤ 10.443
2 0.95 0.67 Na ≤ 14.018 AND Ba ≤ 0.64
3 0.35 0.05 RI ≤ 1.51735 AND Al ≤ 1.36
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.805
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−3

1 0.99 0.50 Mg > 2.805 AND Al ≤ 1.748
2 0.96 0.71 Na ≤ 14.018
3 0.71 0.25 Na > 13.3 AND Mg > 2.805
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−4

1 1.00 0.58 Al ≤ 1.748 AND Ca ≤ 10.443
2 0.99 0.86 Ba ≤ 0.64
3 1.00 0.48 Mg > 2.805 AND Ca > 8.12
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 1.00 0.19 Mg ≤ 3.39 AND Ca ≤ 10.443

2−5

1 1.00 0.58 Al ≤ 1.748 AND Ca ≤ 10.443
2 1.00 1.00 All in
3 1.00 0.48 Mg > 2.805 AND Ca > 8.12
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 1.00 0.19 Mg ≤ 3.39 AND Ca ≤ 10.443

CART

1 0.87 0.06 Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca ≤ 10.48 AND Rl > 1.517
OR Ba > 0.335 AND Si > 70.16 AND Mg > 3.42

2 0.68 0.17 Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca > 10.48 AND Na ≤14.495
OR Ba ≤ 0.335 AND Al > 1.42 AND Mg > 2.26
OR Ba > 0.335 AND Si ≤ 70.16 AND Ca > 9.585

3 0.41 0.05 Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca ≤ 10.48 AND Rl ≤ 1.517
4 0.92 0.00 Ba ≤ 0.335 AND Al > 1.42 AND Mg ≤ 2.26 AND Na ≤ 13.495

OR Ba > 0.335 AND Si ≤ 70.16 AND Ca ≤ 9.585
5 0.67 0.01 Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca > 10.48 AND Na > 14.495

OR Ba ≤ 0.335 AND Al > 1.42 AND Mg ≤ 2.26 AND Na > 13.495
6 0.90 0.02 Ba > 0.335 AND Si > 70.16 AND Mg ≤ 3.42
Fig. C.13. The post-hoc explanations provided by a CART of depth 4 for the glass dataset for clusters (classes) 1, 2, 3, 4, 5 and 6.
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