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Abstract

This thesis investigates the relationship between risk and return in the cross-section of

stocks. The thesis consists of three papers that can be read independently. These papers

are the result of my Ph.D. studies at the Department of Finance, the Center of Financial

Frictions (FRIC), and the Center of Big Data in Finance (BIGFI) at CBS.

The first paper, Subjective Risk and Return, investigate the subjective risk-return

tradeoff. To do so, I introduce a novel data set of subjective risk and return expectations

at the individual stock level. I find that the required compensation for risk is high, but

nevertheless, the realized compensation for risk is low. I show that this difference arises

because cash flow expectations are systematically too high for risky stocks, which can

be explained by investors suffering from optimism bias. As a result of the low realized

compensation for risk, I show that risk cannot explain the realized return of most equity

factors, and that the best asset pricing models for explaining realized returns are the

worst ones for explaining subjective risk compensation.

The second paper, Is There a Replication Crisis in Finance (co-authored with Bryan

Kelly and Lasse Heje Pedersen), tests whether equity factor research in finance is robust

to scientific replication. In particular, we build a global data set of stock returns and

characteristics to replicate 153 equity factors in 93 different countries. Further, we develop

and estimate a Bayesian model of factor replication, which can handle the multiple testing

of many hypotheses, and the issue of publication bias. Our main result is that most equity

factors can be replicated. Further, we show that most factors work well out-of-sample,

that is, in time periods and countries different from the ones studied in the original paper.

We also show that the 153 factors can be grouped into 13 themes, most of which matter

for the tangency portfolio.

The third paper, Machine Learning and the Implementable Efficient Frontier (co-

authored with Bryan Kelly, Semyon Malamud, and Lasse Heje Pedersen), develops a

framework that integrates trading-cost-aware portfolio optimization with machine learn-

ing (ML). We show theoretically how to solve the optimal portfolio problem for an investor

that faces trading costs when returns are predictable by a general function of security

characteristics. In addition, we show to implement this solution via a machine learning

methodology that learns directly about portfolio weight (rather than returns). Empiri-
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cally, we find that our method leads to significant out-of-sample gains relative to various

sophisticated benchmarks. Finally, our method gives a novel view of which security char-

acteristics are economically important.
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Summaries

1 Summaries in English

Subjective Risk and Return

Risk-averse investors require a higher return to invest in riskier stocks. Therefore, the

required return of a stock depends on its risk, as perceived by investors, and the com-

pensation investors require for taking risk. The standard approach is to infer required

returns from an asset pricing model such as the Capital Asset Pricing Model (CAPM) of

Sharpe (1964), Lintner (1965), and Mossin (1966) or the 3-factor model (FF3) of Fama

and French (1993a). According to the CAPM, the required return on a stock depends on

its market beta, while FF3 predicts that a stock’s required return depends on its exposure

to market risk, while FF3 predicts that it also depends on its exposure to size and value

risk. However, we have many different asset pricing models, and it is unclear which one

best describes the behavior of actual investors.

Instead of relying on an asset pricing model, I infer required returns from observable

subjective risk and return expectations. The subjective risk ratings give me a direct

proxy for which stocks investors perceive as risky but not the risk premium required by

investors. To estimate this subjective risk premium, I regress subjective expected returns

on subjective risk. My final estimate of a stock’s required return is then the product of

its subjective risk and the subjective risk premium.

My first main result is that the subjective risk premium is high. In particular, I

estimate that investors require a 12% higher return each year for investing in the riskiest

stocks relative to the safest. Nevertheless, the realized risk premium is low in the sense

that the realized return is only 3% higher for the riskiest stocks relative to the safest. This

discrepancy arises because cash flow forecasts are systematically too high for the riskiest

stocks, which I show is consistent with investors suffering from optimism bias. I make

two additional findings based on the required return estimates: First, most equity factors

have a negative required return despite a positive realized return, which is inconsistent

with equity factors being driven by rational compensation for risk. Second, I show that

recent asset pricing models, such as the 5-factor model of Fama and French (2015), explain
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realized returns well but required returns poorly. In contrast, traditional models, such as

the CAPM, explain required returns well but realized returns poorly.

Is There a Replication Crisis in Finance

Several research fields, such as medicine (Ioannidis, 2005) and psychology (Nosek et al.,

2012), face issues that published research findings cannot be reproduced, a so-called repli-

cation crisis. These concerns have also been raised in financial economics and are specifi-

cally directed toward the literature that uses equity factors to study return predictability.

For example, Hou et al. (2020a) argues that most equity factors lack internal validity

because they cannot be replicated after small modifications to the factor construction.

Further, Harvey et al. (2016a) argues that most equity factors lack external validity be-

cause they result from “p-hacking” whereby researchers try multiple hypotheses but only

select the best-performing ones for publication. We examine both of these challenges and

argue that neither is tenable.

To examine these challenges, we build a large new data set of global stock returns

and firm characteristics, which we use to replicate 153 equity factors in 93 countries. The

majority of papers that proposes a new equity factor only test the factor on US data,

so our global data set provides a useful out-of-sample test to evaluate the robustness of

the original result. In addition, we develop a Bayesian model of factor replication, which

estimates the expected performance of all factors jointly, thereby utilizing information

about the performance of related factors. By modeling all factors jointly, the Bayesian

model naturally accounts for issues with multiple testing. Furthermore, we show how the

model can account for publication bias even without observing all factors that have been

tested.

We find that US equity factors have a high degree of internal validity in the sense

that 82.4% of the factors remain significant after modification to the factor constructions,

which makes all factors consistent and avoids putting too much weight on small stocks,

thereby making the factor more implementable. This conclusion is robust to accounting

for multiple testing via our Bayesian model. We also show that factors show a high degree

of external validity in the sense that they replicate well in countries and time periods that

differ from the ones studied in the original paper. Finally, we show that the 153 factors can

be clustered into 13 distinct themes, most of which are a significant part of the tangency

portfolio.

Machine Learning and the Implementable Efficient Frontier

There is a growing literature that uses machine learning (ML) techniques to predict stock

returns (e.g., Gu et al. (2020a)). These models are typically designed to predict returns
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without considering trading cost, and, as a result, they tend to focus on short-lived

characteristics that work well for small and illiquid stocks (see, e.g., Avramov et al.

(2021)). However, real-world investors face tradings cost, so the ML-implied portfolios

are not implementable in practice. We propose that investment strategies should be

evaluated based on their expected returns out-of-sample after trading cost for different

levels of risk, which we call the “implementable efficient frontier.”

We develop a framework that integrates trading-cost-aware portfolio optimization with

ML. Our key theoretical insight is that the optimal portfolio with trading cost is a compro-

mise between the portfolio inherited from the last period and a so-called “Aim Portfolio,”

which is the weighted average of the optimal portfolios without trading costs over all fu-

ture periods. Further, we show that the optimal weight to put on a stock depends not only

on its expected return over the next period (as would be the case without trading costs)

but on its expected return over all future periods. Furthermore, how aggressively the

investor should trade toward the desired portfolio weight depends on the stock’s liquidity

and the investor’s wealth.

We consider two different approaches of using ML to implement the theoretical results.

The first approach, Multiperiod-ML, uses ML to predict returns over multiple future

horizons and uses the theoretical result to turn these predictions into portfolio weights.

The second approach, Portfolio-ML, uses ML to learn directly about a stock’s weight

in the Aim Portfolio as a function of its characteristics. Empirically, we compare our

two methods to several existing benchmark and shows that the out-of-sample gains for

a mean-variance investor can be substantial. In particular, we show that Portfolio-ML

outperforms the second-best alternative by 20% in net Sharpe ratio and 60% in utility

terms. In addition, and consistent with the theoretical analysis, we show that slow-moving

features of a stock, such as its value and quality characteristics, are the most important

determinants of its weight in the aim portfolio.

2 Summaries in Danish

Subjective Risk and Return

Risiko-averse investorer kræver et højere afkast for mere risikable aktier. Derfor afhænger

det krævede afkast p̊a en aktie af hvor risikable investorer syntes aktien er og hvor meget

kompensation de kræver for at tage risiko. Den klassiske metode til at estimere det

krævede afkast p̊a en aktie er at bruge an asset pricing model s̊asom Capital Asset Pricing

Modellen (CAPM) fra Sharpe (1964), Lintner (1965), and Mossin (1966) eller 3-faktor

modellen (FF3) fra Fama and French (1993a). Ifølge CAPM afhænger det krævede afkast

p̊a en aktie af dens markedseksponering, hvorimod FF3 siger at det ogs̊a afhænger af
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aktien size og value eksponering. Problemet er at vi har mange forskellige modeller og

det er uklart hvilken model, der bedst beskriver faktiske investorer.

I stedet for at bruge en asset pricing model finder jeg det krævede afkast ved hjælp af

observerbare subjektive risiko og afkast forventninger. De subjektive risiko vurderinger

giver mig en direkte proxy for hvilke aktier investorer anser som risikable, men jeg man-

gler stadig den risiko præmie som investorer kræver. Jeg estimere denne subjektive risiko-

præmie ved at regressere de subjektive afkastforventninger p̊a den subjektive risiko. Mit

endelige estimat for det krævede afkast p̊a en aktie er s̊a produktet af dens subjektive

risiko og den subjektive risikopræmie.

Mit første hovedresultat er at den subjektive risikopræmie er høj. Specifikt estimere

jeg at investorer kræver et 12% højere afkast hvert år for at investere i de mest risikable

aktier relativt til de sikreste. Ikke desto mindre er den realiserede risikopræmie lav i den

forstand at det realiserede afkast kun er 3% højere for de mest risikable aktier relativt

til de sikreste. Denne forskel opst̊ar fordi at forventningerne til indtjeningen for de mest

risikable aktier er systematisk for høje, hvilket jeg viser er konsistent med investorer, der

lider af en optimisme bias. Jeg finder to yderligere resultater baseret mine nye m̊al for

det krævede afkast p̊a en aktie: For det første viser jeg at de fleste aktiefaktorer har

et negativt krævet afkast p̊a trods af et positivt realiseret afkast, hvilket er inkonsistent

med en forklaring om at disse faktorer er drevet af en rationel kompensation for risiko.

For det andet viser jeg at nyere asset pricing modeller, s̊asom 5-faktor modellen fra Fama

and French (2015), forklarer realiserede afkast godt, men krævede afkast d̊arligt. Omvendt

forklarer traditionelle modeller, s̊asom CAPM, krævede afkast godt, men realiserede afkast

d̊arligt.

Is There a Replication Crisis in Finance

Mange forskningsfelter, s̊asom medicin (Ioannidis, 2005) og psykologi (Nosek et al., 2012),

har problemer med at publicerede forskningsresultater ikke kan blive genskabt, en s̊akaldt

replikationskrise. Denne bekymring er ogs̊a blevet rejst i finansiel økonomi og er specifikt

blevet rettet mod litteraturen, der bruger aktiefaktorer til at undersøge om man kan

prædiktere aktieafkast. For eksempel argumentere Hou et al. (2020a) for at de fleste

aktiefaktorer mangler intern validitet fordi de ikke kan blive replikeret efter små ændringer

i forhold til hvordan de bliver lavet. Ydermere argumentere Harvey et al. (2016a) for

at de fleste aktiefaktorer mangler ekstern validitet fordi de er resultatet af “p-hacking”

hvormed forskere tester forskellige hypotheser men kun vælger at publicere de bedste. Vi

undersøger begge disse kritikpunkter og finder at ingen af dem er holdbare.

For at undersøge disse kritikpunkter bygger vi et stort nyt datasæt med globale aktie

afkast og firma karakteristikker, som vi bruger til at replikere 153 aktiefaktorer i 93 lande.
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De fleste forskningsartikler, der studere aktiefaktorer tester kun faktoren p̊a amerikansk

data, s̊a vores globale datasæt giver et nyttig “out-of-sample” test til at vurdere robus-

theden af det oprindelige resultat. Derudover udvikler vi en Bayesiansk model for fak-

torreplikation, som estimere det forventede afkast p̊a alle aktier simultant, hvorved den

bruger information for afkastet p̊a tæt relaterede faktorer. Ved at modellere alle faktorer

p̊a samme tid, kan den Bayesianske model tage højde for at vi tester flere hypotheser

p̊a samme tid. Derudover viser vi hvordan denne model kan bruges til at tage højde for

publikations bias selv uden at observere alle faktorer, der er blevet testet.

Vi finder at amerikanske aktiefaktorer udviser en høj grad af intern validitet p̊a den

møde at 82.4% af de aktiefaktorer vi tester forbliver signifikante efter vi ændre deres

konstruktion ved at gøre dem mere konsistente og undg̊a at putte for høj vægt p̊a små

aktier, hvilket gør at faktorerne er lettere at implementere. Denne konklusion er robust

n̊ar man tager højde for at vi har testet mange faktorer p̊a samme tid gennem vores

Bayesianske model. Vi viser ogs̊a at faktorer udviser en høj grad af ekstern validitet

p̊a den måde at de replikere godt i lande og tidsperioder, der afviger fra dem, som blev

studeret i den originale artikel. Til sidst viser vi at de 153 faktorer kan blive grupperet

ind i 13 forskellige temaer, hvoraf de fleste er en signifikant del af tangent porteføljen.

Machine Learning and the Implementable Efficient Frontier

Der er en voksende literatur, som bruger maskinlæringsteknikker (ML) til at forudsige

aktieafkast (f.eks. Gu et al. (2020a)). Disse modeller er typisk designet til at forudsige

afkast uden at tage højde for handelsomkostninger, hvilket gør at de har en tendens til at

forkusere p̊a kortsigtet profitabilitet, der fungere godt for sm̊a og illikvide aktier (se f.eks.

Avramov et al. (2021)). Investorer i den virkelige verden bliver dog nødt til at forholde

sig til handelsomkostninger og derfor er disse ML porteføljer ikke mulige at implementere

i praksis. Vi foresl̊ar i stedet at investeringsstrategier skal vurderes p̊a deres forventede

afkast out-of-sample efter handelsomkostninger for forskellige risikoniveauer, hvilket vi

kalder den “implementable efficient frontier.”

Vi udvikler et framework, der integrerer handelsomkostningsbevidst porteføljeoptimering

med ML. Vores centrale teoretiske indsigt er at den optimale portefølje med handel-

somkostninger er et kompromis mellem den portefølje investoren arvede fra den tidligere

periode og en s̊akaldt “mål portefølje,” som er det vægtede gennemsnit af de optimal

porteføljer uden handelsomkostninger i alle fremtidige perioder. Derudover viser vi at

den optimale vægtning af en aktie ikke kun afhænger af den forventede afkast over den

næste periode (hvilket er tilfældet uden handelsomkostninger), men af dens forventede

afkast over alle fremtidige perioder. Desuden viser vi at farten, der skal handles mod den

ønskede vægt afhænger af aktiens likviditet samt investorens formue.
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Vi analysere to forskellige måder at bruge ML til at implementere vores teoretiske

resultater. Den første tilgang, Multiperiod-ML, bruger ML til at forudsige aktieafkast

over flere fremtidige horisonter og bruger det teoretiske resultat til at omdanne disse

forudsigelser til porteføljevægte. Den anden tilgang, Portfolio-ML, burger ML til at lære

direkte om en akties vægt i mål porteføljen som en funktion af aktiens karakteristikker.

Empirisk sammenligner vi vores to metoder med flere eksisterende benchmarks og viser

at gevinsterne for en investor med en mean-variance nyttefunktion kan være betydelige.

Specielt Portfolio-ML klarer sig godt og sl̊ar det næstbedste alternativ med 20% i net

Sharpe ratio og 60% i forhold til nytteværdien. Derudover viser vi, i overensstemmelse

med den teoretiske analyse, at aktie karakteristikker, der ændre sig langsomt, s̊asom en

aktie value og quality karakteristikker, er de vigtigste til at bestemmer, hvor stor en vægt

aktien f̊ar i mål porteføljen.
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Chapter 1

Subjective Risk and Return

Abstract

I use novel data on subjective risk and return expectations to infer investors’ required

returns. I find that the required compensation for risk is high while the realized compen-

sation for risk is low. This difference arises because cash flow forecasts are systematically

too high for risky stocks, which can be explained by investors suffering from optimism

bias. The weak link between realized and required returns has two important implica-

tions: First, most equity factors have a negative required return despite having a positive

realized return. Second, recent empirical asset pricing models explain realized returns

well but required returns poorly—while the opposite is true for traditional models like

the CAPM.

I am grateful for helpful comments from Jens Dick-Nielsen, Nick Barberis, Paul Ehling (discussant),
Marc Eskildsen, Peter Feldhütter, Paul Fontanier, Nicola Gennaioli (discussant), Niels Gormsen, Robin
Greenwood, Markus Ibert, Jinoug Jeung (discussant), Bryan Kelly, Stig Lundeby (discussant), Semyon
Malamud, Kasper Meisner Nielsen, Lasse H. Pedersen, Alberto Rossi, Alessandro Spina, Julian Ter-
stegge, Anders Trolle, Johannes Wohlfart, and seminar and conference participants at Boston University
Questrom School of Business, Georgetown University McDonough School of Business, London Business
School, London School of Economics, Nova SBE, Rotman School of Management, University College
London, Yale School of Management, EFA Doctoral Tutorial 2022, the FRIC Research Retreat 2022, the
Bocconi-Tisvildeleje Workshop 2022, the 6th HEC Paris Finance PhD Workshop, and the Young Scholars
Nordic Finance Workshop 2022.
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Risk-averse investors require a higher return to invest in riskier stocks. Therefore,

required returns reflect investors’ views on what makes a stock risky and the compensation

investors require for taking risks. In this paper, I propose to estimate required returns

using observable subjective risk and return expectations.

The standard approach to estimating required returns relies on assumptions about in-

vestor beliefs and preferences. For example, required returns follow the CAPM if investors

have homogeneous beliefs and mean-variance preferences over portfolio returns (Sharpe,

1964) and the consumption CAPM if a representative investor has time-separable utility

over aggregate consumption (Breeden, 1979). However, required returns could also reflect

latent state variable risk captured by empirical multifactor models (Fama and French,

1993a, 2015), the ratio of growth options to assets-in-place (Berk et al., 1999), good vs.

bad beta (Campbell and Vuolteenaho, 2004), investment-specific technology risk (Kogan

and Papanikolaou, 2013, 2014), risk evaluated according to prospect theory (Barberis

et al., 2021) and so on. The difficulty with the standard approach is determining which

assumptions best capture the behavior of actual investors.

Instead of making relying on assumptions about investor beliefs and preferences, I

rely on observable subjective risk and return expectations. Subjective risk ratings reveal

which stocks investors perceive as risky but not the risk premium required by investors.

I estimate this “subjective risk premium” by regressing subjective expected returns on

subjective risk:

subjective expected returni = λ× subjective riski

:= required returni

+ εi, (1.1)

where λ is the subjective risk premium and the residual εi captures perceived mispricing,

that is, the subjective view of whether the stock is over- or undervalued. The subjective

risk-return relation in (1.1) allow me to infer required returns as the product of subjective

risk and the subjective risk premium.

To evaluate whether investors earn the risk compensation they require, I estimate the

realized risk premium, λrea, by regressing realized returns on subjective risk:

realized returni = λrea × subjective riski + ui. (1.2)

My first finding is that the subjective risk premium (λ) is high while the realized risk

premium (λrea) is low. This finding implies that investors require a much higher return for

investing in risky stocks relative to safe ones, but, nevertheless, risky stocks only deliver

slightly higher realized returns. My second finding, is that the gap between required and

realized returns arises because cash flow expectations of risky stocks are too optimistic. A
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finding which I show theoretically and empirically can be explained by investors suffering

from optimism bias.

I make two additional findings based on the required return estimates: First, most

equity factors have a negative required return despite having a positive realized return.

Second, recent empirical asset pricing models explain realized returns well but required

returns poorly. In contrast, traditional models explain required returns well but realized

returns poorly.

The Subjective and Realized Risk Premium. Figure 1 shows the relation be-

tween subjective expected returns and subjective risk (blue circles). For example, in the

top-left corner of Figure 1, I sort stocks into 10 portfolios based on their subjective risk,

here measured as the “safety” rank from Value Line, plotted on the x-axis. Value Line is

an independent equity research firm, and the data covers 1,700 of the largest US stocks

from 1987 to 2021.1 For each group of stocks, the y-axis shows the average subjective

expected return as reported by Value Line. Based on these subjective risk and return

expectations, the figure shows the subjective risk-return relation given by the regression

line from (1.1). Value Line expects a 20% return from the riskiest stocks but only 8% for

the safest, which implies that the subjective risk premium is high.

Figure 1 also displays the relation between subjective risk and average realized returns

(red triangles) and the corresponding regression line from (1.2). Focusing again on the

top left corner, we see that the realized risk-return relation is positive but weak, as the

riskiest stocks only outperform the safest by 3% per year. This result implies that the

realized risk premium is low.

These results hold across various subjective risk and return expectations, as seen in the

other panels of Figure 1. I use two measures of subjective expected returns—from Value

Line and sell-side analysts available in I/B/E/S—and three subjective risk measures—

Value Line’s safety rank, Value Line’s market beta estimate, and the subjective risk

measure of a log utility investor from Martin and Wagner (2019). Across combinations

of risk and return expectations, the subjective risk premium is high and statistically

significant, while the realized risk premium is significantly lower. This pattern is even

stronger when I use value-weights instead of equal-weights (Figure A5).

Subjective Risk and Cash Flow Optimism. The difference between required and

realized returns reflects biased beliefs. To make this point, I use subjective cash flow

forecasts from I/B/E/S and Value Line. I find that subjective risk strongly predicts cash

flow forecast errors. Specifically, the earnings per share (EPS) forecasts for safe stocks are

approximately unbiased, while the EPS forecast for risky stocks is generally much higher

1Value Line serves both retail and professional investors, with prominent examples of the latter being
Warren Buffett, Charlie Munger, and Peter Lynch. They received much academic interest in the 1970s
and 1980s for the quality of their recommendations, for example, in Black (1973).
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Figure 1. The Subjective Risk Premium is High but the Realized Risk
Premium is Low

Note: The figure shows the relation between subjective risk and subjective expected returns and the
relation between subjective risk and average realized return for six different combinations of subjective
risk and return expectations. Each month, I sort stocks into 10 portfolios according to the subjective risk
proxy, where safe (risky) stocks are in portfolio 1 (10). I then compute the average subjective expected
return, and the average realized return over the corresponding horizon for each portfolio month. The
blue circles refer to the time-series average of the subjective expected return, and the red triangles refer
to the time-series average of the realized return. The solid lines show the best linear fit. The name in the
first row of the panel title indicates the subjective expected return proxy and the name in the second row
shows the subjective risk proxy. The subjective expected return proxy is either a four-year expectation
from Value Line or a one-year expectation from I/B/E/S. The subjective risk proxy is either a safety
rank from Value Line, a stock’s market beta estimate from Value Line, or the SVIX risk measure from
Martin and Wagner (2019).

than the subsequent realization. The high required return of risky stocks is, therefore,

muted in realized returns because of irrational cash flow optimism.

The excessive cash flow forecast of riskier stocks suggests that these stocks are over-

valued ex-ante. I show theoretically that this “risk mispricing” arises if investors suffer

from optimism bias whereby they overweight the probability of good future outcomes

(Proposition 4). Optimism bias has a greater effect on risky stocks because they tend

to have more uncertain cash flows (thus leaving more room for optimism). Intuitively,

excessive optimism is easier to justify for a risky biotech start-up relative to a safe utility

stock.

Empirically, I find support for two additional predictions of optimism bias. First, the
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average forecast error is positive.2 Second, the average forecast error and the forecast error

related to subjective risk increase with the forecast horizon. This finding is consistent with

my theoretical result that optimism bias has a larger effect when cash flow uncertainty is

higher (since cash flow uncertainty typically increases with the cash flow horizon).

Equity Factors. Next, I use the required return estimates to test whether equity

factors reflect rational compensation for risk or behavioral mispricing. Under the rational

interpretation, factors have a high realized return because they capture risk investors

require compensation for bearing. Under the behavioral interpretation, factors capture

mispricing. To distinguish between these two alternatives, I test the “risk hypothesis” that

a factor’s average realized return is equal to its required return. I derive a null distribution

under the risk hypothesis that accounts for the estimation of required returns and that

the realized return sample is longer than the one for required returns.

In a sample of 119 factors from Jensen et al. (2022a), I reject the risk hypothesis for

71% to 79% (depending on the risk and returns expectations used to estimate required

returns). This high rejection rate primarily reflects that most factors have a weak, or

even negative, relation to subjective risk. In particular, only 14%-27% of the factors

have a significantly positive required return—a minimal requirement for any risk-based

explanation. In contrast, 44%-50% of the factors have a significantly negative required

return, meaning that stocks in the long portfolio are subjectively safer than stocks in

the short portfolio. These results highlight the pitfalls in learning about required returns

from realized returns.

For individual factors, I find that the size factor has a high required return while

quality and profitability factors have sizeable negative required returns. Between these

two extremes, the momentum factor and the asset growth factor have a required return

close to zero. Focusing on the multivariate drivers of required returns, I find that a

typical safe stock is large and profitable, with low return volatility and market beta,

while a typical risky stock is small, volatile, and distressed.

Asset Pricing Models. Next, asset pricing models have a dual mandate of predicting

realized returns and explainng required returns. They are, however, typically judged solely

by how well they perform on the realized return mandate.3

I show that the only case where one model can be optimal for both mandates is when

the market is efficient. If the market is inefficient, the optimal model for realized return

2For cash flow expectations from sell-side analysts (I/B/E/S), the positive average forecast error could
reflect incentives to produce upwards-biased forecasts to please investment banking clients or to generate
trading commission (Kothari, 2001). However, these incentives-related biases are unlikely to explain the
positive average forecast error for Value Line since their primary source of income is selling investment
research.

3For papers judging asset pricing models solely on their ability to predict realized returns see, for
example, Fama and French (1993a), Fama and French (2015), Hou et al. (2015), and Barillas and Shanken
(2018).
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differs from the optimal model for required returns (Proposition 3).

Empirically, I test the ability of three traditional models, such as the CAPM, and four

recent models, such five-factor model from Fama and French (2015), to explain realized

and required returns.4 I find that the recent empirical models are superior for explaining

realized returns. The recent models have R2’s ranging from 0.26 to 0.45, compared to

-0.92 to -0.05 for the traditional models.

For required returns, the ranking is exactly the opposite. The traditional models ex-

plain required returns well, with R2’s ranging from 0.24 to 0.63. The CAPM, in particular,

is the best model of required returns for five of six sets of subjective risk and return ex-

pectations. In contrast, the recent empirical models tend to imply a high expected return

for portfolios with a low required return, and, as a result, their R2’s are deeply negative.

The recent models have improved our ability to explain realized returns but not required

returns.

Related literature. To my knowledge, I am the first to study subjective risk and

return expectations in the cross-section of stocks. For the overall stock market, Nagel and

Xu (2022b) finds a positive relationship between subjective risk and return expectations,

that is, a positive subjective risk-return tradeoff. In contrast, when surveying households,

Jo et al. (2022) finds a negative subjective risk-return tradeoff across asset classes. I

contribute to this literature by showing a strongly positive risk-return tradeoff in the

cross-section of stocks.

At the stock level, Lui et al. (2007) show that risk ratings from Salomon Smith Barney

(SSB, now Citigroup) primarily depend on idiosyncratic volatility, size, book-to-market,

and leverage.5 At the market level, Lochstoer and Muir (2022) find that subjective volatil-

ity expectations underreact to news initially, followed by a delayed overreaction. I con-

tribute to this literature by using subjective risk to infer required returns.

Brav et al. (2005) show that return expectation from Value Line and I/B/E/S increase

in market beta, decrease in firm size, and is unrelated to the book-to-market ratio. Simi-

larly, Engelberg et al. (2020) show that return expectations and stock recommendations

from I/B/E/S are negatively related to the average equity factors. I contribute to this

literature by showing that the required return of most factors is negative.

Gormsen and Huber (2022) show that the cost of capital used by CFOs closely follow

the CAPM, while Berk and Van Binsbergen (2016) show that mutual fund flows are con-

4The traditional models are the CAPM, the Consumption CAPM, the Fama-French three-factor
model, and the Carhart four-factor model, while the recent models are the five-factor model from Fama
and French (2015), the q-model from Hou et al. (2015), the model with mispricing factors from Stambaugh
and Yuan (2017), and the model with behavioral factors from Daniel et al. (2020). I test the models on
the 3× 119 high-middle-low characteristics sorted portfolios that underlies the 119 equity factors.

5Lui et al. (2007) also considers the safety rank from Value Line and finds that it has a correlation of
0.61 with the risk rating from SSB and a correlation of 0.65 with a risk rating from Merril Lynch. These
high correlations provide external validity for the safety rank as a measure of subjective risk.
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sistent with investors using the CAPM. I find that the CAPM is superior for explaining

direct proxies of investors’ required returns. Further, I show that irrational cash flow op-

timism can explain why the CAPM fails to explain realized returns despite its widespread

use.

I also contribute to the literature that uses subjective expectation in asset pricing.

For individual stocks, most papers use data on subjective cash flow expectations (e.g., La

Porta (1996), Engelberg et al. (2018), Bordalo et al. (2019), and Bouchaud et al. (2019)),

while the use of subjective return expectations is more common at the market level (e.g.,

Vissing-Jorgensen (2003), Amromin and Sharpe (2014), Greenwood and Shleifer (2014),

and Dahlquist and Ibert (2021)). I contribute to this literature by jointly studying subjec-

tive risk, return, and cash flow expectations for stocks, factors, and asset pricing models.

1 Theory

1.1 Setup

I consider an economy with stocks indexed by i = 1, . . . , N and discrete time periods

indexed by t = 1, 2, . . . . The one-period total return of a stock is rit+1 +rft+1, where rit+1 is

the stock’s excess return and rft+1 is the risk-free rate. I denote objective expectations by

E and subjective expectations by Ẽ. The subjective expectations are from the perspective

of a single investor.6

The investor (implicitly or explicitly) ranks stocks according to their subjective risk,

sit. The investor is risk-averse and therefore requires an additional return of λt > 0 (the

“subjective risk premium”) for each additional unit of risk. Hence, the required return

for investing in a stock from the perspective of the investor is:

Required Returnit = λts
i
t. (1.3)

The investor also computes an expected return for each stock, Ẽt[r
i
t+1]. The difference

between the required and expected return captures subjective mispricing, b̃it = λts
i
t −

Ẽ[rit+1]. The investor views a stock as undervalued if the expected return is higher than

the required return and overvalued if the expected return is lower than the required return.

Re-arranging the expression for the subjective mispricing, the subjective expected return

is:

Ẽt[r
i
t+1] = λts

i
t − b̃it. (1.4)

6With J investors, there is, potentially, J different subjective expectations. A key question is whether
the expectation of a specific investor accurately reflects the remaining J − 1. Empirically, I tackle this
issue by using six different proxies for subjective expectations.
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The investor determines the required return, so there is no distinction between the

objective and subjective required return. However, the subjective mispricing reflects the

investor’s realized return forecast, and this forecast could be biased. Let Et[r
i
t+1] be the

objectively correct forecast of the realized return—the objective expected return. The

objective mispricing of a stock is then, bit = λts
i
t − Et[r

i
t+1].7

The relation between subjective risk and objective mispricing is key to understanding

the difference between realized and required returns. Therefore, without loss of generality,

I regress objective mispricing on subjective risk across stocks,

bit = γ0
t + γ1

t s
i
t + uit, (1.5)

where γ0
t and γ1

t is the coefficient from a cross-sectional regression of objective mispricing

on subjective risk, and uit is a residual. The relation between risk and mispricing is

captured by γ1
t , while uit reveals mispricing unrelated to risk (“non-risk mispricing”).

1.2 Results

The Subjective and Required Risk Premium

In the empirical analysis, I estimate the subjective risk premium, λt, by regressing sub-

jective expected returns on subjective risk,

Ẽt[r
i
t+1] = at + λ̂ts

i + εit, (1.6)

where at is the intercept of the regression, λ̂t is my estimate of λt, and εit is a residual. In

addition, I estimate the realized risk premium by regressing objective expected returns

on subjective risk,8

Et[r
i
t+1] = areat + λreat si + εrl,it , (1.7)

where λ̂reat is the realized risk premium estimate.

Proposition 1 shows when λ̂t is a good proxy for the subjective risk premium, λt, and

how this subjective risk premium differs from the realized risk premium, λ̂reat (all proofs

are in appendix 8.1).

7To understand b and b̃, consider a stock with a price today of 10 and a liquidating cash flow in one year.
The investor expects the cash flow to be 12, the risk-free rate is 0%, and the investor requires λts

i = 10%
for investing in the stock. The investor’s subjective expected return is Ẽt[r

i
t+1] = 12/10−1 = 20% and the

subjective mispricing is b̃it = −10%. That is, the investor views the stock as 10% undervalued. Suppose
the investor is biased and the objective cash flow expectation is 11. The objective expected return is then
Ẽt[r

i
t+1] = 11/10− 1 = 10% and the objective mispricing is bit = 10%− 10% = 0%.

8In practice, I regress realized returns on subjective risk, but the coefficients reveal the relationship
between subjective risk and objective expected returns.
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Proposition 1 (The Subjective and Realized Risk Premium) The subjective risk

premium estimate, λ̂t from (1.6), depends on the true subjective risk premium and the

relation between subjective risk and subjective mispricing,

λ̂t = λt −
Cov

(
sit, b̃

i
t

)
Var(sit)

, (1.8)

where Var and Cov is the cross-sectional variance and covariance, respectively. The real-

ized risk premium estimate, λ̂reat from (1.7), depends on the true subjective risk premium

and the relation between subjective risk and objective mispricing,

λ̂reat = λt −
Cov

(
sit, b

i
t

)
Var(sit)

= λt − γ1
t , (1.9)

where the last equality uses the definition of γ1
t from (1.5).

Equation (1.8) in Proposition 1 shows that λ̂t is an unbiased estimate of λt if subjective

risk and subjective mispricing are uncorrelated. If, for example, the investor on average

views riskier stocks as overvalued, Cor(b̃, sit) > 0, then the estimated risk compensation

is lower than the true compensation. Therefore, I can recover the investor’s required

returns from subjective risk and return expectations if there is no systematic (linear)

relation between subjective risk and subjective mispricing. In addition, equation (1.9) in

Proposition 1 shows that the difference between the required and realized compensation

for risk depends on γ1
t . Empirically, I find evidence of γ1

t > 0, implying that the realized

compensation for risk is lower than investors require.

Equity Factors

Next, I consider an equity factor that goes long/short stocks according to some underlying

stock characteristics. The return of this portfolio is rLt+1−rSt+1 = r′t+1π
L
t −r′t+1π

S
t , where πS

and πS is the portfolio weights in the long and short portfolio, respectively. For simplicity,

I consider a dollar neutral long-short factor where
∑

i∈L π
L
i,t =

∑
i∈S π

S
i,t = 1, and I sign

the factor such that the long portfolio has a higher objective expected return. This setup

is inspired by the extensive literature on equity factors. Rational theories explaining why

a factor works assume that the factor’s realized return is equal to its required return. The

following proposition shows when this assumption fails:

Proposition 2 (Equity Factors) The objective expected return of a dollar neutral eq-

uity factor depends on its required return, the relation between risk and objective mispric-

ing, and the factors exposure to non-risk mispricing,

Et[r
L
t+1 − rSt+1] = (λt − γ1

t )(s
L
t − sSt )− (uLt − uSt ), (1.10)
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where skt =
∑

i∈k π
i
ts
i
t is the weighted subjective risk of stocks in portfolio j, and ukt =∑

i∈k π
i
tu
i
t is the weighted non-risk mispricing.

Proposition 2 shows that the objective expected return of an equity factor is different

from its required return (λt(s
L
t −sSt )) if the required and realized risk compensation differ,

γ1
t 6= 0, or if the factor captures exposure to non-risk mispricing. Since γ1 > 0 empirically,

the proposition imply that the realized return of true risk factors is lower than their

required returns all else equal. As such, we could have missed factors that truly matter

for required returns or have downplayed the importance of certain risk factors. Similarly,

a factor’s exposure to non-risk mispricing can disguise its required return. For example,

factors can have a high realized return even if stocks in the long and short portfolio have

similar risks if the exposure to non-risk mispricing is sufficiently high.

Asset Pricing Models

Asset pricing models are typically judged by their ability to predict realized returns,

or, said differently, by how well they align with objective expected returns (e.g., Fama

and French (1993a, 2015), Hou et al. (2015), and Barillas and Shanken (2018)). At the

same time, fundamental investors and corporate managers use required returns from asset

pricing models to value assets and for other corporate decisions. I want to understand

whether empirical models designed to explain realized returns should be used for required

returns.

I consider two types of empirical models. The first model uses a pricing factor, f 1
t ,

where a stock’s loading with respect to this factor perfectly maps to subjective risk,

Covt(r
i
t+1, f

1
t+1)/Vart(f

1
t+1) = sit, but estimates the factor premium empirically (freely) by

regressing objective expected returns on f 1
t ,

Efree
t [rit+1] = κ0

t + κ1
t s
i
t, (1.11)

where κ0 and κ1 are the coefficients from regressing objective expected returns on sub-

jective risk. This model is inspired by empirical implementations of theoretical models

that often estimate risk premiums freely instead of using the values implied by the theory.

The second empirical model adds an additional pricing factor, f 2
t , where a stock’s loadings

with respect to this factor, cit, is correlated with non-risk mispricing, Cov(cit, u
i
t) 6= 0. That

is, stocks with a high (absolute) loading on f 2
t tend to have a high (absolute) non-risk

mispricing. The model-implied expected return is,

Emultifactor
t [rit+1] = κ0

t + κ1
t s
i
t + κ2

t c
i
t, (1.12)

where κ2 is the coefficient from regressing objective expected returns on a constant and
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loadings from the two factors. For simplicity, I assume that the loadings on the new factor

are mean zero and uncorrelated with subjective risk. This model is meant to resemble

empirical multifactor models such as the five-factor model of Fama and French (2015)

and the q-model of Hou et al. (2015). I compare the empirical models to two benchmark

models. The first benchmark model perfectly matches required returns,

Ereq
t [rit+1] = λts

i
t, (1.13)

while the second model perfectly matches objective expected returns,

Eobj
t [rit+1] = Et[r

i
t+1]. (1.14)

To evaluate a model’s ability to explain realized returns, I define the objective pricing

error for any model m as,

α2
m = E

[(
Et[r

i
t+1]− Em

t [rit+1]
)2
]
, (1.15)

where Em
t [rit+1] is the model-implied expected return. The lower the objective pricing

error, the better a model fulfills the realized return mandate. This metric is closely

related to the “GRS” test of Gibbons et al. (1989), where the null hypothesis is that α2
m

is zero. Similarly, to investigate a model’s ability to explain required returns, I define the

subjective pricing error as:

α̃2
m = E

[(
λts

i
t − Em

t [rit+1]
)2
]
. (1.16)

The lower the subjective pricing error, the better a model fulfills the required return

mandate.

The empirical asset pricing models aim to fulfill the return mandate by minimizing the

objective pricing error from (1.15). As such, the models try to approximate the objective

model from (1.14). In contrast, a model that fulfills the required return mandate should

approximate the model from (1.13). The following proposition shows the extent to which

empirical asset pricing models can fulfill both mandates simultaneously:

Proposition 3 (Asset pricing models) The relative ranking of the four models for ex-

plaining realized returns is

α2
req ≥ α2

free ≥ α2
multifactor ≥ α2

obj = 0,

11



while the relative ranking for required returns is in the opposite order

α̃2
obj ≥ α̃2

multifactor ≥ α̃2
free ≥ α̃2

req = 0,

Proposition 3 shows that, for the four models, their relative ability to explain realized

returns is exactly opposite to their relative ability to explain required returns. As such,

when empirical models get better at explaining realized returns, they get worse at ex-

plaining required returns. Conversely, a model that tries to explain required returns has

an inferior realized pricing ability. This result implies that one model cannot simulta-

neously be optimal for explaining realized and required returns. The only exception to

this claim is the special case where objective expected returns only reflect required re-

turns, Et[r
i
t+1] = λts

i
t. In that case, all four models coincide and have a zero pricing error

according to both pricing metrics.

Optimism Bias

Finally, I show that an investor with an “optimism bias” makes larger mistakes when

forecasting the cash flows of riskier stocks. Optimism bias refers to the tendency of most

people to overweight the probability of good future outcomes. For example, Sharot (2011)

estimates that around 80% of forecasters have an optimism bias while the remaining 20%

have a pessimism bias.

Consider an investor j that wants to forecast the cash flow of stock i denoted xi. The

dividend has an expectation of θi and a variance of ωi. The prior distribution of θi is

normal with a common mean of µ0 and a stock-specific variance which is proportional to

its cash flow variance: τ 2
0ω

2
i , where τ0 > 0 is a constant.

Investors observe two public signals for each stock which are independently drawn from

a normal distribution with a mean of θi and variance τ 2
1ω

2
i where τ1 > 0 is a constant.

Without loss of generality, I define vmaxi as the highest of the two signals and vmini as the

lowest.

Investors use the two signals to infer the value of θi. The rational (Bayesian) approach

is to shrink the prior mean towards the equal-weighted average of the two signals:

E[θi|vmaxi , vmini ] = µ0 + δ

(
1

2
vmaxi +

1

2
vmini − µ0

)
, (1.17)

where δ =
ω2
i τ

2
0

ω2
i τ

2
0 +ω2

i τ
2
1 /2

=
τ2
0

τ2
0 +τ2

1 /2
is the shrinkage constant, which is the same for all stocks.

However, I allow for the possibility that actual investor inference is non-Bayesian. In

particular, I assume that the investor puts κj weight on vmaxi and 1− κj weight on vmini :

Ẽj[θi|vmaxi , vmini ] = µ0 + δ
(
κjvmaxi + [1− κj]vmini − µ0

)
. (1.18)
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An investor with an optimism bias puts too much weight on the good signal (vmaxi ), which

is captured by κj > 0.5.

To characterize the error made by the investor, I define the bias in an investor’s

subjective cash flow expectation as bji = Ẽj[θi|vmaxi , vmini ] − E[θi|vmaxi , vmini ]. This bias

depends on the two random signals, but the next proposition shows its expected value:

Proposition 4 (The effect of optimism bias increases in cash flow uncertainty)

The expected bias is,

Ẽ[bji ] = c(κj − 0.5)ωi, (1.19)

where c ≥ 0 is constant across stocks. For an investor with an optimism bias, κj > 0.5,

the expected bias increases in the stock’s cash flow volatility, ωi.

Proposition 4 shows that investors who suffer from an optimism bias make larger mistakes

for stocks with higher cash flow uncertainty. The reason is that stocks with more uncertain

cash flows leave more room for optimism. To see this, consider first an optimistic investor

trying to forecast the cash flows of a firm with low cash flow uncertainty, such as a utility

firm. Utility firms tend to have regulated pricing structures and long-term contracts, so

the cash flow in “good” (vmaxi ) and “bad” (vmini ) states are similar. The forecast of the

optimistic investors is, therefore, similar to that of the rational investor simply because

the low cash flow uncertainty leaves limited room for optimism. In fact, in the extreme

case where the cash flow is known (say, for a US government bond), the forecast of the

optimistic investor is equal to that of the rational investor.

In contrast, consider an optimistic investor trying to forecast the cash flows of a firm

with high cash flow uncertainty, such as Tesla. In some states of the world, electric vehicles

completely replace traditional cars, with Tesla as the market leader. In other states, Tesla

goes bankrupt. As a result, Tesla leaves plenty of room for optimism meaning that the

expected bias of an optimistic investor is high.

Appendix 8.2 shows that cash flow uncertainty is strongly increasing it stock risk. As

a result, Proposition 4 predicts that cash flow mistakes should be larger for riskier stocks

if the forecasters suffer from an optimism bias. Hence, optimism bias predicts that the

gap between the subjective expected return and the average realized return of a stock is

increasing in its subjective risk, consistent with the findings in Figure 1.

2 Data

Subjective Risk and Return Expectations

I use subjective risk and return expectation from various sources, to ensure that my results

are not specific to a particular set of expectation. In particular, I use three proxies for
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subjective risk and two proxies for subjective expected returns from three different data

sources summarized in Table I.

Table I. Subjective Risk and Return Proxies

Name Notation Provider Period #Stocks

Subjective risk

Safety rank sV L,it Value Line 1990/07 - 2021/12 1,461
Market beta βit Value Line 1990/07 - 2021/12 1,461
SVIX SVIXi

t Martin and Wagner (2019) 1996/01 - 2013/09 409

Subjective expected returns

VL ER ẼV L
t [rit,t+48] Value Line 1990/07 - 2021/12 1,439

IBES ER ẼIBES
t [rit,t+12] I/B/E/S 1999/06 - 2021/12 3,789

Note: This table shows the subjective risk and subjective expected return proxies I use throughout the
paper. The column “Name” shows proxies name, “Notation” the notation I use to refer to the proxy,
“Provider” the data provider, “Period” the period where the proxy is available, and “#Stocks” the
median number of stocks the proxies cover across months.

The most comprehensive and novel data comes from Value Line, an independent eq-

uity research firm founded in 1931 that currently employs 70+ equity analysts. Value

Line’s flagship product is the weekly publication of the “Value Line Investment Survey,”

which contains summary statistics for 1,700 of the largest US stocks and an in-depth

analysis of 130-140 of these stocks. Each stock gets an in-depth review once per quarter

or if something material happens to the underlying company. Appendix 8.3 presents an

example of a report on Apple. I have access to the Value Line data starting in 1987, but

the subjective risk and return expectations are available from 1990.

Value Line’s customers range from individual investors who pay an annual subscription

fee of $795 for basic services to professional investors who pay more than $100,000 annu-

ally.9 Prominent investors who have used Value Line include Warren Buffett and Charlie

Munger (CNBC, 1998) and Peter Lynch (Lynch and Rothchild, 2000). Value Line also

received considerable academic attention in the 1970s and 1980s for the quality of their

stock recommendations (the “timeliness rank”). For example, Black (1973) shows that

Value Line had statistically significant stock-picking skills and argued that this provided

hope for active managers.

The first proxy for subjective risk is the primary risk measure from Value Line called

the “safety rank.” The safety rank ranges from 1 for the safest stocks to 5 for the riskiest.

The safety rank is derived by taking an average of a stock’s rank with respect to two sub-

9Value Line’s annual report from 2021, p. 15: “Value Line serves primarily individual and professional
investors in stocks, who pay mostly on annual subscription plans, for basic services or as much as $100,000
or more annually for comprehensive premium quality research, not obtainable elsewhere.”
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ratings, namely a “price stability index” and a “financial strength rating.”10 To avoid

losing information from putting stocks into discrete bins, I re-define the safety rank as

the average cross-sectional rank of price stability and financial strength. I transform this

measure into a cross-sectional percentile rank such that 0 is the safest stock in a month

and 1 is the riskiest. The average cross-sectional correlation between the safety rank and

the binned version of subjective risk is 92%. I denote this re-scaled safety rank as sV L,it .

One concern is that the safety rank captures the total risk of a stock, whereas some

investors set required returns based on the systematic risk of a stock. Fortunately, a

Value Line report also includes a measure of systematic risk in the form of a stock’s

market beta, βit . In principle, investors could care about systematic risk besides market

risk (e.g., inflation risk, consumption risk, etc.). However, the fact that Value Line does

not include exposure to other systematic factors suggests that their customers view market

beta as a sufficient measure of systematic risk.

The third and final subjective risk proxy is a risk measure from Martin and Wagner

(2019).11 The measure is based on the risk-neutral variance of a stock, as computed from

option prices. Martin and Wagner (2019) shows that this measure captures subjective risk

as perceived by an unconstrained log utility investor. The data is available for S&P500

stocks from 1996 to 2013, and I denote the measure as SVIXi
t. Consistent with the

construction of sV L,it , I transform βit and SVIXi
t into cross-sectional percentile ranks.

The first proxy of subjective expected returns is from Value Line. The main input

is a high and low price target issued over a three-to-five-year horizon, which I assume is

realized after four years. I take the simple average of the high and low targets to arrive

at the expected price. I combine this price target with dividend expectations from Value

Line and the current price from CRSP to compute a stock’s expected total return.12 The

full procedure is described in Section 8.4. To obtain the four-year expected excess return,

I need to subtract the four-year risk-free rate. As a proxy, I compound the annualized

market-implied yield on a constant five-year maturity US treasury bond provided by the

St. Louis FED at https://fred.stlouisfed.org/series/DGS5. I denote the expected

return from Value Line by ẼV L
t [rit,t+48].

The second proxy of subjective expected return is from sell-side analysts, which I

10In their database manual, Value Line explains the safety rank as: “Safety is a measurement of the
total risk of a stock. Total risk is different from Beta. The latter measures only the extent to which a
stock normally responds to changes in the trend and level of the market as a whole. The Safety Rank is
a more comprehensive measure of risk including all those factors peculiar to the company’s business such
as its financial condition, management competence, etc. The Safety Rank is derived by averaging two
variables: 1) the stock’s index of Price Stability, and 2) the Financial Strength rating of the company”
(ValueLine, 2021).

11I thank Ian Martin and Christian Wagner for making their data available. I use the measure denoted
by SVIX2

i,t in Martin and Wagner (2019).
12I require that the price from CRSP is within 5% of the price reported from Value Line. This procedure

eliminates 1.1% of the relevant observations.
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access through I/B/E/S. Specifically, I use the median one-year price target from the

I/B/E/S consensus file, which I supplement with one-year dividend expectations from

I/B/E/S and the current price from CRSP. I describe the full procedure in appendix

8.4. I subtract the one-year market-implied yield on a constant one-year maturity US

treasury bond available at https://fred.stlouisfed.org/series/DGS1. The return

expectations from I/B/E/S are available for a large cross-section of stocks from 1999 to

2021, and I denote the resulting measure by ẼIBES
t [rit,t+12].

Subjective Cash Flow Expectations

I acquire subjective cash flow expectations from Value Line and I/B/E/S, primarily re-

flecting earnings per share (EPS) forecasts. From I/B/E/S, I extract the long-term growth

in EPS forecasts EPS (fpi of 0), annual EPS forecasts over the next two fiscal years (fpi

of 1 and 2), and quarterly EPS forecasts over the next four fiscal quarters. I always use

the median forecast from the unadjusted consensus file.

From Value Line, I obtain annual EPS forecasts over the next two fiscal years and an

EPS forecast over a three-to-five year horizon, which I assume reflects a forecast horizon

of four years. In addition, I estimate Value Line’s EPS forecast in fiscal year three by

linear interpolation between the two and four-year forecasts and the EPS forecast in fiscal

year five by linear extrapolation from the same two points.13

For each firm-fiscal year pair, I only retain the first EPS forecast issued at least 45

days and no more than 180 days after the announcement of the previous fiscal year. This

gap ensures that the forecast has had time to reflect the previous fiscal year’s information.

I get earnings announcement dates from I/B/E/S.

Finally, I compute forecast errors using the EPS realization from the I/B/E/S unad-

justed “actuals” file, and I winsorize all forecast errors at the top/bottom 1% to limit the

influence of outliers.

Stock Returns and Characterisitcs

I obtain price and return data from CRSP and accounting data from Compustat. I

restrict the sample to ordinary common stocks (shrcd of 10, 11, and 12 in CRSP) listed

on NYSE, AMEX or Nasdaq (exchcd 1, 2, and 3 in CRSP). To create stock characteristics,

I use the code from Jensen et al. (2022a) available at https://github.com/bkelly-lab/

ReplicationCrisis. I compute multi-period returns by compounding monthly returns

(with the 1-month risk-free rate added) and subtracting the risk-free rate over the multi-

period horizon. If a stock delists, I incorporate its delisting return and assume that the

13Specifically, I estimate Value Line’s three- and five-year EPS forecast as Ẽ[epsit+h] = Ẽ[epsit+2] +

(Ẽ[epsit+4]− Ẽ[epsit+4])(h− 2) where Ẽt[eps
i
t+h] is Value Line’s EPS forecast for fiscal year t+ h.
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stock earns the median returns across all stocks in CRSP in the remaining horizon. This

procedure avoids any look-ahead bias.

Asset Pricing Models

For asset pricing models with tradable pricing factors, I download these factors from the

respective authors’ websites: I obtain data for the CAPM, the three-factor model from

Fama and French (1993a), the five-factor model from Fama and French (2015), and the

four-factor model from Carhart (1997) from Kenneth French’s data library at https://

mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The Hou

et al. (2015) factors are from https://global-q.org, the Daniel et al. (2020) factors

are from https://sites.google.com/view/linsunhome, and the Stambaugh and Yuan

(2017) factors are from https://finance.wharton.upenn.edu/~stambaug/. The Stam-

baugh and Yuan (2017) factors are only available until 2016, so I extend these data series

by creating the SMB, PERF, and MGMT factors manually using the mispricing perf

and mispricing mgmt characteristics from Jensen et al. (2022a), and proxy for MKT us-

ing the Fama-French market factor. For the consumption CAPM, I measure consumption

per capita using PCE (consumption) divided by POP (US population) extracted from the

data library of the St. Louis FED, https://fred.stlouisfed.org/.

Combining Data Sets

The identifier in the Value Line data is a stock’s eight-digit CUSIP and exchange ticker.

I merge this data with CRSP using the crsp.stocknames table on WRDS. I match

securities on historical CUSIPs; if this match fails, I use header CUSIPs and historical

tickers. In addition, I require that the stock price from Value Line is within 5% of the most

recent stock price in CRSP. In total, I match 95% of the Value Line observations to CRSP.

Next, I use the wrdsapps.ibcrsphist table from WRDS to link CRSP and I/B/E/S data

and the crsp.ccmxpf lnkhist table from WRDS to link CRSP and Compustat.

3 The Subjective and Realized Risk Premium

In this section, I first study the relation between subjective risk and subjective expected

returns to infer the subjective risk premium that, together with subjective risk, determines

required returns. Next, I study the relation between subjective risk and realized returns

to infer the realized risk premium. Finally, I study the relation between subjective risk

and subjective cash flow errors to understand the impact of mispricing on the difference

between the subjective and realized risk premium. This section is closely related to

Proposition 1.
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3.1 The Subjective Risk Premium is High

The subjective risk premium is the compensation investors require for taking an additional

unit of risk, as seen in (1.3). To recover the subjective risk premium, I regress subjective

expected returns on subjective risk,14

Ẽt[r
i
t,t+h] = a+ λ̂sit + εit, (1.20)

where Ẽt[r
i
t,t+h] is one of the two subjective expected return proxies, sit is one of the

three subjective risk proxies, a is an intercept, εit is a residual, and λ̂ the subjective risk

premium estimate. Proposition 1 shows that this estimate in unbiased if subjective risk

and subjective mispricing is uncorrelated.

Table II presents the estimates for each of the six combinations of a subjective risk and

subjective expected return proxy. The impact of subjective risk on subjective expected

return is strongly positive and highly significant across all proxies. For example, with

ẼV L
t [rit,t+48] and sV L,it as proxies (column 1), moving from the safest stock (ssafe

t = 0) to

the riskiest (srisky
t = 1), increases the four-year subjective expected return from 28% to

103%. Said differently, the required annual return of the safest stock is approximately 6%

versus 19% for the riskiest stock.

Interestingly, sV L,it has the strongest association with subjective expected returns

among the three subjective risk proxies. This finding reduces the concern that sV L,it

captures total risk rather than systematic risk and is therefore unimportant for investors.

On the contrary, sV L,it is highly correlated with investors’ subjective return expectations

consistent with the view that it matters for required returns.

In the remainder of the paper, I use a stock’s subjective risk and the coefficients from

Table II to estimate a stock’s required returns. Said differently, a stock’s required return

is the constant, a, plus the subjective risk premium, λ̂, times the stock’s subjective risk,

sit. For each stock, I obtain six different required return estimates depending on the

combination of the subjective risk and subjective expected return proxies as seen from

the six columns in Table II.

Subjective Expected Returns Mostly Reflect Subjective Mispricing

Subjective expected returns can reflect required returns and subjective mispricing as seen

in (1.4). Further, if subjective risk and subjective mispricing are uncorrelated, the pre-

dicted part of (1.20) captures the impact of required returns while the residuals capture

subjective mispricing.

14The specification in (1.20) differs from the theoretical specification in (1.3) to account for the arbitrary
scale of the subjective risk proxies. In particular, the subjective risk proxies range between 0 and 1, but
a rating of 0 does not imply that the stock is risk-free.
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Table II. The Subjective Risk Premium is High

ẼV L
t [rit,t+48] ẼIBES

t [rit,t+12]

(1) (2) (3) (4) (5) (6)

Constant 0.28 0.38 0.34 0.07 0.10 0.08
(23.24) (26.96) (16.91) (13.27) (17.34) (13.46)

sV L,it 0.75 0.26
(25.82) (14.90)

βit 0.53 0.19
(17.75) (12.28)

SVIXi
t 0.53 0.19

(9.74) (9.12)

Observations 504,101 504,095 81,397 375,267 375,267 70,370
Adj. R2 0.08 0.04 0.06 0.05 0.03 0.05
Adj. R2 (time-varying) 0.24 0.21 0.33 0.27 0.23 0.38

Note: The table estimates the subjective risk premium, λ, by regressing subjective expected return
on subjective risk. The subjective expected return proxies are a four-year forecast from Value Line
(ẼV Lt [rit,t+48]), and a one-year forecast from I/B/E/S (ẼIBESt [rit,t+12]). The subjective risk proxies are

the safety rank from Value Line (sV L,it ), the market beta estimate from Value Line, and the SVIXi
t

measure from Martin and Wagner (2019). The subjective risk proxies are scaled to lie between 0 and
1 each month, so the coefficients show the change in the dependent variable by moving from the safest
(0) to the riskiest (1) firm. The number in parenthesis refers to the t-statistic of the coefficient based on
standard errors clustered by firm and quarter. The “Observations” row shows the number of monthly
stock observations used to estimate the coefficients and the “Adj. R2” row shows the adjusted R2 of
the regression. The “Adj. R2 (time-varying)” row shows the adjusted R2 with the parameters estimated
separately in each month, that is, with time-varying parameters.

As a result, the R2 from Table II shows the fraction of subjective expected return

variance explained by required returns. Using the specification in (1.20), the variance

explained by required returns is between 3% and 8%, which implies that subjective mis-

pricing explains the remaining 92% to 97%. This finding suggests that views on mispricing

are the key driver of variation in subjective expected returns. It also highlights the danger

of treating subjective return expectations as required returns.

The specification in (1.20) assumes the mapping from subjective risk to required re-

turns are fixed over time. However, it seems reasonable to assume that the subjective risk

premium is time-varying. Therefore, the row labeled “Adj. R2 (time-varying)” shows the

adjusted R2 from the regression,

Ẽt[r
i
t,t+h] = at + λ̂ts

i
t + εit, , (1.21)

where the coefficients are allowed to vary over time.

The R2 from the regression in (1.21) is much higher than with fixed parameters ranging
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from 21% to 38%. Subjective mispricing is still the most important driver of subjective

expected returns, but the importance of required return rises when accounting for the

time variation in the subjective risk premium.

In the remainder of the paper, I estimate required returns using the specification in

(1.20), that is, with fixed parameters over time. Proposition 1 shows that subjective risk

and subjective mispricing must be uncorrelated to recover an unbiased estimate of the

subjective risk premium. The choice of using fixed parameters reflects my judgment that

this zero correlation condition is unlikely to hold exactly in each period. For example,

Value Line could believe that risky stocks are overvalued in some periods and undervalued

in others, which would cause the estimated subjective risk premium to be too high and

low, respectively.15

3.2 The Realized Risk Premium is Low

Next, I investigate the relation between subjective risk and realized returns to uncover

the “realized risk premium.” Specifically, I regress realized returns on subjective risk,

rit+h = area + λ̂reasit + εrea,it , (1.22)

where sit is one of the three subjective risk proxies, rit+h is the realized return computed

over h ∈ {12, 48} months, area is the intercept, εrea,it is a residual, and λrea is the realized

risk premium estimate.

Table II shows that the realized risk premium is positive in four of six specifications

but only significant in two. The realized risk premium is, however, much lower than the

subjective risk premium. Focusing on column 1, moving from the safest stock (sVL, safe
t =

0) to the riskiest (sVL, risky
t = 1), increases the four-year realized return from 38% to 48%

(8% to 10% annualized) relative to an expected move from 28% to 103%.

Interestingly, sV L,it again outperforms the two other proxies in terms of the ability to

predict realized returns. It is a significant predictor at both a one- and four-year horizon,

and the economic magnitude of the coefficient is relatively high at a one-year horizon. In

comparison, βit has a weak relation to realized returns at a one-year horizon and is actually

a negative predictor of future four-year returns. SVIXi
t falls somewhere in between, being

a strong forecaster of one-year returns as shown in Martin and Wagner (2019) but a weak

forecaster of four-year returns.

15In Section 8.5, I show the required market return implied by the month-by-month regression in (1.21).
The required market return is countercyclical, has a low correlation with the subjective expected market
return of retail investors, but a high correlation with the subjective expected market return of professional
investors.
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Table III. The Realized Risk Premium is Low

rit,t+48 rit,t+12

(1) (2) (3) (4) (5) (6)

Constant 0.38 0.46 0.34 0.09 0.12 0.07
(16.19) (17.39) (8.67) (10.62) (12.90) (5.76)

sV L,it 0.10 0.07
(2.28) (2.55)

βit −0.07 0.01
(−1.88) (0.50)

SVIXi
t −0.02 0.04

(−0.34) (1.45)

Observations 434,927 434,921 81,393 357,921 357,921 68,379
Adjusted R2 0.001 0.000 0.000 0.001 0.000 0.001

Note: The table shows estimates of the realized risk premium, λrea, by regressing realized return on
subjective risk. The realized return is either over a four-year period (rit,t+48) or a one-year period

(rit,t+12). The three subjective risk proxies are the safety rank from Value Line (sV L,it ), the market beta

estimate from Value Line (βit), and the SVIXi
t measure from Martin and Wagner (2019). The subjective

risk proxies are scaled to lie between 0 and 1 each month, so the coefficients show the change in the
dependent variable by moving from the safest (0) to the riskiest (1) firm. The number in parenthesis
refers to the t-statistic of the coefficient based on standard errors clustered by firm and quarter. I create
realized returns by compounding monthly returns that incorporate delisting returns. If a stock is delisted,
I assume that the return for the remaining period is equal to the median across stocks in CRSP.

The Realized and Subjective Risk Premium are Significantly Different

The difference between the realized and subjective risk premium is economically large,

but is it statistically significant? In other words, could the difference between λ̂ and

λrea simply reflect sampling variability? I test this possibility by regressing the difference

between the subjective expected return and the subsequent realized return on subjective

risk,

Ẽt[r
i
t,t+h]− rit,t+h = α0 + α1s

i
t + εit, (1.23)

where Ẽt[r
i
t,t+h] is a subjective expected return proxy, rit,t+h is the subsequent realized

return, sit is a subjective risk proxy, εit is a residual, α0 is the intercept, and α1 is the

parameter of interest. Table IV shows that α1 is highly significant across all six specifica-

tions with t-statistics ranging from 3 to 13. Therefore, I conclude that sampling variability

cannot explain the difference between the subjective and realized risk premium.
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Table IV. The Realized and Subjective Risk Premium are Significantly
Different

ẼV L
t [rit,t+48]− rit,t+48 ẼIBES

t [rit,t+12]− rit,t+12

(1) (2) (3) (4) (5) (6)

Constant −0.09 −0.07 0.01 −0.02 −0.02 0.01
(−3.63) (−2.41) (0.16) (−2.41) (−2.14) (0.92)

sV L,it 0.64 0.20
(13.60) (6.50)

βit 0.57 0.18
(11.71) (6.36)

SVIXi
t 0.56 0.14

(7.26) (3.59)

Observations 434,927 434,921 81,393 357,921 357,921 68,379
Adjusted R2 0.02 0.01 0.02 0.01 0.01 0.01

Note: The table estimates the difference between the subjective and realized risk premium, λ − λrea,
by regressing the difference between subjective expected return and realized returns on subjective risk.
ẼV Lt [rit,t+48] is the subjective expected return over a 4-year period from Value Line and rit,t+48 is the

subsequent realization, ẼIBESt [rit,t+12] is the subjective expected return over a 1-year period from I/B/E/S

and rit,t+12 is the subsequent realization. The three subjective risk proxies are the safety rank from Value

Line (sV L,it ), the market beta estimate from Value Line (βit), and the SVIXi
t measure from Martin and

Wagner (2019). The subjective risk proxies are scaled to lie between 0 and 1 each month, so the coefficients
show the change in the dependent variable by moving from the safest (0) to the riskiest (1) firm. The
number in parenthesis shows the t-statistic of the coefficient based on standard errors clustered by firm
and quarter. I create realized returns by compounding monthly returns that incorporate delisting returns.
If a stock is delisted, I assume that the return for the remaining period is equal to the median across
stocks.

4 Subjective Risk and Cash Flow Optimism

In Section 3, I argued that the subjective risk premium is high while the realized risk

premium is low. Proposition 1 shows that this pattern is consistent with “risk mispricing,”

whereby riskier stocks are more prone to overvaluation. In this section, I show that

subjective cash flow expectations are excessively high for risky stocks. Further, several

patterns in subjective cash flow expectations are consistent with investors suffering from

optimism bias. These results suggest that realized returns of risky stocks are low because

irrational cash flow optimism offsets their high required returns.
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4.1 Subjective Risk Predicts Cash Flow Forecast Errors

To understand the link between subjective risk and objective mispricing, I regress earnings

per share (EPS) forecast errors on subjective risk at the forecast date,

Ẽt[epsit+12]− epsit+12

pit
= γ0 + γ1s

i
t + εit, (1.24)

where Ẽt[epsit+12] is an EPS forecast over the next fiscal year from either Value Line or

I/B/E/S, pit is the stock’s price at the beginning of the forecast month, and stt is one of

the subjective risk proxies. The key parameter of interest is γ1, which shows the relation

between subjective risk at time t and the realized forecast errors at time t + 12. It has

a similar interpretation as γ1 from the theoretical section, which controlled the relation

between subjective risk and objective mispricing. Further, since I scale the subjective risk

proxies to lie between 0 and 1, the intercept, γ0, shows the average forecast error for the

safest stocks (sit = 0) and γ1 shows the average forecast errors for the riskiest (sit = 1).

Table V shows that the risk coefficient, γ1, is positive, large, and highly statistically

significant across all six specifications. Focusing on column 1, the average one-year EPS

forecast is 0.20% too low for the safest stocks and 1.79% too high for the riskiest. Hence,

based on this metric, safe stocks are slightly undervalued, while risky stocks are overval-

ued. Even with relatively few observations, the risk coefficient is almost nine standard

errors greater than zero.

Across the subjective risk proxies, sV L,it is, again, the strongest predictor of objective

mispricing. Among individual stocks, sV L,it has the strongest relation with subjective

expected returns, realized returns, and objective mispricing. These findings suggest that

sV L,it could be interesting to analyze separately from its effect on required returns.

Table AIV in the appendix shows that the same results hold for the four-year EPS

and four-year price-to-earnings (PE) forecasts. As such, the result that subjective risk

predicts cash flow forecast errors holds across different subjective risk proxies (sV L,it vs. βit

vs. SVIXi
t), different forecasters (Value Line vs. sell-side analysts from I/B/E/S), different

horizons (one vs. four years), and different forecast variables (EPS vs. PE).

The results in this section support the claim that the realized risk premium is lower

than the subjective risk premium. In particular, the results in Section 3 relied on the

difference between subjective expected returns and the subsequent realization, while this

section relies on the difference between subjective cash flow forecast and the subsequent

realization. Regardless of the forecast variable, investors seem to overpay for risky stocks

based on flawed expectations of their future performance.
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Table V. Subjective Risk Predicts Cash Flow Forecast Errors

Y: 100× (Ẽj
t [epsit+1]− epsit+1)/pit

j: Value Line j: I/B/E/S

(1) (2) (3) (4) (5) (6)

Constant −0.20 0.14 −0.26 −0.37 0.24 −0.40
(−2.69) (1.27) (−2.01) (−5.13) (2.09) (−2.65)

sV L,it 1.79 2.62
(8.09) (8.95)

βit 1.05 1.31
(4.64) (5.29)

SVIXi
t 1.08 1.61

(2.91) (3.49)

Observations 34,705 34,705 6,329 38,541 38,541 7,282
Adjusted R2 0.01 0.00 0.01 0.02 0.00 0.01

Note: The table shows estimates from the regression in (1.24) of forecast error on subjective risk. I define
the forecast error as the forecast of earnings per share (EPS) in the next fiscal year minus the subsequent
realization scaled by the price issued at the beginning of the forecast month. The EPS forecasts are
from Value Line in columns 1-3 and I/B/E/S in columns 4-6. For each firm-fiscal year, I only retain
the first forecast issued at least 45 days and at most 180 days after the most recent fiscal year’s EPS
announcement. The dependent variables are winsorized at the top/bottom 1%. The subjective risk
proxies are scaled to lie between 0 and 1 each month, so the intercept shows the forecast error on the
safest stocks (risk=0), and the slope coefficient shows the forecast error from the riskiest stock (risk=1).
The number in the parenthesis refers to the t-statistic based on standard errors clustered by firm and
quarter of the fiscal year-end.

4.2 Optimism Bias Can Explain Risk Mispricing

Why are cash flow forecasts systematically too high for risky stocks? I consider two

potential mechanisms: Optimism bias and extrapolative expectations. Optimism bias

correctly predicts that average forecast errors are positive, that forecast errors increase

in risk, and that forecast errors increase in the forecast horizon. In contrast, extrap-

olative expectations predict that risky stocks have high past cash flow growth, which is

counterfactual.

Plausible Explanation: Optimism Bias

Optimism bias refers to the general tendency for people to be too optimistic about future

outcomes. For example, Sharot (2011) reports that a typical estimate is that around

80% of the population are too optimistic while the remaining 20% are too pessimistic.

According to Kahneman (2011, p. 255), optimism bias could be the most significant cog-
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nitive bias.16 Cassella et al. (2022) documents optimism bias in GDP and unemployment

forecasts, and Cassella et al. (2021) show that optimism bias can explain time-variation

in the equity term structure. I focus on the interaction between stock risk and optimism

bias.

Proposition 4 shows that optimism bias induces an upwards bias in expectations and

that this upwards bias is larger when cash flow uncertainty is higher. Therefore, I test

three predictions that follow if forecasters suffer from optimism bias:

1. The average forecast error is positive,

2. the forecast error increases in subjective risk, and

3. the forecast error increases in the forecast horizon.

Prediction 1 follows because optimism bias induces an upwards bias for all stocks, predic-

tion 2 follows because riskier stocks have more uncertain cash flows (see Section 8.2), and

prediction 3 follows because cash flow uncertainty is increasing in the forecast horizon.

I test these three predictions jointly by slightly modifying the regression in (1.24).

Specifically, to test prediction 1, I regress forecast errors on the demeaned subjective risk

such that the intercept captures the average forecast error. In addition, to test prediction

3, I look at multiple forecast horizons. The full specification is,

Ẽt[epsit+h]− epsit+h
pit

= αh0 + αh1(sit − s̄t) + εit+h, (1.25)

where h denotes the forecast horizon, s̄ is the average subjective risk, and the remaining

symbols have the same meaning as in (1.24).

Figure 2 offers support for all three predictions. The left panels show that the intercept,

αh0 , is around zero for EPS forecasts over the next quarter but positive and significant for

longer horizons, providing support for prediction 1. For I/B/E/S, the positive forecast

errors could reflect incentives-related biases where forecasts are high to please investment

banking clients or to generate trading commissions (see, e.g., Kothari (2001)). However,

Value Line does not earn money from investment baking or trading commissions, so the

results for Value Line provide cleaner evidence of a genuine optimism bias.

The right panels show that the risk coefficient, αh1 , is positive for all horizons providing

support for prediction 2. The effect is highly significant for all horizons except one quarter

ahead, and the effect holds for all three subjective risk proxies.

16Kahneman (2011, p. 255) writes: “The planning fallacy is only one manifestation of a pervasive
optimistic bias. Most of us view the world as more benign than it really is, our own attributes as more
favorable than they truly are, and the goals we adopt as more achievable than they are likely to be. We
also tend to exaggerate our ability to forecast the future, which fosters optimistic overconfidence. In
terms of its consequences for decisions making, the optimistic bias may well be the most significant of
the cognitive biases.”

25



Figure 2 also provides support for prediction 3. The intercept and the risk coefficient

are both increasing in the forecast horizons, suggesting that any bias in forecasts increases

with the forecast horizons. Overall, I conclude that the errors in subjective cash flow

expectations are consistent with forecasters suffering from optimism bias.
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Figure 2. Empirical support for three predictions of optimism bias

Note: The figure shows the αh0 (left sub-panel) and αh1 (right sub-panel) coefficients from the regression,

Ẽt[epsit+h]− epsit+h
pit

= αh0 + αh1 (sit − s̄t) + εit+h,

where Ẽt[epsit+h]−epsit+h is an earnings per share (EPS) forecast over h months, epsit+h is the subsequent
realization, pit is the stock’s price at the beginning of the forecast month, and (sit − s̄t) is the demeaned
subjective risk of a stock on the forecast date. Optimism bias predicts that αh0 is positive, αh1 is positive,
and that αh0 and αh1 are increasing in h. The EPS forecast is from I/B/E/S in panel A and Value Line
in panel B. Subjective risk is either the safety rank from Value Line, sV L, the market beta forecast from
Value Line, β, or the SVIX measure from Martin and Wagner (2019). Q1-Q4 means that the forecast
horizon is one to four quarters ahead, while A1-A5 means that the forecast is one to five years ahead.
The dotted lines show the 95% confidence intervals based on standard errors clustered by stock and the
quarter where the fiscal period ends.

Alternative Explanation: Extrapolative Expectations

Figure A4 shows that riskier stocks tend to have higher expected growth in long-term

earnings (LTG). La Porta (1996) finds that stocks with high LTG underperform stocks

with low LTG because cash flow forecasts are too high LTG stocks. Bordalo et al. (2019)
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show that this forecast error can be explained by extrapolative (diagnostic) expectations

since high LTG stocks tend to have had high past cash flow growth.

Extrapolative expectations can explain risk mispricing if risky stocks have high past

EPS growth. Therefore, I consider the earnings evolution of risky stocks before and after

they are classified as “risky,” following the approach in Figure 2 from Bordalo et al. (2019).

Specifically, I sort the 10% riskiest and the 10% safest stocks into separate portfolios each

month. Within each portfolio-month, I compute the average split-adjusted earnings per

share (EPS) in the fiscal year ending in t− 3, t− 2, . . . , t + 3, where t is the most recent

fiscal year (I winsorize split-adjusted EPS at 1% and 99%), and average these numbers

over time.

Figure 3 shows that the EPS of risky stocks generally declines in the years prior to

their risk classification but increases in the years after. For stocks classified as risky

according to the safety rank from Value Line, the average EPS at the time of portfolio

formation is negative, while it is slightly positive three years after. Conversely, safe firms’

EPS increases before and after being classified as “safe.”

The evidence in Figure 3 is inconsistent with extrapolative expectations. With extrap-

olative expectations, investors would extrapolate the negative EPS trend prior to port-

folio formations and thus have overly pessimistic cash flow expectations of risky stocks.

In contrast, what I find empirically is overly optimistic cash flow expectations for risky

stocks. I, therefore, conclude that extrapolative expectations are unlikely to explain the

overvaluation of risky stocks.

5 The Required Return of Equity Factors

I use the subjective risk premium estimates from Table II to compute the required return

of 119 equity factors from Jensen et al. (2022a).17 I then test the “risk hypothesis” that a

factor’s average realized return is equal to its required return. I reject this hypothesis for

71% to 79% of the factors (depending on the subjective risk and return proxies used to

estimate required returns), suggesting that most factors represent behavioral mispricing

rather than rational risk compensation.

Testing the risk hypothesis is crucial for informing theories about why a particular

factor works. A rational factor theory assumes that the risk hypothesis being true (see,

e.g., Berk et al., 1999; Carlson et al., 2004; Zhang, 2005; Lettau and Wachter, 2007; and

Kogan and Papanikolaou, 2013, 2014), while a behavioral factor theory rely on the risk

hypothesis being false (see, e.g., Shefrin and Statman, 1985; De Long et al., 1990a,b;

17Jensen et al. (2022a) studies 153 factors in total, but only 119 have a paper claiming that the factor
is a significant predictor of returns.
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Figure 3. Extrapolative expectations cannot explain risk mispricing

Note: The figure shows the average split-adjusted earnings per share (EPS) of risky and safe stocks. Each
month, I sort the 10% riskiest stocks and the 10% safest stocks into separate portfolios, where subjective
risk is either the safety rank from Value Line, sV L,it , the market beta estimate from Value Line, βit , or
the risk measure from Martin and Wagner (2019), SVIXi

t. Within each portfolio, I compute the average
split-adjusted earnings per share (EPS) in the fiscal year ending in t − 3, t − 2, . . . , t + 3, where t is the
most recent fiscal year, and I winsorize split-adjusted EPS at 1% and 99%. The points in the figure show
these numbers averaged over time.

Daniel et al., 1998; Barberis et al., 1998; Hong and Stein, 1999; Barberis and Huang,

2008; Hong and Sraer, 2016; Bouchaud et al., 2019; and Bordalo et al., 2019).18

5.1 The Risk Hypothesis is False for Most Factors

To test the risk hypothesis, I need to compute each factor’s realized return and its re-

quired return. I follow the procedure in Jensen et al. (2022a) to create a factor’s realized

return. I extract all common stocks from CRSP with a non-missing market equity and

factor characteristic. Each month, I sort stocks into three portfolios based on the un-

derlying factor characteristic with breakpoints based on non-microcap stocks.19 Within

each portfolio, I weigh stocks using capped value-weights, meaning that a stock’s weight

is proportional to its market equity capped at the 80th percentile among NYSE stocks.

This weighting scheme avoids an over-reliance on mega-cap stocks while still giving tiny

weights to tiny stocks. The realized factor return is the return of the long portfolio minus

that of the short portfolio. Table AI contains the names of the 119 factor characteristics

and whether the corresponding factor goes long high or low values of the characteristic.

18An interesting hybrid is Barberis et al. (2021) who tests whether prospect theory can explain factors.
19Microcap stocks have market equity below the 20th percentile of NYSE stocks (Fama and French,

2008).
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I compute a factor’s required return following a similar approach,, but I am constrained

to stocks with a non-missing subjective risk. Since these stocks tend to be large, I use

breakpoints from all stocks such that the long and short portfolio contains the same

number of stocks.

I start by computing the required return on the three portfolios j ∈ {long,middle, short}.
To do so, I compute the weighted subjective risk of stocks in the portfolio each month,

and then take an average over time to get the unconditional portfolio risk,

s̄jt =
1

T

T∑
t=1

∑
i∈{jt}

πi,jt s
i
t, (1.26)

where T is the total number of months, {jt} is the stocks in portfolio j in month t, πi,jt is

the portfolio weight of stock i, and sit is the stock’s subjective risk.

I then use the subjective risk premium estimates from Table II to convert the subjective

portfolio risk into a required return. The required returns based on these estimates are

over a h = 12 or h = 48 month horizon (depending on the subjective expected return

proxy), so I convert them to a monthly horizon,20

r̄req,jt+1 =
(
r̄ft,t+h + a+ λ̂× s̄jt

)1/h

− 1− r̄ft,t+1, (1.27)

where r̄req,jt+1 is the monthly required return on the portfolio, a and λ̂ are the parameters

from Table II, h is the horizon of the subjective expected return proxy, and r̄ft,t+h is

the average risk-free rate over h months during the sample period used to estimate the

parameters.

The required return on the factor is the required return on the long portfolio minus

the required return on the short portfolio:

f̄ req
t+1 = r̄req,longt+1 − r̄req,shortt+1 . (1.28)

I test the risk hypothesis using following test statistic,

τ = f̄t+1 − f̄ req
t+1 , (1.29)

where f̄t+1 is the average realized return on the factor. The null hypothesis (i.e., the risk

20The required returns from Table II are excess returns, so to convert it into a monthly horizon, I
first add the risk-free rate over the original horizon and then subtract the one-month risk-free rate:
rreqt,t+1 = (1 + rft,t+h + rreqt,t+h)1/h − 1− rft,t+1, where rreqt,t+h is the required return over h months and rft,t+h
is the risk-free rate over h months.
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hypothesis) is that the factor’s average realized return is equal to its required return,

Hrisk
0 : f̄t+1 = f̄ req

t+1 . (1.30)

What remains is to derive the distribution of the test statistic under the null hypothesis.

Theoretical Null Distribution

I have to navigate a range of issues in testing the null hypothesis. First, the required

return data covers a shorter period than the realized return data. I could limit the

sample to the overlapping period, but doing so would make the expected returns estimate

less precise. Instead, I incorporate information from the non-overlapping and overlapping

period by considering the weighted factor return, f̄t+1 = w1f̄
1
t+1 + (1 − w1)f̄ 2

t+1, where

w1 = T1/(T1 + T2) is the number of months in the non-overlapping period divided by the

total number of observations and f̄ 1
t+1 and f̄ 2

t+1 is the average factor return in each of the

two periods. I assume that the sampling noise of f̄ 1
t+1 is uncorrelated with that of f̄ 1

t+1

and f̄ req
t+1 . In contrast, I allow for correlation between f̄ 2

t+1 and f̄ req
t+1 . Finally, I assume

that f̄ 1
t+1, f̄ 2

t+1, and f̄ req
t+1 are multivariate normally distributed, x ∼ N(µ,Σ), where

x =

 f̄
1
t+1

f̄ 2
t+1

f̄ req
t+1

 , µ =

µ1

µ2

µ3

 , Σ =

σ
2
1 0 0

0 σ2
2 Cov(f̄ 2

t+1, f̄
req
t+1 )

0 Cov(f̄ 2
t+1, f̄

req
t+1 ) σ2

3

 . (1.31)

Letting w = [w1, 1 − w1,−1]′, the distribution of the test statistic, τ from (1.29), under

the null is

τ |Hrisk
0 ∼ N(0, w′Σw), (1.32)

where w′Σw = w2
1σ

2
1 + (1 − w1)2σ2

2 + σ2
3 − 2(1 − w1)Cov(f̄ 2

t+1, f̄
req
t+1 ). The p-value (the

two-sided probability of the observed test statistic under the null) is therefore,

p = 2Φ

(
−|τ |√
w′Σw

)
, (1.33)

where Φ is the cumulative distribution function of a standard normal variable. I reject

the risk hypothesis if the p-value is below 5%.

Estimation

Next, I need to account for two additional issues in estimating the null distribution. First,

the required return is estimated rather than a fixed function of subjective risk, which

adds estimation noise to σ2
3 and Cov(f̄ 2

t+1, f̄
req
t+1 ). Second, required returns are persistent.
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I therefore estimate the parameters in the overlapping period, σ2
2, σ2

3, and Cov(f̄2, f̄
req
t+1 ),

via a moving block bootstrap procedure. Each block contains all data from a range of

temporal months, but the specific block size depends on the subjective expected return

proxy. For Value Line the block size is n = 30 months while it is n = 12 for I/B/E/S.

In each bootstrap iteration, I create a bootstrap sample by randomly choosing dT2/ne
blocks with replacement. I then delete the last dT2/nen− T2 months from the last block

to ensure that the bootstrap sample covers the same number of months as the original

sample.

Within each bootstrap sample, I compute the average realized factor return, f̄ 2,b
t+1,

the average subjective risk of the long, s̄long,bt , and short s̄short,bt portfolio. Furthermore,

I re-estimate the regression from Table II that maps subjective risk to required returns

to account for estimation noise. Using these inputs in (1.27) and (1.28), I estimate the

factor’s required return, f̄ req,b
t+1 . I repeat this procedure 1,000 times.

The covariance matrix of these bootstrap realization gives me an estimate of σ2
2, σ

2
3

and Cov(f̄ 2
t+1, f̄

req
t+1 ). I complete Σ by estimating the sampling variation of f̄ 1

t+1 as σ2
1 =

Var(f 1
t+1)/T1, where Var(f 1

t+1) is the factor’s realized return variance in the non-overlapping

period.

Results

Figure 4 shows the components and results of the risk hypothesis test.21 The y-coordinate

shows each factor’s average realized return and is the same in all panels. The x coordinate

shows the factor’s required return implied by a specific combination of subjective risk and

return expectations. For example, in the top-left panel, required returns are based on the

safety rank and return expectation from Value Line. To make factors easier to compare,

I scale their realized and required returns to an ex-post volatility of 10%.22 The figure

also includes a 45◦ line, representing the risk hypothesis that the realized return equals

the required return. A point far from the dotted line provides evidence against the risk

hypothesis. Red points show factors where I reject the risk hypothesis (the p-value from

(1.33) is below 5%).

I reject the risk hypothesis for 73.9% of the factors when the required return is based

on the safety rank and expected return from Value Line (top left panel). This number

suggests that the realized returns of most factors do not only reflect rational compensation

for risk. This conclusion is robust across the six variations of required returns, with risk

rejection rates ranging from 71.4% to 79.0%.

21Table AII shows the detailed results for each factor.
22For example, for a factor with a realized return volatility of 20%, I multiply its realized and re-

quired return by 0.5. This standardization is only for visualization purposes and does not affect the risk
hypothesis test.
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Figure 4. The Risk Hypothesis is False for Most Equity Factors

Note: The figure shows the required return and the realized return of 119 equity factor for six different
required return proxies. The top-left corner shows, on the x-axis, the required return of the 119 factors,
based on the safety rank and subjective expected returns from Value Line, while the y-axis shows the
average realized return of each factor. The remaining panels differ only in the subjective risk and return
proxies used to compute the factors’ required returns, which are shown in the panel titles. The name
before the slash refers to the subjective expected return proxy which is either from Value Line or I/B/E/S
(IBES). The name after the slash refers to the subjective risk proxy where sV L is the safety rank from
Value Line, β is the market beta estimate from Value Line, and SVIX is the risk measure from Martin
and Wagner (2019). The solid line shows the 45◦ line, which corresponds to equality between the required
return and the realized return. The coloring shows whether the p-value from (1.33) is below 5%; that is,
whether the risk hypothesis is rejected. The number in the top-left corner of each panel shows the fraction
of factors where the risk hypothesis is rejected. Table AII presents the detailed information about the
realized and required return for each factor.

One reason for the high rejection rate is that many factors have a positive realized

return despite a negative required return. This finding is challenging to reconcile with

a rational explanation since a negative required return implies that stocks in the long

portfolio are subjectively safer than stocks in the short portfolio. To test the severity of

this issue, I change all factors to have a positive realized return and then test whether the

required return is significantly negative. To do so, I compute the p-value of the required

return (the probability of the observed required return if the true required return was

zero) as,

preq = Φ

(
f̄ req
t+1

σ3

)
, (1.34)
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where f̄ req
t+1 is the factor’s required return, σ3 is the standard error of the required return,

and Φ(x) is the standard normal cumulative distribution function. I categorize the re-

quired returns as significantly negative if preq is below 5%, significantly positive if preq is

above 95%, and insignificant otherwise.

Table VI shows that 44%-50% of the factors have a significantly negative required

returns, while only 14%-27% have a significantly positive required return. Disregarding

statistical significance, the fraction of factors with a negative required returns is 61%-63%.

Overall, most factors bet on safe, not risky, stocks.

Table VI. Many Factors have a Negative Required Return

Required return proxy Negative Insignificant Positive

V L / sV L,it 0.47 0.26 0.27
V L / βit 0.44 0.42 0.14
V L / SVIXi

t 0.50 0.27 0.24

IBES / sV L,it 0.49 0.24 0.27
IBES / βit 0.50 0.34 0.16
IBES / SVIXi

t 0.50 0.27 0.23

Note: The table shows the fraction of factors with a significant required return. To compute these
fractions, I first change the direction of all factors such that the long portfolio has a higher realized
return than the short portfolio. I then calculate the preq value from (1.34) on the modified portfolio. The
“Negative” columns show the faction with preq below 5%, “Positive” shows the fraction with preg above
95%, and “Insignificant” shows the remaining fraction. The subjective expected return either comes from
Value Line (VL) or I/B/E/S (IBES). The subjective risk is either the safety rank from Value Line (sV L,it ),
the market beta from Value Line (βit), or the SVIXi

t measure from Martin and Wagner (2019).

Figure 5 highlights the relation between realized and required returns for 13 prominent

equity factors. The figure also shows how the factor’s required return varies across the

subjective risk proxies (all three points use the expected return from Value Line). The

three risk proxies largely agree on the result of the risk hypothesis test, but there is

substantial disagreement about the required return of some factors. For example, the

size factor that overweight small stocks is unrelated to risk when risk is measured using

a stock’s market beta. In contrast, according to Value Line’s safety rank, small stocks

are much riskier than larger stocks. Another example is the distress factor, which shorts

distressed stocks and buys stable stocks. Distressed and stable stocks have comparable

market betas, but distressed stocks have a much higher safety rank. Small and distressed

stocks are risky according to Value Line but not according to the CAPM.

The three risk proxies also have points of agreement: The low beta factor overweight

safe stocks, and the momentum factor is unrelated to risk.

Irrespective of the specific risk proxy, some factors, such as the quality, low equity

issuance, and profitability factor, have a large and positive return despite stocks in the
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long portfolio being much safer than those in the short portfolio. Conversely, the factor

that overweight young stocks have a negative realized return despite young stocks being

relatively risky. Other factors such as the momentum, book-to-market, duration, and

asset growth factor have a weak relation to subjective risk.
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Figure 5. The Realized and Required Return of Prominent Equity Factors

Note: The y coordinate shows each factor’s average realized return, and the x coordinate shows the
factor’s required return across different proxies. The circle uses the safety rank from Value Line (sV L,it ),
the square uses the market beta from Value Line (βit), and the diamond uses the SVIXi

t measure from
Martin and Wagner (2019). All three proxies use the subjective expected return from Value Line. Blue
points indicate that a factor’s realized return is significantly different from the factor’s required return,
while red points indicate the opposite. The factor name starts with “low” if the factor overweight
stocks with a low value of the factor characteristic. The factors, with factors characteristic names from
Table AI show in parenthesis, are: Low asset growth (at gr1), low beta (beta 60m), book-to-market
(be me), low distress (o score), low duration (eq dur), earnings-to-price (ni me), low equity issuance
(chcsho 12m), momentum (ret 12 1), profitability (ope be), quality (qmj), (low) size (market equity),
low vol (rvol 21d), and young (age).

5.2 Risky Stocks are Small, Volatile, and Distressed

The analysis in the precious section, reveal the univariate relation between a stock char-

acteristic and required returns. In this section, I analyze the multivariate drivers of

required returns. Required returns are the product of a constant subjective risk premium

and subjective risk (1.3), so all variation in required returns is driven by subjective risk.

I, therefore, inspect the drivers of subjective risk directly.
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I regress subjective risk on eight prominent stock characteristics, 23

sit = α0 +
8∑

k=1

αkx
k,i
t + εit, (1.35)

where xk,it is the value of the kth characteristic for a particular stock. I standardize the

characteristics by using cross-sectional percentile ranks, which means that the magnitude

of the coefficients are informative about their relative importance.24 The dependent vari-

able is either the safety rank from Value Line, sV L,it , or the SVIX measure from Martin

and Wagner (2019). I do not include the market beta estimate from Value Line because

this measure is, by assumption, driven solely by a stock’s market beta.

The top panel in Figure 6 shows that, according to the safety rank, a stock is risky if

it is small, has a high return volatility, a high market beta, and a low distance to default.

Said differently, a risky stock is small, volatile, and distressed. Furthermore, risky stocks

have a high expected long-term earnings growth as shown in Section 4.2.

The bottom panel in Figure 6 shows that, according to the SVIX measure, high risk

primarily reflects high return volatility. The SVIX measure reflects a stock’s risk-neutral

variance, so it is, perhaps, unsurprising that this measure correlates highly with a stock’s

real-world volatility.

Asset growth, book-to-market, and profitability have a limited marginal impact on

both measures. Hence, the risk of stocks sorted by these characteristics reflects their

implicit exposure to other characteristics. For example, profitable stocks most likely have

a high distance to default, which makes them subjectively safe.

Return volatility and distance to default, both important drivers of subjective risk, are

sometimes thought to capture idiosyncratic, rather than systematic, risk. To test whether

subjective risk captures systematic or idiosyncratic risk, I rely on the fact that idiosyn-

cratic risk disappears in well-diversified portfolios (Markowitz, 1952). To test whether

subjective risk captures systematic risk, I sort stocks into three portfolios according to

each risk proxy and compute the return on the risky-minus-safe portfolio. The risky-minus

safe portfolios have a high return volatility (17% for the safety rank, 17% for market beta,

21% for SVIX), a high market beta (0.72 for the safety rank, 0.86 for market beta, 0.96

for SVIX), and a high consumption beta (1.02 for the safety rank, 1.07 for market beta,

and 1.51 for SVIX). These statistics suggest that stocks with a high subjective risk have

a high systematic risk.

23The eight characteristics are the market beta estimate from Value Line, the long-term growth rate
in EPS forecast from Value Line, asset growth, book-to-market, distance to default, and market equity,
profitability, and return volatility.

24I create a cross-sectional percentile rank by ranking stocks according to a characteristic within a
month and then dividing by the number of stocks. This procedure handles outliers and ensures that all
characteristics lie on a common scale between 0 and 1.
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Figure 6. The Drivers of Required Returns

Note: The figure shows the coefficient estimates and the corresponding 95% confidence interval from
regressing subjective risk on eight stock characteristics as in (1.35). The subjective risk proxy is either
the safety rank, sV L, from Value Line (top panel) or the risk measure, SVIX, from Martin and Wagner
(2019) (bottom panel). The adjusted R2 of the regressions are 70% in the top panel and 84% in the
bottom panel. Return volatility is the standard deviation of daily returns over the past 252 trading days,
market beta is the market beta estimate from Value Line, exp. long-term growth is Value Line’s estimate
of EPS growth over the next there-to-five years, asset growth is the percentage change in total assets
over the past fiscal year, book-to-market is the book-to-market equity ratio, profitability is computed as
in Fama and French (2015), distance to default is computed using the method in Bharath and Shumway
(2008), and market equity is the market equity value of the security.

6 Can Asset Pricing Models Explain Required Re-

turns?

Asset pricing models have a dual mandate to (1) predict realized returns and (2) explain

required returns. Nevertheless, most asset pricing models are judged solely by their per-

formance on the “realized return” mandate (see, e.g., Fama and French, 1993a; Fama and

French, 2015; Hou et al., 2015; and Barillas and Shanken, 2018). I want to understand

whether the best models for the realized return mandate are also the best for the “required

return” mandate.

Proposition 3 showed that the answer is “yes” if the market is efficient. In an efficient

market, the predictable part of a stock’s realized returns only reflects its required return,

so a model that explains realized returns also explains required returns. In an inefficient
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market, realized returns also reflect mispricing, which the best model of realized returns

must target. By targeting this mispricing, the realized return model sacrifices its ability

to explain required returns meaning that the best model for the two mandates differs.

I find that recent empirical models, such as the Fama-French five-factor model, explain

realized returns well but required returns poorly. In contrast, traditional models, espe-

cially the CAPM, explain required returns well but realized returns poorly. This finding

suggests that the search for better models of realized returns has resulted in models that

capture mispricing rather than required returns.

6.1 Candidate Asset Pricing Models

I consider nine candidate asset pricing models shown in Table VII, which I divide into

three “traditional,” four “recent,” and two “benchmark” models. The traditional models

were published before 1994, and two of three are theoretically motivated. In contrast, the

recent models were published after 2014 and are predominantly empirically motivated.

Finally, the two benchmark models are new to this paper.

Table VII. Candidate Asset Pricing Models

Name Abbreviation Reference Type
CAPM CAPM Sharpe (1964), Lintner (1965), Mossin (1966) Traditional
Consumption CAPM CCAPM Breeden (1979) Traditional
Fama-French-3 FF3 Fama and French (1993a) Traditional
Fama-French-5 FF5 Fama and French (2015) Recent
Investment CAPM HXZ Hou et al. (2015) Recent
Mispricing Factors SY Stambaugh and Yuan (2017) Recent
Behavioral Factors DHS Daniel et al. (2020) Recent
Machine Learning ML This paper Benchmark
Required Return Model REQ This paper Benchmark

Note: The table shows information about the nine candidate asset pricing models I evaluate in Section 6.
The “name” and “abbreviation” columns show the naming and abbreviation convention I use to refer to
the models throughout the paper, “reference” shows the paper(s) that proposed the model, and “type”
shows my classification scheme. The two benchmark models are new to this paper.

I test the candidate models on the 3 × 119 = 357 high-middle-low portfolios that

underlie the factors from Section 5. For each portfolio, I compute its expected return

implied by each model. I then test how well these model-implied expected returns align

with the portfolio’s average realized and required returns, respectively. A model that

explains realized (required) return well assigns high expected returns to portfolios with a

high average realized (required) return.

I start by explaining how I compute the expected return implied by each model. I

use realized return from 1972 to 2021 to estimate factor loadings and factor premiums

because all portfolios and all models except “REQ”, have data available throughout this

period.
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The first traditional model I consider is the CAPM of Sharpe (1964), Lintner (1965),

and Mossin (1966). To compute the CAPM-implied expected return of a portfolio j, I

regress the realized return of the portfolio on the contemporaneous market return from

1972 to 2021, rjt = αj + βjrmktt + εjt . The implied expected return then follows from

removing the intercept (which the model implies is zero),

ECAPM[rjt+1] = βjE[rmktt+1 ], (1.36)

where E[rmkt] is the expected market return, estimated as the average realized market

return from 1972 to 2021.

The second traditional model is the consumption CAPM of (Breeden, 1979, CCAPM).

I use a linear approximation based on lognormal consumption and an investor with time-

separable power utility (Campbell, 2017, p. 162-163). For each portfolio, I compute the

monthly covariance between its realized return and log changes in consumption per capita

from 1972 to 2021, Cov(rjt ,∆c
j
t). The implied expected return is then,

ECCAPM[rjt+1] = γCov(rjt ,∆c
j
t), (1.37)

where γ measures the investor’s relative risk aversion. I use γ = 10, which is at the high

end of reasonable relative risk aversions (Mehra and Prescott, 1985).

The third traditional model is the three-factor model from Fama and French (1993a,

FF3), which adds a value and size factor to the CAPM. This model is the first of five

multifactor models, so I explain how I obtain the expected return from a generic K factor

model. First, I regress the factor return on the contemporaneous return of the model’s

pricing factors from 1972 to 2021, rjt = αj +
∑K

k=1 β
j,krkt + εjt . For a multifactor model m,

the implied expected return is then,

Em[rjt+1] =
K∑
k=1

βj,kE[rkt+1], (1.38)

where E[rk] is the expected return on the kth pricing factor estimated as this factor’s

average realized return from 1972 to 2021.

The model-implied expected return of the next four models uses (1.38). The first

recent model is the five-factor model of Fama and French (2015, FF5). This model is

motivated by the dividend discount model and adds a profitability and investment factor

to FF3. The next model is the investment CAPM from Hou et al. (2015, HXZ). This

model is motivated by the q theory of investments and uses a market, size, profitability,

and investment factor.

So far, the models I have considered have a rational justification for “why” they
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work. By contrast, the two remaining models have a behavioral justification. The model

from Stambaugh and Yuan (2017, SY) is motivated by persistent mispricing, especially

overvaluation, which rational investors fail to correct due to arbitrage asymmetry. The

model uses a market factor, a size factor, and two mispricing factors related to managerial

actions and firm performance. The model from Daniel et al. (2020, DHS) is designed

to capture short- and long-horizon mispricing due to investor biases. The model uses a

market factor and two behavioral factors. The first behavioral factor is based on the post-

earnings announcement drift and captures short-run mispricing. The second behavioral

factor is based on equity issuance and captures long-run mispricing.

The two benchmark models are meant to reflect the optimal model for realized returns

(ML) and the optimal model for required returns (REQ). ML is based on machine learning

forecasts of realized returns at the stock level using an approach similar to Gu et al. (2020a)

and Jensen et al. (2022). I predict the returns of individual stocks using a gradient boosted

decision tree methodology called “XGBoost” from Chen and Guestrin (2016). For each

stock, the inputs to the model is the 119 equity factor characteristics from Section 5 and

the outcome variable in the excess return one month ahead. I update the model each

decade such that all predictions are out-of-sample, and the first out-of-sample prediction

is in 1972. Section 8.8 describes the procedure in detail. The expected return of a portfolio

follows from a bottom-up aggregation of the stock level forecasts, and the unconditional

expected return of a factor is the average of these predictions from 1972 to 2021,

EML[rjt+1] =
1

T

T∑
t=1

∑
i∈{jt}

πi,jt f̂t(x
i
t), (1.39)

where {jt} is the stocks in portfolio j at time t, T is the number of months in the sample,

πi,jt is a stock’s weight in the portfolio, f̂(x) is the prediction from the estimated XGBoost

model, and xit a vector with the 119 stock characteristics.

Finally, the second benchmark model is a required return model (REQ). This model

sets a portfolio’s expected return equal to its required return computed as in Section 5,

EREQ[rjt+1] =
(
r̄ft,t+h + a+ λ̂× s̄jt

)1/h

− 1− r̄ft,t+1, , (1.40)

where s̄jt is the average subjective risk of the portfolio, a and λ̂ is the parameters from

Table II, h is the horizon of the subjective expected return proxy, and r̄ft,t+h is the average

risk-free rate over a horizon of h for the period used to estimate the parameters. There

are six different versions of REQ depending on the subjective risk and return proxies used

to estimate the parameters.

To evaluate the models’ ability to explain realized returns, I compute each portfolio’s
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average realized return from 1972 to 2021. To evaluate the models’ ability to explain

required returns, I compute each portfolio’s required return using the approach in Section

5.

The level of required returns is generally higher than the level of realized returns (as

seen in Figure 1). I, therefore, demean model-implied expected returns, realized returns,

and required returns to focus on the model’s cross-sectional pricing ability.

6.2 Asset Pricing Models Explain Realized or Required Re-

turns

Figure 7 shows the extent to which the model-implied expected returns align with the

average realized and required return of the 357 portfolios. Each panel differs only on the

x coordinate, which shows a portfolio’s model-implied expected return. The y-coordinate

of the red triangles shows the corresponding portfolio’s average realized return. If a model

perfectly explains realized returns, all the red triangles would lie on the dotted 45◦ line.

The required return model and the traditional models explain realized returns poorly. In

fact, they tend to imply high expected returns to portfolios with low realized returns. The

consumption CAPM is an exception, but it tends to imply a low dispersion in expected

returns—another manifestation of the equity premium puzzle (Mehra and Prescott, 1985).

In contrast, the recent empirical models explain realized returns well since they tend to

imply a high expected return to portfolios with high realized returns. They do, however,

seem to be dominated by the ML model.

The y-coordinate of the blue circles is the required return of the portfolios based

on the safety rank and expected return from Value Line. The required return model

perfectly explains required returns by assumption. More interestingly, required returns

closely align with the expected return from traditional models like the CAPM and FF3.

In contrast, the expected return of the recent models and the ML model is negatively

related to required returns.

To capture the intuition from Figure 7, I create two metrics that summarize each

model’s ability to explain realized and required returns. I define the “realized pricing

ability” of a model as the R2 from the following model, r̄jt+1 = a + Em[rjt+1] + εj, where

r̄j is the average realized return of each portfolio, Em[rjt+1] is the model-implied expected

return and a is an intercept that captures level-differences. Concretely, a model’s realized

pricing ability is,

R2
m = 1−

∑357
j=1

[
(Em[rjt+1]− c1)− (r̄j − c2)

]2∑357
j=1 (r̄j − c2)2 , (1.41)
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Figure 7. Model-Implied Expected Return vs. Required and Realized
Returns

Note: The table visualizes the extent to which model-implied expected returns align with realized and
required returns. The test assets are the 357 high-middle-low portfolios underlying the equity factors
described in Table AI. For each model-portfolio pair, the x-coordinate is the model-implied expected
return of the portfolio, while the y-coordinate is the portfolio’s required return (blue circle) or its average
realized return (red triangle). The y and x variables have been demeaned. The required returns is based

on ẼV Lt [rit,t+48] and sV L,it . The blue (red) solid line is the best linear fit between model-implied expected
returns and required returns (average realized returns). The dotted line is the 45◦ line that indicates a
perfect match between the x and y variable. The models are described in Table VII.

where c1 = 1
357

∑357
j=1 E

m[rjt+1] is the average model-implied expected return across the

357 portfolios, and c2 = 1
357

∑357
j=1 r̄

j
t+1 is the average realized return. Similarly, a model’s

required pricing ability is the R2 from the model, r̄req,jt+1 = ã+ Em[rjt+1] + ε̃j, which is,

R̃2
m = 1−

∑357
j=1

[
(Em[rjt+1]− c1)− (r̄req,jt+1 − c3)

]2∑357
j=1

(
r̄req,jt+1 − c3

)2 , (1.42)

where r̄req,jt+1 is the portfolio’s required return and c3 = 1
357

∑357
j=1 r̄

req,j
t+1 is the average re-

quired return across portfolios.

The first row of Table VIII presents the realized pricing ability of the nine models.
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Consistent with Figure 7, the traditional models perform poorly with R2 ranging from

-0.92 for CAPM to -0.05 for CCAPM. In contrast, the recent models perform well with R2

ranging from 0.26 for FF5 to 0.45 for SY4. According to this metric, the recent empirical

models are superior to the traditional model for explaining realized returns. Still, the ML

model is superior to the recent model with an R2 of 0.78. This substantial outperformance

is surprising, considering that the ML model makes out-of-sample predictions while the

asset pricing models rely on in-sample factor loadings and factor premiums. This result

suggests that bottom-up ML models are superior to top-down asset pricing models when

the goal is to predict returns.

The remaining rows of Table VIII show the required pricing ability separately for

required returns based on each of the six combinations of subjective risk and return

expectations. Focusing on the first row that corresponds to Figure 7, we see that the R̃2

of the traditional models ranges from 0.24 (CCAPM) to 0.63 (CAPM), while the recent

models range from -5.25 to -3.20. The CAPM is the best model for five of six required

return proxies, while CCAPM is the best for the remaining one.25 FF3 is the second-best

model for four of six proxies but is less stable than CCAPM.

The good performance of CCAPM is somewhat surprising considering the visual evi-

dence from Figure 7. It reflects the low variance of the CCAPM predictions that coun-

teracts its high bias. This mechanism also explains why the R̃2 of CCAPM is so stable

in Table VIII. As a practical matter, the high bias is undesirable for a good model of

required returns, even if it comes at a low variance.

I develop a pairwise model comparison test to test whether the differences across

models are statistically significant. Optimally, I would like to create a hypothesis test

of whether one model is significantly better than another. However, the sampling distri-

bution of (1.41) and (1.42) is complex, making it difficult to derive a null distribution.

Instead, I base the model comparison on the confidence distribution of the difference es-

timated via a bootstrap procedure. A confidence distribution, h(x), is closely related to

confidence intervals. For example, for a central 90% confidence interval spanning xlower

to xhigh, the lower endpoint satisfies h(xlower) = 0.05 and the upper endpoint satisfies

h(xupper) = 0.95.

When comparing the realized pricing ability of two models, say the CAPM and FF3,

I compute the bootstrap confidence distribution of R2
CAPM −R2

FF3 and evaluate its value

at zero. I refer to the resulting statistic as the bootstrap p-value. The bootstrap p-value,

roughly, shows the proportion of time where R2
CAPM is lower than R2

FF3. I explain the

25Perhaps surprisingly, CAPM has a negative R̃2 when required returns are based on return expectation
from Value Line and βit . The reason is that the estimated subjective risk premium with these proxies is
lower than implied by the CAPM. Said differently, Value Line believes that the relation between beta
and expected returns is weaker than predicted by the CAPM.
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Table VIII. Required and Realized Pricing Ability

Required ret. data REQ CAPM CCAPM FF3 FF5 HXZ SY DHS ML

Panel A. Realized pricing ability (R2)
-0.91 -0.92 -0.05 -0.36 0.26 0.42 0.45 0.32 0.78

Panel B. Required pricing ability (R̃2)

V L / sV L,it 1.00 0.63 0.24 0.32 -3.20 -3.66 -5.25 -5.10 -3.59
V L / βit 1.00 -0.33 0.37 -1.00 -9.92 -10.31 -16.23 -13.76 -9.82
V L / SVIXi

t 1.00 0.66 0.25 -0.32 -5.63 -5.91 -9.03 -7.86 -5.42

IBES / sV L,it 1.00 0.59 0.13 0.37 -1.15 -1.41 -1.93 -2.02 -1.42
IBES / βit 1.00 0.79 0.22 0.25 -2.91 -3.17 -4.89 -4.29 -3.08
IBES / SVIXi

t 1.00 0.79 0.14 0.19 -1.97 -2.14 -3.19 -2.88 -1.96

Note: The table shows the realized and required pricing ability of the nine asset pricing models from
Table VII on the 357 characteristic sorted portfolios. Panel A shows the realized pricing ability computed
using (1.41), and Panel B shows the required pricing ability computed using (1.42). The “Required ret.
data” column refers to the subjective expected return (before the slash), and the subjective risk proxy
(after the slash) used to compute required returns. The subjective expected return either comes from

Value Line (VL) or I/B/E/S (IBES). The subjective risk is either the safety rank from Value Line (sV L,it ),
the market beta from Value Line (βit), or the SVIX measure from Martin and Wagner (2019). The model
abbreviations refer to a required return model (REQ), classical capital asset pricing model (CAPM),
the consumption CAPM (CCAPM), the Fama-French three-factor (FF3), the Fama-French five-factor
model (FF5), the Hou-Xue-Zhang investment CAPM (HXZ), the Stambaugh-Yuan model with mispricing
factors (SY), the Daniel-Hirshleifer-Sun model with behavioral factors (DHS), and a machine learning
based model. The realized pricing ability of REQ is an average across the six required return proxies.

procedure in detail in Section 8.9.

Panel A in Table IX shows the results of the pairwise model comparisons for the

realized pricing ability. A number is written in bold if the bootstrap p value is below

0.05, which I refer to as a significant difference. Table VIII showed that SY had the

highest realized pricing ability, but the difference relative to FF5, HXZ, and DHS is not

statistically significant. Within the four recent models, I only reject FF5 in favor of

HXZ. In contrast, when comparing traditional and recent models, I almost always reject

the traditional models in favor of the recent models. Overall, these results warrant the

conclusion that recent empirical asset pricing models are significantly better at predicting

returns than traditional models.

Table IX also reveals that the ML model is superior to all other models for predicting

realized returns. Again, this evidence favors using ML rather than the recent asset pricing

models for the “realized return” mandate.

Panel B in Table IX presents the model comparison for the required pricing ability

using the safety rank and subjective expected return from Value Line. The CAPM is

significantly better than all models except FF3. Even relative to FF3, the evidence favors

the CAPM, with a bootstrap p-value of 0.22. Generally, the evidence favoring the CAPM

is strong across the six required return proxies with a median bootstrap p-value of 0.02
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Table IX. Recent models are significantly better for realized returns while
traditional models are significantly better for required returns

Panel A: Test of R2 difference for realized return
REQ CAPM CCAPM FF3 FF5 HXZ SY DHS ML

REQ 0.79 0.00 0.13 0.00 0.00 0.00 0.00 0.00
CAPM 0.21 0.00 0.01 0.00 0.00 0.00 0.00 0.00
CCAPM 1.00 1.00 0.88 0.15 0.02 0.01 0.07 0.00
FF3 0.87 0.99 0.12 0.00 0.00 0.00 0.00 0.00
FF5 1.00 1.00 0.85 1.00 0.04 0.15 0.35 0.01
HXZ 1.00 1.00 0.98 1.00 0.96 0.53 0.86 0.03
SY 1.00 1.00 0.99 1.00 0.85 0.47 0.82 0.01
DHS 1.00 1.00 0.93 1.00 0.65 0.14 0.18 0.00
ML 1.00 1.00 1.00 1.00 0.99 0.97 0.99 1.00

Panel B: Test of R̃2 difference for required returns
REQ CAPM CCAPM FF3 FF5 HXZ SY DHS ML

REQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CAPM 0.00 0.96 0.78 1.00 1.00 1.00 1.00 1.00
CCAPM 0.00 0.04 0.38 1.00 1.00 1.00 1.00 1.00
FF3 0.00 0.22 0.62 1.00 1.00 1.00 1.00 1.00
FF5 0.00 0.00 0.00 0.00 0.68 0.95 0.97 0.47
HXZ 0.00 0.00 0.00 0.00 0.32 0.93 0.88 0.44
SY 0.00 0.00 0.00 0.00 0.05 0.07 0.48 0.29
DHS 0.00 0.00 0.00 0.00 0.03 0.12 0.52 0.23
ML 0.00 0.00 0.00 0.00 0.53 0.56 0.71 0.77

Note: The table shows the results of the pairwise model comparisons of pricing ability. The number states
the bootstrap p-value, explained in Section 8.9. Roughly, the number shows the proportion of bootstrap
samples where the pricing ability of the row model was better than the column model. Numbers below
5% indicate statistically significant evidence in favor of the column model and are highlighted in bold. In
panel A, the pricing metric is the R2 from (1.41) and in of panel B the pricing metric is R̃2 from (1.42).

Required returns are based on ẼV Lt [rit,t+48] and sV L,it .

relative to CCAPM and 0.1 relative to FF3.

At a higher level, I reject all the recent models in favor of the traditional model. These

results motivate the claim that traditional models are superior for explaining required

returns.
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7 Conclusion: A Risk-Return Tradeoff Concealed by

Optimism Bias

I use subjective risk and return expectations to infer required returns via three different

proxies for subjective risk and two for subjective expected returns. I compare these ex-

ante required returns to ex-post realized returns in the cross-section of stocks.

My first finding is that the subjective risk premium is high while the realized risk

premium is low. This stylized fact suggests that investors require substantial compensa-

tion for taking risks, but, in 30 years of data, the realized risk compensation has been

disappointing.

I show theoretically that the realized risk premium is lower than the subjective risk

premium when investors suffer from optimism bias. In particular, the expectational error

induced by optimism bias increases in cash flow uncertainty, and empirically, riskier stocks

have more uncertain cash flows. Using subjective cash flow forecasts from Value Line and

I/B/E/S, I find strong support for three distinct predictions of optimism bias: (i) cash

flow forecasts are too optimistic on average, (ii) over-optimism is more common for riskier

stocks, and (iii) over-optimism is more common over longer forecast horizons. These

results suggest that the high required return of risky stocks is offset by irrational cash

flow optimism leading to a low realized return.

The weak link between realized and required returns has important implications for

asset pricing. For equity factors, I test the “risk hypothesis” that a factor’s realized return

is equal to its required return. In a sample of 119 factors, I reject the risk hypothesis for

71% to 79%. This high rejection rate reflects that most factors, even though they have a

positive realized return, tend to buy subjective safe stocks while shorting risky ones.

For asset pricing models, I find that recent empirical models, such as FF5, are better

than traditional models, such as the CAPM, at explaining realized returns. Conversely,

the recent models perform poorly in explaining required returns, whereas the traditional

models perform well. The CAPM, in particular, emerges as the leading model of required

returns.

My results suggest that realized returns contain limited information about investors’

required returns because of the relation between risk and irrational cash flow optimism.
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8 Appendix

8.1 Proofs

I start by showing that the objective expected return under the setup in Section 1 is,

Et[r
i
t+1] = −γ0

t + (λt − γ1
t )s

i
t − uit, (1.43)

which follows from the definition of objective mispricing as bit = λsi − Et[r
i
t+1] and the

decomposition of bit from (1.5). Next, γ0
t and γ1

t are the coefficients from a cross-sectional

regression of objective mispricing on subjective risk leading, so their expected values are,

γ0
t = b̄t − γ1s̄t, (1.44)

γ1
t =

Cov(sit, b
i
t)

Var(sit)
, (1.45)

where b̄t is the average objective bias at time t, s̄t is the average subjective risk, and Var

and Cov refers to cross-sectional variance and covariance, respectively.

Proof of Proposition 1. The λt estimate from (1.6) is

λ̂t =
Cov(Ẽt[r

i
t+1], sit)

Var(si)

=
Cov(λts

i
t − b̃it, sit)

Var(si)

= λt −
Cov(b̃it, s

i
t)

Var(si)
,

where the second line expands Ẽt[r
i
t+1] according to (1.4).

Next, the λreat coefficient from (1.7) is

λreat =
Cov(Et[r

i
t+1], sit)

Var(si)

=
Cov(λts

i
t − bit, sit)

Var(si)

= λt −
Cov(bit, s

i
t)

Var(si)

= λt − γ1
t ,

where the second line follows from the definition of objective expected returns in (1.43)

and the last line follows from the definition of γ1
t as the coefficient from a cross-sectional
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regression of objective bias on subjective risk (see (1.5)).

Proof of Proposition 2. Since the expected return of a portfolio is linear in the

portfolio assets, we can use (1.43) to get

Et[r
L
t+1 − rSt+1] =

∑
i∈L

πit
(
−γ0

t + (λt − γ1
t )s

i − uit
)
−
∑
i∈S

πit
(
−γ0

t + (λt − γ1
t )s

i − uit
)
,

=
∑
i∈L

πit
(
λts

i
t − γ1

t s
i
t − uit

)
−
∑
i∈S

πit
(
λts

i
t − γ1

t s
i
t − uit

)
= λt

(∑
i∈L

πits
i
t −
∑
i∈S

πits
i
t

)
− γ1

t

(∑
i∈L

πits
i
t −
∑
i∈S

πits
i
t

)
−

(∑
i∈L

πitu
i
t −
∑
i∈S

πitu
i
t

)
= λt(s

L
t − sSt )− γ1

t (s
L
t − sSt )− (uLt − uSt )

The second line removes all constants because the weight in both the long and short

portfolio sum to 1. The third line collects terms that depend on the same parameters,

and the fourth line defines sjt and ujt .

Proof of Proposition 3. I start by deriving the values of κ0
t and κ1

t . The two parameters

come from a cross-sectional regression of objective expected returns on a constant and

subjective risk,

Et[r
i
t+1] = κ0

t + κ1
t s
i
t + εit

Starting with κ1
t :

κ1
t =

Cov(Et[r
i
t+1], sit)

Var(sit)

=
Cov(−γ0

t + (λt − γ1
t )s

i
t + uit, s

i
t)

Var(sit)

= (λt − γ1
t )

Cov(sit, s
i
t)

Var(sit)

= λt − γ1
t ,

(1.46)

where the second line expands Et[r
i
t+1] according to (1.43), and the fourth line follows be-

cause uit and sit are cross-sectionally uncorrelated and all the remaining terms are constant.

Next, κ0 follows as

κ0
t = Et[r

i
t+1] = γ1

t s̄t − b̄t (1.47)

Objective pricing error

I start by defining the objective pricing error for a single asset as

α(i)
m = Et[r

i
t+1]− Em

t [rit+1]. (1.48)
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1. Required return model, (1.13)

Subtracting (1.13) from the objective expected return, (1.43), we see that the re-

quired return model cancels λts
i
t such that

α(i)
req = −γ0

t − γ1
t s
i
t − uit.

The objective pricing error of this model is therefore

α2
req = E[(−γ0

t − γ1
t s
i
t − uit)2]

= E[(−(b̄t − γ1s̄t)− γ1
t s
i
t − uit)2]

= E[(−b̄t − γ1
t (s

i
t − s̄t)− uit)2]

= Et[−b̄t − γ1
t (s

i
t − s̄t)− uit]2 + Var(−b̄t − γ1

t (s
i
t − s̄t)− uit)

= b̄2
t + (γ1

t )
2Var(sit) + Var(uit),

where the second line expands γ0
t according to (1.44), so b̄t is the average objective

mispricing at time t. The fifth line follows because sit and uit is cross-sectionally

uncorrelated.

2. Empirical free model, (1.11) The pricing error at the asset level is

α
(i)
free = Et[r

i
t+1]− (κ0

t + κ1
t s
i
t)

= −γ0
t + (λt − γ1

t )s
i − uit − (−γ0

t + (λt − γ1
t )s

i
t)

= −uit,

where the second line follows from the definition of the objective expected return

from (1.43) and I expand κ1
t and κ0

t using (1.46) and (1.47), respectively. The

model’s overall objective pricing error is

α2
free = E[−uit]2 + Var(uit) = Var(uit).

this error is smaller than or equal to α2
req because α2

req −α2
free = b̄2

t + (γ1
t )

2Var(sit) is

non-negative.

3. Empirical multifactor model, (1.12)

The pricing error at the asset level is

α
(i)
multifactor = −uit − κ2c

i
t,

which is the same as the empirical free model, except that the multifactor model
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also tackles non-risk mispricing (uit). The model’s overall objective pricing error is

α2
multifactor = Et[

(
−uit − κ2c

i
t

)2
]

= Vart(u
i
t) + κ2

2Vart(c
i) + 2κ2Covt(u

i
t, c

i
t)

= Vart(u
i
t) +

(
−Cov(uit, c

i
t)

Var(cit)

)2

Vart(c
i)− 2

Cov(uit, c
i
t)

Var(cit)
Covt(u

i
t, c

i
t)

= Vart(u
i
t)−

Covt(u
i
t, c

i
t)

2

Var(cit)
,

= Vart(u
i
t)
[
1− Cort(u

i
t, c

i
t)

2
]
,

where the second line uses the assumption that both uit and cit are mean zero, the

third line uses the definition of κ2 = Cov(Et[r
i
t+1], cit)/Var(cit) = −Cov(uit, c

i
t)/Var(cit),

and Cor is the cross-sectional correlation. This pricing error is less than or equal to

α2
free because the squared correlation is non-negative.

4. Objective model, (1.14)

Since Eobj
t [rit] = Et[r

i
t+1], ∀i, the objective model has a zero objective pricing error

by definition,

α2
obj = 0.

This error is the lowest possible because (1.15) is bounded below by zero (since the

square of a real number is non-negative).

Based on the derivations above, the first result in Proposition 3 follows

α2
req︸︷︷︸

b̄2t+(γ1
t )2Var(sit)+Var(uit)

≥ α2
free︸︷︷︸

Var(uit)

≥ α2
multifactor︸ ︷︷ ︸

Vart(uit)[1−Cort(uit,c
i
t)

2]

≥ α2
obj = 0.

Subjective pricing error

Again, I start by defining the subjective pricing error for a single asset as

α̃(i)
m = λts

i
t − Em

t [rit+1]. (1.49)

1. Required return model, (1.13)

Since Ereq
t [rit+1] = λts

i
t,∀i, the required return model has a zero subjective pricing

error by definition,

α̃2
req = 0.

This error is the lowest possible because (1.16) is bounded below by zero (since the

square of a real number is non-negative).
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2. Empirical free model, (1.11)

The subjective pricing error at the asset level is

α̃
(i)
free = λts

i
t − (κ0

t + κ1
t s
i
t)

= λts
i
t − (γ1

t s̄t − b̄t + (λt − γ1
t )s

i
t)

= b̄t + γ1
t (s

i
t − s̄t),

where the second line expands κ1
t and κ0

t according to (1.46) and (1.47), respectively.

The overall subjective pricing error of this model is therefore

α̃2
free = E[

(
b̄t + γ1

t (s
i
t − s̄t)

)2
]

= b̄2
t + (γ1

t )
2Var(sit),

which is larger than or equal to α̃2
req because b̄2

t + (γ1
t )

2Var(sit) is non-negative.

3. Empirical multifactor model, (1.12)

The subjective pricing error at the asset level is

α̃
(i)
multifactor = λts

i
t − (κ0

t + κ1
t s
i
t + κ2

t c
i
t)

= b̄t + γ1
t (s

i
t − s̄t)− κ2

t c
i
t

which is the same as the empirical free model, except for the additional term, κ2
t c
i
t.

The overall subjective pricing error of the empirical multifactor is therefore

α̃2
multifactor = E[(b̄t + γ1

t (s
i
t − s̄t)− κ2

t c
i
t)

2]

= b̄2
t + (γ1

t )
2Var(sit) + κ2

2Var(cit)

= b̄2
t + (γ1

t )
2Var(sit) + Cor(ui, cit)

2Var(uit),

which is larger than or equal to α̃2
free because Cor(ui, cit)

2 and Var(uit) are both

non-negative.

4. Objective model, (1.14)

The subjective pricing error at the asset level is

α̃
(i)
obj = λts

i
t − (κ0

t + κ1
t s
i
t + uit)

= b̄t + γ1
t (s

i
t − s̄t)− uit.
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The subjective pricing error of this model is therefore

α̃2
obj = E[(b̄t + γ1

t (s
i
t − s̄t)− uit)2]

= b̄2
t + (γ1

t )
2Var(sit) + Var(uit),

which is larger than or equal to α̃2
multifactor because Cor(ui, cit)

2 ≤ 1.

Based on the derivations above, the second result in Proposition 3 follows

α̃2
obj︸︷︷︸

b̄2t+(γ1
t )2Var(sit)+Var(uit)

≥ α̃2
multifactor︸ ︷︷ ︸

b̄2t+(γ1
t )2Var(sit)+Cor(ui,cit)

2Var(uit)

≥ α̃2
free︸︷︷︸

b̄2t+(γ1
t )2Var(sit)

≥ α̃2
req = 0.

Proof of Proposition 4. I start by deriving the rational posterior expectation from

(1.17). The three random variables of interest are the expected cash flow θi ∼ N(µ0, τ
2
0ω

2
i )

and the two public signals vki |θi ∼ N(θi, τ
2
1ω

2
i ) with k ∈ {1, 2}. These three variables have

a multivariate normal distribution if every linear combination Y = aθi + bsi1 + csi2 of

its components is normally distributed. To see that this is the case, I write each signal

as the sum of theta and a random variable uki : Y = aθi + b(θi + u1
i ) + c(θi + u2

i ) =

θi(a+ b+ c) + bu1
i + cu2

i . Hence, Y is a linear combination of three independent normally

distributed variables, which is itself normally distributed. The prior distribution of the

expected cash flows and the two public signals are, therefore, multivariate normal:θiv1
i

v2
i

 = N


µ0

µ0

µ0

 , ω2
i

τ
2
0 τ 2

0 τ 2
0

τ 2
0 τ 2

0 + τ 2
1 τ 2

0

τ 2
0 τ 2 τ 2

0 + τ 2
1


 (1.50)

From the properties of a multivariate normal distribution, the conditional distribution is:

E[θi|v1
i , v

2
i ] = µ0 +

ω2
i

ω2
i

[
τ 2

0 τ 2
0

] [τ 2
0 + τ 2

1 τ 2

τ 2 τ 2
0 + τ 2

1

]−1 [
v1
i − µ0

v2
i − µ0

]

= µ0 +
1

(τ 2
0 + τ 2

1 )(τ 2
0 + τ 2

1 )− τ 4
0

[
τ 2

0 τ 2
0

] [τ 2
0 + τ 2

1 −τ 2
0

−τ 2
0 τ 2

0 + τ 2
1

][
v1
i − µ0

v2
i − µ0

]

= µ0 +
1

(τ 2
0 + τ 2

1 )(τ 2
0 + τ 2

1 )− τ 4
0

[
τ 2

0 (τ 2
0 + τ 2

1 − τ 2
0 ) τ 2

0 (τ 2
0 + τ 2

1 − τ 2
0 )
] [v1

i − µ0

v2
i − µ0

]

= µ0 +
1

2

τ 2
0

τ 2
0 + τ 2

1 /2
(v1
i − µ0) +

1

2

τ 2
0

τ 2
0 + τ 2

1 /2
(v2
i − µ0)

= µ0 + δ

(
1

2
vmaxi +

1

2
vmini − µ0

)
,

51



where δ =
τ2
0

τ2
0 +τ2

1 /2
is a shrinkage parameter which is the same for all stocks, vmaxi :=

max(v1
i , v

2
i ) is the highest signal, and vmini := min(v1

i , v
2
i ) is the lowest signal. Hence, the

rational posterior is an equal-weighted average of the two signals.

Next, I want to show the expected bias when the investors actual posterior expectation

puts κj weight on vmaxi and 1− κj on vmini :

Ej[θi|vmaxi , vmini , κj] = µ0 + δ(κjv
max
i + (1− κj)vmini − µ0)

Define the bias in investor inference as bij = Ej[θi|vmaxi , vmini , κj] − E[θi|vmaxi , vmini ].

This bias depends on the two random signals, but I want to characterize its expected

value.

To do so, I use the results from Nadarajah and Kotz (2008) about the expected value

of the maximum and minimum of two normal random variables. If X1 and X2 are jointly

normal with expected value µX and µY , variances σ2
X and σ2

Y , and covariance cov(X, Y ),

then their expected values are:

E[max(X1, X2)] = µXΦ

(
µX − µY

ξ

)
+ µY Φ

(
µY − µX

ξ

)
+ ξφ

(
µX − µY

ξ

)
,

E[min(X1, X2)] = µXΦ

(
µX − µY

ξ

)
+ µY Φ

(
µY − µX

ξ

)
− ξφ

(
µX − µY

ξ

)
,

where Φ(x) is the cumulative distribution function of a standard normal variable, φ(x) is

the density function of a standard normal variable, and ξ =
√
σ2
X + σ2

Y − 2Cov(X, Y ). If

the two variables have the same expected mean µ and variance, σ2, then this expression

reduces to:

E[max(X1, X2)] = µ+ ξφ (0) (1.51)

E[min(X1, X2)] = µ− ξφ (0) (1.52)

Using this result, I can derive the expected bias from Proposition 4:

E[bji ] = E[µ0 + δ(κjv
max
i + (1− κj)vmini − µ0)− (µ0 + δ(0.5vmaxi + 0.5vmini − µ0))]

= δ(E[vmaxi ]− E[vmini ])(κj − 0.5)

= δ2φ (0) ξi(κj − 0.5)

= δ2φ (0)
√

2ω2
i (τ

2
0 + τ 2

1 )− 2ω2
i τ

2
0 (κj − 0.5)

= δ21.5τ1φ(0)(κj − 0.5)ωi

= c(κj − 0.5)ωi,
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where Φ(x) is the cumulative distribution function of a standard normal variable, φ(x) is

the density function of a standard normal variable, and c = δ21.5τ1φ(0) is a constant. On

the third line, I evaluate E[vmaxi ] and E[vmini ] using (1.51) and (1.52), respectively; on the

fourth line, I use the variance and covariance from (1.50); and on the final line I define c.

Furthermore, c is positive because I assume that τ0 and τ1 are positive (meaning that δ

is positive), and the remaining components are positive constants.

8.2 Subjective Risk and Cash Flow Uncertainty

A critical assumption for Proposition 4, is that cash flow uncertainty is higher for sub-

jectively riskier stocks. The Value Line data provides excellent data for testing this

assumption. Specifically, each reports contains an “earnings predictability” score ranging

between 0 (low predictability) and 100 (high predictability).26 To test whether subjective

risk correlates with economic uncertainty, I sort stocks into 10 portfolio based on sub-

jective risk with monthly re-balancing. The portfolios are identical to the ones in figure

1. For each portfolio-month, I compute the average earnings predictability scores. I then

average these scores over time. Computing the standard error of this estimate is compli-

cated by the fact that earnings predictability is persistent.27 To circumvent this issue, I

use an adjustment from (Cochrane, 2005, p.223) which is valid if earnings predictability

at the portfolio level has an AR(1) structure,

SE(x̄k) =

√
Var(xk)

T
× 1 + ρk

1− ρk
, (1.53)

where xk is the earning predictability in portfolio k, T is the number of time-periods, and

ρk is the monthly autocorrelation of xk. Figure A1 shows that riskier stocks have higher

cash flow uncertainty (lower earnings predictability) across all three risk proxies. Focusing

on the safety rank from Value Line (sV L), the safest stocks have an average earnings

predictability of 83 while the corresponding number is 23 for the riskiest stock. Both

numbers are estimated very precisely. Furthermore the relationship is monotonic across

risk groups. Across stocks and time-periods, the correlation with earnings predictability

is -0.61, -0.36, and -0.46 for the safety rank, beta estimate, and SVIX, respectively. These

results support the assumption that cash flow uncertainty is higher for subjectively riskier

assets.

26The earnings predictability score is in the lower right corner of the report on Apple in figure A2.
27The average 1 month autocorrelation for the 10 portfolios is 0.91.
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Figure A1. Subjective Risk and Cash Flow Uncertainty

Note: The figure shows the average earnings predictability score of stocks sorted into portfolio based
on their subjective risk (1=safe, 10=risky). The earnings predictability score is from Value Line and it
ranges from 0 (low predictability) to 100 (high predictability) and the score. The error bars show 95%
confidence intervals computed as ±1.96× SE(x̄k), where SE(x̄k) is defined in (1.53). The subjective risk
proxies are either the safety rank from Value Line, the market beta forecast from Value Line, or the SVIX
measure from Martin and Wagner (2019).

8.3 Example of Value Line Investment Report
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Figure A2. Value Line Investment Report

Note: The figure shows an example of a report from the Value Line Investment Survey for Apple. The
example also displays most of the information from the data set used in this paper. For example, the
key subjective risk measure is the safety rank in the top left corner. I transform the safety rank into
a continuous measure by taking an average of its subcomponent, financial strength, and price stability
shown in the bottom left corner. The primary input for the subjective return expectation is the price
range projections visible just below the safety rank box.
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8.4 Subjective Expected Return Calculation

Value Line

Value Line provides a price target four years ahead, Ẽt[p
i
t+4], dividend expectations over

the next calendar year, Ẽt[d
i
t+1], and in four years, Ẽt[d

i
t+4]. I use this information and

the current price, pit+1, to calculate Value Line’s implied return expectation over the next

four years. For notational convenience, I suppress the stock identifier i. Furthermore, I

denote the total expected return over the next year as Ẽt[r
∗
t+1] = rit+1 +rft+1 =

Ẽt[pit+1+dit+1]

pt
.

The objective is to find the value of Ẽt[r
∗
t+1], consistent with Value Line’s forecast and

the stock’s current price. The specific procedure depends on whether a firm has non-zero

dividend expectations.

For firms where the two dividend expectations are both zero, the subjective return

expectation is

Ẽt[r
∗
t+1] =

(
Ẽt[pt+4]

pt

)1/4

− 1.

For firms where the expected dividend in one year is zero, but the expectation in four years

is positive, I assume that the expected dividend grows linearly over time, Ẽt[dt+1+k] =
k
3
Ẽt[dt+4]. The subjective returns expectation is the value of Ẽt[r

∗
t+1] that solves

(1 + Ẽt[r
∗
t+1])4 =

Ẽt[pt+4]

pt
+

Ẽt[dt+2](1 + Ẽt[r
∗
t+1])2 + Ẽt[dt+3](1 + Ẽt[r

∗
t+1]) + Ẽt[dt+3]

pt

For firms where both dividend expectations are non-zero, the subjective return expecta-

tion is the value of Ẽt[r
∗
t+1] that solves

(1 + Ẽt[r
∗
t+1])4 =

Ẽt[pt+4]

pt
+

Ẽt[dt+1]

pt

(1 + Ẽt[r
i
t+1])4 − (1 + Ẽt[gt+4])4

Ẽt[r∗t+1]− Ẽt[gt+4]

where Ẽt[gt+4] is the expected dividend growth from year t+1 to t+4 computed as

Ẽt[gt+4] =

(
Ẽt[dt+4]

Ẽt[dt+1]

)1/3

− 1.

The four year expected excess return then follow as,

Ẽt[r
i
t,t+4] = (1 + Ẽt[r

∗
t+1])4 − 1− rft,t+4), (1.54)

where rft,t+4 is the risk-free rate from year t to t+ 4.

Comment

Value Line provides their expected annualized total return in their reports. In figure A2 it
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is visible in the top left corner. However, in the data I received, there appears to be some

issue with this data item before 2000. Specifically, when I look at old reports, the value

for the expected return does not match those I have in my data. In contrast, the price

target and dividend expectations match. After 2000, my implied return expectations

match their data item almost perfectly. To ensure consistency, I compute the implied

expected return target throughout the sample.

I/B/E/S

The subjective expected return of a stocks from I/B/E/S is,

ẼIBES
t [rit+1] =

ẼIBES
t [pit+1] + ẼIBES

t [dit+1]

pt
− (1 + rft+1), (1.55)

where ẼIBES
t [pit+1] and is the median consensus one-year price target from I/B/E/S,

ẼIBES
t [dit+1] is the median consensus dividend forecast over the next fiscal year from

I/B/E/S, pit is the stock’s price at the day of the forecast, and rft+1 is the one-year risk-

free rate. If the dividend forecast from I/B/E/S is unavailable, I use the one-year ahead

dividend forecast from Value Line instead. If the Value Line forecast is also unavailable,

I assume that the expected dividend is zero. Dividend expectations from I/B/E/S are

only available for a broad cross-section of firms from 2002/05/16, so I use Value Line’s

dividend expectations before this date. The two series are highly similar as the Spearman

correlation between the implied dividend yield from I/B/E/S and the dividend yield from

Value Line is 0.96.

8.5 The Subjective Risk Premium is Countercyclical

To recover required returns from subjective risk and return expectations, there needs to

be a zero correlation between subjective risk and subjective mispricing (Proposition 1).

Throughout the paper, I use a constant subjective risk premium because I argue that the

zero correlation assumptions is more likely to holds across on average across time-periods.

However, even if the zero correlation assumption is unlikely to hold exactly each month,

the monthly parameter estimates can still be informative about the time-variation in

required returns. Therefore, I use the time-varying coefficients from (1.21) based on the

safety rank and expected return from Value Line, to compute the implied required return

on the market portfolio.

The top-left panel in Figure A3 shows that the required market return is highly coun-

tercyclical, being high in bad times such as during the dotcom bubble in 2002-2003, the

financial crisis in 2008, and the COVID crisis in 2020 and low in good times such as 2013-

2019. The variation in the required return is large economically, from less than 5% to
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more than 25%. These results suggest that the subjective risk premium is countercyclical.

Figure A3 also presents three alternatives. The top-right corner shows the risk aversion

index from Bekaert et al. (2022).28 This series represents an estimate of the relative risk

aversion for an investor with habit preferences, and I take it as a proxy for “rational risk

aversion.” The required market return from Value Line and the risk aversion index has

a correlation of 0.69, suggesting that the subjective risk premium closely follows rational

risk aversion proxies.

Next, Greenwood and Shleifer (2014) shows that the expected market return of many

agents are pro-cyclical, so I also compare the required market return to the return expecta-

tions of different market participants. To proxy for the return expectations of professional

investors, I use the Livingston survey of professional forecasters.29 To proxy for the return

expectations of retail investors, I use data from Nagel and Xu (2022a) based on various

surveys of individuals.30

The lower-left panel of Figure A3 shows that the return expectations of professional

investors are very similar to the required market returns from Value Line, with a correla-

tion of 0.70. In contrast, the return expectations of individual investors are very different

from the required market return, with a correlation of -0.11. This finding suggests that the

required return based on Value Line data is more representative of professional investors

and less of retail investors.

8.6 Subjective Risk and Long-Term Growth Expectations

In Figure A4, I sort stocks into ten portfolios based on subjective risk, compute the average

LTG forecast for each portfolio, and average this number over time. The left panel shows

that I/B/E/S expects the safest decile of stocks to have an LTG below 10%, while the

LTG of the riskiest stocks is around 18%. The right panel shows that this difference is

even greater when using LTG forecasts from Value Line.

8.7 Equity Factor Information

Table AI. Factor Information

28I extract the risk aversion directly from https://www.nancyxu.net/risk-aversion-index. I thank
the authors for making the data available.

29This data is maintained by the Philadelphia FED and is available at
[https://www.]philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey. I
use the ratio of the mean 12-month S&P500 forecast to the zero-month level minus one plus the 1-year
risk-free rate. Dahlquist and Ibert (2021) show that the Livingston forecasts are countercyclical while
Nagel and Xu (2022b) argue that the countercyclicality is smaller than implied by predictive regressions.

30The return expectations of individual investors is available at https://voices.uchicago.edu/

stefannagel/code-and-data/. I thank the authors for making the data available.
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Factor Long Theme

1 age Low Low Leverage
2 ami 126d High Size
3 at gr1 Low Investment
4 be gr1a Low Investment
5 be me High Value
6 beta 60m Low Low Risk
7 betabab 1260d Low Low Risk
8 betadown 252d Low Low Risk
9 bev mev High Value
10 bidaskhl 21d High Low Leverage
11 capex abn Low Debt Issuance
12 capx gr2 Low Investment
13 capx gr3 Low Investment
14 chcsho 12m Low Value
15 coa gr1a Low Investment
16 col gr1a Low Investment
17 cop atl1 High Quality
18 corr 1260d Low Seasonality
19 coskew 21d Low Seasonality
20 cowc gr1a Low Accruals
21 dbnetis at Low Seasonality
22 debt gr3 Low Debt Issuance
23 debt me High Value
24 div12m me High Value
25 dolvol 126d Low Size
26 dolvol var 126d Low Profitability
27 dsale dinv High Profit Growth
28 ebit bev High Profitability
29 ebit sale High Profitability
30 ebitda mev High Value
31 emp gr1 Low Investment
32 eq dur Low Value
33 eqnetis at Low Value
34 eqnpo 12m High Value
35 eqnpo me High Value
36 eqpo me High Value
37 f score High Profitability
38 fcf me High Value
39 fnl gr1a Low Debt Issuance
40 gp at High Quality
41 inv gr1 Low Investment
42 inv gr1a Low Investment
43 iskew ff3 21d Low Short-Term Reversal
44 ivol capm 252d Low Low Risk
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45 ivol ff3 21d Low Low Risk
46 kz index High Seasonality
47 lnoa gr1a Low Investment
48 lti gr1a Low Seasonality
49 market equity Low Size
50 mispricing mgmt High Investment
51 mispricing perf High Quality
52 ncoa gr1a Low Investment
53 netdebt me Low Low Leverage
54 netis at Low Value
55 nfna gr1a High Debt Issuance
56 ni be High Profitability
57 ni me High Value
58 niq at High Quality
59 niq be High Profitability
60 niq su High Profit Growth
61 nncoa gr1a Low Investment
62 noa at Low Debt Issuance
63 noa gr1a Low Investment
64 o score Low Profitability
65 oaccruals at Low Accruals
66 oaccruals ni Low Accruals
67 ocf at High Profitability
68 ocf at chg1 High Profit Growth
69 ocf me High Value
70 ocfq saleq std Low Low Risk
71 op at High Quality
72 op atl1 High Quality
73 ope be High Profitability
74 opex at High Quality
75 pi nix High Seasonality
76 ppeinv gr1a Low Investment
77 prc Low Size
78 prc highprc 252d High Momentum
79 qmj High Quality
80 qmj growth High Quality
81 qmj prof High Quality
82 qmj safety High Quality
83 rd me High Size
84 resff3 12 1 High Momentum
85 resff3 6 1 High Momentum
86 ret 1 0 Low Short-Term Reversal
87 ret 12 1 High Momentum
88 ret 12 7 High Profit Growth
89 ret 3 1 High Momentum
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90 ret 6 1 High Momentum
91 ret 60 12 Low Investment
92 ret 9 1 High Momentum
93 rmax1 21d Low Low Risk
94 rmax5 21d Low Low Risk
95 rmax5 rvol 21d Low Short-Term Reversal
96 rskew 21d Low Short-Term Reversal
97 rvol 21d Low Low Risk
98 sale bev High Quality
99 sale gr1 Low Investment
100 sale gr3 Low Investment
101 sale me High Value
102 saleq su High Profit Growth
103 seas 1 1an High Profit Growth
104 seas 1 1na High Momentum
105 seas 11 15an High Seasonality
106 seas 16 20an High Seasonality
107 seas 16 20na Low Accruals
108 seas 2 5an High Seasonality
109 seas 2 5na Low Investment
110 seas 6 10an High Seasonality
111 seas 6 10na Low Low Risk
112 taccruals at Low Accruals
113 taccruals ni Low Accruals
114 tax gr1a High Profit Growth
115 turnover 126d Low Low Risk
116 turnover var 126d Low Profitability
117 z score High Low Leverage
118 zero trades 126d High Low Risk
119 zero trades 252d High Low Risk

Note: The table shows information about the 119 equity factors used in the paper. “Factor” is the name

of the factors and the underlying factor characteristic; Long indicates whether the factor is long high or

low values of the characteristic, and Theme indicates whether factors are related. The naming convention,

factor direction, and cluster assignment all come from Jensen et al. (2022a). The direction ensures that

the factor should have a positive realized return according to the original paper that proposed it.

Table AII. Required Factor Return

Factor Ret σ VL/sV L,it VL/βit VL/SVIXi
t IB/sV L,it IB/βit IB/SVIXi

t

1 ivol capm 252d 0.6% 18.1% -5.5% -2.3% -4.7% -10.4% -4.6% -8.8%

2 rvol 21d 2.0% 18.7% -4.2% -2.3% -4.1% -7.8% -4.6% -7.6%

3 ivol ff3 21d 3.4% 15.3% -4.1% -1.7% -3.7% -7.6% -3.4% -6.9%

4 zero trades 252d 1.3% 11.9% -3.9% -2.3% -3.9% -7.3% -4.5% -7.2%

5 beta 60m -1.1% 18.2% -3.9% -4.1% -3.4% -7.3% -8.1% -6.2%

6 rmax5 21d 3.8% 17.5% -3.9% -2.2% -3.6% -7.3% -4.4% -6.7%

7 turnover 126d 0.4% 13.7% -3.9% -2.2% -3.9% -7.2% -4.3% -7.2%
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8 div12m me 0.9% 14.3% -3.9% -1.7% -3.1% -7.2% -3.3% -5.8%

9 zero trades 126d 0.8% 12.3% -3.8% -2.2% -3.8% -7.1% -4.3% -7.2%

10 rmax1 21d 3.3% 15.9% -3.5% -1.9% -3.3% -6.6% -3.8% -6.2%

11 qmj safety -0.5% 15.6% -3.5% -1.7% -1.2% -6.6% -3.4% -2.2%

12 betabab 1260d -0.8% 19.3% -3.4% -4.2% -3.9% -6.3% -8.4% -7.3%

13 eqnpo me 5.0% 14.1% -3.3% -1.3% -2.1% -6.1% -2.7% -3.9%

14 eqnpo 12m 2.2% 12.8% -3.2% -1.2% -2.2% -5.9% -2.5% -4.0%

15 o score 1.9% 8.2% -3.1% -0.3% 0.3% -5.8% -0.6% 0.5%

16 eqpo me 3.9% 14.6% -3.0% -1.4% -1.9% -5.7% -2.7% -3.5%

17 betadown 252d -1.1% 17.4% -3.0% -3.2% -3.3% -5.6% -6.3% -6.2%

18 ni be 2.6% 9.2% -2.6% -0.4% -0.7% -5.0% -0.8% -1.2%

19 ebit sale 0.4% 10.2% -2.5% -0.8% -1.0% -4.7% -1.7% -1.9%

20 chcsho 12m 3.6% 7.7% -2.3% -0.6% -1.2% -4.4% -1.2% -2.3%

21 prc highprc 252d 0.9% 18.2% -2.3% -1.2% -2.3% -4.2% -2.4% -4.3%

22 ni me 4.5% 13.5% -2.2% -0.8% -1.5% -4.2% -1.6% -2.9%

23 eqnetis at 5.5% 12.0% -2.2% -0.6% -1.0% -4.2% -1.2% -1.9%

24 niq be 4.0% 9.4% -2.2% -0.3% -0.5% -4.1% -0.6% -1.0%

25 ebit bev 3.7% 8.3% -2.1% -0.3% -0.0% -4.0% -0.6% -0.0%

26 qmj 3.5% 7.1% -2.1% -0.8% -0.5% -3.9% -1.6% -1.0%

27 ocfq saleq std 1.4% 8.9% -2.1% -1.0% -1.4% -3.8% -2.0% -2.7%

28 dolvol var 126d 0.5% 8.1% -2.0% 0.3% -1.3% -3.7% 0.6% -2.3%

29 niq at 3.0% 9.7% -1.8% -0.6% -0.2% -3.4% -1.3% -0.3%

30 ope be 3.8% 8.8% -1.8% -0.3% -0.5% -3.4% -0.6% -1.0%

31 turnover var 126d 0.4% 7.9% -1.8% 0.4% -1.1% -3.4% 0.7% -2.1%

32 mispricing perf 6.1% 13.8% -1.7% -0.5% 0.0% -3.1% -1.1% 0.0%

33 mispricing mgmt 5.2% 8.3% -1.6% -0.5% -1.0% -2.9% -1.0% -1.8%

34 fcf me 5.1% 8.5% -1.3% -0.4% -0.8% -2.5% -0.8% -1.5%

35 qmj prof 4.3% 6.9% -1.3% -0.3% 0.1% -2.4% -0.6% 0.2%

36 ocf at 5.1% 7.6% -1.1% -0.5% 0.2% -2.0% -0.9% 0.4%

37 f score 3.0% 7.5% -1.0% -0.5% -0.7% -1.8% -0.9% -1.2%

38 op at 3.7% 7.2% -0.9% -0.3% 0.4% -1.6% -0.5% 0.8%

39 z score 0.8% 11.0% -0.8% 0.2% 0.8% -1.6% 0.4% 1.5%

40 sale gr3 0.9% 8.2% -0.7% -0.5% -1.1% -1.3% -1.0% -2.0%

41 op atl1 2.7% 7.7% -0.7% -0.2% 0.6% -1.3% -0.4% 1.2%

42 emp gr1 1.4% 8.7% -0.6% -0.5% -0.8% -1.1% -0.9% -1.5%

43 be gr1a 1.5% 9.6% -0.6% -0.3% -0.9% -1.1% -0.6% -1.6%

44 seas 2 5na 3.3% 10.9% -0.5% -0.8% -1.2% -1.0% -1.6% -2.2%

45 sale gr1 1.6% 9.8% -0.5% -0.3% -0.7% -0.9% -0.7% -1.4%

46 seas 6 10na 3.4% 7.3% -0.5% -0.9% -1.3% -0.9% -1.8% -2.4%

47 ppeinv gr1a 4.3% 7.4% -0.4% -0.1% -0.4% -0.8% -0.2% -0.7%

48 capx gr3 2.3% 6.9% -0.4% -0.3% -0.6% -0.8% -0.6% -1.2%

49 rskew 21d 2.2% 4.5% -0.4% -0.2% -0.3% -0.8% -0.4% -0.5%

50 seas 16 20na 0.6% 5.6% -0.4% -0.3% -0.4% -0.7% -0.6% -0.7%

51 gp at 3.8% 7.9% -0.4% -0.2% 0.5% -0.7% -0.3% 0.9%

52 iskew ff3 21d 0.3% 3.4% -0.4% -0.2% -0.1% -0.7% -0.3% -0.2%
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53 noa at 5.2% 5.4% -0.4% 0.2% 0.5% -0.7% 0.4% 0.9%

54 eq dur 3.4% 11.8% -0.4% -0.4% -0.9% -0.7% -0.8% -1.6%

55 capx gr2 3.4% 6.7% -0.3% -0.2% -0.5% -0.7% -0.4% -1.0%

56 ebitda mev 5.7% 13.2% -0.3% -0.3% -0.6% -0.6% -0.6% -1.1%

57 netdebt me 1.1% 10.9% -0.3% 0.6% 1.4% -0.5% 1.1% 2.6%

58 ret 12 1 7.2% 16.4% -0.2% -0.2% -0.4% -0.4% -0.3% -0.7%

59 netis at 4.9% 9.9% -0.2% -0.1% -0.2% -0.4% -0.3% -0.4%

60 inv gr1 4.5% 6.3% -0.2% -0.2% -0.4% -0.4% -0.4% -0.8%

61 qmj growth 3.0% 5.5% -0.2% 0.0% -0.3% -0.4% 0.1% -0.6%

62 cop atl1 5.4% 6.1% -0.2% 0.1% 0.8% -0.3% 0.1% 1.5%

63 col gr1a -0.3% 8.2% -0.1% -0.3% -0.7% -0.3% -0.7% -1.3%

64 resff3 12 1 6.9% 7.6% -0.1% -0.3% -0.4% -0.2% -0.5% -0.7%

65 resff3 6 1 3.6% 7.1% -0.1% -0.2% -0.4% -0.2% -0.4% -0.8%

66 ret 12 7 6.6% 13.6% -0.1% -0.0% -0.0% -0.2% -0.1% -0.0%

67 ret 9 1 5.5% 16.1% -0.1% -0.1% -0.3% -0.2% -0.2% -0.6%

68 lti gr1a 0.3% 3.6% -0.1% -0.0% 0.1% -0.2% -0.1% 0.1%

69 coa gr1a 2.6% 7.7% -0.1% -0.4% -0.5% -0.1% -0.8% -1.0%

70 ocf me 5.7% 12.2% -0.1% -0.3% -0.6% -0.1% -0.5% -1.2%

71 ret 1 0 6.1% 12.2% -0.0% -0.0% 0.2% -0.1% -0.0% 0.4%

72 noa gr1a 5.5% 7.0% -0.0% -0.2% -0.3% -0.1% -0.3% -0.6%

73 seas 1 1an 4.2% 10.1% -0.0% -0.0% 0.0% -0.0% -0.0% 0.1%

74 inv gr1a 3.7% 5.8% -0.0% -0.2% -0.3% -0.0% -0.4% -0.6%

75 ret 6 1 3.0% 15.8% -0.0% -0.0% -0.3% -0.0% -0.1% -0.5%

76 lnoa gr1a 4.0% 6.0% -0.0% 0.1% -0.4% -0.0% 0.1% -0.7%

77 cowc gr1a 3.9% 4.7% -0.0% -0.2% 0.1% -0.0% -0.5% 0.1%

78 seas 2 5an 3.8% 8.3% 0.0% 0.2% 0.3% 0.1% 0.4% 0.6%

79 seas 16 20an 2.8% 5.4% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3%

80 niq su 2.9% 5.2% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1%

81 seas 6 10an 4.5% 6.5% 0.0% 0.2% 0.4% 0.1% 0.4% 0.7%

82 at gr1 2.7% 9.2% 0.1% -0.3% -0.7% 0.1% -0.6% -1.3%

83 sale bev 4.2% 6.9% 0.1% 0.3% 0.8% 0.1% 0.6% 1.5%

84 seas 11 15an 2.7% 5.1% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2%

85 ret 3 1 1.3% 13.4% 0.1% 0.0% -0.2% 0.1% 0.1% -0.3%

86 tax gr1a 1.4% 6.4% 0.1% 0.1% 0.4% 0.2% 0.3% 0.7%

87 nncoa gr1a 4.6% 5.8% 0.1% 0.0% -0.3% 0.2% 0.0% -0.6%

88 ocf at chg1 2.3% 3.7% 0.1% 0.1% 0.0% 0.3% 0.1% 0.0%

89 dsale dinv 3.3% 3.9% 0.2% 0.0% 0.1% 0.3% 0.0% 0.1%

90 coskew 21d 0.4% 5.6% 0.2% -0.1% -0.1% 0.3% -0.2% -0.1%

91 opex at 3.0% 7.3% 0.2% 0.1% 0.5% 0.4% 0.1% 0.9%

92 saleq su 1.2% 6.2% 0.3% 0.0% 0.1% 0.5% 0.1% 0.2%

93 pi nix 1.1% 4.6% 0.3% -0.1% 0.1% 0.5% -0.3% 0.1%

94 rmax5 rvol 21d 5.1% 7.4% 0.3% 0.1% 0.1% 0.6% 0.2% 0.2%

95 ncoa gr1a 4.5% 5.6% 0.4% 0.1% -0.2% 0.8% 0.3% -0.3%

96 capex abn 2.5% 4.2% 0.4% 0.2% 0.1% 0.8% 0.4% 0.3%

97 nfna gr1a 3.0% 3.5% 0.5% 0.2% 0.2% 0.8% 0.3% 0.4%
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98 taccruals at 2.2% 5.8% 0.5% 0.1% 0.4% 0.9% 0.2% 0.8%

99 seas 1 1na 3.6% 16.1% 0.5% 0.2% 0.0% 0.9% 0.4% 0.1%

100 fnl gr1a 2.9% 3.5% 0.6% 0.2% 0.2% 1.0% 0.4% 0.3%

101 debt gr3 2.5% 4.0% 0.6% 0.2% -0.1% 1.0% 0.4% -0.1%

102 be me 2.5% 11.9% 0.7% -0.2% -0.3% 1.3% -0.4% -0.5%

103 taccruals ni 1.9% 4.8% 0.8% 0.1% 0.2% 1.4% 0.2% 0.5%

104 debt me 0.3% 12.4% 0.8% -0.1% -1.0% 1.4% -0.2% -1.8%

105 bev mev 1.7% 12.6% 0.9% 0.1% -0.6% 1.7% 0.1% -1.0%

106 dbnetis at 2.2% 4.1% 1.1% 0.2% 0.1% 2.0% 0.5% 0.2%

107 corr 1260d 0.3% 10.9% 1.1% -3.0% -0.8% 2.1% -5.8% -1.6%

108 oaccruals at 4.8% 6.1% 1.1% 0.2% 0.8% 2.1% 0.4% 1.4%

109 sale me 4.4% 12.4% 1.2% 0.2% -0.1% 2.2% 0.5% -0.2%

110 rd me 4.8% 10.0% 1.2% 0.9% 1.0% 2.3% 1.9% 1.9%

111 ret 60 12 2.5% 11.5% 1.4% 0.2% -0.1% 2.6% 0.4% -0.2%

112 dolvol 126d 1.7% 9.5% 1.5% -1.1% -1.2% 2.8% -2.2% -2.2%

113 oaccruals ni 4.2% 4.9% 1.5% 0.3% 0.6% 2.8% 0.6% 1.1%

114 kz index -1.0% 6.8% 2.0% -0.2% 0.2% 3.8% -0.3% 0.4%

115 ami 126d 1.9% 11.1% 2.6% -0.5% 0.5% 4.9% -0.9% 1.0%

116 age -1.0% 10.5% 2.9% 1.2% 2.2% 5.5% 2.3% 4.1%

117 market equity 2.4% 12.6% 3.6% -0.0% 1.2% 6.8% -0.0% 2.2%

118 bidaskhl 21d -0.6% 15.1% 3.8% 1.9% 3.3% 7.2% 3.7% 6.2%

119 prc 1.7% 15.0% 4.0% 1.0% 1.6% 7.6% 1.9% 3.1%

Note: The table shows the required and realized return of the factors from Table AI. “Ret” is the

annualized average realized return of the factor and “σ” is the annualized volatility of the realized return.

The remaining columns show the annualized required factor return for the six required return proxies.

The name before the slash indicates whether the subjective expected return proxy is from Value Line

(VL) or I/B/E/S (IB). The name after the slash shows the subjective risk proxy which is either the safety

rank from Value Line (sV L,it ), the market beta estimate from Value Line (βit), or the SV IXi
t measure from

Martin and Wagner (2019). A bold number indicates that the p-value from (1.33) is below 5% meaning

that realized return is significantly different from the required return i.e. that the “risk hypothesis” is

rejected. The factors are sorted according to the required return in the “VL/sV L,it column.

8.8 Machine Learning Predictions via XGBoost

In this section, I describe the approach I use to make machine learning predictions for

the ML model from Section 6. I use the XGBoost model from Chen and Guestrin (2016),

with the 119 characteristics from Table AI as inputs, and the outcome variable is a stock’s

realized excess return over the next month.

The first model is based on training data from 1952 to 1971. However, XGBoost

requires me to decide on several “hyper-parameters” such as the number of decision trees

to use in the ensemble and the maximum tree depth. To choose these hyper-parameters,

I use the last 10 years of the training period as the validation period. For a set of hyper-

parameters, I train the model on the data prior to the validation period and record its
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Figure A3. The Subjective Risk Premium is Countercyclical

Note: The top-left panel shows the annualized required market return where required returns are esti-
mated from (1.21) using the safety rank and subjective expected return from Value Line. The top-right
panel shows an index of the relative risk aversion from Bekaert et al. (2022), the lower-left panel shows the
one-year expected market return from the Livingston survey of professional forecasters, and the lower-
right panel shows the one-year expected market return of retail investors from Nagel and Xu (2022a).

mean squared error (MSE) on the validation data. I repeat this for 20 sets of hyper-

parameters shown in Table AIII and choose the set of hyper-parameters with the lowest

MSE. Using these hyper-parameters, I then re-train the model on the full training data

giving me the first model, f̂1(xit), where xit ∈ R119×1 is the vector of stock characteristics.

I then use f̂1(xit) to predict returns from 1972-1981.

I update the model each decade by expanding the training, validation, and test period

by 10 years. For example, the second model is based on 1952-1981 as the training period,

1972-1981 as the validation period, and 1982-1991 as the test period. I fit five different

models that predict returns out-of-sample from 1972 to 2021.

8.9 Bootstrap p-Values for Comparing Asset Pricing Models

This section shows how I compute the “bootstrap p-value” used for the pairwise model

comparison test in Section 6. My approach is inspired by chapter 11 in Efron and Hastie

(2016). I first describe the bootstrap sampling procedure and then how I compute the

confidence distribution based on these bootstrap estimates.
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Table AIII. XGBoost Hyper-parameters

No. Features Tree depth Learning rate Sample size Penalty

1 103 3 0.017 0.20 0.05
2 105 3 0.011 0.91 2.33
3 26 1 0.222 0.99 0.02
4 12 1 0.046 0.27 52.44
5 16 2 0.012 0.93 48.81
6 49 1 0.153 0.38 1.55
7 28 2 0.293 0.65 72.28
8 18 2 0.059 0.87 33.11
9 83 1 0.103 0.95 77.43
10 32 3 0.224 0.40 9.85
11 88 2 0.110 0.36 0.21
12 95 2 0.024 0.71 33.64
13 103 2 0.012 0.57 2.49
14 80 3 0.067 0.44 0.19
15 40 2 0.061 0.64 2.31
16 118 2 0.202 0.64 0.01
17 7 2 0.011 0.54 0.02
18 81 1 0.108 0.72 0.08
19 94 2 0.292 0.75 2.27
20 66 2 0.026 0.71 0.06

Note: The table shows the hyper-parameters considered for the XGBoost model used in Section 6. “No.
Features” is the number of randomly chosen features considered for each decision tree, “Tree depth”
is the maximum depth of each decision tree, “Learning rate” is the weight each new tree gets in the
ensemble, “Sample size” is the fraction of the observations randomly chosen to train each decision tree
on, and “Penalty” is an L2 (ridge) penalty. I get the hyper-parameter sets by specifying a tolerable
range for each hyper-parameter and then use the grid max entropy function from the dials package
(https://dials.tidymodels.org/) to get 20 sets that aim to cover the associated parameter space.
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Figure A4. Riskier stocks have higher expected long-term earnings growth

Note: The figure shows the expected long-term growth (LTG) in earnings per share (EPS) for portfolios
sorted on subjective risk. Each month, I sort stocks into ten portfolio based on their subjective risk,
compute the average LTG within each portfolio, and average these numbers over time. In the left panel,
LTG is the median consensus long-term growth forecast from sell-side analysts available from I/B/E/S,
defined as the expected annual increase in EPS over the company’s next full business cycle. In the right
panel, LTG is a forecast of the annualized growth in EPS over the next three-to-five years from Value
Line.

As in Section 5, I need to account for the high persistence of required returns. In

addition, I also need to account for the strong correlation of realized and required re-

turns across assets. Therefore, when realized and required returns overlap, I use a moving

block bootstrap procedure with data from n = 30 consecutive months if the subjective

expected return proxy is from Value Line and n = 12 if it is from I/B/E/S. In the

non-overlapping period, I only have monthly return data, which generally have a low au-

tocorrelation but substantial cross-sectional correlation. Therefore, I sample data from

individual months rather than temporal blocks. Let T1 and T2 be the number of months

in the non-overlapping and overlapping period, respectively. To compute a full bootstrap

sample, I start by randomly choosing data from T1 months from the non-overlapping pe-

riod with replacements, then I randomly choose dT2/ne blocks from the non-overlapping

period but delete the last dT2/nen− T2 months (to ensure that the sample length is T2);

finally, I combine these two sub-samples. For each bootstrap sample, b, I compute R2
b and

R̃2
b for each model and each required return proxy. I repeat this procedure B = 2, 500

times. Importantly, sample data from a specific month includes portfolio returns, pric-

ing factor returns, consumption data, subjective risk, and subjective return expectations.

This procedure ensures that I account for all the sampling variability related to the esti-

mation.

Next, I describe the confidence distribution. I focus on the realized pricing ability,
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but the procedure is identical for the required pricing ability. Let d̂ = R2
m1
−R2

m2
be the

difference in realized pricing ability of model m1 and m2. Having a confidence distribution

of d̂, I am interested in h(0). A low value shows support for m1 while a high value shows

support for m2. Let d̂b be the pricing difference in bootstrap sample b. We can create a

simple bootstrap confidence distribution of d̂m1,m2 using the percentile method (Efron and

Hastie, 2016). Here, the confidence distribution is simply the proportion of the bootstrap

estimates that are below a specific value x:

hperc(x) =
#{d̂b ≤ x}

B
. (1.56)

Here, hperc(0) is simply the proportion of bootstrap estimates below zero. It is usefull to

have the relation in (1.56) in mind when interpreting the confidence distribution. How-

ever, the standard percentile method can be biased, so I instead use the bias-corrected

percentile method (Efron and Hastie, 2016). Let c = hperc(d̂) be the proportion of boot-

strap estimates smaller than or equal to the data estimate. If c 6= 0.5, the bootstrap

distribution is median biased. Next, let the bias correction value be z = Φ−1(c), where

Φ−1(x) is the inverse of the standard normal distribution. The bias-corrected inverse

distribution is

h−1
BC(α) = h−1

perc

(
Φ
[
2z + Φ−1(α)

])
, (1.57)

where h−1
perc is the inverse of (1.56) and Φ(x) is the standard normal distribution. The

standard and bias-corrected percentile function coincide if and only if the bootstrap dis-

tribution is median unbiased, z = 0: h−1
BC(α) = h−1 (Φ [Φ−1(α)]) = h−1(α). I invert (1.57)

to obtain my final confidence distribution, hBC(x). The bootstrap p-value is the value of

this distribution at x = 0.
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8.10 Robustness
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Figure A5. The Subjective and Realized Risk-Return Tradeoff—Value
Weights

Note: This figure is identical to Figure 1 except that stocks are aggregated into portfolio using value-
weights instead of equal weights.
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Table AIV. Subjective Risk and Objective Mispricing—Alternative Proxies

(
ẼV L
t [epsit+4]− epsit+4

)
/pit×100 ẼV L[peit+4]− peit+4

(1) (2) (3) (4) (5) (6)

Constant 1.25 1.69 1.14 −4.10 −4.04 −1.06
(4.91) (5.88) (3.15) (−6.82) (−6.68) (−1.30)

sV L,it 4.83 5.65
(12.45) (5.83)

βit 3.58 5.04
(8.88) (4.82)

SVIXi
t 3.19 1.33

(5.99) (1.03)

Observations 26,345 26,345 5,708 25,844 25,844 5,663
Adjusted R2 0.03 0.02 0.02 0.00 0.00 0.00

Note: The table shows estimates from a regression of forecast error on subjective risk. It supplements
Table V with alternative forecast variables. In columns 1-3 forecast error is defined as the forecast of
earnings per share (EPS) in the fiscal year 4 years from the forecast date minus the subsequent realization
scaled by the price issued at the beginning of the forecast month. In columns 4-6 forecast error is defined
as the forecast of the price-to-earnings ratio in the fiscal year 4 years from the forecast date minus the
subsequent realization. For each firm-fiscal year I only retain the first forecast issued at least 45 days
and at most 180 days after the announcement of the most recent fiscal year’s EPS. All forecast are from
Value Line. The dependent variables are winsorized at the top/bottom 1%. The subjective risk proxies
are scaled to lie between 0 and 1 each month, so the intercept shows the forecast error on the safest
stocks (risk=0), and the slope coefficient shows the forecast error from the riskiest stock (risk=1). The
number in the parenthesis shows the t-statistic based on standard errors clustered by firm and quarter of
the fiscal year-end.
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Chapter 2

Is there a Replication Crisis in

Finance?

with Bryan Kelly and Lasse Heje Pedersen.

Abstract

Several papers argue that financial economics faces a replication crisis because the ma-

jority of studies cannot be replicated or are the result of multiple testing of too many

factors. We develop and estimate a Bayesian model of factor replication, which leads to

different conclusions. The majority of asset pricing factors: (1) can be replicated, (2)

can be clustered into 13 themes, the majority of which are significant parts of the tan-

gency portfolio, (3) work out-of-sample in a new large data set covering 93 countries, and

(4) have evidence that is strengthened (not weakened) by the large number of observed

factors.

Kelly is at Yale School of Management, AQR Capital Management, and NBER. Pedersen is at AQR
Capital Management, Copenhagen Business School, and CEPR. We are grateful for helpful comments
from Nick Barberis, Andrea Frazzini, Cam Harvey (discussant), Antti Ilmanen, Ronen Israel, Andrew
Karolyi, John Liew, Toby Moskowitz, Stefan Nagel, Scott Richardson, Anders Rønn-Nielsen, Neil Shep-
hard (discussant), and seminar and conference participants at AFA 2022, NBER 2021, AQR, Georgetown
Virtual Fintech Seminar, Tisvildeleje Summer Workshop 2020, Yale, and the CFA Institute European
Investment Conference 2020. We thank Tyler Gwinn for excellent research assistance. Jensen and Peder-
sen gratefully acknowledge support from the FRIC Center for Financial Frictions (grant no. DNRF102).
AQR Capital Management is a global investment management firm, which may or may not apply similar
investment techniques or methods of analysis as described herein. The views expressed here are those of
the authors and not necessarily those of AQR.
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Several research fields face replication crises (or credibility crises), including medicine

(Ioannidis, 2005), psychology (Nosek et al., 2012), management (Bettis, 2012), experi-

mental economics (Maniadis et al., 2017), and now also financial economics. Challenges

to the replicability of finance research take two basic forms:

1. No internal validity. Most studies cannot be replicated with the same data (e.g.,

because of coding errors or faulty statistics) or are not robust in the sense that

the main results cannot be replicated using slightly different methodologies and/or

slightly different data.1 E.g., Hou et al. (2020b) state:

“Most anomalies fail to hold up to currently acceptable standards for empirical fi-

nance.”

2. No external validity. Most studies may be robustly replicated, but are spurious

and driven by “p-hacking,” that is, finding significant results by testing multiple

hypotheses without controlling the false discovery rate. Such spurious results are

not expected to replicate in other samples or time periods, in part because the sheer

number of factors is simply too large, and too fast growing, to be believable. E.g.,

Cochrane (2011) asks for a consolidation of the “factor zoo,” and Harvey et al.

(2016b) states:

“most claimed research findings in financial economics are likely false.”2

We examine both of these challenges theoretically and empirically. We conclude that

neither criticism is tenable. The majority of factors do replicate, do survive joint modeling

of all factors, do hold up out-of-sample, are strengthened (not weakened) by the large

number of observed factors, are further strengthened by global evidence, and the number

of factors can be understood as multiple versions of a smaller number of themes.

These conclusions rely on new theory and data: First, we show that factors must be

understood in light of economic theory and we develop a Bayesian model that offers a

very different interpretation of the evidence on factor replication. Second, we put together

a new global data set of 153 factors across 93 countries. To help advance replication in

1Hamermesh (2007) contrasts “pure replication” and “scientific replication.” Pure replication is,
“checking on others’ published papers using their data,” also called “reproduction” by Welch (2019).
Scientific replication uses, “different sample, different population and perhaps similar, but not identical
model.” We focus on scientific replication. We propose a new modeling framework to jointly estimate fac-
tor alphas, we use robust factor construction methods that are applied uniformly to all factors, and we test
both internal and external validity of prior factor research in several dimensions, including out-of-sample
time series replication and international sample replication. In complementary and contemporaneous
work, Chen and Zimmermann (2020a) consider pure replication, attempting to use the same data and
methods as the original papers for a large number of factors. They are able to reproduce nearly 100%
of factors, but Hou et al. (2020b) challenge the scientific replication and Harvey et al. (2016b) challenge
validity due to multiple testing.

2Similarly, Linnainmaa and Roberts (2018) state “the majority of accounting-based return anomalies,
including investment, are most likely an artifact of data snooping.”
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Figure 1. Replication Rates Versus the Literature

Note: This figure summarizes analyses throughout the paper. Refer to Section 3 for estimation details.

finance, we have made this data set easily accessible to researchers via a direct open-source

link to WRDS, including meticulous documentation of the data and the underlying code

base.

Replication results. Figure 1 illustrates our main results and how they relate to the

literature in a sequence of steps. It presents the “replication rate,” that is, the percent

of factors with a statistically significant average excess return. The starting point of

Figure 1—shown as the first bar on the left—is the 35% replication rate reported in the

expansive factor replication study of Hou et al. (2020b).

The second bar in Figure 1 shows a 55.6% baseline replication rate in our main sample

of US factors. It is based on significant OLS t-statistics for average raw factor returns, in

direct comparability to the 35% calculation from Hou et al. (2020b). This difference arises

because our sample is longer, we add 15 factors to our sample that were previously studied

in the literature but not studied by Hou et al. (2020b), and due to minor conservative

factor construction details that we believe robustify factor behavior.3 We discuss this

decomposition further in Section 2, where we detail our factor construction choices and

discuss why we prefer them.

3We use tercile spreads while they use deciles; we use tercile breakpoints from all stocks above the
NYSE 20th percentile (i.e., non-micro-caps), they use straight NYSE breakpoints; we always lag account-
ing data four months, they use a mixture of updating schemes; we exclude IBES factor due to their
relatively short history; we use capped value-weighting they use straight value-weights; We look at re-
turns over a 1 month holding period, they use 1, 6 and 12 months. In appendix 5.4 we detail how each
change affects the replication rate.
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The Hou et al. (2020b) sample includes a number of factors that the original studies

found to be insignificant.4 We exclude these when calculating the replication rate. After

we make this adjustment, the replication rate rises to 61.3%, shown in the third bar in

Figure 1.

Alpha, not raw return. Hou et al. (2020b) analyze and test factors’ raw returns, but

if we wish to learn about “anomalies,” economic theory dictates the use of risk-adjusted

returns. Raw return gives a misleading inference for the factor if it differs from the

alpha: When the raw return is significant, but the alpha is not, it simply means that the

factor is taking risk exposure and the risk premium is significant, which does not indicate

anomalous returns of the factor. Likewise, when the raw return is insignificant, but the

alpha is significant, then the factor’s efficacy is masked by its risk exposure. An example

of this is the low-beta anomaly, where theory predicts that the alpha of a dollar-neutral

low-beta factor is positive, but its raw return is negative or close to zero (Frazzini and

Pedersen, 2014). In this case, the “failure to replicate” of Hou et al. (2020b) is, in fact,

support for the betting-against-beta theory. We analyze alpha to the CAPM, which is the

clearest theoretical benchmark model that is not mechanically linked to other so-called

anomalies in the list of replicated factors. The fourth bar in Figure 1 shows that the

replication rate rises to 82.4% based on tests of factors’ CAPM alpha.

Multiple testing and our Bayesian model. The first four bars in Figure 1 are

based on individual ordinary least squares (OLS) t-statistics for each factor. But Harvey

et al. (2016b) rightly point out that this type of analysis suffers from a multiple testing

(MT) problem. Harvey et al. (2016b) recommend MT adjustments that raise the threshold

for a t-statistic to be considered statistically significant. We report one such MT correction

using a leading method proposed by Benjamini and Yekutieli (2001). Accounting for MT

in this manner, we find that the replication rate drops to 75.6% (the fifth bar of Figure 1).

For comparison, Hou et al. (2020b) consider a similar adjustment and find that their

replication rate drops from 35% with OLS to 18% after MT correction.

However, common frequentist MT corrections can be unnecessarily crude. Our han-

dling of the MT problem is different. We propose a Bayesian framework for the joint

behavior of all the factors, resulting in an MT correction that sacrifices much less power

than its frequentist counterpart (which we demonstrate via simulation).5 To understand

the benefits of our approach, note first that we impose a prior that all alphas are expected

4We identify 34 factors from Hou et al. (2020b) for which the original paper did not find a significant
alpha or did not study factor returns (see appendix Table AIII).

5A large statistics literature (see Gelman et al., 2013, and references therein) explains how Bayesian
estimation naturally combats MT problems and Gelman et al. (2012) conclude that “the problem of
multiple comparisons can disappear entirely when viewed from a hierarchical Bayesian perspective.”
Chinco et al. (2020) use a Bayesian estimation framework similar to ours for a different (but conceptually
related) problem. They infer the distribution of coefficients in a stock return prediction model to calculate
what they dub the “anomaly base rate.”
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to be zero. The role of the Bayesian prior is conceptually similar to that of frequentist

MT corrections—it imposes conservatism on statistical inference and controls the false

discovery rate. Second, our joint factor model allows us to conduct inference for all factor

alphas simultaneously. The joint structure among factors leverages dependence in the

data in order to draw more informative statistical inferences (relative to conducting in-

dependent individual tests). Our zero-alpha prior shrinks alpha estimates of all factors,

thereby leading to fewer discoveries (i.e., a lower replication rate), with similar conser-

vatism as a frequentist MT correction. At the same, however, the model allows us to learn

more about the alpha of any individual factor, borrowing estimation strength across all

factors. The improved precision of alpha estimates for all factors can increase the number

of discoveries. Which effect dominates when we construct our final Bayesian model—the

conservative shrinkage to the prior or the improved precision of alphas—is an empirical

question.

In our sample, we find that the two effects exactly offset, which is why the Bayesian

multiple testing view delivers a replication rate identical to the OLS-based rate. Specif-

ically, our estimated replication rate rises to 82.4% (the sixth bar of Figure 1) using our

Bayesian approach to the MT problem.6 The intuition behind this surprising result is

simply that having many factors (a “factor zoo”) can be a strength rather than a weak-

ness when assessing the replicability of factor research. It is obvious that our posterior is

tighter when a factor has performed better and has a longer time series. But the poste-

rior is further tightened if similar factors have also performed well, and if additional data

shows that these factors have performed well in many other countries.7

Benefits of our model beyond the replication rate. One of the key benefits of

Bayesian statistics is that one recovers not just a point estimate but the entire posterior

distribution of parameters. The posterior allows us to make any possible probability

calculation about parameters. For example, in addition to the replication rate, we also

calculate the posterior probability of false discoveries (false discovery rate, FDR) and the

posterior expected fraction of true factors. Moreover, we calculate Bayesian confidence

intervals (also called credibility intervals) for each of these estimates. We find that our

82.4% replication rate has a tight posterior standard error of 2.8%. The posterior Bayesian

FDR is only 0.1% with a 95% confidence interval of [0.0%, 1.0%], demonstrating the small

risk of false discoveries. The expected fraction of true factors is 94.0% with a posterior

6Our Bayesian approach leads to an even larger increase in the replication rate when using pure value-
weighted returns (see Figure A1 of the appendix) and when considering global evidence outside the US
(as we show later, in Figure 6).

7Taking this intuition further, we can glean additional information from studying whether factors work
in other asset classes, as has been done for value and momentum (Asness et al., 2013), betting against
beta (Frazzini and Pedersen, 2014), time series momentum (Moskowitz et al., 2012), and carry (Koijen
et al., 2018).
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standard error of 1.3%.

Global replication. Having found a high degree of internal validity of prior research,

we next consider external validity across countries and over time. Regarding the former,

we investigate how our conclusions are affected when we extend the data to include all

factors in a large global panel of 93 countries. The last bar in Figure 1, shows that, based

on the global sample, the final replication rate is 82.4%. This estimate is based on the

Bayesian model extended to incorporate the joint behavior of international data. Because

it accounts for the global correlation structure among factors, the model recognizes that

international evidence is not independent out-of-sample evidence, and uses only the in-

cremental global evidence to update the overall replicability assessment. And it continues

to account for multiple testing. The global result reflects that factor performance in the

US replicates well in an extensive cross section of countries. Serving as our final estimate,

the global factor replication rate more than doubles that of Hou et al. (2020b) by ground-

ing our tests in economic theory and modern Bayesian statistics. We conclude from the

global analysis that factor research demonstrates external validity in the cross section of

countries.

Post-publication performance. McLean and Pontiff (2016) find that US factor

returns “are 26% lower out-of-sample and 58% lower post-publication.”8 Our Bayesian

framework shows that, given a prior belief of zero alpha but an OLS alpha (α̂) that

is positive, then our posterior belief about alpha lies somewhere between zero and α̂.

Hence, a positive but attenuated post-publication alpha is the expected outcome based

on Bayesian learning, rather than a sign of non-reproducibility. Further, when comparing

factors cross-sectionally, the prediction of the Bayesian framework is that higher pre-

publication alphas, if real, should be associated with higher post-publication alphas on

average. And that is what we find. We present new and significant cross-sectional evidence

that factors with higher in-sample alpha generally have higher out-of-sample alpha. The

attenuation in the data is somewhat stronger than predicted by our Bayesian model. We

conclude that factor research demonstrates external validity in the time series, but there

appears to be some decay of the strongest factors that could be due to arbitrage or data

mining.9

Publication bias. We also address the issue that factors with strong in-sample

performance are more likely to be published while poorly performing factors are more

8Extending the evidence to global stock markets, Jacobs and Muller (2020) find that “the United
States is the only country with a reliable post-publication decline in long-short returns.” Chen and
Zimmermann (2020b) use Bayesian methods to estimate bias-corrected post-publication performance
and find that average returns drop by only 12% after publication in US data.

9Data prior to the sample used in original studies also constitutes out-of-sample evidence (Linnainmaa
and Roberts, 2018; Ilmanen et al., 2021). Our external validity conclusions are the same when we also
include pre-original-study out-of-sample evidence.
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likely to be unobserved in the literature. Publication bias can influence our full-sample

Bayesian evidence through the empirical Bayes estimation of prior hyperparameters. To

account for this bias, we show how to pick a prior distribution that is unaffected by

publication bias by using only out-of-sample data or estimates from Harvey et al. (2016b).

Using such priors, the full-sample alphas are shrunk more heavily toward zero. The

result is a slight drop in US the replication rate to 81.5%. If we add an extra degree of

conservatism to the prior, the replication rate drops to 79.8%. Further, our out-of-sample

evidence across time and across countries is not subject to publication bias.

Multidimensional challenge: A Darwinian view of the factor zoo. Harvey

et al. (2016b) challenge the sheer number of factors and Cochrane (2011) refers to as

“the multidimensional challenge.” We argue that the factor research universe should

not be viewed as hundreds of distinct factors. Instead, factors cluster into a relatively

small number of highly correlated themes, and this property features prominently in our

Bayesian modeling approach. We propose a factor taxonomy that algorithmically classifies

factors into 13 themes possessing a high degree of within-theme return correlation and

economic concept similarity, and low across-theme correlation. The emergence of themes,

in which factors are minor variations on a related idea, is intuitive. For example, each

value factor is defined by a specific valuation ratio, but there are many plausible ratios.

Considering their variations is not spurious alpha-hacking, particularly when the “correct”

value signal construction is debatable.

We estimate a replication rate of greater than 50% in 11 of the 13 themes (based

on the Bayesian model including MT adjustment), the exceptions being “low leverage,”

and “size” factor themes. We also analyze which themes matter when simultaneously

controlling for all other themes. To do so, we estimate the ex post tangency portfolio

of 13 theme-representative portfolios. We find that 10 of the 13 themes enter into the

tangency portfolio with significantly positive weights, where the three displaced themes

are “profitability,” “investment,” and “size.”

Why, the profession asks, have we arrived at a “factor zoo”?10 The answer, evidently,

is because the risk-return tradeoff is complex and difficult to measure. The complexity

manifests in our inability to isolate a single, silver bullet characteristic that pins down

the risk-return tradeoff. Classifying factors into themes, we trace the economic culprits

to roughly a dozen concepts. This is already a multidimensional challenge, but it is

compounded by the fact that within a theme there are many detailed choices for how to

configure the economic concept, which results in highly correlated within-theme factors.

10See Bryzgalova et al. (2019), Chordia et al. (2020), Kelly et al. (2019), Kozak et al. (2020), Green
et al. (2017), and Feng et al. (2020) for other perspectives on high-dimensional asset pricing problems,
and Chen (2020) for an argument why p-hacking cannot explain the existence of so many significant
factors.
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Together, the themes (and the factors in them) each make slightly different contributions

to our collective understanding of markets. A more positive take on the factor zoo is not

as a collective exercise in data mining and false discovery; instead, it is a natural outcome

of a decentralized effort in which researchers make contributions that are correlated with,

but incrementally improve on, the shared body of knowledge.

Economic implications. Our findings have broad implications for finance researchers

and practitioners. We confirm that the body of finance research contains a multitude of

replicable information about the drivers of expected returns. Further, we show that in-

vestors would have profited from factors deemed significant by our Bayesian method, but

deemed insignificant by the frequentist MT method proposed by Harvey et al. (2016b).

Indeed, Figure 2 plots the returns of the subset of factors discovered by our method but

discarded by the frequentist method. These factors produce an annualized information

ratio (IR) of 0.93 in the US and 1.10 globally (ex. US) over the full sample, with t-statistics

above five. If we restrict analysis to the sample after that of Harvey et al. (2016b), the

performance differential remains large and significant. These findings show strong exter-

nal validity (post original publications, post Harvey et al. (2016b), different countries)

and significant economic benefits of exploiting the joint information in all factor returns

rather than simply applying a high cutoff for t-statistics.11 We also show how the optimal

risk-return profile has improved over time as factors have been discovered. In other words,

the Sharpe ratio of the tangency portfolio has meaningfully increased over time as truly

novel drivers of returns have been discovered. These findings can help inform asset pricing

theory.

1 A Bayesian Model of Factor Replication

This section presents our Bayesian model for assessing factor replicability. We first draw

out some basic implications of the Bayesian framework for interpreting evidence on in-

dividual factor alphas, then present a hierarchical structure for simultaneously modeling

factors in a variety themes and across many countries.

1.1 Learning About Alpha: The Bayes Case

Posterior Alpha

We begin by considering an excess return factor ft. A study of “anomalous” factor returns

requires a risk benchmark, without which we cannot separate distinctive factor behavior

from run of the mill risk compensation. We assume a CAPM benchmark due to its history

11The out-of-sample performance across all significant factors under empirical Bayes is also highly
significant as shown in Appendix Figure A2.
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Figure 2. Out-of-sample performance of marginally significant factors

Note: The figure shows the cumulative CAPM alpha of an average of factors significant under our
empirical Bayes framework, but not with the Benjamini-Yekutieli adjustment suggested by Harvey et al.
(2016b). The significance cutoffs are re-estimated each year with the available data. Factors are eligible
for inclusion after the sample period in the original paper, so all returns are out-of-sample. The table
shows the information ratio (alpha divided by residual volatility) for the full sample (1990-2020) and
the post-Harvey et al. (2016b) sample (2013-2020) with t-statistics in parentheses. The dashed line is at
December 2012.

as a factor research benchmark for decades, and because it is not mechanically related to

any of the factors that we attempt to replicate (in contrast to, say, the model of Fama

and French, 1993b, which by construction explains size and value factors). A factor’s net

performance versus the excess market factor (rmt ) is its α:

ft = α + βrmt + εt. (2.1)

Our Bayesian prior is that the alpha is normally distributed with mean zero and variance

τ 2, or α ∼ N(0, τ 2). The mean of zero implies that CAPM holds on average, and τ

governs potential deviations from CAPM. Intuitively, the higher the confidence in the

prior, the lower is τ . The error term, εt ∼ N(0, σ2), has volatility σ, is independent and

identically distributed over time, and σ and β are observable.12

The risk-adjusted return, α, is estimated as the average market-adjusted factor return

from T periods of data:

α̂ =
1

T

∑
t

(ft − βrmt ) = α +
1

T

∑
t

εt. (2.2)

This observed ordinary least squares (OLS) estimate α̂ is distributed N(α, σ2/T ) given

12Here we seek to derive some simple expressions that illustrate the economic implications of Bayesian
logic. In the empirical implementation, we use slightly richer model, as discussed further below. The
empirical implementation normalizes factors so that σ is given at 10% for all factors, while β must be
estimated, but this does not affect the economic points that we make in this section.
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the true alpha, α. From Bayes’ rule, we can compute the posterior distribution of the

true alpha given the data evidence and prior. The posterior exhaustively describes the

Bayesian’s beliefs about alpha at a future time t > T given the past experience, including

the posterior expected factor performance,

E(α|α̂) = E

(
ft − βrmt

∣∣∣∣∣α̂
)
. (2.3)

We derive the posterior alpha distribution via Bayes’ rule (the derivation, which is stan-

dard, is shown in Appendix 5). The posterior alpha is normal with mean

E(α|α̂) = κα̂ (2.4)

where κ is a shrinkage factor given by

κ =
τ 2

τ 2 + σ2/T
=

1

1 + σ2

τ2T

∈ (0, 1) (2.5)

and the posterior variance is

Var(α|α̂) = κ
σ2

T
=

1
1

σ2/T
+ 1

τ2

. (2.6)

The first insight from this posterior is that a Bayesian predicts future returns will have

smaller alpha (in absolute value) than the OLS estimate α̂, because the posterior mean

(κα̂) must lie between α̂ and the prior mean of zero. Said differently, a large observed

alpha might be due to luck and, given the prior, we expect that at least part of this

performance indeed is luck. The more data we have (higher T ), the less shrinkage there

is (i.e., κ closer to 1). Likewise, the stronger is the prior of zero alpha (i.e., lower τ),

the heavier is the shrinkage. We can think of the prior τ in terms of the number of

time periods of evidence that it corresponds to. That is, the posterior mean, E(α|α̂),

corresponds to first observing σ2/τ 2 time periods with an average alpha of zero, followed

by T time periods with a average alpha of α̂.

When evaluating out-of-sample evidence, a positive, but lower, alpha is sometimes

interpreted as a sign of replication failure. But this is the expected outcome from the

Bayesian perspective (i.e., based on the latest posterior), and can be fully consistent with

a high degree of replicability. In fact, we show later that the comparatively low post-

publication factor performance documented by McLean and Pontiff (2016) turns out to

be consistent with the posterior a Bayesian would have formed given published results.

Thus, post-publication results have tended to confirm the Bayesian’s beliefs and as a
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result the Bayesian posterior alpha estimate has been extraordinarily stable over time

(see Section 3.2).

Alpha-hacking

Because out-of-sample alpha attenuation is not generally a sign of replication failure, we

may want a more direct probe for non-replicability. We can build such a test into our

Bayesian framework by embedding scope for “alpha-hacking,” or selectively reporting or

manipulating data to artificially make the alpha seem larger. We represent this idea using

the following distribution of factor returns in the in-sample time period t = 1, . . . , T :

ft = α + βrmt + ε̃t + u︸ ︷︷ ︸
εt

. (2.7)

Here, ε̃t ∼ N(0, σ2) captures usual return shocks and u ∼ N(ε̄, σ2
u) represents return

inflation due to alpha-hacking. The total in-sample return shock εt is normally distributed,

N(ε̄, σ̄2), where ε̄ ≥ 0 is the alpha-hacking bias, and the variance σ̄2 = σ2 + σ2
u ≥ σ2 is

elevated due to the artificial noise created by alpha-hacking.13 Naturally, the false benefits

of alpha-hacking disappear in out-of-sample data, or in other words εt ∼ N(0, σ2) for

t > T . The Bayesian accounts for alpha-hacking as follows:

Proposition 5 (Alpha-hacking) The posterior alpha with alpha-hacking is given by

E(α|α̂) = −κ0 + κhackingα̂ (2.8)

where κhacking = 1

1+ σ̄2

τ2T

≤ κ and κ0 = κhackingε̄ ≥ 0. Further, κhacking → 0 in the limit of

“pure alpha-hacking,” τ → 0 or σ̄ →∞.

The Bayesian posterior alpha accounts for alpha-hacking in two ways. First, the estimated

alpha is shrunk more heavily toward zero since the factor κhacking is now smaller. Second,

the alpha is further discounted by the intercept term κ0 due to the bias in the error terms.

We examine alpha-hacking empirically in Section 3.2 in light of Proposition 5. We

consider a cross-sectional regression of factors’ out-of-sample (e.g., post-publication) al-

phas on their in-sample alphas, looking for the signatures of alpha-hacking in the form of

a negative intercept term or a slope coefficient that is too small. In addition, Section 3.3

shows how to estimate the Bayesian model in a way that is less susceptible to the effects

of alpha hacking and Appendix 5 presents additional theoretical results characterizing

alpha-hacking.

13We note that this elevated variance cannot be detected by looking at the in-sample variance of residual
returns since the alpha-hacking term u does not depend on time t.
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1.2 Hierarchical Bayesian Model

Shared Alphas: The Case of Complete Pooling

We now embed a critical aspect of factor research into our Bayesian framework: Factors

are often correlated and conceptually related to each other. For concreteness, we begin

with a setting in which the researcher has access to “domestic” evidence in (2.1) as well as

“global” evidence from an international factor, f gt , with known exposure βg to the global

market index rgt :

f gt = α + βgrgt + εgt . (2.9)

Here, we assume that the true alpha for this global factor is the same as the domestic

alpha. In other words, we have complete “pooling” of information about alpha across the

two samples. As an alternative interpretation, the researcher could have access to two

related factors, say two different value factors in the same country, and assume that they

have the same alpha because they capture the same investment principle.

The global shock, εgt , is normally distributed N(0, σ2), and εgt and εt are jointly normal

with correlation ρ.14 The estimated alpha based on the global evidence is simply its

market-adjusted return:

α̂g =
1

T

∑
t

(f gt − βgr
g
t ) . (2.10)

To see the power of global evidence (or, more generally, the power of observing re-

lated strategies), we consider the posterior when observing both the domestic and global

evidence.

Proposition 6 (The Power of Shared Evidence) The posterior alpha given the do-

mestic estimate, α̂, and the global estimate, α̂g, is normally distributed with mean

E(α|α̂, α̂g) = κg
(

1

2
α̂ +

1

2
α̂g
)
. (2.11)

The global shrinkage parameter is

κg =
1

1 + σ2

τ2T
1+ρ

2

∈ [κ, 1] (2.12)

which decreases with the correlation ρ, attaining the minimum value, κg = κ, when ρ = 1.

14The framework can be generalized to a situation where the global shocks have a different volatility
and sample length. In this case, the Bayesian posterior puts more weight on the sample with lower
volatility and longer sample.
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The posterior variance is lower when observing both domestic and global evidence:

Var(α|α̂) ≥ Var(α|α̂, α̂g). (2.13)

Naturally, the posterior depends on the average alpha observed domestically and glob-

ally. Furthermore, the combined alpha is shrunk toward the prior of zero. The shrinkage

factor κg is smaller (heavier shrinkage) if the markets are more correlated because the

global evidence provides less new information. With low correlation, the global evidence

adds a lot of independent information, shrinkage is lighter, and the Bayesian becomes

more confident in the data and less reliant on the prior. The proposition shows that, if a

factor has been found to work both domestically and globally, then the Bayesian expects

stronger out-of-sample performance than a factor that has only worked domestically (or

has only been analyzed domestically).

Two important effects are at play here, and both are important for understanding

the empirical evidence presented below: The domestic and global alphas are shrunk both

toward each other and toward zero. For example, suppose that a factor worked domesti-

cally but not globally, say α̂ = 10% > α̂g = 0%. Then the overall evidence points to an

alpha of 1
2
α̂+ 1

2
α̂g = 5%, but shrinkage toward the prior results in a lower posterior, say,

2.5%. Hence, the Bayesian expects future factor returns in both regions of 2.5%. That

shared alphas are shrunk together is a key feature of a joint model, and it generally leads

to different conclusions than when factors are evaluated independently. Next we consider

a perhaps more realistic model in which factors are only partially shrunk toward each

other.

Hierarchical Alphas: The Case of Partial Pooling

We now consider several factors, numbered i = 1, ..., N . Factor i has a true alpha given

by

αi = c+ wi. (2.14)

Here, c is the common component of all alphas, which has a prior distribution given by

N(0, τ 2
c ). Likewise, wi is the idiosyncratic alpha component, which has a prior distribution

given by N(0, τ 2
w), independent of c and across i. Said differently, we can imagine that

nature first picks of the overall c from N(0, τ 2
c ) and then picks the factor-specific αi from

N(c, τ 2
w).

This hierarchical model is a realistic compromise between assuming that all factor

alphas are completely different (using equation (2.4) for each alpha separately) and as-

suming that they are all the same (using Proposition 6). Rather than assuming no pooling
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or complete pooling, the hierarchical model allows factors to have a common component

and an idiosyncratic component.

Suppose we observe factor returns of

f it = αi + βirmt + εit (2.15)

where εit are normally distributed with mean 0 and variance σ2 and Cor(εit, ε
j
t) = ρ ≥ 0

for all i, j.15 Computing the observed alpha estimates as above, α̂i = 1
T

∑
t(f

i
t − βirmt ),

we derive the posterior in the following result.16

Proposition 7 (Hierarchical Alphas) The posterior alpha of factor i given the evi-

dence on all factors is normally distributed with mean

E(αi|α̂1, . . . , α̂N) =
1

1 + ρσ2

τ2
c T

+ τ2
w+(1−ρ)σ2/T

τ2
cN

α̂· +
1

1 + (1−ρ)σ2

τ2
wT

(
α̂i − 1

1 + τ2
w+(1−ρ)σ2/T
(τ2
c+ρσ2/T )N

α̂·

)
,

(2.16)

where α̂· = 1
N

∑
j α̂

j is average alpha. When the number of factors N grows, the limit is

lim
N→∞

E(αi|α̂1, . . . , α̂N) =
1

1 + ρσ2

τ2
c T

α̂· +
1

1 + (1−ρ)σ2

τ2
wT

(
α̂i − α̂·) . (2.17)

The posterior variance of factor i’s alpha using the information in all factor returns is

lower than the posterior variance when looking at this factor in isolation:

Var(αi|α̂1, . . . , α̂N) < Var(αi|α̂i). (2.18)

The posterior variance is decreasing in N and, as N →∞, its limit is

Var(αi|α̂1, . . . , α̂N)↘ ρσ2

T

1

1 + ρσ2

τ2
c T

+
(1− ρ)σ2

T

1

1 + (1−ρ)σ2

τ2
wT

. (2.19)

The main insight of this proposition is that having data on many factors is helpful for

estimating the alpha of any of them. Intuitively, the posterior for any individual alpha

depends on all of the other observed alphas because they are all informative about the

15Alternatively, we can write the error terms in a similar way to how we write the alphas in (2.14),
namely εit =

√
ρ ε̃t +

√
1− ρ ε̃it, where ε̃it are idiosyncratic shocks that are independent across factors and

of the common shock ε̃t, with Var(ε̃it) = Var(ε̃t) = σ2. We note that we require (the empirically realistic
case) that ρ ≥ 0 since we cannot have an arbitrarily large number of normal random variables with
equal negative correlation (because the corresponding variance-covariance matrix would not be positive
semi-definite for large enough N).

16The general hierarchical model is used extensively in the statistics literature, see, e.g., Gelman et al.
(2013), but to our knowledge the results in Proposition 7 are not in the literature.
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common alpha component. That is, the other observed alphas tell us whether alpha exists

in general or, said another way, tell us if the CAPM appears to be violated in general.

Further, the factor’s own observed alpha tells us whether this specific factor appears to

be especially good or bad. Using all of the factors jointly reduces posterior variance for

all alphas. In summary, the joint model with hierarchical alphas has the dual benefits

of identifying the common component in alphas and tightening confidence intervals by

sharing information among factors.

To understand the proposition in more detail, consider first the (unrealistic) case in

which all factor returns have independent shocks (ρ = 0). In this case, we essentially

know the overall alpha when we see many uncorrelated factors. Indeed, the average

observed alpha becomes a precise estimator of the overall alpha with more and more

observed factors, α̂· → c. Since we essentially know the overall alpha in this limit, the

first term in (2.17) becomes 1× α̂· when ρ = 0 meaning that we don’t need any shrinkage

here. The second term is the outperformance of factor i above the average alpha, and

this outperformance is shrunk toward our prior of zero. Indeed, the outperformance is

multiplied by a number less than one, and this multiplier naturally decreases in the return

volatility σ and decreases in our conviction in the prior (increases in τw).

The posterior variance is also intuitive in the case of ρ = 0. The posterior variance is

clearly lower compared to only observing the performance of factor i itself:

Var(αi|α̂1, α̂2 . . .) =
σ2

T

1

1 + σ2

τ2
wT

<
σ2

T

1

1 + σ2

(τ2
c+τ2

w)T

= Var(αi|α̂i) (2.20)

based on (2.19) and (2.6). With partial pooling, the posterior variance decreases because

the denominator on the left does not have τ 2
c , reflecting that uncertainty about the general

alpha has been eliminated by observing many factors.

In the realistic case where factor returns are correlated (ρ > 0), we see that both the

average alpha α̂· and factor i’s outperformance α̂i − α̂· are shrunk toward the prior of

zero. This is because we cannot precisely estimate the overall alpha even with an infinite

number of correlated factors—the correlated part never vanishes. Nevertheless, we still

shrink the confidence interval, Var(αi|α̂1, . . . , α̂N) ≤ Var(αi|α̂i), since more information

is always better than less.

Multi-level Hierarchical Model

The model development to this point is simplified to draw out its intuition. Our empirical

implementation is based on a more realistic (and slightly more complex) model that takes

into account that factors naturally belong to different economic themes and to different

regions.
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In our global analysis, we have N different characteristic signals (e.g., book-to-market)

across K regions, for a total of NK factors (e.g., US, developed, and emerging markets

versions of book-to-market). Each of the N signals belongs to a smaller number of J

theme clusters, where one cluster consists of various value factors, another consists of

various momentum factors, and so on. One level of our hierarchical model allows for

partially shared alphas among factors in the same theme cluster. Another level allows for

commonality across regions among factors associated with the same underlying character-

istic, capturing for example the connection between the book-to-market factor in different

markets.

Mathematically, this means that an individual factor i has an alpha of

αi = αo + cj + sn + wi. (2.21)

Concretely, suppose factor i ∈ {1, . . . , NK} is the book-to-market factor in the US region.

Part of its alpha is driven by a component that is common to all factors, αo, which we

dogmatically fix at zero to be conservative. In addition, this factor i belongs to the value

cluster j ∈ {1, . . . , J}, which contributes a cluster-specific alpha cj ∼ N(0, τ 2
c ). Next, since

factor i is based on book-to-market characteristic n ∈ {1, . . . , N}, it has an incremental

signal-specific alpha of sn ∼ N(0, τ 2
s ) that is shared across regions—e.g., it’s the common

behavior among book-to-market factors regardless of geography. Finally, wi ∼ N(0, τ 2
w)

is factor i’s idiosyncratic alpha, namely the incremental alpha that is unique to the US

version of book-to-market.

We write this model in vector form as17

α = αo 1NK +Mc+ Zs+ w (2.22)

where α = (α1, . . . , αNK)′, c = (c1, . . . , cJ)′, s = (s1, . . . , sN)′, w = (w1, . . . , wNK)′, M is

the NK × J matrix of cluster memberships, and Z is the NK ×N matrix indicating the

characteristic that factor i is based on. In particular, Mi,j = 1 if factor i is in cluster j and

Mi,j = 0 otherwise. Likewise, Zi,n = 1 if factor i is based on characteristic n and Zi,n = 0

otherwise. This hierarchical model implies that the prior variance of alpha, denoted Ω,

is18

Ω = Var(α) = MM ′τ 2
c + ZZ ′τ 2

s + INKτ
2
w. (2.23)

17The notation 1N refers to an N × 1 vector of ones and IN is the N ×N identity matrix.
18Stated differently, each diagonal element of Ω is τ2c + τ2s + τ2w. Further, if i 6= k, then the (i, k)th

element of Ω is τ2c + τ2s if i and k are constructed from the same signal in the same cluster in different
regions, it is τ2c if i and k are constructed from different signals in the same cluster, and it is 0 if i and k
are in different clusters.
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In some cases, we analyze this model within a single region, K = 1 (for example, in

our US-only analysis). In this case, there is no difference between signal-specific alphas

and idiosyncratic alphas, so we collapse one level of the model by setting τ s = 0 and

sn = 0 for n ∈ {1, . . . , N}. In any case, the following result shows how to compute

the posterior distribution of all alphas based on the prior uncertainty, Ω, and a general

variance-covariance matrix of return shocks, Σ = Var(ε). This result is at the heart of

our empirical analysis.

Proposition 8 In the multi-level hierarchical model, the posterior of the vector of true

alphas is normally distributed with posterior mean

E(α|α̂) =
(
Ω−1 + TΣ−1

)−1 (
Ω−11NKα0 + TΣ−1α̂

)
(2.24)

and posterior variance

Var(α|α̂) =
(
Ω−1 + TΣ−1

)−1
. (2.25)

As noted above, we set the mean prior alpha to zero (α0 = 0) in our empirical imple-

mentation. This prior is based on economic theory and leads to a conservative shrinkage

toward zero as seen in (2.24). We note that, in the data, the observed alphas are mostly

positive, not centered around zero. However, these positive alphas are related to the way

that factors are signed, namely according to the convention in the original paper, which

almost always leads to a positive factor return in the original sample. However, if we view

this signing convention as somewhat arbitrary, then a symmetry argument implies that

a prior of zero is again natural. Said differently, factor means would be centered around

zero if we changed signs arbitrarily, so our prior is agnostic about these signs.

1.3 Bayesian Multiple Testing and Empirical Bayes Estimation

Frequentist MT corrections embody a principle of conservatism that seeks to limit false

discoveries, controlling the family-wise error rate (FWER) or the false discovery rate

(FDR). Leading frequentist methods achieve this by widening confidence intervals and

raising p-values, but do not alter the underlying point estimate.

Bayesian Multiple Testing

A large statistics literature describes how Bayesian modeling is effective for making reliable

inferences in the face of multiple testing.19 Drawing on this literature, our hierarchical

19See Gelman et al. (2012); Berry and Hochberg (1999); Greenland and Robins (1991); Efron and
Tibshirani (2002), among others. See Gelman (2016) for an intuitive, informal discussion of the topic.
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model is a prime example of how Bayesian methods accomplish their MT correction based

on two key model features.

First is the model prior, which imposes statistical conservatism in analogy to frequen-

tist MT methods. It anchors the researcher’s beliefs to a sensible default (e.g., all alphas

are zero) in case the data are insufficiently informative about the parameters of interest.

Reduction of false discoveries is achieved first by shrinking estimates toward the prior.

When there is no information in the data, the alpha point estimate is the prior mean and

there are no false discoveries. As data evidence accumulates, posterior beliefs migrate

away from the prior toward the OLS alpha estimate. In the process, discoveries begin to

emerge, though they remain dampened relative to OLS. In the large data limit, Bayesian

beliefs converge on OLS with no MT correction, which is justified because in the limit

there are no false discoveries. In other words, the prior embodies a particularly flexible

form conservatism—the Bayesian model decides how severe of an MT correction to make

based on the informativeness of the data.

Second is the hierarchical structure that captures joint behavior of factors. Modeling

factors jointly means that each alpha is shrunk toward its cluster mean (i.e., toward related

factors), in addition to being shrunk toward the prior of zero. So, if we observe a cluster of

factors in which most perform poorly, then this evidence reduces the posterior alpha even

for the few factors with strong performance—another form of Bayesian MT correction.

In addition to this Bayesian discovery control coming through shrinkage of the posterior

mean alpha, the Bayesian confidence interval also plays an important role and changes as

a function of the data. Indeed, having data on related factors leads to a contraction of

the confidence intervals in our joint Bayesian model. So while alpha shrinkage often has

the effect of reducing discoveries, the increased precision from joint estimation has the

opposite effect of enhancing statistical power and thus increases discoveries.

In summary, a typical implementation of frequentist MT corrections estimates pa-

rameters independently for each factor, leaves these parameters unchanged, but inflates

p-values to reduce the number of discoveries. In contrast, our hierarchical model lever-

ages dependence in the data to efficiently learn about all alphas simultaneously. All data

therefore helps to determine the center and width of each alpha’s confidence interval

(Propositions 7 and 8). This leads to more precise estimates with “built-in” Bayesian MT

correction.

Empirical Bayes Estimation

Given the central role of the prior, it might seem problematic that the severity of the

Bayesian MT adjustment is at the discretion of the researcher. A powerful (and somewhat

surprising) aspect of a hierarchical model is that the prior can be learned in part from the
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data. This idea is formalized in the idea of “empirical Bayes (EB)” estimation, which has

emerged as a major toolkit for navigating multiple tests in high-dimensional statistical

settings (Efron, 2012).

The general approach to EB is to specify a multi-level hierarchical model, and then to

use the dispersion of estimated effects within each level to learn about the prior parameters

for that level. In our setting, the specific implementation of EB is dictated by Proposition

8. We first compute each factor’s abnormal return, α̂, as the intercept in a CAPM

regression on the market excess return. Next, we set the overall alpha prior mean, αo, to

zero to enforce conservatism in our inferences.

From here, the benefits of EB kick in: The realized dispersion in alphas across factors

helps to determine the appropriate level of conviction for the prior (that is, the appropriate

values for τ 2
c , τ 2

s , and τ 2
w). For example, if we compute the average alpha for each cluster,

ĉj (e.g., the average value alpha, the average momentum alpha, and so on), the cross-

sectional variation in ĉj suggests that τ 2
c
∼= 1

J−1

∑J
j=1(ĉj − ĉ·)2. The same idea applies to

τ 2
s . Likewise, variation in observed alphas after accounting for hierarchical connections is

informative about τ 2
w
∼= 1

NK−N−J
∑N

i=1(ŵi)2, where ŵ = α̂−Mĉ− Zŝ.

The above variances illustrate the point that EB can help calibrate prior variances

using the data itself. But those calculations are too crude, because they ignore sampling

variation coming from the noise in returns, ε, which has covariance matrix Σ. Empirical

Bayes estimates the prior variances by maximizing the prior likelihood function of the

observed alphas, α̂ ∼ N(0,Ω(τc, τs, τw) + Σ̂/T ), where the notation emphasizes that Ω

depends on τc, τs, and τw according to (2.23). The likelihood function accounts for

sampling variation through the a plug-in estimate of the covariance matrix of factor

return shocks, Σ̂.20 We collect the resulting hyper-parameters in τ , that is, τc, τs, τw, Σ̂,

and βi.

Bayesian FDR and FWER

With the EB estimates (τ) on hand, we can compute the posterior distribution of the

alphas from Proposition 8. From the posterior, we can in turn compute Bayesian versions

of the FDR and FWER. Suppose that we consider a factor to be “discovered” if its z-score

is greater than the critical value z̄ = 1.96:

E(αi|α̂1, . . . , α̂N , τ)√
Var(αi|α̂1, . . . , α̂N , τ)

> z̄. (2.26)

20We discuss the details of our EB estimation procedure in Appendix 5.3.
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Equivalently, factor i is discovered if p-nulli < 2.5%,21 where we use the posterior to

compute

p-nulli = Pr(αi < 0|α̂1, . . . , α̂N , τ). (2.27)

In words, p-nulli is the posterior probability that the null hypothesis is true, which is the

Bayesian version of a frequentist p-value. Said differently, it is the posterior probability

of a “false discovery,” namely the probability that the true alpha is actually non-positive.

We can further compute the Bayesian FDR as:

FDRBayes = E

(∑
i 1{i false discovery}∑
i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
(2.28)

where we condition on the data including at least one discovery (so the denominator is

not zero), otherwise FDR is set to zero (see Benjamini and Hochberg, 1995).

The following proposition is a novel characterization of the Bayesian FDR, and shows

that it is the posterior probability of a false discovery, averaged across all discoveries:

Proposition 9 (Bayesian FDR) Conditional on the parameters of the prior distribu-

tion τ and data with at least one discovery, the Bayesian false discovery rate can be

computed as:

FDRBayes =
1

#discoveries

∑
i discovery

p-nulli . (2.29)

and is bounded, FDRBayes ≤ 2.5%.

This result shows explicitly how the Bayesian framework controls the false discovery rate

without the need for additional MT adjustments.22 The definition of a discovery ensures

that at most 2.5% of the discoveries are false according to the Bayesian posterior, which is

exactly the right distribution for assessing discoveries from the perspective of the Bayesian.

Further, if many of the discovered factors are highly significant (as is the case in our data),

then the Bayesian FDR is much lower than 2.5%.23

We can also compute a Bayesian version of the family-wise error rate, which is the

21We use a critical value of 2.5% rather than 5% because the 1.96 cut-off corresponds to a 2-sided test,
while false discoveries are only on one side in the Bayesian framework.

22Efron (2007) includes related analysis but, to our knowledge, this particular result is new.
23Proposition 9 formalizes the argument of Greenland and Robins (1991) that “from the empirical-

Bayes or Bayesian perspective, multiple comparisons are not really a ‘problem.’ Rather, the multiplicity
of comparisons provides an opportunity to improve our estimates through judicious use of any prior
information (in the form of model assumptions) about the ensemble of parameters being estimated.”
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probability of making one or more false discoveries in total:

FWERBayes =Pr

(∑
i

1{i false discovery} ≥ 1

∣∣∣∣α̂1, . . . , α̂N , τ

)
. (2.30)

If we define a discovery as in (2.26) using the standard critical value z̄ = 1.96, then we do

not necessarily control the family-wise error rate, FWERBayes, which is a harsh criterion

that is concerned with the risk of a single false discovery without regard for the number of

missed discoveries. FWERBayes is a probability that can be computed from the posterior

so it is straightforward to choose a critical value z̄ to ensure FWERBayes ≤ 5% or any other

level one prefers. The main point is that the Bayesian approach to replication lends itself

to any inferential calculation the researcher desires because the posterior is a complete

characterization of Bayesian beliefs about model parameters.

A Comparison of Frequentist and Bayesian False Discovery Control

We illustrate the benefits of Bayesian inference for our replication analysis via simulation.

We assume a factor generating process based on the hierarchical model above and, for

simplicity, consider a single region (as in our empirical US-only analysis), removing sn

and τ 2
s from equations (2.21) and (2.23). We analyze discoveries as we vary the prior

variances τc and τw. The remaining parameters are calibrated to our estimates for the US

region in our empirical analysis below.

We simulate an economy with 130 factors in 13 different clusters of 10 factors each,

observed monthly over 70 years. We assume that the mean alpha, αo, is zero. We then

draw a cluster alpha from cj ∼ N(0, τ 2
c ) and a factor-specific alpha as wi ∼ N(0, τ 2

w).

Based on these alphas, we generate realized returns by adding Gaussian noise.24

We compute p-values separately using OLS with no adjustment or adjusting with

the Benjamini-Yekutieli (BY) method. We also use EB to estimate the posterior alpha

distribution, treating τc and τw as known in order to simplify simulations and focus on

the Bayesian updating. For OLS and BY, a discovery occurs when the alpha estimate

is positive and the two-sided p-value is below 5%. For EB, we consider it a discovery

when the posterior probability that alpha is negative is less that 2.5%. For each pair of

τc and τw, we draw 10,000 simulated samples, and report average discovery rates over all

simulations.

Figure 3 reports alpha discoveries based on the OLS, BY, and EB approaches. For

each method, we report the true FDR in the top panels (we know the truth since this is

24The noise covariance matrix has a block structure calibrated to our data, with a correlation of 0.58
among factors in the same cluster and a correlation of 0.02 across clusters. The residual volatility for
each factor is 10% per annum.
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Figure 3. Simulation Comparison of False Discovery Rates

Note: The upper panels show the realized false discovery rate computed as the proportion of discovered
factors for which the true alpha is negative, averaged over 10,000 simulations. The lower panels show the
true discovery rate computed as the number of discoveries where the true alpha is positive divided by
the total number of factors where the true alpha is positive. The left and right panels use low and high
values of idiosyncratic variation in alphas (τw), respectively. The x-axis varies cluster alpha dispersion,
τc.

a simulation) and the “true discovery rate”25 in the bottom panels.

When idiosyncratic variation in true alphas is small (left panels with τw = 0.01%)

and the variation in cluster alphas is also small (values of τc near zero on the horizontal

axis), alphas are very small and true discoveries are unlikely. In this case, the OLS false

discovery rate can be as high as 25% as seen in the upper left panel. However, both BY

and EB successfully correct this problem and lower the FDR. The lower left panel shows

that the BY correction pays a high price for its correction in terms of statistical power

when τc is larger. In contrast, EB exhibits much better power to detect true positives

while maintaining a similar false discovery control as BY. In fact, when there are more

discoveries to be made in the data (as τc increases), EB becomes even more likely to

identify true positives than OLS. This is due to the joint nature of the Bayesian model,

whose estimates are especially precise compared to OLS due to EB’s ability to learn more

efficiently from dependent data. This illustrates a point of Greenland and Robins (1991)

25We define the true discovery rate to be the number of significantly positive alphas according to,
respectively, OLS, BY, and EB divided by the number of truly positive alphas. Given our simulation
structure, half of the alphas are expected to be positive in any simulation. Some of these will be small
(i.e., economically insignificant) positives, so a testing procedure would require a high degree of statistical
power to detect them. This is why the true discovery rate is below one even for high values of τc.
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that “Unlike conventional multiple comparisons, empirical-Bayes and Bayes approaches

will alter and can improve point estimates and can provide more powerful tests and

more precise (narrower) interval estimators.” When the idiosyncratic variation is larger

(τw = 0.20%), there are many more true discoveries to be made, so the false discovery

rate tends to be low even for OLS with no correction. Yet in the lower right panel we

continue to see the costly loss of statistical power suffered by the BY correction.

In summary, EB accomplishes a flexible MT adjustment by adapting to the data

generating process. When discoveries are rare so that there is a comparatively high

likelihood of false discovery, EB imposes heavy shrinkage and behaves similarly to the

conservative BY correction. In this case, the benefit of conservatism costs little in terms

of power exactly because true discoveries are rare. Yet when discoveries are more likely,

EB behaves more like uncorrected OLS, giving it high power to detect discoveries and

suffering little in terms of false discoveries because true positives abound.

The limitations of frequentist MT corrections are well studied in the statistics lit-

erature. Berry and Hochberg (1999) note that “these procedures are very conservative

(especially in large families) and have been subjected to criticism for paying too much

in terms of power for achieving (conservative) control of selection effects.” The reason

is that, while inflating confidence intervals and p-values indeed reduces the discovery of

false positives, it also reduces power to detect true positives.

Much of the discussion around MT adjustments in the finance literature fails to con-

sider the loss of power associated with frequentist corrections. But, as Greenland and Hof-

man (2019) point out, this tradeoff should be a first-order consideration for a researcher

navigating multiple tests, and frequentist MT corrections tend to place an implicit cost on

false positives that can be unreasonably large. Unlike some medical contexts for example,

there is no obvious motivation for asymmetric treatment of false positives and missed

positives in factor research. The finance researcher may be willing to accept the risk of

a few false discoveries to avoid missing too many true discoveries. In statistics, this is

sometimes discussed in terms of an (abstract) cost of Type I versus Type II errors,26 but

in finance we can make this cost concrete: We can look at the profit of trading on the

discovered factors, where the cost of false discoveries is then the resulting extra risk and

money lost (Section 3.3).

26As Greenland and Robins (1991) point out, “Decision analysis requires, in addition to the likelihood
function, a loss function, which indicates the cost of each action under the various possible values for
the unknown parameter (benefits would be expressed as negative costs). Construction of a loss function
requires one to quantify costs in terms of dollars, lives lost, or some other common scale.”

93



2 A New Public Data Set of Global Factors

We study a global dataset with 153 factors in 93 countries. In this section, we provide a

brief overview of our data construction. We have posted the code along with extensive

documentation detailing every implementation choice that we make for each factor.27

Factors

The set of factors we study is based on the exhaustive list compiled by Hou et al. (2020b).

They study 202 different characteristic signals from which they build 452 factor portfo-

lios. The proliferation is due to treating 1, 6, and 12-month holding periods for a given

characteristic as different factors, and due to their inclusion of both annual and quarterly

updates of some accounting-based factors. In contrast, we focus on a 1-month holding

period for all factors, and we only include the version that updates with the most re-

cent accounting data (which could be either annual or quarterly). Lastly, we exclude a

small number of factors for which data is not available globally. This gives us a set of

180 feasible global factors. For this set, we exclude factors based on industry or analyst

data because they have comparatively short samples.28 This leaves us with 138 factors.

Finally, we add 15 factors studied in the literature that were not included in Hou et al.

(2020b).

For each characteristic, we build the 1-month holding period factor return within each

country as follows. First, in each country and month, we sort stocks into characteristic

terciles (top/middle/bottom third) with breakpoints based on non-micro stocks in that

country.29 For each tercile, we compute its “capped value weight” return, meaning that

we weight stocks by their market equity winsorized at the NYSE 80th percentile. This

construction ensures that tiny stocks have tiny weights and any one mega stock does not

dominate a portfolio, seeking to create tradable, yet balanced, portfolios.30 The factor is

then defined as the high-tercile return minus the low-tercile return, corresponding to the

excess return of a long-short zero-net-investment strategy. The factor is long (short) the

tercile identified by the original paper to have the highest (lowest) expected return.

We scale all factors such that their monthly idiosyncratic volatility is 10%/
√

12 (i.e.,

27It is available at https://jkpfactors.com/ and at https://github.com/bkelly-lab/

ReplicationCrisis.
28Global industry codes (GICS) are only available from 2000 and I/B/E/S data from the mid-1980’s

(but coverage in early years is somewhat sparse).
29Specifically, we start with all non-micro stocks in a country (i.e., larger than NYSE 20th percentile)

and sort them into three groups of equal numbers of stocks based on the characteristic, say book-to-
market. Then we distribute the micro-cap stocks into the three groups based on the same characteristic
breakpoints. This process ensures that the non-micro stocks are distributed equally across portfolios,
creating more tradable portfolios.

30For robustness, Figure A1 of the appendix reports our replication results to using standard, uncapped
value weights to construct factors.
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10% annualized), which ensures cross-sectional stationarity and a prior that factors are

similar in terms of their information ratio (i.e., appraisal ratio). Finally, we compute each

factor’s α̂i via an OLS regression on a constant and the corresponding region’s market

portfolio.

For a factor return to be non-missing, we require that it has at least 5 stocks in

each of the long and short legs. We also require a minimum of 60 non-missing monthly

observations for each country-specific factor for inclusion in our sample. When grouping

countries into regions (US, developed ex. US, and emerging) we use the MSCI development

classification as of January 7th 2021. When aggregating factors across countries, we use

capitalization-weighted averages of the country-specific factors. For the developed and

emerging market factors, we require that at least three countries have non-missing factor

returns.

Clusters

We group factors into clusters using hierarchical agglomerative clustering (Murtagh and

Legendre, 2014). We define the distance between factors as one minus their pairwise

correlation and use the linkage criterion of Ward (1963). The correlation is computed

based on CAPM-residual returns of US factors signed as in the original paper. Ap-

pendix Figure A15 shows the resulting dendrogram, which illustrates the hierarchical

clusters identified by the algorithm. Based on the dendrogram, we choose 13 clusters

that demonstrate a high degree of economic and statistical similarity. The cluster names

indicate the types of characteristics that dominate each group: Accruals∗, Debt Issuance∗,

Investment∗, Leverage∗, Low risk, Momentum, Profit Growth, Profitability, Quality, Sea-

sonality, Size∗, Short-Term Reversal∗, and Value, where the star (∗) indicates that these

factors bet against the corresponding characteristic (e.g., accrual factors go long stocks

with low accruals while shorting those with high accruals). Appendix Figure A16 shows

that the average within-cluster pairwise correlation is above 0.5 for 9 out of 13 clusters,

and Table AIII provides details on the cluster assignment, sign convention, and original

publication source for each factor.

Data and Characteristics

Return data is from CRSP for the US (beginning in 1926) and from Compustat for all

other countries (beginning in 1986 for most developed countries).31 All accounting data is

from Compustat. For international data, all variables are measured in US dollars (based

on exchange rates from Compustat) and excess returns are relative to the US treasury

31Appendix Table AV shows start date and other information for all countries included in our dataset.
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bill rate. To alleviate the influence of data errors in the international data, we winsorize

returns from Compustat at 0.1% and 99.9% each month.

We restrict our focus to common stocks that are identified by Compustat as the

primary security of the underlying firm and assign stocks to countries based on the country

of their exchange.32 In the US, we include delisting returns from CRSP. If a delisting

return is missing and the delisting is for a performance-based reason, we set the delisting

return to −30% following Shumway (1997). In the global data, delisting returns are not

available, so all performance-based delistings are assigned a return of −30%.

We build characteristics in a consistent way, that sometimes deviates from the exact

implementation used in the original reference. For example, for characteristics that use

book equity, we always follow the method in Fama and French (1993b). Furthermore,

we always use the most recent accounting data, whether annual or quarterly. Quarterly

income and cash flow items are aggregated over the previous four quarters to avoid dis-

tortions from seasonal effects. We assume that accounting data is available four months

after the fiscal period end. When creating valuation ratios, we always use the most recent

price data following Asness and Frazzini (2013). Section 5.12 in the internet appendix

contains a detailed documentation of our data set.

Empirical Bayes Estimation

We estimate the hyperparameters and the posterior alpha distributions of our Bayesian

model via EB. Appendix 5.3 provides details on the EB methodology and the estimated

parameters.

3 Empirical Assessment of Factor Replicability

We now report replication results for our global factor sample. We first present an internal

validity analysis by studying US factors over the full sample. Then we analyze external

validity in the global cross section and in the time series (post-publication factor returns).

3.1 Internal Validity

We report full sample performance of US factors in Figure 4. Each panel illustrates the

CAPM alpha point estimate of each factor corresponding to the dot at the center of the

vertical bars. Vertical bars represent the 95% confidence interval for each estimate. Bar

colors differentiate between three types of factors. Blue shows factors that are significant

32Compustat identifies primary securities in the US, Canada and rest of the world. This means that
some firms can have up to three securities in our data set. In practice, the vast majority of firms (97%)
only have one security in our sample at a given point in time.
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Figure 4. Alpha Distributions for US Factors

Note: The figure reports point estimates and confidence intervals for US factors. The upper left reports
OLS estimates. The upper right uses the OLS point estimate but adjusts the confidence interval following
the BY procedure. The lower left panel shows our EB posterior confidence intervals using only US data.
The lower right continues to show EB results for US factors, but estimates the US factor posterior from
global data rather than US-only data. Blue (red) confidence intervals correspond to factors that were
significant in the original study in the literature and that we find significant (insignificant) based on the
method in each panel. Green intervals correspond to factors that the original study find insignificant or
do not evaluate in terms of average return significance. The order of factors is the same in all panels and
is arranged from lowest OLS alpha to highest. Table AIV shows the factor names arranged in the same
order.

in the original study and remain significant in our full sample. Red shows factors that

are significant in the original study but are insignificant in our test. Green shows factors

that are not significant in the original study, but are included in the sample of Hou et al.

(2020b).

The four panels in Figure 4 differ in how the alphas and their confidence intervals are

estimated. The upper left panel reports the simple OLS estimate of each alpha, α̂ols, and

the 95% confidence intervals based on unadjusted standard errors, α̂ols ± 1.96 × SEols.
33

The factors are sorted by OLS α̂ estimate, and we use this ordering for the other three

panels as well. We find that the OLS replication rate is 82.4%, computed as the number

of blue factors (98) divided by the sum of red and blue factors (119). Based on OLS tests,

factors are highly replicable.

The upper right panel repeats this analysis using the MT adjustment of Benjamini

33We define SEols as the diagonal of the alpha covariance matrix Σ̂, which we estimate according to
Appendix 5.3.
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and Yekutieli (2001) (denoted BY), which is advocated by Harvey et al. (2016b) and im-

plemented by Hou et al. (2020b). This method leaves the OLS point estimate unchanged,

but inflates the p-value. We illustrate this visually by widening the alpha confidence in-

terval. Specifically, we find the BY-implied critical value34 in our sample to be a t-statistic

of 2.7, and we compute the corresponding confidence interval as α̂ols ± 2.7 × SEols. We

deem a factor as significant according to the BY method if this interval lies entirely above

zero. Naturally, this widening of confidence intervals produces a lower replication rate of

75.6%. However, the BY correction does not materially change the OLS-based conclusion

that factors appear highly replicable.

The lower left panel is based on our empirical Bayes estimates using the full sam-

ple of US factors. For each factor, we use Proposition 8 to compute its posterior mean,

E(αi|(α̂j)j any US factor), shown as the dot at the center of the confidence interval. These

dots change relative to the OLS estimates, in contrast to BY and other frequentist MT

methods that only change the size of the confidence intervals. We also compute the pos-

terior volatility to produce Bayesian confidence intervals, E(αi|(α̂j)j any US factor)± 1.96×
σ(αi|(α̂j)j any US factor). The replication rate based on Bayesian model estimates is 82.4%,

larger than BY and, coincidentally, the same as the OLS replication rate. This replica-

tion rate has a built-in conservatism from the zero-alpha prior, and it further accounts for

the multiplicity of factors because each factor’s posterior depends on all of the observed

evidence in the US (not just own-factor performance).

The lower right panel again reports EB estimates for US factors, but now we allow the

posterior to depend not just on US data, but on data from all over the world. That is,

we compute the posterior mean and variance for each US factor conditional on the alpha

estimates for all factors in all regions. The resulting replication rate is 81.5%, which is

slightly lower than the EB replication rate using only US data. Some posterior means

are reduced due to the fact that some factors have not performed as well outside the US,

which affects posterior means for the US through the dependence among global alphas.

For example, when the Bayesian model seeks to learn the true alpha of the “US change

in book equity” factor, the Bayesian’s conviction regarding positive alpha is reduced by

taking into account that the international version of this factor has underperformed the

US version.35

To further assess internal validity, we investigate the replication rate for US factors

34We compute the BY-implied critical value as the average of the t-statistic of the factor that is just
significant based on BY (the factor with the highest BY-adjusted p-value below 5%) and the t-statistic
of the factor that is just insignificant (the factor with the lowest BY-adjusted p-value above 5%).

35To provide a few more details on this example, the US factor based on annual change in book equity
(be gr1a) has a posterior volatility of 0.095% using only US data and 0.077% using global data, leading
to a tighter confidence interval with the global data. However, the posterior mean is 0.22% using only
US data and 0.13% using global data.
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when those factors are constructed from subsamples based on stock size. One of the

leading criticisms of factor research replicability is that results are driven by illiquid

small stocks whose behavior in large part reflects market frictions and microstructure as

opposed to just economic fundamentals or investor preferences. In particular, Hou et al.

(2020b) argue that they find a low replication rate because they limit the influence of

micro-caps. We find that factors demonstrate a high replication rate throughout the size

distribution. Panel A of Figure 5 reports replication rates for US size categories shown

in the five bars: mega stocks (largest 20% of stocks based on NYSE breakpoints), large

stocks (market capitalization between the 80th and 50th percentile of NYSE stocks), small

stocks (between the 50th and 20th percentile), micro stocks (between the 20th and 1st

percentile), and nano stocks (market capitalization below the 1st percentile).

We see that the EB replication rates in mega and large stock samples are 77.3% and

79.8%, respectively. This is only marginally lower than the overall US sample replication

rate of 82.4%, indicating that criticisms of factor replicability based on arguments around

stock size or liquidity are largely groundless. For comparison, small, micro, and nano

stocks deliver replication rates of 85.7%, 85.7% and 68.1%, respectively.

In Panel B of Figure 5, we report US factor replication rates by theme cluster. 11

out of 13 themes are replicable with a rate of 50% or better, with the exceptions being

the low leverage and size themes. To understand these exceptions, we note that size

factors are stronger in emerging markets (bottom panel of Figure A7) and among micro

and nano stocks (bottom panels of Figure A8). The theoretical foundation of the size

effect is a compensation for market illiquidity (Amihud and Mendelson, 1986) and market

liquidity risk (Acharya and Pedersen, 2005). Theory predicts that the illiquidity (risk)

premium should be the same order of magnitude as the differences in trading costs and

these differences are simply much larger in emerging markets and among micro stocks.

Another reason why some factors and themes appear insignificant is that we are not

accounting for other factors. Factors published after 1993 are routinely benchmarked

to the Fama-French three-factor model (and, more recently, to the updated five-factor

model). Some factors are insignificant in terms of raw return or CAPM alpha, but their

alpha becomes significant after controlling for other factors. This indeed explains the lack

of replicability for the low leverage theme. While CAPM alphas of low leverage factors

are insignificant, we find that it is one of the best performing themes once we account for

multiple factors (see Section 3.4 below).

3.2 External Validity

We find a high replication rate in our full-sample analysis, indicating that the large ma-

jority of factors are reproducible at least in-sample. We next study the external validity
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Figure 5. US Replication Rates By Size Group and Theme Cluster

Note: Panel A reports replication rates for US factors formed from subsamples defined by stocks’ market
capitalization using our EB method. Panel B reports replication rates for US factors in each theme
cluster.

of these results in international data and in post-publication US data.

Global Replication

Figure 6 shows corresponding replication rates around the world. We report replication

rates from four testing approaches: (1) OLS with no adjustment; (2) OLS with Benjamini-

Yekutieli MT adjustment; (3) the EB posterior conditioning only on factors within a

region (“Empirical Bayes – Region”); and (4) EB conditioning on factors in all regions

(“Empirical Bayes – All”). Even when using all global data to update the posterior of

all factors, the reported Bayesian replication rate applies only to the factors within the

stated region.

The first set of bars establishes a baseline by showing replication rates for the US

sample, summarizing the results from Figure 4. The next two sets of bars correspond
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Figure 6. Replication Rates in Global Data

Note: We report replication rates for factors in three global regions (US, developed ex. US, and emerging)
and for the world as a whole. A factor in a given region is the capitalization-weighted average factor
for countries in that region. We report OLS replication rates with no adjustment and with Benjamini-
Yekutieli multiple testing adjustment. We also report replication rates based on the empirical Bayes
posterior. We consider two EB methods. In both methods, the replication rate refers only to factors
within the region of interest, but the posterior is computed by conditioning either on data from that
region alone (“Empirical Bayes – Region”) or on the full global sample (“Empirical Bayes – All”). We
deem a factor successfully replicated if its 95% confidence interval excludes zero for a given method.

to the developed ex. US sample and the emerging markets sample, respectively.36 Each

region factor is a capitalization-weighted average of that factor among countries within a

given region, and the replication rate describes the fraction of significant CAPM alphas

for these regional factors.

OLS replication rates in developed and emerging markets are generally lower than in

the US, and the frequentist Benjamini-Yekutieli correction has an especially large negative

impact on replication rate. This is a case in which the Bayesian approach to MT is

especially powerful. Even though the alphas of all regions are shrunk toward zero, the

global information set helps EB achieve a high degree of precision, narrowing the posterior

distribution around the shrunk point estimate. We can see this in increments. First, the

EB replication rate using region-specific data (“Empirical Bayes – Region” in the figure)

is just below the OLS replication rate but much higher than the Benjamini-Yekutieli rate.

36The developed and emerging samples are defined by the MSCI development classification and include
23 and 27 countries, respectively. The remaining 43 countries in our sample that are classified as neither
developed nor emerging by MSCI do not appear in our developed and emerging region portfolios, but
they are included in the “world” versions of our factor portfolios.
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Figure 7. US Factor Alphas Versus World Ex. US

Note: The figure compares OLS alphas for US factors versus their international counterpart. Each world
ex. US factor is a capitalization-weighted average of the factor in all other countries of our sample. Blue
points correspond to factors that were significant in the original study in the literature, while red points
are those for which the original paper did not find a significant effect (or did not study the factor in terms
of average return significance). The dotted line is the 45o line. The figure also reports a regression of
world ex. US alpha on US alpha.

When the posterior leverages global data (“Empirical Bayes – All” in the figure), the

replication rate is higher still, reflecting the benefits of sharing information across regions,

as recommended by the dependence among alphas in the hierarchical model.

Finally, we use the global model to compute, for each factor, the capitalization-

weighted average alpha across all countries in our sample (“World” in the figure). Using

data from around the world, we find a Bayesian replication rate of 82.4%.

Why do international OLS replication rates differ from the US? This is due primarily to

the the fact that foreign markets have shorter time samples. Point estimates are similar in

magnitude for the US and international data. Figure 7 shows the alpha of each US factor

against the alpha of the corresponding factor for the world ex. US universe. The data cloud

aligns closely with the 45o line, demonstrating the close similarity of alpha magnitudes in

the two samples. But shorter international samples widen confidence intervals, and this

is the primary driver of the drop in OLS replication rates outside the US.

102



Panel A: Pre-original Sample Panel B: Post-original Sample Panel C: Pre- and Post-original Sample

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
In−Sample

O
ut

−
of

−
S

am
pl

e

       (0.66)   (5.29)
y = 0.05 + 0.57 ⋅ x

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
In−Sample

O
ut

−
of

−
S

am
pl

e

       (0.49)   (3.47)
y = 0.03 + 0.26 ⋅ x

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0
In−Sample

O
ut

−
of

−
S

am
pl

e

       (0.96)   (4.79)
y = 0.05 + 0.35 ⋅ x

Figure 8. In-Sample versus Out-of-Sample Alphas for US Factors

Note: The figure plots OLS alphas for US factors during the in-sample period (i.e., the period studied in
the original publication) versus out-of-sample alphas. In Panel A, out-of-sample is the time period before
the in-sample period. In Panel B, out-of-sample is the time period before the in-sample period. In Panel
C, out-of-sample includes both the time period before and after the in-sample period. We require at least
five years of out-of-sample data for a factor to be included, amounting to 102, 115 and 119 factors in
panel A, B and C. The figure also reports feasible GLS estimates of out-of-sample alphas on in-sample
alphas. To implement feasible GLS, we assume that the error variance-covariance matrix is proportional
to the full-sample CAPM residual variance-covariance matrix, Σ̂/T , described in section 5.3. The dotted
line is the 45o line.

Time Series Out-of-Sample Evidence

McLean and Pontiff (2016) document the intriguing fact that, following publication, factor

performance tends to decay. They estimate an average post-publication decline of 58%

in factor returns. In our data, the average in-sample alpha is 0.49% per month and

the average out-of-sample alpha is 0.26% when looking post-original sample, implying a

decline of 47%.

We gain further economic insight by looking at these findings cross-sectionally. Figure

8 makes a cross-sectional comparison of the in-sample and out-of-sample alphas of our US

factors. The in-sample period is the sample studied in the original reference. The out-of-

sample period in Panel A is the time period before the start of in-sample period, while in

Panel B it is the period following the in-sample period. Panel C defines out-of-sample as

the combined data from the periods before and after the originally studied sample. We

find that 82.6% of the US factors that were significant in the original publication also have

positive returns in the pre-original sample, 83.3% are positive in the post-original sample,

and 87.4% are positive in the combined out-of-sample period. When we regress out-of-

sample alphas on in-sample alphas using GLS, we find a slope coefficient of 0.57, 0.26,

and 0.35 in Panels A, B, and C, respectively. The slopes are highly significant (ranging

from t = 3.5 to t = 5.3) indicating that in-sample alphas contain something “real” rather

than being the outcome of pure data mining, as factors that performed better in-sample

also tend to perform better out-of-sample.
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The significantly positive slope allows us to reject the hypothesis of “pure alpha-

hacking,” which would imply a slope of zero, as seen in Proposition 5. Further, the

regression intercept is positive, while alpha-hacking of the form studied in Proposition 5

would imply a negative intercept.

That the slope coefficient is positive and less than one is consistent with basic Bayesian

logic of equation (2.4). As we emphasize in Section 1, a Bayesian would expect at least

some attenuation in out-of-sample performance. This is because the published studies

report the OLS estimate, while Bayesian beliefs shrink the OLS estimate toward the

zero-alpha prior. More specifically, with no alpha hacking or arbitrage, the Bayesian

expects a slope of approximately 0.9 using equation (2.5) and our EB hyperparameters

(see appendix Table AI).37 Hence, the slope coefficients in Figure 8 are too low relative to

this Bayesian benchmark. In addition to the moderate slope, there is evidence that the

dots in Figure 8 have a concave shape (as seen more clearly in appendix Figure A3). These

results indicate that, while we can rule out pure alpha-hacking (or p-hacking), there is

some evidence that the highest in-sample alphas may either be data-mined or arbitraged

down.

From the Bayesian perspective, another interesting evaluation of time series external

validity is to ask whether the new information contained in out-of-sample data moves the

posterior alpha toward zero or not. Imagine a Bayesian observing the arrival of factor

data in real time. As new data arrives, she updates her beliefs for all factors based on

the information in the full cross section of factor data. In the top panel of Figure 9, we

show how the Bayesian’s posterior of the average alpha would have evolved in real time.38

We focus on all the World factors that are available since at least 1955 and significant

in the original paper. Starting in 1960, we re-estimate the hierarchical model using the

empirical Bayes estimator in December of each year. The plot shows the CAPM alpha

and corresponding 95% confidence interval of an equal-weighted portfolio of the available

factors. The posterior mean alpha becomes relatively stable from the mid 1980s, around

0.4% per month. And, as data evidence has accumulated over time, the confidence interval

narrows by a third, from about 0.16% wide in 1960 to 0.10% in 2020.

To understand the posterior alpha, Figure 9 also shows the average OLS alpha as

triangles and the bottom panel in Figure 9 reports the rolling 5-year average monthly

alpha among all these factors. We see that the EB posterior is below the OLS estimate,

which occurs because the Bayesian posterior is shrunk toward the zero prior. Naturally,

37The slope is κ = 1/(1 + σ2/(Tτ2)) = 0.9, where σ2 = 10%2/12, the average in-sample period length
is T = 420 months, and τ2 = τ2c + τ2w = (0.35%)2 + (0.21%)2 = (0.41%)2.

38Here we keep τc and τw fixed at their full-sample values of 0.37% and 0.23% to mimic the idea of given
decision maker who starts with a given prior and updates this view based on new data, while keeping the
prior fixed. Figure A4 shows that the figure is almost the same with rolling estimates of τc and τw, and
Figure A5 shows that this consistency arises because the rolling estimates are relatively stable.
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Figure 9. World Factor Alpha Posterior Distribution Over Time

Note: The top panel reports the CAPM alpha and 95% posterior confidence interval for an equal-weighted
portfolio of World factors based on EB posteriors re-estimated in December each year. That is, each blue
dot is E( 1

N

∑
i α

i| data until time t) and the vertical lines are ±2 times the posterior volatility. Triangles
show average OLS alpha at each point in time, 1

N

∑
i α̂

i
ti0,t

, estimated using data through date t. The

bottom panel reports the average monthly alpha for all factors in a rolling 5-year window. The results
are based on factors found to be significant in the original paper with data available since 1955.

periods of good performance increase the posterior mean as well as the OLS estimate,

and vice versa for poor performance. Over time, the OLS estimate moves nearer to the

Bayesian posterior mean.

To further understand why the posterior alpha is relatively stable with a tightening

confidence interval, consider the following simple example. Suppose a researcher has

T = 10 years of data for factors with an OLS alpha estimate of α̂ = 10% with standard

error σ/
√
T . Further, assume their zero-alpha prior is equally as informative as their 10-

year sample (i.e., τ = σ/
√
T ). Then the shrinkage factor is κ = 1/2 using equation (2.5).

So, after observing the first ten years with α̂ = 10%, the Bayesian expects a future alpha

of E(α|α̂) = 5% (equation (2.4)). What happens if this Bayesian belief is confirmed by

additional data, namely that the factor realizes an alpha of 5% over the next 10 years? In

this case, the full-sample OLS of alpha is α̂ = 7.5%, but now the shrinkage factor becomes

κ = 2/3 because the sample length doubles, T = 20. This results in a posterior alpha of

E(α|α̂) = 7.5% · 2/3 = 5%. Naturally, when beliefs are confirmed by additional data, the

posterior mean does not change. Nevertheless, we learn something from the additional

data, because our conviction increases as the posterior variance is reduced. If σ = 0.1,

the posterior volatility
√

Var(α|α̂) = σ
√

κ
T

goes from 2.2% with 10 years of data to 1.8%
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with 20 years of data, and the confidence interval, [E(α|α̂) ± 2
√

Var(α|α̂)], is reduced

from [0.5%, 9.5%] to [1.3%, 8.7%].

3.3 Bayesian Multiple Testing

A great advantage of Bayesian methods for tackling challenges in multiple testing is

that, from the posterior distribution, we can make explicit probability calculations for

essentially any inferential question. We simulate from our EB posterior to investigate

the false discovery and family-wise error rates among the set of global factors that were

significant in the original study. We define a false discovery as a factor where we claim

that the alpha is positive, but where the true alpha is negative.39

First, based on Proposition 9, we calculate the Bayesian FDR in our sample as the

average posterior probability of a false discovery, p-null, among all discoveries. We find

that FDRBayes = 0.1%, meaning that we expect roughly one discovery in 1000 to be a

false positive given our Bayesian hierarchical model estimates. The posterior standard

error for FDRBayes is 0.3% with a confidence interval of [0,1%]. In other words, the model

generates a highly conservative MT adjustment in the sense that once a factor is found

to be significant, we can be relatively confident that the effect is genuine.

We can also use the posterior to make other inference calculations. We compute the

FWER, which we define as the probability of at least one false discovery. We simulate

1,000,000 draws of the vector of alphas that were deemed to be discoveries from the EB

posterior and compute

FWERBayes =
1

1, 000, 000

1,000,000∑
s=1

1{ns≥1} = 5.5%

where ns is the number of false discoveries in simulation s. In other words, the probability

of at least one alpha having the wrong sign is 5.5%. The FWERBayes is naturally much

higher than the FDRBayes given the extreme conservatism built into the FWER’s definition

of false discovery. Whether it is too high is subjective. A nice aspect of our approach is

that a researcher can control the FWERBayes as desired. For example, using a t-statistic

threshold of 2.78 rather than 1.96 leads to FWERBayes = 0.8%.

From the posterior, we can also compute the expected fraction of discovered factors

that are “true,” which is in general different than the replication rate. The replication rate

is the fraction of factors having E(αi|data)/σ(αi|data) > 1.96, while the expected fraction

of true factors is 1
n

∑
iE(1αi>0|data) = 1

n

∑
i Pr(αi > 0|data). The replication rate gives

39In particular, we define a discovery as a factor for which the posterior probability of the true alpha
being negative is less than 2.5%. With this definition, we start with 153 world factors, then focus on the
119 factors that were significant in the original studies, and, out of these, 98 are considered discoveries.
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a conservative take on the number of true factors—the expected fraction of true factors

is typically higher than the replication rate. To understand this conservatism, consider

an example in which all factors have a 90% posterior probability of being true. These

would all individually be counted as “not replicated,” but they would contribute to a high

expected fraction of true factors. Indeed, we estimate that the expected fraction of factors

with truly positive alphas is 94% (with a posterior standard error of 1.3%), notably higher

than our estimated replication rate.

Economic Benefits of More Powerful Tests

MT adjustments should ultimately be evaluated by whether they lead to better decisions.

It is important to balance the relative costs of false positives versus false negatives, and

the appropriate tradeoff depends on the context of the problem (Greenland and Hofman,

2019). We apply this general principle in our context by directly measuring costs in terms

of investment performance.

Specifically, we can compute the difference in out-of-sample investment performance

from investing using factors chosen with different methods. We compare two alternatives.

One is the BY decision rule advocated by Harvey et al. (2016b), which is a frequen-

tist MT method that successfully controls false discoveries relative to OLS, but in doing

so sacrifices power (the ability to detect true positives). The second alternative is our

EB method, whose false discovery control typically lies somewhere between BY and un-

adjusted OLS. EB uses the data sample itself to decide whether its discoveries should

behave more similarly to BY or to unadjusted OLS.

For investors, the optimal decision rule is the one that leads to the best performance

out-of-sample. For the most part, the set of discovered factors for BY and EB coincide.

It is only in marginal cases where they disagree which, in our sample, occurs when EB

makes a discovery that BY deems insignificant. Therefore, to evaluate MT approaches

in economic terms, we track the out-of-sample performance of factors included by EB

but excluded by BY. If the performance of these is negative on average, then the BY

correction is warranted and preferred by the investor.

We find that the out-of-sample performance of factors discovered by EB but not BY

is positive on average and highly significant. The alpha for these marginal cases is 0.35%

per month among US factors (t = 5.1).40 This estimate suggests that the BY decision

rule is too conservative. An investor using the rule would fail to invest in factors that

subsequently have a high out-of-sample return.

Another way to see that the BY decision rule is too conservative comes from the

40For the developed ex. US sample, the monthly alpha for marginal cases is 0.24% per month (t = 5.3),
and for the emerging sample it is 0.27% (t = 3.7), in favor of the EB decision rule. Appendix Table AII
reports additional details for this analysis.
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connection between Sharpe ratio and t-statistics: t = SR
√
T . If we have a factor with an

annual Sharpe ratio of 0.5, an investor using the 1.96 cutoff would in expectation invest

in the factor after 15 years. An investor using the 2.78 cutoff, would not start investing

until observing the factor for 31 years.

Addressing Unobserved Factors, Publication Bias, and other Biases

A potential concern with our replication rate is that the set of factors that make it into the

literature is a selected sample. In particular, researchers may have tried many different

factors, some of which are observed in the literature, while others are unobserved because

they never got published. Unobserved factors may have worse average performance if poor

performance makes publication more difficult or less desirable. Alternatively, unobserved

factors could have strong performance if people chose to trade on them in secret rather

than publishing them. Either way, we next show how unobserved factors can be addressed

in our framework.

The key insight is that the performance of factors across the universe of observed

and unobserved factors is captured in our prior parameters τc, τw. Indeed, large values

of these priors correspond to a large dispersion of alphas (that is, a lot of large alphas

“out there”) while small values means that most true alphas are close to zero. Therefore,

smaller τ ’s lead to a stronger shrinkage toward zero for our posterior alphas, leading to

fewer factor “discoveries” and a lower replication rate. Figure 10 shows how our estimated

replication rate depends on the most important prior parameter, τc, based on the τw that

we estimated from the data.41

In Figure 10, we show how the replication rate varies with τc in precise quantitative

terms. Note that while the replication rate indeed rises with τc, the differences are small in

magnitude across a large range of τc values, demonstrating robustness of our conclusions

about replicability.

This stable replication rate in Figure 10 also suggests that the replication rate among

the observed factors would be similar even if we had observed the unobserved factors.

The figure highlights several key values of τc: Both the value of τc that we estimated from

the observed data (as explained in Appendix 5.3) and values that adjust for unobserved

data in different ways.

We adjust τc for unobserved factors as follows. We simulate a data set that proxies for

the full set of factors in the population (including those unobserved), and then estimate

the τ ’s that match this sample. One set of simulations is constructed to match the baseline

scenario of Harvey et al. (2016b) (Table 5.A, row 1), which estimates that researchers have

tried M = 1, 297 factors, of which 39.6% of have zero alpha and the rest have a Sharpe

41Figure A6 in the appendix shows that the results are robust to alternative values of τw.
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Figure 10. Replication Rate with Prior Estimated in Light of Unobserved
Factors

Note: The figure shows how the replication rate in the US varies when changing the τc parameter. The
τw parameter is fixed at the estimate value of 0.21%. The dotted line shows our replication rate of 82.4%.
The green square, highlights the value estimated in the data τc = 0.35%. The red triangle and the blue
circle highlights values that are found by estimating the empirical Bayes model according to assumptions
about unobserved factors from Harvey et al. (2016b). The values are τc = 0.28% in the baseline scenario
and τc = 0.20% in the conservative scenario. A description of this approach can be found in Appendix
5.7.

ratio of 0.44. We also consider the more conservative scenario of Harvey et al. (2016b)

(Table 5.B, row 1), which implies that researchers have tried M = 2, 458 factors, of which

68.3% have zero alpha. Appendix 5.7 has more details on these simulations. The result,

as seen in Figure 10, is that values of τc that correspond to these scenarios from Harvey

et al. (2016b) still lead to a conclusion of a high replication rate in our factor universe.

The replication rate is 81.5%, and 79.8% for the prior hyperparameters implied by the

baseline and conservative scenario respectively.

A closely related bias is that factors may suffer from alpha-hacking as discussed in

Section 1.1 (Proposition 5), which makes realized in-sample factor returns too high. To

account for this bias, we estimate the prior hyper-parameters using only out-of-sample

data. These estimated values are τc = 0.27% and τw = 0.22%. These hyper-parameters

are similar to those implied by the baseline scenario of Harvey et al. (2016b) as seen in

Figure 10. With these hyper-parameters, the replication rate is 81.5%.
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Figure 11. World Alpha Posterior By Factor and Cluster

Note: The figure reports the EB posterior 95% confidence interval for the true alpha of a world factor
create as a capitalization weighted average of all country specific factors in our dataset. We only include
factors that the original paper finds significant.

3.4 Economic Significance of Factors

Which factors (and which themes) are the most impactful anomalies in economic terms?

We investigate this question by identifying which factors matter most from an investment

performance standpoint.

Figure 11 shows the alpha confidence intervals for all world factors, sorted by the

median posterior alpha within clusters. This illustration is similar to Figure 4, but now

we focus on the world instead of the US factors, and here we sort factors into clusters.

We also focus on factors that the original studies conclude are significant. We see that

world factor alphas tend to be economically large, often above 0.3% per month, and tend

to be highly significant, in most clusters. The exception is the low leverage cluster, where

we also saw a low replication rate in preceding analyses.

By Region and By Size

We next consider which factors are most economically important across global regions

and across stock size groups. In Panel A of Figure 12, we construct factors using only

stocks in the five size subsamples presented earlier in Figure 5; namely mega, large, small,

micro, and nano stock samples. For each sample, we calculate cluster-level alphas as
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Panel A: Size Groups
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Figure 12. Alphas By Geographic Region and Stock Size Group

Note: The figure reports average cluster-level alphas for factors formed from subsamples defined by
different stock market capitalization groups (Panel A) and regions (Panel B).

the equal-weighted average alpha of rank-weighted factors within the cluster.42 We see,

perhaps surprisingly, that the ordering and magnitude of alphas is broadly similar across

42Rank-weighting is similar to equal-weighting and used here to illustrate the performance of typical
stocks in each size group. See equation (1) in Asness et al. (2013).
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size groups. The Spearman rank correlation of alphas for mega caps versus micro caps is

73%. Only the nano stock sample, defined as stocks below the 1st percentile of the NYSE

size distribution (which amounted to 458 out of 4356 stocks in the US at the end of 2020),

exhibits notable deviation from the other groups. The Spearman rank correlation between

alphas of mega caps and nano caps is 36%.

Panel B of Figure 12 shows cluster-level alphas across regions. Again, we find consis-

tency in alphas across the globe, with the obvious standout being the size theme, which

is much more important in emerging markets than in developed markets. US factor al-

phas share a 62% Spearman correlation with the developed ex. US sample, and a 43%

correlation with the emerging markets sample.

Controlling for Other Themes

We have focused so far on whether factors (or clusters) possess significant positive alpha

relative to the market. The limitation of studying factors in terms of CAPM alpha is

that it does not control for duplicate behavior other than through the market factor.

Economically important factors are those that have large impact on an investor’s overall

portfolio, and this requires understanding which clusters contribute alpha while controlling

for all others.

To this end, we estimate cluster weights in a tangency portfolio that invests jointly

in all cluster-level portfolios. We test the significance of the estimated weights using

the method of Britten-Jones (1999). In addition to our 13 cluster-level factors, we also

include the market portfolio as a way of benchmarking factors to the CAPM null. Lastly,

we constrain all weights to be non-negative (because we have signed the factors to have

positive expected returns according to the findings of the original studies).

Figure 13 reports the estimated tangency portfolio weights and their 90% bootstrap

confidence intervals. When a factor has a significant weight in the tangency portfolio,

it means that it matters for an investor, even controlling for all the other factors. We

see that all but three clusters are significant in this sense. We also see that conclusions

about cluster importance change when clusters are studied jointly. For example, value

factors become stronger when controlling for other effects because of their hedging benefits

relative to momentum, quality, and low leverage. More surprisingly, the low leverage

cluster becomes one of the most heavily weighted clusters, in large part due to its ability

to hedge value and low risk factors. The hedging performance of value and low leverage

clusters is clearly discernible in Appendix table A16, which shows the average pairwise

correlations among factors within and across clusters.43 Appendix 5.9 provides further

performance attribution of the tangency portfolio at the factor level.44

43Appendix Tables A9 and A10 show how tangency portfolio weights vary by region and by size group.
44Figure A11 shows the performance of each cluster in combination with the market portfolio, figure
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Figure 13. Tangency Portfolio Weights

Note: The return are from the US portfolios. We compute the cluster return as the equal weighted
return of all factors with data available at a given point in time. We further add the US market return.
We estimate the tangency weights following the method of Britten-Jones (1999) with a non-negativity
constraint. The error bars are the 90% confidence intervals based on 10,000 bootstrap samples and the
percentile method. The data starts in 1952 to ensure that all cluster have non-missing observations.

Evolution of Finance Factor Research

The number of published factors has increased over time as seen in the bottom panel of

Figure 14. But, to what extent have these new factors continued to add new insights

versus repackaging existing information?

To address this question, we consider how the optimal risk-return tradeoff has evolved

over time as factors have been discovered. Specifically, Figure 14 computes the monthly

Sharpe ratio of the ex-post tangency portfolio that only invests in factors discovered

by a certain point in time.45 The starting point (on the left) of the analysis is the

0.13 Sharpe ratio of the market portfolio in the US sample 1972-2020 when all factors

are available. The ending point (on the right) is the 0.80 Sharpe ratio of the tangency

portfolio that invests the optimal weights across all factors over the same US sample

period.46 In between, we see how the Sharpe ratio of the tangency portfolio has evolved

A12 shows how the optimal portfolio changes when one cluster is excluded and figure A14 shows the
importance of each factor for the optimal portfolio.

45We estimate tangency portfolio weights following the method of Pedersen (2021), which offers a sen-
sible approach to mean-variance optimization for high dimensional data. Estimation details are provided
in Appendix 5.9.

46The high Sharpe ratio partly reflects the fact that we are doing an in-sample optimization. If we
instead do a pseudo out-of-sample analysis via cross-validation, we find a monthly Sharpe ratio of 0.56.
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Figure 14. The Evolution of the Tangency Sharpe ratio
Note: The top panel shows the Sharpe ratio on the ex-post tangency portfolio. A factor is included in the
tangency portfolio only after the end of the sample in which the factor was studied in the original publi-
cation (and we only include factors that were found to be significant in the original paper). We highlight
selected factors that significantly improve the optimal portfolio, starting with the market portfolio. We
use the longest available balanced US sample, 1972–2020 (that is, when all factors are available).

as factors have been discovered. The improvement is gradual over time, but we also see

occasional large increases when researchers have discovered especially impactful factors

(usually corresponding to new themes in our classification scheme). An example is the

operating accruals factor proposed by Sloan (1996), which increased the tangency Sharpe

ratio from 0.43 to 0.56. More recently, the seasonality factors of Heston and Sadka (2008)

increase the Sharpe ratio from 0.65 to 0.74.
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4 Conclusion: Finance Research Posterior

We introduce a hierarchical Bayesian model of alphas that emphasizes the joint behavior of

factors and provides a more powerful multiple testing adjustment than common frequentist

methods. Based on this framework, we re-visit the evidence on replicability in factor

research and come to substantially different conclusions versus the prior literature. We

find that US equity factors have a high degree of internal validity in the sense that over 80%

of factors remain significant after modifications in factor construction that make all factors

consistent, more implementable, while still capturing the original signal (Hamermesh,

2007) and after accounting for multiple testing concerns (Harvey et al., 2016b; Harvey,

2017).

We also provide new evidence demonstrating a high degree of external validity in factor

research. In particular, we find highly similar qualitative and quantitative behavior in a

large sample of 153 factors across 93 countries as we find in the US. We also show that,

within the US, factors exhibit a high degree of consistency between their published in-

sample results and out-of-sample data not considered in the original studies. We show

that some out-of-sample factor decay is to be expected in light of Bayesian posteriors

based on publication evidence. Therefore, the new evidence from post-publication data

largely confirms the Bayesian’s beliefs, which has led to relatively stable Bayesian alpha

estimates over time.

In addition to providing a powerful tool for replication, our Bayesian framework has

several additional applications. For example, the model can be used to correctly interpret

out-of-sample evidence, look for evidence of alpha-hacking, compute the expected number

of false discoveries and other relevant statistics based on the posterior, analyze portfolio

choice taking into account both estimation uncertainty and return volatility, and evaluate

asset pricing models.

Finally, the code, data, and meticulous documentation for our analysis are available

online. Our large global factor data set and the underlying stock-level characteristics

are easily accessible to researchers by using our publicly available code and its direct

link to WRDS. Our database will be updated regularly with new data releases and code

improvements. We hope that our methodology and data will help promote credible finance

research.
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5 Appendix

5.1 Additional Results on Alpha Hacking

We consider the situation where the researcher has in-sample data from time 1 to time

T and an out-of-sample (oos) period from time T + 1 to T + T oos. The researcher may

have used alpha-hacking during the in-sample period, but this does not affect the out-

of-sample period. The researcher is interested in the posterior alpha based on the total

evidence, in-sample and out-of-sample, which is useful for predicting factor performance

in a future time period (that is, a time period that is out-of-sample relative to the existing

out-of-sample period).

Proposition 10 (Out-of-sample alpha) The posterior alpha based on an in-sample

data from time 1 to T with alpha-hacking, and an out-of-sample period from T + 1 to

T + T oos is given by

E(α|α̂, α̂oos) = κoos (w(α̂− ε̄) + (1− w)αoos) (2.31)

where w = σ2/T oos

σ̄2/T+σ2/T oos
∈ (0, 1) is the relative weight on the in-sample period relative to

the out-of-sample period, and κoos = 1
1+1/(τ2([σ̄2/T ]−1+[σ2/T oos]−1))

is a shrinkage parameter.

We see that, the more alpha hacking the researcher has done (higher σ̄), the less

weight we put on the in-sample period relative to the out-of-sample period. Further, the

in-sample period has the non-proportional discounting due to alpha hacking (ε̄), which

we don’t have for out-of-sample evidence.

So this result formalizes the idea that an in-sample backtest plus live performance is

not the same as a longer backtest. For example, 10 years of backtest plus 10 years of live

performance is more meaningful that 20 years of backtest with no live performance. The

difference is that the oos-performance is free from alpha-hacking.

5.2 Proofs and Lemmas

The proofs make repeated use of the following well-known property of multivariate Nor-

mally distributed random variable. If x and y are multivariate Normal:[
x

y

]
∼ N

([
µx

µy

]
,

[
Σxx Σyx

Σxy Σyy

])
(2.32)

then the conditional distribution of x given y has the following Normal distribution:

x|y ∼ N
(
µx + ΣxyΣ

−1
yy (y − µy) , Σxx − ΣxyΣ

−1
yy Σyx

)
(2.33)
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The proofs also make use of the following two lemmas.

Lemma 1 For random variables x, y, z, it holds that E(Var(x|y, z)) ≤ E(Var(x|y)) and,

if the random variables are jointly normal, then Var(x|y, z) ≤ Var(x|y).

Lemma 2 Let A be an N × N matrix for which all diagonal elements equal a and all

off-diagonal elements equal b, where a 6= b and a + b(N − 1) 6= 0. Then the inverse A−1

exists and is of the same form:

A =


a b

. . .

b a

 A−1 =


c d

. . .

d c

 (2.34)

where c = a+b(N−2)
(a−b)(a+b(N−1))

and d = −b
(a−b)(a+b(N−1))

.

Proof of Lemma 1. Using the definition of conditional variance, we have

E(Var(x|y, z)) = E(E(x2|y, z))− E([E(x|y, z)]2) = E(x2)− E([E(x|y, z)]2)

Hence, using Jensen’s inequality, we have

E(Var(x|y))− E(Var(x|y, z)) =E([E(x|y, z)]2)− E([E(x|y)]2)

=E([E(x|y, z)]2)− E([E(E(x|y, z)|y)]2)

≥E([E(x|y, z)]2)− E(E([E(x|y, z)]2 |y)) = 0

The result for normal distributions follows from the fact that normal conditional variances

are non-stochastic, i.e., Var(x|y) = E(Var(x|y)). In this case, we can also characterize the

extra drop in variance due to conditioning on z using its orthogonal component ε from

the regression z = a+ by + ε, using similar notation as (2.32):

Var(x|y, z) = Var(x|y, ε) =Σx,x − Σx,(y,ε)Σ
−1
(y,ε),(y,ε)Σ(y,ε),x

=Σx,x − Σx,yΣ
−1
y,yΣy,x − Σx,εΣ

−1
ε,εΣε,x = Var(x|y)− Σx,εΣ

−1
ε,εΣε,x

Proof of Lemma 2. The proof follows from inspection: The product of A and its

proposed inverse clearly has the same form as A with diagonal elements

ac+ bd(I − 1) =
a(a+ b(N − 2))− b2(N − 1)

(a− b)(a+ b(N − 1))
=
a2 + ab(N − 1)− ab− b2(N − 1)

(a− b)(a+ b(N − 1))
= 1
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and off-diagonal elements

ad+ bc+ bd(N − 2) =
−ab+ b(a+ b(N − 2))− b2(N − 2)

(a− b)2(a+ b(N − 1))2
= 0

In other words, AA−1 equals the identity, proving the result.

Proof of Equations (2.4)–(2.6). The posterior distribution of the true alpha given the

observed factor return is computed using (2.33). The conditional mean is

E(α|α̂) = 0 +
Cov(α, α̂)

Var(α̂)
(α̂− 0) =

τ 2

τ 2 + σ2/T
α̂ = κα̂

where κ is given by (2.5) and the posterior variance is

Var(α|α̂) = Var(α)− (Cov(α, α̂))2

Var(α̂)
= τ 2 − τ 2 τ 2

τ 2 + σ2/T
=

τ 2σ2/T

τ 2 + σ2/T
= κ

σ2

T

Proof of Proposition 5. The posterior alpha with alpha-hacking is given via (2.33) as

E(α|α̂) = 0 +
Cov(α, α̂)

Var(α̂)
(α̂− E(α̂)) =

τ 2

τ 2 + σ̄2/T
(α̂− ε̄) = −κ0 + κhackingα̂

where κhacking = 1

1+ σ̄2

τ2T

, κ0 = κhackingε̄ ≥ 0, and κhacking ≤ κ because σ̄ ≥ σ.

Proof of Proposition 6. The posterior mean given α̂ and α̂g is computed via (2.33)

as

E(α|α̂, α̂g) =
[
τ 2 τ 2

] [ τ 2 + σ2
T τ 2 + ρσ2

T

τ 2 + ρσ2
T τ 2 + σ2

T

]−1 [
α̂

α̂g

]

=
1

det

[
τ 2 τ 2

] [ τ 2 + σ2
T −(τ 2 + ρσ2

T )

−(τ 2 + ρσ2
T ) τ 2 + σ2

T

][
α̂

α̂g

]

=
τ 2(1− ρ)σ2

T

det
(α̂ + α̂g)

=
τ 2(1− ρ)

σ2
T (1− ρ)(1 + ρ) + 2τ 2(1− ρ)

(α̂ + α̂g)

= κg
(

1

2
α̂ +

1

2
α̂g
)
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using the notation σ2
T = σ2/T and

det = (τ 2 + σ2
T )2 − (τ 2 + ρσ2

T )2 = σ2
T [σ2

T (1− ρ2) + 2τ 2(1− ρ)].

The global shrinkage parameter κg is in [κ, 1] and decreases with the correlation ρ, at-

taining the minimum value, κg = κ, when ρ = 1 as is clearly seen from (2.12).

The result about the posterior variance follows from Lemma 1.

Proof of Proposition 7. The prior joint distribution of the true and estimated alphas

is given by the following expression, where we focus on factor 1 without loss of generality:


α1

α̂1

...

α̂N

 ∼ N




0

0
...

0

 ,


τ 2
c + τ 2

w τ 2
c + τ 2

w τ 2
c · · · τ 2

c

τ 2
c + τ 2

w τ 2
c + τ 2

w + σ2/T τ 2
c + ρσ2/T

τ 2
c
...

. . .

τ 2
c τ 2

c + ρσ2/T τ 2
c + τ 2

w + σ2/T




(2.35)

The posterior alpha of factor 1 is therefore normally distributed with a mean derived

using the standard formula for conditional normal distributions (2.33):

E(α1|α̂1, . . . , α̂N) =


τ 2
c + τ 2

w

τ 2
c
...

τ 2
c


> 

τ 2
c + τ 2

w + σ2/T τ 2
c + ρσ2/T

. . .

τ 2
c + ρσ2/T τ 2

c + τ 2
w + σ2/T


−1 

α̂1

...

α̂N


We next use Lemma 2 and its notation, i.e., a = τ 2

c + τ 2
w + σ2/T , b = τ 2

c + ρσ2/T , and

c′, d are defined accordingly, where we use the notation c′ to avoid confusion with the c
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in equation (2.14). This application of Lemma 2 yields

E(α1|α̂1, . . . , α̂N) =


τ 2
c + τ 2

w

τ 2
c
...

τ 2
c


> 

c′ d
. . .

d c′



α̂1

...

α̂N



=


τ 2
c (c′ + d(N − 1)) + τ 2

wc
′

τ 2
c (c′ + d(N − 1)) + τ 2

wd
...

τ 2
c (c′ + d(N − 1)) + τ 2

wd


> 

α̂1

...

α̂N


=(τ 2

c (c′ + d(N − 1)) + τ 2
wd)Nα̂· + τ 2

w(c′ − d)α̂1

=(τ 2
c

N

a+ b(N − 1)
− τ 2

w

bN

(a− b)(a+ b(N − 1))
)α̂· + τ 2

w

1

a− b
α̂1

=
τ 2
c

b+ a−b
N

α̂· +
τ 2
w

a− b

(
α̂1 − 1

1 + a−b
bN

α̂·

)

=
τ 2
c

τ 2
c + ρσ2/T + τ2

w+(1−ρ)σ2/T
N

α̂· +
τ 2
w

τ 2
w + (1− ρ)σ2/T

(
α̂1 − 1

1 + τ2
w+(1−ρ)σ2/T
(τ2
c+ρσ2/T )N

α̂·

)

=
1

1 + ρσ2

τ2
c T

+ τ2
w+(1−ρ)σ2/T

τ2
cN

α̂· +
1

1 + (1−ρ)σ2

τ2
wT

(
α̂1 − 1

1 + τ2
w+(1−ρ)σ2/T
(τ2
c+ρσ2/T )N

α̂·

)
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The posterior has conditional variance

Var(α1|α̂1, . . . , α̂N) =τ 2
c + τ 2

w −


τ 2
c + τ 2

w

τ 2
c
...

τ 2
c


> 

c′ d
. . .

d c′



τ 2
c + τ 2

w

τ 2
c
...

τ 2
c



=τ 2
c + τ 2

w −


τ 2
c (c′ + d(N − 1)) + τ 2

wc
′

τ 2
c (c′ + d(N − 1)) + τ 2

wd
...

τ 2
c (c′ + d(N − 1)) + τ 2

wd


> 

τ 2
c + τ 2

w

τ 2
c
...

τ 2
c


=τ 2

c + τ 2
w − (τ 2

c (c′ + d(N − 1)) + τ 2
wc
′)(τ 2

c + τ 2
w)

− (τ 2
c (c′ + d(N − 1)) + τ 2

wd)τ 2
c (N − 1)

→τ 2
c + τ 2

w − (τ 2
c (

1

a− b
− 1

a− b
) + τ 2

w

1

a− b
)(τ 2

c + τ 2
w)

− (τ 2
c

1

b
− τ 2

w

1

a− b
)τ 2
c

=τ 2
c + τ 2

w −
(
τ 4
w

1

a− b
+ τ 4

c

1

b

)
=τ 2

c + τ 2
w −

(
τ 4
w

τ 2
w + (1− ρ)σ2/T

+
τ 4
c

τ 2
c + ρσ2/T

)
The last results follow from Lemma 1.

Proof of Proposition 8. We write the joint prior distribution of true and observed

alphas in the multi-level hierarchical model as(
α

α̂

)
∼ N

(
α0 12NK ,

(
Ω Ω

Ω Ω + Σ/T

))
(2.36)

The posterior mean vector of true alphas is computed via (2.33):

E(α|α̂) = 1NKα0 + Ω (Ω + Σ/T )−1 (α̂− 1NKα0)

=
(
Ω−1 + TΣ−1

)−1 (
Ω−11NKα0 + TΣ−1α̂

)
using that (Ω + Σ/T )−1 = Ω−1−Ω−1 (Ω−1 + TΣ−1)

−1
Ω−1 by the Woodbury matrix iden-

tity. The posterior variance is computed similarly via (2.33) and the same application of

the Woodbury matrix identity as

Var(α|α̂) = Ω− Ω (Ω + Σ/T )−1 Ω =
(
Ω−1 + TΣ−1

)−1
.

121



Proof of Proposition 9. Based on the definition of the Bayesian FDR, we have:

FDRBayes = E

(∑
i 1{i false discovery}∑
i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
=

1∑
i 1{i discovery}

E

(∑
i

1{i false discovery}

∣∣∣∣α̂1, . . . , α̂N , τ

)
(2.37)

=
1∑

i 1{i discovery}

∑
i

Pr(i false discovery|α̂1, . . . , α̂N , τ)

=
1

#discoveries

∑
i discovery

p-nulli

≤ 2.5%

Proof of Proposition 10. The posterior mean alpha is

E(α|α̂, α̂oos) =
[
τ 2 τ 2

] [τ 2 + σ̄2
T τ 2

τ 2 τ 2 + σ2
oos

]−1 [
α̂− ε̄
α̂oos

]

=
1

det

[
τ 2 τ 2

] [τ 2 + σ2
oos −τ 2

−τ 2 τ 2 + σ̄2
T

][
α̂− ε̄
α̂oos

]

=
τ 2

det

(
σ2
oos(α̂− ε̄) + σ̄2

T α̂
g
)

=
τ 2(σ̄2

T + σ2
oos)

τ 2(σ̄2
T + σ2

oos) + σ̄2
Tσ

2
oos

(w(α̂− ε̄) + (1− w)αoos)

=
τ 2

τ 2 + σ̄2
Tσ

2
oos/(σ̄

2
T + σ2

oos)
(w(α̂− ε̄) + (1− w)αoos)

=
1

1 + 1
τ2(σ̄−2

T +σ−2
oos)

(w(α̂− ε̄) + (1− w)αoos)

using the notation σ̄2
T = σ̄2/T , σ2

oos = σ2/T oos, and

det = (τ 2 + σ̄2
T )(τ 2 + σ2

oos)− τ 4 = τ 2(σ̄2
T + σ2

oos) + σ̄2
Tσ

2
oos.
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5.3 Empirical Bayes Estimation

For convenient reference, we restate the multi-level hierarchical model of Section 1. For

a factor i in cluster j and corresponding to signal n, the factor is

f it = αi + βirmt + εit

with

αi = αo + cj + sn + wi

where the alpha components are αo = 0, cj ∼ N(0, τ 2
c ), sn ∼ N(0, τ 2

s ), and wi ∼ N(0, τ 2
w).

We write alpha in vector form as

α = αo 1NK +Mc+ Zs+ w (2.38)

where α = (α1, . . . , αNK)′, c = (c1, . . . , cJ)′, s = (s1, . . . , sN)′, w = (w1, . . . , wNK)′, M

is the NK × J matrix of cluster memberships, and Z is the NK × N matrix indicating

the characteristic that factor i is based on. Given the hyperparameters (α0, τc, τs, τw), the

prior mean and covariance matrix of alphas are

E[α] = 0, Ω ≡ Var(α) = MM ′τ 2
c + ZZ ′τ 2

s + INKτ
2
w. (2.39)

The vector of return shocks is εt = (ε1
t , . . . , ε

NK
t )′ which is distributed εt ∼ N(0,Σ).

Given this structure, we estimate the model as follows. The vector of factor returns

ft = (f 1
t , ..., f

NK
t )′ has marginal likelihood—that is, after integrating out the uncertain

alpha components—that is distributed as

ft ∼ N(0, [Ω + Σ])

or, equivalently (treating CAPM betas as known), the estimated alphas are distributed47

α̂ ∼ N(0, [Ω + Σ/T ]).

The matrices Z and M are given by the factor definition and cluster assignment (Table

AIV), respectively. We use a plug-in estimate of the factor CAPM-residual return co-

variance matrix, denoted Σ̂ (discussed below). Finally, given Σ̂, Z, and M , we estimate

the hyperparameters of the prior distribution, (τc, τs, τw) via MLE based on the marginal

likelihood.

This estimation approach is an example of the empirical Bayes method. It approx-

47We abstract from uncertainty in CAPM betas to emphasize the Bayesian updating of alphas. Our
conclusions are qualitatively insensitive to accounting for beta uncertainty.
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imates the fully Bayesian posterior calculation (which requires integrating over a hy-

perprior distribution of hyperparameters, usually an onerous calculation) by setting the

hyperparameters to their most likely values based on the marginal likelihood. It is par-

ticularly well suited to hierarchical Bayesian models in which parameters for individual

observations share some common structure, so that the realized heterogeneity across in-

dividual is informative about sensible values for the hyperparameters of the prior. Our

model and estimation approach implementation is a minor variation on Bayesian hierar-

chical normal mean models that are common in Bayesian statistics (textbook treatments

include Efron, 2012; Gelman et al., 2013; Maritz, 2018). We conduct sensitivity analysis

to ensure that our results are robust to a wide range of hyperparameters (see Figure A6).

Also, we note that our EB methodology is more easily replicable than a full-Bayesian set-

ting with additional hyperpriors as EB relies on a closed-form Bayesian updating rather

than a numerical integration.

To ensure cross-sectional stationarity, we scale each factor such that their monthly

idiosyncratic volatility is 10%/
√

12 (i.e., 10% annualized). To construct a plug-in estimate

of the factor residual return covariance matrix, denoted Σ̂, we face two main empirical

challenges. First, the sample covariance is poorly behaved due the relatively large number

of factors compared to the number of time series observations. Second, we have an

unbalanced panel because different factors come online at different points in time. To

address the first challenge, we impose a block equicorrelation structure on Σ based on

factors’ cluster membership.48 The correlation between factors in clusters i and j is

estimated as the average correlation among all pairs such that one factor is in cluster i

and the other is in j. In our global analyses, blocks correspond to region-cluster pairs. To

address unbalancedness, we use the bootstrap. In particular, we generate 10,000 bootstrap

samples that resample rows of the unbalanced factor return dataset. Each bootstrap

sample is, therefore, also unbalanced, and we use this to produce a distribution of alpha

estimates. From this we calculate Σ̂/T as the covariance of alphas across bootstrap

samples (imposing the block equicorrelation structure).

Table AI shows the estimated hyperparameters across different samples. While most

of our analysis of based on these full-sample estimates, we also consider rolling-estimates

of when considering out-of-sample evidence as seen in Figure A5.

48As advocated by Engle and Kelly (2012) and Elton et al. (2006), block equicorrelation constrains all
pairs of factors in the same block to share a single correlation parameter, and likewise for cross-block
correlations. This stabilizes covariance matrix estimates by dramatically reducing the parameterization
of the correlation matrix, while leaving the individual variance estimates unchanged.
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Sample τc τw τs
USA 0.35% 0.21%
Developed 0.24% 0.18%
Emerging 0.32% 0.24%
USA, Developed & Emerging 0.30% 0.19% 0.10%
World 0.37% 0.23%
World ex. US 0.29% 0.20%
USA - Mega 0.26% 0.16%
USA - Large 0.31% 0.18%
USA - Small 0.44% 0.26%
USA - Micro 0.48% 0.32%
USA - Nano 0.42% 0.28%

Table AI. Hyperparameters of the prior distribution estimated by maximum
likelihood. Here, τc is the estimated dispersion in cluster alphas (e.g., the

dispersion in the alpha of the value cluster alpha, momentum cluster, and so
on). When we estimate a single region, τw is the idiosyncratic dispersion of

alphas within each cluster. When we jointly estimate several regions, then τs
is the estimated dispersion in alphas across signals within each cluster, and
τw is the estimated idiosyncratic dispersion in alphas for factors identified by

their signal and region.

5.4 Differences in Sample and Factor Construction

Here we provide further details on the difference in sample and factor construction vs.

Hou et al. (2020b) accounting for the difference between the first two bars in Figure 1

in our introduction. To re-iterate, with raw returns and capped value weights, we find a

replication rate of 55.6% where as Hou et al. (2020b) finds a replication rate of 35%.

This difference has the following decomposition.49 First, Hou et al. (2020b) focus their

analysis on value-weighted factors rather than the standard Fama and French (1993b)

methodology that gives half the weight to small stocks (or equal-weighting that gives

even more weight to small stocks). However, pure value weighting sometimes leads to

excessively concentrated portfolios that mask the behavior of factors.50 We use a weight-

ing scheme that we refer to as “capped value-weighting” that winsorizes market caps at

the NYSE 80th percentile. This weighting is a helpful compromise between pure value-

weighting and the Fama-French method since our factors continue to emphasize large

stocks, but the capped scheme avoids undue skewness toward a few mega stocks, which in

turn produces more robust factor behavior over time and across countries. Capped value

weights contribute +9.2% to our higher replication rate. Figure A1 reproduces Figure 1

with straight value weights.

49Note that the attribution to specific changes depends on the order in which the changes are applied.
50For example, Nokia stock accounted for more than 70% of the total market capitalization in Finland

in 1999 and 2000.
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Second, for each characteristic, Hou et al. (2020b) construct three variations on each

factor having either 1-month, 6-month, or 12-month holding periods. They treat these as

separate factors so that their factor count essentially multiplies their characteristics count

by a factor of three. In contrast, we focus on 1-month returns because this is the horizon

of interest in almost all of the original studies (and we believe it is the most economically

meaningful since it uses the most current data as theory dictates). Our focus on only the

1-month holding period factor for each characteristic contributes +5.0% to our replication

rate.

Third, we use a longer sample, which contributes +8.3% to the difference in replication

rate. Fourth, we add 15 factors to our sample that were previously studied in the literature

but not studied by Hou et al. (2020b), which has a no effect on the replication rate.

Finally, we use tercile spreads and breakpoints based on all stocks above the NYSE

20th percentile (i.e., non-micro-caps), while Hou et al. (2020b) use decile spreads and

breakpoints based on all NYSE stocks. Our more conservative method leads to a −6.0%

drop in the replication rate. The remaining +4.1% difference in replication rates is due

to minor construction and sample details51. We discuss this decomposition further in

Section 2, where we detail our factor construction choices and discuss why we prefer

them.

Replication Rate with Uncapped Value Weights

In Figure A1, we show an alternative version of Figure 1 with factors constructed using

straight (as opposed to capped) value weights. It shows that all of main our conclusions

remain similar. Our ultimate replication rate in this case is 79.8% (based on global data

and Bayesian model estimates).

51For example we always lag accounting data four months, they use a mixture of updating schemes
and our set of factors is not identical to that in Hou et al. (2020b).
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Figure A1. Replication Rates Versus the Literature (Uncapped
Value-weighting)

Note: This figure reproduces the analysis of figure 1 using uncapped value weights to construct factors.

5.5 Additional Time-Series Results
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Figure A2. Out-of-sample performance of significant factors under empirical
Bayes

Note: The figure shows the cumulative CAPM alpha of an average of factors significant under our
empirical Bayes framework. The significance cutoffs are re-estimated each year with the available data.
Factors are eligible for inclusion after the sample period in the original paper, so all returns are out-of-
sample. The table shows the information ratio (alpha divided by residual volatility) for the full sample
(1990-2020) with t-statistics in parentheses.
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Figure A3. In-Sample versus Out-of-Sample Alphas for US Factors

Note: The figure plots OLS alphas for US factors during the in-sample period (i.e., the period studied in
the original publication) versus out-of-sample alphas. In Panel A, out-of-sample is the time period before
the in-sample period. In Panel B, out-of-sample is the time period before the in-sample period. In Panel
C, out-of-sample includes both the time period before and after the in-sample period. We require at least
five years of out-of-sample data for a factor to be included, amounting to 102, 115 and 119 factors in panel
A, B and C. The figure also reports feasible GLS estimates of out-of-sample alphas on in-sample alphas
and in-sample alphas squared. To implement feasible GLS, we assume that the error variance-covariance
matrix is proportional to the full-sample CAPM residual variance-covariance matrix, Σ̂/T , described in
section 5.3. The blue line is a local polynomial regression fit where observations are weighted by their
vicinity to the point on the x-axis. The shaded area is 95% confidence bands. The dotted line is the 45o

line.
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Figure A4. World Factor Alpha Posterior Distribution Over Time

Note: The figure reports the CAPM alpha and 95% posterior confidence interval for an equal-weighted
portfolio of World factors based on EB posteriors re-estimated in December each year. In contrast to
figure 9, we re-estimate τc and τw at each point in time. Figure A5 shows how the estimated taus evolve
over time.
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Figure A5. World Factor Hyperparameters Over Time

Note: The figure reports the τc and τw used in figure A4.
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5.6 Economic Benefit of More Powerful Tests

Table AII. The Economic Benefit of More Powerful Tests

Region
US Developed ex. US Emerging

(1) (2) (3)

Alpha 0.35∗∗∗ 0.24∗∗∗ 0.27∗∗∗

(5.05) (5.33) (3.66)

Market Beta −0.12∗∗∗ −0.09∗∗∗ −0.04∗∗∗

(−4.33) (−5.68) (−3.14)

Observations 540 420 388
Adjusted R2 0.17 0.18 0.03

Note: The dependent variable is an equal-weighted portfolio of factors that are significant under empirical
Bayes (EB), but not under OLS with the Benjamini-Yekutieli adjustment (BY). A factor is significant
under EB when the probability of a negative alpha is below 2.5%. A factor is significant under BY when
the adjusted two-sided p-value is below 5%, and the OLS alpha estimate is positive. Starting in 1959, we
update the posterior distribution and the OLS estimates by the end of each year and invest in marginally
significant factors over the subsequent year. To avoid lookahead bias, we only use factors after the sample
in the original paper has ended. We only consider factors found to be significant by the original reference.
The alpha estimates are in percentages, with t-statistics in parentheses. Standard errors are computed
following Newey and West (1987) with 6 lags. The stars indicate ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

5.7 Accounting for Publication Bias

Harvey et al. (2016b) provides a framework to estimate the total number of factors re-

searchers have tried. The framework is based on t-statistics of published factors and

estimation framework to determine the number of unobserved factors.

One set of simulations is constructed to match the baseline scenario of (Harvey et al.,

2016b, Table 5.A, row 1), which estimates that researchers have tried M = 1, 297 factors,

of which 39.6% of have zero alpha and another is based on the more conservative scenario

of (Harvey et al., 2016b, Table 5.B, row 1), which implies that researchers have tried 2458

factors, of which 68.3% have zero alpha. Harvey et al. (2016b) states that “the average

annual Sharpe ratio for these [true] factors is 0.44.”

To incorporate these unobserved factors into our framework, we proceed as follows for

the baseline scenario. We simulate a total of 1,300 factors in 26 clusters of 50 factors per

cluster. We let all factors in 10 clusters have true alphas equal to zero while the remaining

clusters have non-zero true alphas. For each of the clusters with non-zero alphas, we set

the cluster alpha to cj = 0.44×10%/12 so that the monthly abnormal return corresponds
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to an annual Sharpe ratio of 0.44 given the annual volatility of 10%. Finally, we draw each

factor’s true alpha from αi ∼ N(cj, τ 2
w), and then simulate 70 years of monthly returns

with within-cluster correlation of 0.58 and 0.02 otherwise.52 Finally, we estimate prior

parameters τ using this data with the same method that we used on the observed data.

We repeat this simulation process and compute the average τc, which is interpreted as a

value that accounts for unobserved factors of the form implied by Harvey et al. (2016b).

We note that we are implicitly assuming that the unobserved factors belong to different

clusters, such that observing new poor performing factors would lead to more shrinkage

toward zero via a lower τc, but not via different cluster mean returns.

Similarly for the conservative scenario, we simulate a total of 2500 factors in 50 clusters

of 50 factors per cluster. We let all factors in 16 clusters have true alphas equal to

zero while the remaining clusters have non-zero true alphas as described above. Figure

A6 shows the US replication rate under these alternative hyperparameters of the prior

distribution.
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Harvey et al. (2016): Conservative Harvey et al. (2016) : Baseline Estimated from Data

Figure A6. Replication Rate with Prior Estimated in Light of Unobserved
Factors

Note: The figure shows how the replication rate in the US varies when changing the τc and τw parameter.
The dotted line shows our replication rate of 82.4%. The data estimate of τw is 0.21%. The green square,
highlights the value estimated in the data τc = 0.35%. The red triangle and the blue circle highlights
values that are found by estimating the empirical Bayes model according to assumptions about unobserved
factors from Harvey et al. (2016b). The values are τc = 0.28% in the baseline scenario and τc = 0.20% in
the conservative scenario. A description of this approach can be found in the appendix, section 5.7.

52The values are calibrated to match the data on US factors.
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5.8 Results by Cluster, Region, and Size
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Figure A7. Replication Rates across Regions by Cluster

Note: Share of factors within each cluster where the 95% posterior intervals does not include zero.

Nano − Replication Rate: 68.1%

Micro − Replication Rate: 85.7%

Small − Replication Rate: 85.7%

Large − Replication Rate: 79.8%

Mega − Replication Rate: 77.3%
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Figure A8. Replication Rates across Size Groups by Cluster

Note: The figure shows replication rates for US factors created within a size group using rank weights.
Mega stocks have a market cap higher than the 80th percentile of NYSE stocks, large stocks are between
the 80th and 50th percentile, small stocks are between the 50th and 20th percentile, micro stocks are
between the 20th and 1st percentile and nano stocks have a market cap below the 1st percentile of NYSE
stocks.
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5.9 Further Results on the Tangency Portfolio

In this section, we elaborate on the influence of factors on the tangency portfolio (TPF).

Figure A9 and A10 shows the tangency weights across regions and size groups. Most

notably, the size cluster is much more important outside of the US and among smaller

stocks.

The previous TPF analysis, and the results shown in figure 13 has used the 13 cluster

level portfolios in addition to the market portfolio as inputs. In the remainder of this

section, we build the TPF at the factor level by using the 119 US factors that were found

to be significant by an earlier paper. We start the analysis in 1972 to ensure that all

factors have non-missing data. The main issue with a factor level analysis, is estimating

the covariance matrix. We follow Pedersen (2021) and adjust the covariance matrix by

shrinking the correlations towards zero

Σw = σ[(1− w)Ω + wI]σ

where Ω is the sample correlation matrix, σ is a matrix with the sample volatilities on

the diagonal and zero elsewhere, I is the identity matrix and w is a shrinkage parameter.

The tangency weights are recovered from the standard formula on the adjusted covariance

matrix. This approach requires choosing the shrinkage parameter. Ideally, we want to

choose the amount of shrinkage to maximize out-of-sample Sharpe ratio. We implement

this intuition via. five-fold cross validation. In each fold, we estimate the tangency

weights with a given shrinkage parameter using 4/5 of the data, and compute the realized

Sharpe ratio on the remaining 1/5. We repeat this procedure 5 times, and compute the

average realized Sharpe ratio for w ∈ (0, 0.1, . . . , 1). In unreported results, we find that

the optimal shrinkage parameter is w = 0.553.

Figure A11 shows the in-sample Sharpe ratio of the tangency portfolio that are allowed

to invest in the market portfolio and factors from one clusters. The dashed line shows

the Sharpe ratio of the market portfolio. Figure A12 shows the in-sample Sharpe ratio

attainable after excluding factors from one cluster at a time. Figure A13 shows the

importance of each factor for the cluster TPF. Specifically, we report the drop in the

maximal attainable Sharpe ratio within a cluster after excluding one of the cluster factors.

Finally, figure A14 shows the importance of each factor for the TPF that includes all

factors. Specifically, we eliminate each factor one at a time and record the resulting drop

in the in-sample Sharpe ratio.

53The average monthly out-of-sample Sharpe ratio with w = 0.5 is 0.56 compared to 0.43 from the
unconstrained solution (w = 0).
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Figure A9. Tangency Portfolio Weights across Regions

Note: Within each region, we compute the cluster return as the equal weighted return of all factors with
data available at a given point in time. We further add the regional market return. We estimate the
tangency weights following the method of Britten-Jones (1999) with a non-negativity constraint. The
error bars are the 90% confidence intervals based on 10,000 bootstrap samples and the percentile method.
The data starts in 1952 for the US, 1987 for Developed ex. US and 1994 for Emerging.
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Figure A10. Tangency Portfolio Weights across Size Groups

Note: Within each size group, we compute the cluster return as the equal weighted return of all factors
with data available at a given point in time. We only use US data. We add the US market return.
We estimate the tangency weights following the method of Britten-Jones (1999) with a non-negativity
constraint. The error bars are the 90% confidence intervals based on 10,000 bootstrap samples and the
percentile method. The data starts in 1963.
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Figure A11. Market + Cluster

Note: Each bar shows the monthly in-sample Sharpe ratio of a tangency portfolio that is allowed to
invest in all factor from one cluster plus the market portfolio. We use the simple enhanced portfolio
optimization method from Pedersen (2021), with a shrinkage parameter of w = 0.5. The analysis is done
on US factors from 1972 to 2020.
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Figure A12. Excluding One Cluster
Note: Each bar shows the monthly in-sample Sharpe ratio of a tangency portfolio that is allowed to invest
in the market portfolio and factors from all clusters except one. We use the simple enhanced portfolio
optimization method from Pedersen (2021), with a shrinkage parameter of w = 0.5. The analysis is done
on US factors from 1972 to 2020.
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Figure A13. Factor importance for cluster TPF
Note: Each bar shows the difference in the monthly in-sample Sharpe ratio of a tangency portfolio that
invest in all factors within a cluster and a tangency portfolio that invest in all cluster factors except one.
We show individual factors by their cluster. We use the simple enhanced portfolio optimization method
from Pedersen (2021), with a shrinkage parameter of w = 0.5. The analysis is done on US factors from
1972 to 2020.
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Figure A14. Factor importance for full TPF
Note: Each bar shows the difference in the monthly in-sample Sharpe ratio of a tangency portfolio that
invest in all factors and a tangency portfolio that invest in all factor except one. We show individual
factors by their cluster. We use the simple enhanced portfolio optimization method from Pedersen (2021),
with a shrinkage parameter of w = 0.5. The analysis is done on US factors from 1972 to 2020.
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5.10 Cluster Construction
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Figure A15. Clustering Factors into Themes

Note: This figures shows a hierarchical clustering of all factors into 13 themes using the sample of US
stocks from 1975-2020. Long high indicates whether the factor is long stocks with a high value of the
underlying characteristic.
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Figure A16. Factor Theme Correlations

Note: This figure shows the average pairwise Pearson correlation between factors from different clusters
(off diagonal elements) or between factors in the same cluster (diagonal elements), using data on US
stocks during the 1975-2020 period.

5.11 Details on Clusters, Factors, and Countries

Table AIII. Factor and Cluster Details

Variable Orig. Orig.

Description Name Citation Sample Sign Signif.

Accruals

Change in current operating work-

ing capital

cowc gr1a Richardson et al. (2005) 1962-2001 -1 1

Operating accruals oaccruals at Sloan (1996) 1962-1991 -1 1

Percent operating accruals oaccruals ni Hafzalla Lundholm and Van Winkle

(2011)

1989-2008 -1 1

Years 16-20 lagged returns, nonan-

nual

seas 16 20na Heston and Sadka (2008) 1965-2002 -1 1

Total accruals taccruals at Richardson et al. (2005) 1962-2001 -1 1
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Percent total accruals taccruals ni Hafzalla Lundholm and Van Winkle

(2011)

1989-2008 -1 1

Debt Issuance

Abnormal corporate investment capex abn Titman Wei and Xie (2004) 1973-1996 -1 1

Growth in book debt (3 years) debt gr3 Lyandres Sun and Zhang (2008) 1970-2005 -1 1

Change in financial liabilities fnl gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in noncurrent operating li-

abilities

ncol gr1a Richardson et al. (2005) 1962-2001 -1 0

Change in net financial assets nfna gr1a Richardson et al. (2005) 1962-2001 1 1

Earnings persistence ni ar1 Francis et al. (2004) 1975-2001 1 0

Net operating assets noa at Hirshleifer et al. (2004) 1964-2002 -1 1

Investment

Liquidity of book assets aliq at Ortiz-Molina and Phillips (2014) 1984-2006 -1 0

Asset Growth at gr1 Cooper Gulen and Schill (2008) 1968-2003 -1 1

Change in common equity be gr1a Richardson et al. (2005) 1962-2001 -1 1

CAPEX growth (1 year) capx gr1 Xie (2001) 1971-1992 -1 0

CAPEX growth (2 years) capx gr2 Anderson and Garcia-Feijoo (2006) 1976-1998 -1 1

CAPEX growth (3 years) capx gr3 Anderson and Garcia-Feijoo (2006) 1976-1998 -1 1

Change in current operating assets coa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in current operating liabil-

ities

col gr1a Richardson et al. (2005) 1962-2001 -1 1

Hiring rate emp gr1 Belo Lin and Bazdresch (2014) 1965-2010 -1 1

Inventory growth inv gr1 Belo and Lin (2011) 1965-2009 -1 1

Inventory change inv gr1a Thomas and Zhang (2002) 1970-1997 -1 1

Change in long-term net operating

assets

lnoa gr1a Fairfield Whisenant and Yohn

(2003)

1964-1993 -1 1

Mispricing factor: Management mispricing mgmtStambaugh and Yuan (2016) 1967-2013 1 1

Change in noncurrent operating as-

sets

ncoa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in net noncurrent operating

assets

nncoa gr1a Richardson et al. (2005) 1962-2001 -1 1

Change in net operating assets noa gr1a Hirshleifer et al. (2004) 1964-2002 -1 1

Change PPE and Inventory ppeinv gr1a Lyandres Sun and Zhang (2008) 1970-2005 -1 1

Long-term reversal ret 60 12 De Bondt and Thaler (1985) 1926-1982 -1 1

Sales Growth (1 year) sale gr1 Lakonishok Shleifer and Vishny

(1994)

1968-1989 -1 1

Sales Growth (3 years) sale gr3 Lakonishok Shleifer and Vishny

(1994)

1968-1989 -1 1

Sales growth (1 quarter) saleq gr1 1967-2016 -1 0

Years 2-5 lagged returns, nonannual seas 2 5na Heston and Sadka (2008) 1965-2002 -1 1

Low Leverage

Firm age age Jiang Lee and Zhang (2005) 1965-2001 -1 1
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Liquidity of market assets aliq mat Ortiz-Molina and Phillips (2014) 1984-2006 -1 0

Book leverage at be Fama and French (1992) 1963-1990 -1 0

The high-low bid-ask spread bidaskhl 21d Corwin and Schultz (2012) 1927-2006 1 1

Cash-to-assets cash at Palazzo (2012) 1972-2009 1 0

Net debt-to-price netdebt me Penman Richardson and Tuna

(2007)

1962-2001 -1 1

Earnings volatility ni ivol Francis et al. (2004) 1975-2001 1 0

R&D-to-sales rd sale Chan Lakonishok and Sougiannis

(2001)

1975-1995 1 0

R&D capital-to-book assets rd5 at Li (2011) 1952-2004 1 0

Asset tangibility tangibility Hahn and Lee (2009) 1973-2001 1 0

Altman Z-score z score Dichev (1998) 1981-1995 1 1

Low Risk

Market Beta beta 60m Fama and MacBeth (1973) 1935-1968 -1 1

Dimson beta beta dimson 21d Dimson (1979) 1955-1974 -1 0

Frazzini-Pedersen market beta betabab 1260d Frazzini and Pedersen (2014) 1926-2012 -1 1

Downside beta betadown 252d Ang Chen and Xing (2006) 1963-2001 -1 1

Earnings variability earnings variabilityFrancis et al. (2004) 1975-2001 -1 0

Idiosyncratic volatility from the

CAPM (21 days)

ivol capm 21d 1967-2016 -1 0

Idiosyncratic volatility from the

CAPM (252 days)

ivol capm 252d Ali Hwang and Trombley (2003) 1976-1997 -1 1

Idiosyncratic volatility from the

Fama-French 3-factor model

ivol ff3 21d Ang et al. (2006) 1963-2000 -1 1

Idiosyncratic volatility from the q-

factor model

ivol hxz4 21d 1967-2016 -1 0

Cash flow volatility ocfq saleq std Huang (2009) 1980-2004 -1 1

Maximum daily return rmax1 21d Bali Cakici and Whitelaw (2011) 1962-2005 -1 1

Highest 5 days of return rmax5 21d Bali, Brown, Murray and Tang

(2017)

1993-2012 -1 1

Return volatility rvol 21d Ang et al. (2006) 1963-2000 -1 1

Years 6-10 lagged returns, nonan-

nual

seas 6 10na Heston and Sadka (2008) 1965-2002 -1 1

Share turnover turnover 126d Datar Naik and Radcliffe (1998) 1963-1991 -1 1

Number of zero trades with

turnover as tiebreaker (1 month)

zero trades 21d Liu (2006) 1963-2003 1 0

Number of zero trades with

turnover as tiebreaker (6 months)

zero trades 126d Liu (2006) 1963-2003 1 1

Number of zero trades with

turnover as tiebreaker (12 months)

zero trades 252d Liu (2006) 1963-2003 1 1

Momentum

Current price to high price over last

year

prc highprc 252dGeorge and Hwang (2004) 1963-2001 1 1
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Residual momentum t-6 to t-1 resff3 6 1 Blitz Huij and Martens (2011) 1930-2009 1 1

Residual momentum t-12 to t-1 resff3 12 1 Blitz Huij and Martens (2011) 1930-2009 1 1

Price momentum t-3 to t-1 ret 3 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Price momentum t-6 to t-1 ret 6 1 Jegadeesh and Titman (1993) 1965-1989 1 1

Price momentum t-9 to t-1 ret 9 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Price momentum t-12 to t-1 ret 12 1 Jegedeesh and Titman (1993) 1965-1989 1 1

Year 1-lagged return, nonannual seas 1 1na Heston and Sadka (2008) 1965-2002 1 1

Profit Growth

Change sales minus change Inven-

tory

dsale dinv Abarbanell and Bushee (1998) 1974-1988 1 1

Change sales minus change receiv-

ables

dsale drec Abarbanell and Bushee (1998) 1974-1988 -1 0

Change sales minus change SG&A dsale dsga Abarbanell and Bushee (1998) 1974-1988 1 0

Change in quarterly return on as-

sets

niq at chg1 1972-2016 1 0

Change in quarterly return on eq-

uity

niq be chg1 1967-2016 1 0

Standardized earnings surprise niq su Foster Olsen and Shevlin (1984) 1974-1981 1 1

Change in operating cash flow to as-

sets

ocf at chg1 Bouchard, Krueger, Landier and

Thesmar (2019)

1990-2015 1 1

Price momentum t-12 to t-7 ret 12 7 Novy-Marx (2012) 1925-2010 1 1

Labor force efficiency sale emp gr1 Abarbanell and Bushee (1998) 1974-1988 1 0

Standardized Revenue surprise saleq su Jegadeesh and Livnat (2006) 1987-2003 1 1

Year 1-lagged return, annual seas 1 1an Heston and Sadka (2008) 1965-2002 1 1

Tax expense surprise tax gr1a Thomas and Zhang (2011) 1977-2006 1 1

Profitability

Coefficient of variation for dollar

trading volume

dolvol var 126d Chordia Subrahmanyam and An-

shuman (2001)

1966-1995 -1 1

Return on net operating assets ebit bev Soliman (2008) 1984-2002 1 1

Profit margin ebit sale Soliman (2008) 1984-2002 1 1

Pitroski F-score f score Piotroski (2000) 1976-1996 1 1

Return on equity ni be Haugen and Baker (1996) 1979-1993 1 1

Quarterly return on equity niq be Hou Xue and Zhang (2015) 1972-2012 1 1

Ohlson O-score o score Dichev (1998) 1981-1995 -1 1

Operating cash flow to assets ocf at Bouchard, Krueger, Landier and

Thesmar (2019)

1990-2015 1 1

Operating profits-to-book equity ope be Fama and French (2015) 1963-2013 1 1

Operating profits-to-lagged book

equity

ope bel1 1967-2016 1 0

Coefficient of variation for share

turnover

turnover var 126dChordia Subrahmanyam and An-

shuman (2001)

1966-1995 -1 1

Quality
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Capital turnover at turnover Haugen and Baker (1996) 1979-1993 1 0

Cash-based operating profits-to-

book assets

cop at 1967-2016 1 0

Cash-based operating profits-to-

lagged book assets

cop atl1 Ball et al. (2016) 1963-2014 1 1

Change gross margin minus change

sales

dgp dsale Abarbanell and Bushee (1998) 1974-1988 1 0

Gross profits-to-assets gp at Novy-Marx (2013) 1963-2010 1 1

Gross profits-to-lagged assets gp atl1 1967-2016 1 0

Mispricing factor: Performance mispricing perf Stambaugh and Yuan (2016) 1967-2013 1 1

Number of consecutive quarters

with earnings increases

ni inc8q Barth Elliott and Finn (1999) 1982-1992 1 0

Quarterly return on assets niq at Balakrishnan Bartov and Faurel

(2010)

1976-2005 1 1

Operating profits-to-book assets op at 1963-2013 1 1

Operating profits-to-lagged book

assets

op atl1 Ball et al. (2016) 1963-2014 1 1

Operating leverage opex at Novy-Marx (2011) 1963-2008 1 1

Quality minus Junk: Composite qmj Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Quality minus Junk: Growth qmj growth Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Quality minus Junk: Profitability qmj prof Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Quality minus Junk: Safety qmj safety Assness, Frazzini and Pedersen

(2018)

1957-2016 1 1

Assets turnover sale bev Soliman (2008) 1984-2002 1 1

Seasonality

Market correlation corr 1260d Assness, Frazzini, Gormsen, Peder-

sen (2020)

1925-2015 -1 1

Coskewness coskew 21d Harvey and Siddique (2000) 1963-1993 -1 1

Net debt issuance dbnetis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Kaplan-Zingales index kz index Lamont Polk and Saa-Requejo

(2001)

1968-1995 1 1

Change in long-term investments lti gr1a Richardson et al. (2005) 1962-2001 -1 1

Taxable income-to-book income pi nix Lev and Nissim (2004) 1973-2000 1 1

Years 2-5 lagged returns, annual seas 2 5an Heston and Sadka (2008) 1965-2002 1 1

Years 6-10 lagged returns, annual seas 6 10an Heston and Sadka (2008) 1965-2002 1 1

Years 11-15 lagged returns, annual seas 11 15an Heston and Sadka (2008) 1965-2002 1 1

Years 11-15 lagged returns, nonan-

nual

seas 11 15na Heston and Sadka (2008) 1965-2002 -1 0

Years 16-20 lagged returns, annual seas 16 20an Heston and Sadka (2008) 1965-2002 1 1
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Change in short-term investments sti gr1a Richardson et al. (2005) 1962-2001 1 0

Size

Amihud Measure ami 126d Amihud (2002) 1964-1997 1 1

Dollar trading volume dolvol 126d Brennan Chordia and Subrah-

manyam (1998)

1966-1995 -1 1

Market Equity market equity Banz (1981) 1926-1975 -1 1

Price per share prc Miller and Scholes (1982) 1940-1978 -1 1

R&D-to-market rd me Chan Lakonishok and Sougiannis

(2001)

1975-1995 1 1

Short-Term Reversal

Idiosyncratic skewness from the

CAPM

iskew capm 21d 1967-2016 -1 0

Idiosyncratic skewness from the

Fama-French 3-factor model

iskew ff3 21d Bali Engle and Murray (2016) 1925-2021 -1 1

Idiosyncratic skewness from the q-

factor model

iskew hxz4 21d 1967-2016 -1 0

Short-term reversal ret 1 0 Jegadeesh (1990) 1929-1982 -1 1

Highest 5 days of return scaled by

volatility

rmax5 rvol 21d Assness, Frazzini, Gormsen, Peder-

sen (2020)

1925-2015 -1 1

Total skewness rskew 21d Bali Engle and Murray (2016) 1925-2021 -1 1

Value

Assets-to-market at me Fama and French (1992) 1963-1990 1 0

Book-to-market equity be me Rosenberg Reid and Lanstein

(1985)

1973-1984 1 1

Book-to-market enterprise value bev mev Penman Richardson and Tuna

(2007)

1962-2001 1 1

Net stock issues chcsho 12m Pontiff and Woodgate (2008) 1970-2003 -1 1

Debt-to-market debt me Bhandari (1988) 1948-1979 1 1

Dividend yield div12m me Litzenberger and Ramaswamy

(1979)

1940-1980 1 1

Ebitda-to-market enterprise value ebitda mev Loughran and Wellman (2011) 1963-2009 1 1

Equity duration eq dur Dechow Sloan and Soliman (2004) 1962-1998 -1 1

Net equity issuance eqnetis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Equity net payout eqnpo 12m Daniel and Titman (2006) 1968-2003 1 1

Net payout yield eqnpo me Boudoukh et al. (2007) 1984-2003 1 1

Payout yield eqpo me Boudoukh et al. (2007) 1984-2003 1 1

Free cash flow-to-price fcf me Lakonishok Shleifer and Vishny

(1994)

1963-1990 1 1

Intrinsic value-to-market ival me Frankel and Lee (1998) 1975-1993 1 0

Net total issuance netis at Bradshaw Richardson and Sloan

(2006)

1971-2000 -1 1

Earnings-to-price ni me Basu (1983) 1963-1979 1 1
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Operating cash flow-to-market ocf me Desai Rajgopal and Venkatachalam

(2004)

1973-1997 1 1

Sales-to-market sale me Barbee Mukherji and Raines (1996) 1979-1991 1 1

Note: This table shows cluster names as underlined section headings and, for each cluster, a description of

the factors included, the variable name used in the code, the original reference, the sample period used in the

original reference, the sign of the factor (“1” means “long”, “-1” means “short”), and whether the original

reference found the factor to be significant (“1” means “yes”, “0” means “no”). For example, the first value

factor “at me” goes long stocks with high values of assets-to-market and shorts those with low values (and

would be done the reverse if the sign was “-1” instead of “1”).
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Table AIV. Alpha Across Regions

US Developed ex. US Emerging

Factor αOLS αEB Pr(αEB < 0) αOLS αEB Pr(αEB < 0) αOLS αEB Pr(αEB < 0)

1 aliq mat* -0.35 -0.31 1.00 -0.33 -0.27 1.00 -0.31 -0.28 1.00

2 dsale drec* -0.25 -0.22 1.00 -0.05 -0.11 0.86 -0.23 -0.18 0.95

3 bidaskhl 21d -0.24 -0.25 1.00 -0.62 -0.42 1.00 -0.50 -0.38 1.00

4 ni ivol* -0.23 -0.18 0.99 -0.20 -0.13 0.90 0.03 -0.07 0.75

5 at be* -0.16 -0.10 0.92 0.06 0.04 0.34 0.12 0.04 0.37

6 age -0.15 -0.18 1.00 -0.64 -0.44 1.00 -0.59 -0.41 1.00

7 kz index -0.13 -0.12 0.93 -0.08 -0.08 0.79 -0.32 -0.15 0.93

8 turnover var 126d -0.13 -0.12 0.96 -0.02 -0.03 0.60 0.20 0.01 0.46

9 prc -0.11 -0.02 0.60 0.02 0.06 0.26 0.07 0.07 0.23

10 sti gr1a* -0.09 -0.02 0.60 -0.01 0.03 0.37 0.17 0.08 0.21

11 dolvol var 126d -0.07 -0.07 0.85 -0.07 -0.03 0.63 0.20 0.02 0.43

12 dsale dsga* -0.07 -0.02 0.58 0.20 0.13 0.11 0.33 0.15 0.09

13 ni ar1* -0.02 -0.07 0.81 0.04 0.03 0.39 -0.29 -0.06 0.71

14 sale emp gr1* -0.01 -0.03 0.64 -0.24 -0.10 0.83 0.11 -0.00 0.51

15 netdebt me -0.01 0.03 0.32 0.11 0.11 0.13 0.20 0.12 0.13

16 z score -0.00 0.03 0.36 -0.02 0.03 0.36 0.20 0.10 0.17

17 iskew hxz4 21d* 0.01 -0.08 0.80 -0.50 -0.18 0.94 -0.37 -0.16 0.90

18 rd sale* 0.01 0.06 0.22 0.22 0.18 0.03 0.25 0.15 0.08

19 market equity 0.02 0.13 0.04 0.13 0.21 0.02 0.55 0.37 0.00

20 cash at* 0.04 0.07 0.18 0.07 0.10 0.15 0.24 0.14 0.08

21 ami 126d 0.05 0.14 0.03 0.14 0.21 0.02 0.38 0.28 0.00

22 ncol gr1a* 0.05 -0.01 0.57 -0.07 0.02 0.42 -0.08 0.02 0.41

23 debt me 0.09 0.06 0.21 0.03 0.05 0.31 -0.06 -0.00 0.51

24 ni inc8q* 0.10 0.13 0.07 0.38 0.25 0.02 0.26 0.18 0.07

25 tax gr1a 0.10 0.09 0.13 0.06 0.10 0.17 0.30 0.16 0.06

26 saleq gr1* 0.11 -0.03 0.66 0.03 0.04 0.37 -0.70 -0.16 0.91

27 ret 60 12 0.12 0.03 0.31 0.11 0.19 0.03 0.37 0.30 0.00

28 rd5 at* 0.12 0.17 0.01 0.35 0.29 0.00 0.63 0.31 0.01

29 coskew 21d 0.12 0.12 0.05 0.28 0.19 0.02 -0.04 0.08 0.20

30 saleq su 0.12 0.16 0.04 0.47 0.30 0.01 0.54 0.29 0.01

31 col gr1a 0.13 0.01 0.46 0.00 0.07 0.23 -0.11 0.05 0.31

32 iskew ff3 21d 0.13 0.08 0.18 -0.20 0.01 0.46 0.15 0.11 0.17

33 tangibility* 0.13 0.17 0.01 0.26 0.25 0.00 0.41 0.28 0.00

34 lti gr1a 0.15 0.09 0.13 -0.01 0.04 0.35 -0.17 -0.01 0.52

35 pi nix 0.16 0.14 0.05 0.06 0.11 0.14 0.09 0.12 0.13

36 bev mev 0.17 0.16 0.02 0.28 0.25 0.00 0.27 0.22 0.02

37 gp atl1* 0.18 0.20 0.01 0.22 0.24 0.01 0.53 0.31 0.00

38 at me* 0.18 0.16 0.01 0.20 0.20 0.02 0.23 0.19 0.04

39 seas 16 20na 0.19 0.04 0.32 -0.13 0.02 0.44 -0.32 -0.02 0.57

40 zero trades 21d* 0.19 0.16 0.01 0.21 0.18 0.04 0.40 0.26 0.01

41 ebit sale 0.20 0.18 0.01 0.21 0.18 0.03 0.25 0.15 0.07

42 ret 3 1 0.21 0.11 0.06 0.26 0.15 0.06 0.08 0.08 0.21

43 be me 0.23 0.22 0.00 0.32 0.29 0.00 0.32 0.27 0.01

44 op atl1 0.23 0.23 0.00 0.25 0.25 0.01 0.43 0.27 0.00
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45 at turnover* 0.23 0.23 0.00 0.23 0.24 0.01 0.37 0.25 0.01

46 opex at 0.24 0.22 0.00 0.22 0.22 0.01 0.23 0.18 0.04

47 ope bel1* 0.24 0.23 0.00 0.30 0.27 0.00 0.43 0.26 0.00

48 earnings variability* 0.24 0.16 0.02 0.09 0.07 0.24 -0.00 0.06 0.28

49 seas 1 1na 0.26 0.17 0.01 0.23 0.14 0.06 0.28 0.21 0.02

50 dolvol 126d 0.26 0.34 0.00 0.27 0.35 0.00 0.53 0.43 0.00

51 be gr1a 0.26 0.13 0.05 0.09 0.15 0.06 -0.10 0.10 0.16

52 div12m me 0.27 0.27 0.00 0.51 0.46 0.00 0.71 0.51 0.00

53 sale me 0.28 0.26 0.00 0.35 0.33 0.00 0.42 0.34 0.00

54 ocfq saleq std 0.28 0.25 0.00 0.38 0.30 0.00 0.69 0.39 0.00

55 niq at 0.29 0.36 0.00 0.75 0.57 0.00 0.96 0.58 0.00

56 sale gr3 0.29 0.16 0.02 0.09 0.19 0.03 0.15 0.23 0.02

57 sale gr1 0.30 0.16 0.02 0.17 0.20 0.02 -0.19 0.08 0.22

58 ni be 0.30 0.28 0.00 0.42 0.33 0.00 0.31 0.23 0.01

59 ivol capm 252d 0.30 0.26 0.00 0.41 0.30 0.00 0.21 0.23 0.01

60 seas 2 5na 0.31 0.22 0.00 0.36 0.41 0.00 0.67 0.54 0.00

61 ret 6 1 0.31 0.22 0.00 0.33 0.23 0.01 0.38 0.29 0.00

62 seas 11 15na* 0.31 0.22 0.00 -0.07 0.08 0.23 -0.26 0.05 0.34

63 o score 0.31 0.29 0.00 0.38 0.33 0.00 0.45 0.31 0.00

64 beta dimson 21d* 0.31 0.26 0.00 0.33 0.24 0.00 0.06 0.14 0.08

65 aliq at* 0.31 0.17 0.01 0.04 0.14 0.08 -0.07 0.12 0.13

66 dgp dsale* 0.31 0.23 0.00 -0.11 0.02 0.44 -0.03 0.02 0.43

67 rd me 0.32 0.39 0.00 0.36 0.39 0.00 0.39 0.39 0.00

68 corr 1260d 0.32 0.29 0.00 0.24 0.27 0.00 0.26 0.26 0.00

69 qmj safety 0.33 0.34 0.00 0.32 0.36 0.00 0.81 0.51 0.00

70 emp gr1 0.34 0.22 0.00 0.16 0.28 0.00 0.50 0.41 0.00

71 eq dur 0.34 0.33 0.00 0.38 0.37 0.00 0.52 0.41 0.00

72 betadown 252d 0.35 0.31 0.00 0.48 0.36 0.00 0.25 0.27 0.00

73 prc highprc 252d 0.35 0.26 0.00 0.38 0.27 0.00 0.40 0.32 0.00

74 turnover 126d 0.36 0.32 0.00 0.50 0.39 0.00 0.50 0.39 0.00

75 ret 1 0 0.36 0.29 0.00 0.20 0.28 0.00 0.07 0.20 0.03

76 gp at 0.36 0.37 0.00 0.31 0.36 0.00 0.78 0.49 0.00

77 beta 60m 0.37 0.32 0.00 0.38 0.32 0.00 0.43 0.35 0.00

78 taccruals at 0.37 0.20 0.01 0.06 0.15 0.07 -0.00 0.12 0.13

79 zero trades 126d 0.38 0.34 0.00 0.52 0.41 0.00 0.51 0.41 0.00

80 ival me* 0.38 0.35 0.00 0.38 0.37 0.00 0.40 0.36 0.00

81 seas 2 5an 0.39 0.38 0.00 0.55 0.45 0.00 0.46 0.41 0.00

82 ope be 0.39 0.36 0.00 0.45 0.39 0.00 0.49 0.36 0.00

83 sale bev 0.40 0.39 0.00 0.32 0.35 0.00 0.59 0.41 0.00

84 niq be 0.41 0.43 0.00 0.83 0.61 0.00 0.92 0.59 0.00

85 niq at chg1* 0.41 0.38 0.00 0.18 0.32 0.00 0.90 0.48 0.00

86 ret 9 1 0.41 0.32 0.00 0.42 0.32 0.00 0.57 0.44 0.00

87 taccruals ni 0.42 0.22 0.00 0.04 0.12 0.11 -0.18 0.04 0.34

88 dbnetis at 0.42 0.37 0.00 0.14 0.28 0.00 0.59 0.41 0.00

89 ebit bev 0.42 0.39 0.00 0.33 0.35 0.00 0.62 0.41 0.00

90 iskew capm 21d* 0.42 0.33 0.00 -0.04 0.16 0.05 0.21 0.24 0.01

91 eqpo me 0.42 0.38 0.00 0.37 0.37 0.00 0.43 0.37 0.00
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92 seas 16 20an 0.42 0.38 0.00 0.51 0.38 0.00 0.22 0.33 0.00

93 op at 0.42 0.40 0.00 0.46 0.42 0.00 0.52 0.40 0.00

94 betabab 1260d 0.42 0.39 0.00 0.61 0.50 0.00 0.70 0.53 0.00

95 seas 1 1an 0.42 0.36 0.00 0.47 0.36 0.00 0.11 0.23 0.01

96 ivol capm 21d* 0.42 0.38 0.00 0.53 0.43 0.00 0.45 0.40 0.00

97 ni me 0.43 0.41 0.00 0.41 0.43 0.00 0.76 0.55 0.00

98 seas 11 15an 0.43 0.38 0.00 0.20 0.31 0.00 0.39 0.34 0.00

99 at gr1 0.43 0.29 0.00 0.08 0.22 0.01 0.24 0.31 0.00

100 zero trades 252d 0.44 0.40 0.00 0.57 0.45 0.00 0.54 0.45 0.00

101 ivol hxz4 21d* 0.44 0.39 0.00 0.38 0.37 0.00 0.88 0.52 0.00

102 ebitda mev 0.44 0.43 0.00 0.46 0.46 0.00 0.70 0.53 0.00

103 eqnpo 12m 0.45 0.44 0.00 0.64 0.58 0.00 0.72 0.58 0.00

104 capx gr3 0.45 0.31 0.00 0.41 0.39 0.00 -0.02 0.25 0.01

105 niq su 0.47 0.41 0.00 0.24 0.35 0.00 0.78 0.46 0.00

106 rvol 21d 0.47 0.42 0.00 0.52 0.42 0.00 0.33 0.35 0.00

107 ivol ff3 21d 0.48 0.43 0.00 0.45 0.41 0.00 0.72 0.52 0.00

108 ocf me 0.49 0.46 0.00 0.31 0.40 0.00 0.92 0.63 0.00

109 ret 12 7 0.49 0.44 0.00 0.54 0.45 0.00 0.41 0.39 0.00

110 capex abn 0.49 0.35 0.00 0.27 0.32 0.00 0.06 0.27 0.01

111 niq be chg1* 0.50 0.44 0.00 0.20 0.35 0.00 0.87 0.50 0.00

112 chcsho 12m 0.50 0.46 0.00 0.42 0.41 0.00 0.28 0.33 0.00

113 resff3 6 1 0.51 0.39 0.00 0.56 0.43 0.00 0.47 0.41 0.00

114 eqnpo me 0.51 0.47 0.00 0.35 0.40 0.00 0.62 0.49 0.00

115 coa gr1a 0.51 0.37 0.00 0.17 0.30 0.00 0.26 0.35 0.00

116 qmj growth 0.52 0.44 0.00 0.24 0.29 0.00 0.25 0.26 0.01

117 eqnetis at 0.52 0.49 0.00 0.54 0.52 0.00 0.59 0.51 0.00

118 ret 12 1 0.52 0.42 0.00 0.47 0.37 0.00 0.47 0.41 0.00

119 rskew 21d 0.52 0.42 0.00 0.08 0.26 0.01 0.19 0.27 0.00

120 netis at 0.53 0.50 0.00 0.53 0.52 0.00 0.68 0.55 0.00

121 seas 6 10na 0.53 0.47 0.00 0.65 0.50 0.00 0.36 0.40 0.00

122 mispricing perf 0.55 0.52 0.00 0.57 0.51 0.00 0.53 0.46 0.00

123 f score 0.56 0.51 0.00 0.51 0.47 0.00 0.57 0.45 0.00

124 rmax1 21d 0.56 0.50 0.00 0.59 0.48 0.00 0.38 0.40 0.00

125 ocf at chg1 0.56 0.49 0.00 0.48 0.45 0.00 0.46 0.43 0.00

126 seas 6 10an 0.57 0.54 0.00 0.99 0.65 0.00 0.33 0.48 0.00

127 fcf me 0.58 0.56 0.00 0.50 0.55 0.00 1.05 0.73 0.00

128 rmax5 21d 0.58 0.51 0.00 0.63 0.51 0.00 0.31 0.38 0.00

129 capx gr2 0.60 0.44 0.00 0.35 0.41 0.00 0.10 0.34 0.00

130 qmj prof 0.60 0.55 0.00 0.48 0.48 0.00 0.59 0.48 0.00

131 qmj 0.60 0.56 0.00 0.55 0.52 0.00 0.62 0.50 0.00

132 capx gr1* 0.64 0.47 0.00 0.32 0.41 0.00 0.15 0.37 0.00

133 debt gr3 0.67 0.50 0.00 0.36 0.43 0.00 0.22 0.39 0.00

134 rmax5 rvol 21d 0.67 0.56 0.00 0.34 0.43 0.00 0.04 0.29 0.00

135 lnoa gr1a 0.69 0.52 0.00 0.29 0.39 0.00 0.07 0.33 0.00

136 fnl gr1a 0.71 0.54 0.00 0.25 0.40 0.00 0.45 0.48 0.00

137 ppeinv gr1a 0.71 0.52 0.00 0.24 0.36 0.00 0.07 0.32 0.00

138 oaccruals at 0.71 0.54 0.00 0.38 0.48 0.00 0.65 0.57 0.00
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139 inv gr1a 0.72 0.55 0.00 0.25 0.39 0.00 0.29 0.44 0.00

140 nfna gr1a 0.73 0.56 0.00 0.20 0.40 0.00 0.56 0.53 0.00

141 cop atl1 0.75 0.68 0.00 0.46 0.52 0.00 0.77 0.61 0.00

142 dsale dinv 0.75 0.57 0.00 0.21 0.30 0.00 0.03 0.25 0.01

143 oaccruals ni 0.76 0.55 0.00 0.15 0.35 0.00 0.57 0.51 0.00

144 ocf at 0.77 0.71 0.00 0.72 0.65 0.00 0.68 0.58 0.00

145 mispricing mgmt 0.78 0.63 0.00 0.58 0.64 0.00 0.66 0.68 0.00

146 ncoa gr1a 0.80 0.61 0.00 0.33 0.45 0.00 0.29 0.47 0.00

147 inv gr1 0.80 0.62 0.00 0.47 0.52 0.00 0.06 0.38 0.00

148 resff3 12 1 0.81 0.69 0.00 0.98 0.80 0.00 0.72 0.68 0.00

149 nncoa gr1a 0.82 0.63 0.00 0.28 0.43 0.00 0.30 0.47 0.00

150 cowc gr1a 0.85 0.64 0.00 0.40 0.51 0.00 0.57 0.57 0.00

151 noa at 0.87 0.66 0.00 0.36 0.47 0.00 0.22 0.44 0.00

152 noa gr1a 0.91 0.75 0.00 0.54 0.64 0.00 0.64 0.70 0.00

153 cop at* 1.02 0.91 0.00 0.62 0.69 0.00 0.85 0.73 0.00

Note: The table shows monthly alpha in percentages across three different regions. αOLS is the intercept

from an OLS regression of the factor return on the regional market return. αEB is the factor-region specific

posterior mean found via the empricial Bayes procedure applied jointly to all the factor-region specific factors.

Pr(αEB < 0) is the probability that the alpha is negative based on the posterior distribution from the EB

procedure. We count a factor as replicated if this probability is below 2.5%. The residual volatility of all

strategies have been scaled to 10% annualized. A “*” indicates that the original paper did not propose the

factors as a significant predictor of realized returns.
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Table AV. Country Information

Country MSCI Start Stocks Mega Stocks Total Market Cap Median MC

1 USA Developed 1926-01-31 4,356 449 4.28e+07 796

2 CHN Emerging 1991-02-28 4,007 102 1.07e+07 816

3 JPN Developed 1986-01-31 3,867 88 7.05e+06 176

4 HKG Developed 1986-01-31 2,352 61 5.33e+06 92

5 GBR Developed 1985-12-31 1,650 36 3.14e+06 158

6 FRA Developed 1986-01-31 693 36 2.94e+06 121

7 SAU Emerging 2000-02-29 199 8 2.61e+06 460

8 DEU Developed 1986-01-31 659 36 2.58e+06 155

9 IND Emerging 1988-09-30 3,527 26 2.57e+06 10

10 KOR Emerging 1986-02-28 2,258 21 2.09e+06 131

11 CAN Developed 1982-03-31 718 35 2.08e+06 198

12 TWN Emerging 1988-02-29 1,951 12 1.77e+06 121

13 AUS Developed 1985-11-30 1,702 19 1.68e+06 51

14 CHE Developed 1986-01-31 233 22 1.66e+06 863

15 NLD Developed 1986-01-31 119 17 1.11e+06 939

16 SWE Developed 1986-01-31 688 16 1.00e+06 82

17 ITA Developed 1986-01-31 359 11 7.68e+05 121

18 ESP Developed 1986-01-31 182 12 7.02e+05 239

19 RUS Emerging 1995-08-31 186 11 6.48e+05 184

20 DNK Developed 1986-01-31 161 8 5.90e+05 184

21 BRA Emerging 1988-05-31 220 6 5.90e+05 575

22 SGP Developed 1986-01-31 562 7 5.31e+05 59

23 THA Emerging 1986-07-31 762 5 5.30e+05 75

24 IDN Emerging 1989-01-31 656 6 4.93e+05 82

25 MYS Emerging 1986-01-31 923 2 4.44e+05 55

26 ZAF Emerging 1986-01-31 261 3 4.07e+05 137

27 BEL Developed 1986-01-31 131 4 3.94e+05 431

28 NOR Developed 1986-01-31 272 3 3.44e+05 230

29 MEX Emerging 1986-02-28 117 3 3.39e+05 992

30 FIN Developed 1986-01-31 152 6 3.15e+05 218

31 PHL Emerging 1986-01-31 248 2 2.66e+05 164

32 TUR Emerging 1990-03-31 389 1 2.38e+05 119

33 ARE Emerging 2001-06-30 104 4 2.29e+05 284

34 ISR Developed 1994-12-31 415 1 2.23e+05 110

35 VNM Frontier 2006-08-31 713 0 1.80e+05 18

36 POL Emerging 1993-07-31 706 1 1.78e+05 14

37 CHL Emerging 1989-01-31 174 0 1.71e+05 221

38 QAT Emerging 2001-12-31 47 2 1.65e+05 971

39 IRL Developed 1986-01-31 33 4 1.65e+05 652

40 NZL Developed 1986-01-31 122 0 1.38e+05 196

41 AUT Developed 1986-01-31 68 0 1.26e+05 327

42 KWT Frontier 2001-01-31 163 2 9.84e+04 80

43 PER Emerging 1990-01-31 103 0 8.95e+04 81
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44 COL Emerging 1989-01-31 44 1 8.81e+04 404

45 PRT Developed 1986-08-31 44 2 8.55e+04 97

46 MAR Frontier 1995-09-30 71 0 6.51e+04 183

47 GRC Emerging 1988-09-30 149 0 5.20e+04 33

48 PAK Emerging 1992-09-30 411 0 4.97e+04 19

49 ARG Emerging 1988-09-30 68 1 4.95e+04 113

50 NGA Frontier 1993-11-30 150 0 4.68e+04 11

51 BGD Frontier 2002-05-31 324 0 4.40e+04 30

52 EGY Emerging 1996-12-31 204 0 3.87e+04 46

53 HUN Emerging 1993-06-30 33 0 2.70e+04 54

54 CZE Emerging 1995-01-31 14 0 2.67e+04 282

55 ROU Frontier 1997-11-30 76 0 2.55e+04 29

56 BHR Frontier 2001-03-31 26 0 2.14e+04 243

57 KEN Frontier 1993-11-30 50 0 2.09e+04 30

58 HRV Frontier 1997-11-30 73 0 2.07e+04 35

59 BGR Standalone 1995-12-31 113 0 1.68e+04 24

60 JOR Frontier 1993-08-31 154 0 1.63e+04 18

61 OMN Frontier 1998-03-31 107 0 1.62e+04 35

62 LKA Frontier 1987-06-30 265 0 1.55e+04 15

63 TTO Standalone 1997-08-31 19 0 1.29e+04 292

64 KAZ Frontier 2009-06-30 12 0 1.21e+04 394

65 ISL Standalone 1995-12-31 22 0 1.20e+04 329

66 JAM Standalone 1993-12-31 66 0 1.13e+04 29

67 SVN Frontier 1995-03-31 22 0 8.50e+03 122

68 TUN Frontier 1995-09-30 74 0 8.46e+03 38

69 CIV Frontier 2002-04-30 39 0 7.61e+03 85

70 MUS Frontier 1995-08-31 62 0 7.14e+03 48

71 LUX Not Rated 1986-01-31 8 0 7.14e+03 393

72 LTU Frontier 1995-10-31 28 0 5.51e+03 61

73 MLT Standalone 1995-08-31 22 0 5.05e+03 124

74 LBN Standalone 1997-11-30 8 0 4.12e+03 335

75 EST Frontier 1996-01-31 19 0 3.48e+03 69

76 TZA Not Rated 2000-07-31 16 0 3.34e+03 16

77 SRB Frontier 2009-09-30 29 0 3.17e+03 10

78 BWA Standalone 1995-09-30 22 0 3.13e+03 91

79 SVK Not Rated 1986-01-31 10 0 3.12e+03 99

80 CYP Not Rated 1994-01-31 37 0 3.12e+03 21

81 PSE Standalone 2008-07-31 27 0 2.97e+03 59

82 GHA Not Rated 1997-11-30 16 0 2.89e+03 67

83 BMU Not Rated 2007-08-31 8 0 2.51e+03 118

84 NAM Not Rated 1996-06-30 8 0 2.18e+03 329

85 MWI Not Rated 2008-08-31 12 0 2.15e+03 118

86 ECU Not Rated 1999-04-30 2 0 1.85e+03 927

87 LVA Not Rated 1997-10-31 20 0 1.17e+03 13

88 UGA Not Rated 2011-10-31 9 0 1.15e+03 97
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89 ZMB Not Rated 1996-03-31 10 0 5.27e+02 26

90 UKR Standalone 2008-02-29 4 0 3.28e+02 52

91 GGY Not Rated 2015-04-30 2 0 2.25e+02 113

92 IRN Not Rated 2002-05-31 0 0 0.00e+00 0

93 URY Not Rated 1996-06-30 0 0 0.00e+00 0

All 4.021700e+04 1,092 1.01e+08

Note: The table shows summary statistics by the country where a security is listed. We include common stocks

that are the primary security of the underlying firm, traded on a standard exchange, with non-missing return

and market equity data. Country is the ISO code of the underlying exchange country. For further information,

see https://en.wikipedia.org/wiki/List of ISO 3166 country codes. MSCI shows the MSCI classification of

each country as of January 7th 2021. For the most recent classification, see https://www.msci.com/market-

classification. Start is the first date with a valid observation. In the next 4 columns, the data is shown as

of December 31st 2020. Stocks is the number of stocks available. Mega stocks is the number of stocks with

a market cap above the 80th percentile of NYSE stocks. Total Market Cap is the aggregate market cap in

million USD. Median MC is the median market cap in million USD.
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Data Documentation

5.12 Global Factor Data Documentation

We end the Appendix with a documentation of our global factor data and how to use it to

replicate our results and for future research. We will continue to update this data and its

documentation as seen on our websites. The online document also contains instructions

on how to run the code, bug fixes, and so on.

Identifier Variables

Here we define important identifying variables for our empirical analysis. We assign stocks

to countries by excntry. We assign stocks to size groups via size grp. We only include

stocks with 1 on all the the obs main, exch main, primary sec and common indicators.

Table AVI. Identifier Variables

Name Description

excntry
The country of the exchange where the security is traded. Usually expressed as an ISO currency code with

the exception of mul which indicates a multi country exchange54

size grp

This groups each firm into one of five categories: Mega, Large, Small, Micro and Nano cap. The groups are

non-overlapping and the breakpoints are based on the market equity of NYSE stocks. In particular, Mega

caps are all stocks with market equity larger than the 80th percentile of NYSE stocks, Large caps are all

remaining stocks larger than the 50th percentile, Small caps are larger than the 20th percentile, Micro caps

are larger than the 1st percentile and Nano caps are the remaining stocks.

obs main
If there are more than one firm observations for one date, this identifies if the observation is considered as the

’main’ observation. If available, CRSP observations are considered as the ’main’ observation.

exch main

Indicator for main exchanges. If CRSP is the source, main exchanges are those with crsp exchcd 1, 2 and 3.

If Compustat is the source, main exchanges are all comp exchg except 0, 1, 2, 3, 4, 13, 15, 16, 17, 18, 19, 20,

21, 127, 150, 157, 229, 263, 269, 281, 283, 290, 320, 326, 341, 342, 347, 348, 349, 352.

primary sec
Primary security as identified by Compustat. A ’gvkey’ can have up to three different primary securities (’iid)’

at a given time (US, CA, and international). All observations from CRSP has primary sec=1.

common
Indicator for common stocks. If CRSP is the source, common is one if the SHRCD variable is 10, 11 or 12. If

Compustat is the source, common is one if TPCI is ’0’

Helper Functions

This section describes functions that we use to create variables. Many of the functions are

used for variables with quarterly, monthly and daily frequencies, and these are specified

by “ zQ”, “ zM” and “ zD” respectively, where “z” is the number of quarters, months or

days that the function is referencing. For example, COVAR 12M(X, Y) is the covariance

of variables X and Y over the past 12 months.

54Typically over the counter exchanges.
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Table AVII. Helper Functions

Function Name Description

Mean Xz
1
z

∑z−1
n=0 Xt−n

Variance VARC z(X) 1
z−1

∑z−1
n=0(Xt−n −Xtz)2

Covariance COVAR z(X, Y) 1
z−1

∑z−1
n=0(Xt−n −Xtz)(Yt−n − Ytz)

Standard Deviation σz(X)
√
V ARC z(X)

Skewness SKEW z(X) 1
z×σz(X)3

∑z−1
n=0(Xt−n −Xtz)3

Standardized Unexpected Realization SUR z(X)
Xt−(Xt−3+(Xt−3−Xt−15)

z
/4)

σz(Xt−3−Xt−15)

Change to Expectations CHG TO EXP(X) Xt
(Xt−12+Xt−24)/2

Maximum MAXn z(X) The maximum n values of given input.

Quality Minus Junk Helpers

Earnings Volatility EV OL
ROEQ BE STD × 2. If this is unavailable, we use

ROE BE STD.

Rank of Variable rV ar Cross-sectional rank of Var within a country55

Z transformation ZV (rV ar) rV AR− rV ARz
t( rV AR)

Accounting Characteristics

Datasets

� COMP.FUNDA

� COMP.FUNDQ

� COMP.G FUNDA

� COMP.G FUNDQ

General Information

� We create characteristics for annual and quarterly accounting data separately. We

then take the most recent characteristics value from each dataset to create the final

dataset.

55OACCRUALS AT , BETABAB 1260d, DEBT AT and EV OL are sorted in descending order.
All other variables are sorted in ascending order.
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� We assume that accounting variables are publically available 4 months after the end

of the accounting period.

� In describing accounting variables, we use the Compustat item names from the

annual dataset. The equivalent item name in the quarterly dataset can be found by

adding a ‘q’ or ‘y’ to the end of the annual item name. Specifically, ‘q’ indicates a

value calculated over one quarter while ‘y’ refers to the cummulative value over the

quarters with data available within a fiscal year.

Annualized Accounting Variables from Quarterly Data

� The value of a balance sheet item such as asset or book equity has the same meaning

in the annual and the quarterly data. It is the value by the end of a fiscal period.

� The value of an income or cash flow statement item is different. In the annual data,

it is calculated over one year. However, in the quarterly data, it is calculated over

one quarter. To make quarterly income and cash flows items comparable to the

corresponding annual item, we take the sum of the item over the last four quarters.

Accounting Variables

The abbreviation is used to refer to the accounting variable. A suffix of ’*’ indicates that

we have altered the original Compustat item to increase the coverage or to create a variable

that is a part of creating a characteristic in the final dataset. The characteristic name will

reflect the accounting name except the ’*’ suffix. As an example, ’gp at’ is gross profit

scaled by assets. In general, we will refer to Compustat variables using capital letters.

Table AVIII. Accounting Variables

Name Abbreviation Construction

Income Statement

Sales sale* We prefer SALE. If this is unavailable, we use REVT

Cost of Goods Sold cogs Compustat item COGS

Gross Profit gp* We prefer to use GP. If this is unavailable we use sale*-COGS

Selling, General and Administrative

Expenses
xsga Compustat item XSGA

Advertising Expenses xad
Compustat item XAD. Note that this is not available in Com-

pustat Global

Research and Development Expenses xrd
Compustat item XRD. Note that this is not available in Com-

pustat Global

Staff Expenses xlr Compustat item XLR

Special Items spi Compustat item SPI

Operating Expenses opex*
We prefer to use XOPR. If this is unavailable, we use

COGS+XSGA

Operating Income Before Depreciation ebitda*

We prefer to use EBITDA. If this is unavailable, we use

OIBDP. If this is unavailable, we use SALE*-OPEX*. If this

is unavailable, we use GP*-XSGA

Depreciation and Amortization dp Compustat Item DP

Operating Income After Depreciation ebit*
We prefer to use EBIT. If this is unavailable, we use OIADP.

If this is unavailable, we use EBITDA*-DP

155



Name Abbreviation Construction

Interest Expenses int Compustat item XINT

Operating Profit ala Ball et al (2015) op*
We use EBITDA* + XRD. If XRD is unavailable, we set it to

zero

Operating Profit to Equity ope*

We use EBITDA*-XINT. Note that we target the same vari-

able as the numerator of the profitability characteristic used

to create the Robust-minus weak factor in the fama-French 5

factor model (Fama and French, 2015)

Earnings before Tax and Extraordi-

nary Items
pi*

We prefer to use PI. If this is unavailable we use EBIT*-

XINT+SPI+NOPI where we set SPI and NOPI to zero if

missing

Income Tax tax Compustat item TXT

Extraordinary Items and Discontinued

Operations
xido*

We prefer to use XIDO. If this is unavailable, we use XI+DO

where we set DO to zero if missing. The reason why we

set missing DO to zero is because it is not available in

COMP.G FUNDQ

Net Income ni*

We prefer to use IB. If this is unavailable, we use NI-XIDO*.

If this is unavailable, we prefer PI*-TXT-MII. If MII is un-

availble, it is set to zero

Net Income Including Extraordinary

Items
nix*

We prefer NI. If this is not available, we prefer NI*+XIDO*. If

XIDO* is unavailable, we set it to zero. If that is unavailable,

we prefer NI*+XI+DO

Firm Income fi* We use NIX*+XINT

Dividends for Common Shareholds dvc Compustat Item DVC

Total Dividends div* We prefer DVT. If this is not available, we use DV

Income Before Extraordinary Items ni qtr* We use IBQ

Net Sales sale qtr* We use SALEQ

Cash Flow Statement

Capital Expenditures capx Compustat item CAPX

Capital Expenditures to Sales capex sale* We use CAPX / SALE*

Free Cash Flow fcf*

We use OCF*-CAPX. Note that the free cash flow is com-

puted before financing activities and sale of assets is taken

into account

Equity Buyback eqbb*

We use PRSTKC+PURTSHR Equity Buyback is mainly

PRSTKC in NA and PURTSHR in GLOBAL. Either of

PRSTKC or PURTSHR are allowed to be missing

Equity Issuance eqis* Compustat item SSTK

Equity Net Issuance eqnetis*
We use EQIS*-EQBB*. Either EQIS* or EQBB* are allowed

to be missing

Net Equity Payout eqpo* We use DIV*+EQBB*

Equity Net Payout eqnpo* We use DIV*-EQNETIS*

Net Long-Term Debt Issuance dltnetis*

We prefer to use DLTIS-DLTR where we only require that

one of the items are non-missing. If this is unavailable, we

use LTDCH. If this is unavailable we use the yearly change in

long-term book debt DLTT

Net Short-Term Debt Issuance dstnetis*
We prefer DLCCH. If this is unavailable, we use the yearly

change in short-term book debt DLC

Net Debt Issuance dbnetis*
We use DLTNETIS*+DSTNETIS* and only require one of

the items to be non-missing

Net Issuance netis*
We use EQNETIS*+DBNETIS*. Either EQNETIS* or

DBNETIS* are allowed to be missing

Financial Cash Flow fincf*

We prefer FINCF. If this is unavailable, we use NETIS*-

DV+FIAO+TXBCOF. If FIAO or TXBCOF is missing, it

is set to zero

Balance Sheet - Assets
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Name Abbreviation Construction

Total Assets at*

We prefer to use AT. If this is unavailable, then we use SEQ*

+ DLTT + LCT + LO + TXDITC. If LCT, LO, or TXDITC

are missing, then they are set to zero

Current Assets ca*
We prefer ACT. If this is unavailable, we use

RECT+INVT+CHE+ACO

Account Receivables rec Compustat item RECT

Cash and Short-Term Investment cash Compustat item CHE

Inventory inv Compustat item INVT

Non-Current Assets nca* We use AT* - CA*

Intangible Assets intan Compustat item INTAN

Investment and Advances ivao Compustat item IVAO

Property, Plans and Equipment Gross ppeg Compustat item PPEGT

Property, Plans and Equipment Net ppen Compustat item PPENT

Balance Sheet - Liabilities

Total Liabilities lt Compustat item LT

Current Liabilities cl*
We prefer LCT. If this is unavailable, we use AP+ DLC+

TXP+ LCO

Accounts Payable ap Compustat item AP

Short-Term Debt debtst Compustat item DLC

Income Tax Payable txp Compustat item TXP

Non-Current Liabilities ncl* We use LT-CL*

Long-Term Debt debtlt Compustat item DLTT

Deferred Taxes and Investment Credit txditc*
We prefer to use TXDITC. If this is unavailable, we use

TXDB+ ITCB

Balance Sheet - Financing

Preferred Stock pstk*
We prefer to use PSTKRV. If this is unavailable, we use

PSTKL. If this is unavilable, we use PSTK

Total Debt debt*
We use DLTT+ DLC. Either DLTT or DLC are allowed to

me missing

Net Debt netdebt* We use DEBT*- CHE where we set CHE to zero if missing

Shareholders Equity seq*

We prefer to use SEQ. If this is unavailable, we use

CEQ+PSTK* where we set PSTK* to zero if missing. If this

is unavailable, we use AT- LT

Book Equity be*
We use SEQ*+TXDITC*-PSTK* where we set TXDITC*

and PSTK* to zero if missing

Book Enterprise Value bev*

We prefer to use ICAPT+DLC-CHE where DLC and CHE

are set to zero if missing. If this is unavailable, we use

SEQ*+NETDEBT*+ MIB where we set MIB to zero if miss-

ing. In the global data ICAPT is reduced by Treasury stock

Balance Sheet - Summary

Net Working Capital nwc* We use CA*-CL*

Current Operating Assets coa* We use CA*- CHE

Current Operating Liabilities col* We use CL*- DLC. If DLC is missing, it is set to zero

Current Operating Working Capital cowc* We use COA*-COL*

Non-Current Operating Assets ncoa* We use AT* - CA*- IVAO

Non-Current Operating Liabilities ncol* We use LT-CL*- DLTT

Net Non-Current Operating Assets nncoa* We use NCOA*-NCOL*

Financial Assets fna* We use IVST+ IVAO. If either is missing, they are set to zero

Financial Liabilities fnl*
We use DEBT*+PSTK*. If PSTK* is missing, it is set to

zero

Net Financial Assets nfna* We use FNA*-FNL*

Operating Assets oa* We use COA*+NCOA*

Operating Liabilities ol* We use COL*+NCOL*

Net Operating Assets noa* We use OA*-OL*

Long-Term NOA lnoa* PPENT + INTAN + AO - LO + DP
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Name Abbreviation Construction

Liquid Current Assets caliq*
We prefer to use CA* - INVT. If this is unavailable, we use

CHE + RECT

Property Plant and Equipment Less

Inventories
ppeinv* PPEGT + INVT

Ortiz-Molina and Phillips Liquidity aliq*
CHE + 0.75× COA* + 0.5(AT* - CA* - INTAN). If INTAN

is missing, we set it to zero

Market Based

Market Equity me

We use the market equity for the stock we deem to the primary

security of the firm. Importantly, we do not align the market

value with the end of the fiscal period. Instead, we update the

market value on a monthly basis and align it with the most

recently available accounting characteristic

Market Enterprise Value mev* We use ME COMPANY + NETDEBT* × FX*

Market Assets mat* We use AT* × FX + BE* × FX + ME COMPANY

Accruals

Operating Accruals oacc*
We prefer NI*-OANCF. If that is unavailable, we use the

yearly change in COWC*+the yearly change in NNCOA*

Total Accruals tacc* We use OACC* + the yearly change in NFNA*

Operating Cash Flow ocf*

We prefer to use OANCF. If this is unavailable, we use NI*-

OACC*. If this is unavailable, we use NI* + DP - WCAPT.

If WCAPT is missing, we use 0.

Quarterly Operating Cash Flow ocf qtr*
We use OANCFQ. If this is unavailable, then we use IBQ +

DPQ - WCAPTQ. If WCAPTQ is unavailable, we set it to

Cash Based Operating Profitability cop*
We prefer EBITDA*+XRD-OACC*. If XRD is unavailable,

we set it to zero

Other

Employees in Thousands emp Compustat item EMP

Table AIX. Accounting Characteristics

Name Abbreviation Construction

Growth - Percentage56

Asset Growth 1yr at gr1 AT*t

AT*t−12
− 1

Sales Growth 1yr sale gr1 SALE*t

SALE*t−12
− 1

Sales Growth 3yr sale gr3 SALE*t

SALE*t−36
− 1

Total Debt Growth 3yr debt gr3 DEBT*t

DEBT*t−36
− 1

CAPX 1 year growth capx gr1 CAPXt
CAPXt−12

− 1

CAPX 2 year growth capx gr2 CAPXt
CAPXt−24

− 1

CAPX 3 year growth capx gr3 CAPXt
CAPXt−36

− 1

Quarterly Sales Growth saleq gr1 SALE QTR*t

SALE QTR*t−12
− 1

56This refers to all variables with a suffix of “ gr1” or “ gr3”. The variables are percentage growth in
the accounting variables before the suffix. The number in the suffix refers to either 1 or 3 year growth.
For all variables, we only take the percentage growth if the denominator is above zero.
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Name Abbreviation Construction

Inventory Change 1 yr inv gr1 INVt
INVt−12

− 1

Sales scaled by Employees Growth 1 yr sale emp gr1 SALE EMPt
SALE EMPt−12

− 1

Employee Growth 1 yr emp gr1
EMPt−EMPt−12

0.5×EMPt+0.5×EMPt−12

Growth - Changed Scaled by Total Assets

Inventory Change 1yr inv gr1a
INVt−INVt−12

AT*t

Investment and Advances Change 1yr lti gr1a
LTIt−LTIt−12

AT*t

Current Operating Assets Change 1yr coa gr1a
COA*t−COA*t−12

AT*t

Current Operating Liabilities Change

1yr
col gr1a

COL*t−COL*t−12

AT*t

Non-Current Operating Assets Change

1yr
ncoa gr1a

NCOA*t−NCOA*t−12

AT*t

Non-Current Operating Liabilities

Change 1yr
ncol gr1a

NCOL*t−NCOL*t−12

AT*t

Net Non-Current Operating Assets

Change 1yr
nncoa gr1a

NNCOA*t−NNCOA*t−12

AT*t

Net Operating Assets Change 1yr noa gr1a
NOA*t−NOA*t−12

AT*t

Financial Liabilities Change 1yr fnl gr1a
FNL*t−FNL*t−12

AT*t

Net Financial Assets Change 1yr nfna gr1a
NFNA*t−NFNA*t−12

AT*t

Effective Tax Rate Change 1yr tax gr1a
TAXt−TAXt−12

AT*t

Change in Property, Plant and Equip-

ment Less Inventories scaled by lagged

Assets

ppeinv gr1a
PPEINV *t−PPEINV *t−12

AT*t−12

Change in Long-Term NOA scaled by

average Assets
lnoa gr1a

LNOA*t−LNOA*t−12

AT*t−AT*t−12

Book Equity Change 1 yr scaled by As-

sets
be gr1a

BE*t−BE*t−12

AT*t

Change in Short-Term Investments

scaled by Assets
sti gr1a

IV STt−IV STt−12

AT*t

Profit Margins

Operating Profit Margin after Depre-

ciation
ebit sale EBIT*t

SALE*t

Return on Assets
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Name Abbreviation Construction

Gross Profit scaled by Assets gp at GP*t

AT*t

Cash Based Operating Profitability

scaled by Assets
cop at COP*t

AT*t

Quarterly Income scaled by AT niq at NI QTR*t

AT*t−3

Operating Cash Flow scaled by Assets ocf at OCF*t

AT*t

Ball Operating Profit to Assets op at OP*t

AT*t

Ball Operating Profit scaled by lagged

Assets
op atl1 OP*t

AT*t−12

Gross Profit scaled by lagged Assets gp atl1 GP*t

AT*t−12

Cash Based Operating Profitability

scaled by lagged Assets
cop atl1 COP*t

AT*t−12

Return on Book Equity

Operating Profit to Equity scaled by

BE
ope be OPE*t

BE*t

Net Income scaled by BE ni be NI*t

BE*t

Quarterly Income scaled by BE niq be NI QTR*t

BE*t−3

Operating Profit scaled by lagged

Book Equity
ope bel1 OPE*t

BE*t−12

Return on Invested Capital

Operating Profit after Depreciation

scaled by BEV
ebit bev EBIT*t

BEV *t

Issuance

Net Issuance scaled by Assets netis at NETIS*t

AT*t

Equity Net Issuance scaled by Assets eqnetis at EQNETIS*t

AT*t

Net Debt Issuance scaled by Assets dbnetis at DBNETIS*t

AT*t

Accruals

Operating Accruals oaccruals at OACC*t

AT*t

Percent Operating Accruals oaccruals ni OACC*t

|NIX*t|

Total Accruals taccruals at TACC*t

AT*t

Percent Total Accruals taccruals ni TACC*t

|NIX*t|
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Name Abbreviation Construction

Net Operating Asset to Total Assets noa at NOA*t

AT*t

Financial Soundness Ratios

Operating Leverage opex at OPEX*t

AT*t

Activity/Efficiency Ratios

Asset Turnover at turnover SALE*t

(AT*t+AT*t−12)/2

Miscellaneous

Sales scaled by BEV sale bev SALE*t

BEV *t

R&D scaled by Sales rd sale XRDt

SALE*t

Balance Sheet Fundamental to Market Equity

Book Equity scaled by Market Equity be me BE*t
MEt

Total Assets scaled by Market Equity at me AT*t
MEt

Total Debt scaled by ME debt me DEBT*t
MEt

Net Debt scaled by ME netdebt me NETDEBT*t
MEt

Income Fundamentals to Market Equity

Net Income scaled by ME ni me NI*t
MEt

Sales scaled by ME sale me SALE*t
MEt

Operating Cash Flow scaled by ME ocf me OCF*t
MEt

Free Cash Flow scaled by ME fcf me FCF*t
MEt

R&D scaled by ME rd me XRDt
MEt

Balance Sheet Fundamentals to Market Enterprise Value

Book Enterprise Value scaled by MEV bev mev BEV *t

MEV *t

Equity Payout/Issuance to Market Equity

Net Equity Payout scaled by ME eqpo me EQPO*t
MEt

Equity Net Payout scaled by ME eqnpo me EQNPO*t
MEt

Income Fundamentals to Market Enterprise Value

Operating Profit before Depreciation

scaled by MEV
ebitda mev EBITDA*t

MEV *t
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Name Abbreviation Construction

Income Growth

Number of Consecutive Earnings In-

creases
ni inc8q Count number of earnings increases over past 8 quarters

Operating Cash Flow to Assets 1 yr

Change
ocf at chg1 OCF ATt −OCF ATt−12

Change in Quarterly Income scaled by

BE
niq be chg1 NIQ BEt −NIQ BEt−12

Change in Quarterly Income scaled by

AT
niq at chg1 NIQ ATt −NIQ ATt−12

Change Sales minus Change Inventory dsale dinv CHG TO EXP (SALE*t)− CHG TO EXP (INVt)

Change Sales minus Change Receiv-

ables
dsale drec CHG TO EXP (SALE*t)− CHG TO EXP (RECt)

Change Gross Profit minus Change

Sales
dgp dsale CHG TO EXP (GP*t)− CHG TO EXP (SALE*t)

Change Sales minus Change SG&A dsale dsga CHG TO EXP (SALE*t)− CHG TO EXP (XSGAt)

Earnings Surprise saleq su SUR(SALE QTR*)

Revenue Surprrise niq su SUR(NI QTR*)

Other Variables

Cash and Short Term Investments

scaled by Assets
cash at CASHt

AT*t

R&D Capital-to-Assets rd5 at
∑4

n=0(1−.2•n)(XRDt−12∗n)

AT*t

Age age Age of the firms in months

Abnormal Corporate Investment capex abn CAPX SALE*t

(CAPX SALE*t−12+CAPX SALE*t−24+CAPX SALE*t−36)/3
−1

Earnings before Tax and Extraordi-

nary Items to Net Income Including

Extraordinary Items

pi nix PI*t

NIX*t

Book Leverage at be AT*t

BE*t

Operating Cash Flow to Sales Quar-

terly Volatility
ocfq saleq std SDEV 16Q

(
OCF QTR*t

SALE QTR*t
)
)

Liquidity scaled by lagged Assets aliq at ALIQ*t

AT*t−12

Liquidity scaled by lagged Market As-

sets
aliq mat ALIQ*t

MAT*t−12

Tangibility tangibility
CASHt + 0.715 •RECt + 0.547 • INVt + 0.535 • PPEGt

AT*t
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Name Abbreviation Construction

Equity Duration eq dur Outlined in detail here

Piotroski F-Score f score Outlined in detail here

Ohlson O-Score o score Outlined in detail here

Altman Z-Score z score Outlined in detail here

Kaplan-Zingales Index kz index Outlined in detail here

Intrinsic value intrinsic value Outlined in detail here

Intrinsic value-to-market ival me INTRINSIC V ALUE*t
MEt

Earnings Variability earnings variability
σ60M

(
NI*t/AT*t−12

)
σ60M

(
OCF*t/AT*t−12

)
1 yr lagged Net Income to Assets ni ar1

NI*t−12

AT*t−12

Net Income Idiosyncratic Volatility ni ivol Outlined in detail here

Market Based Characteristics

Datasets

� CRSP.MSF

� CRSP.DSF

� COMP.SECD

� COMP.G SECD

� COMP.SECM

� COMP.SECURITY

� COMP.G SECURITY

Market Variables

A suffix of ’*’ indicates that we have altered or renamed the original item.

Table AX. Market Variables

Name Abbreviation Construction

CRSP Variables57

57lag is a lag function where lag(x) is the value of x from the previous time period
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Name Abbreviation Construction

Share Adjustment Factor adjfct* We use CFACSHR

Shares shares* We use SHROUT/1000 so shares outstanding are in millions.

Price prc* We use |PRC|
Local Price prc local* We use PRC*

Highest Daily Price/Ask prc high
We use ASKHI. If PRC* or AKSHI are negative, then

PRC HIGH is set to missing

Lowest Daily Price/Bid prc low
We use BIDLO. If PRC* or BIDLO are negative, then

PRC LOW is set to missing

Adjusted Proce prc adj* We use PRC*×ADJFCT*

Market Equity me*
We use PRC*×SHARES* so market equity is quoted in mil-

lion USD.

Company Market Equity me company* We sum ME* grouped by PERMNO and date

Dollar Volume dolvol* We use VOL×PRC*

Return RET* We use RET

Local Return ret local* We use RET

Excess Return ret exc*

We use (RET*-T30RET)/21. If T30RET is unavailable, we

use RF. If the return is a daily return rather than a monthly

return, the RET - T30RET is divided by 1 rather than 21.

Excess Return t+1 ret exc lead1m* Excess return (ret exc*) in month t+1

Time Since Most Recent Return ret lag dif* We automatically set this to 1

Cumulative Return ri* This is the cumulative return estimated from RET*

Monthly Dividend div tot*
We use

(RET -RETX)×lag(PRC*)×(CFACSHR/lag(CFACSHR))

Compustat Variables

Share Adjustment Factor adjfct* We use AJEXDI

Shares shares* We use CSHOC/1000000

Price prc* We use PRC LOCAL*×FX

Local Price prc local* We use PRCCD

Market Equity me* We use PRC*×SHARES*

Company Market Equity me company* We use ME*

Dollar Volume dolvol* We use CSHTRD×PRC*

Return RET* We use RET LOCAL*×FX

Excess Return ret exc*

We use (RET*-T30RET)/21. If T30RET is unavailable, we

use RF. If the return is a daily return rather than a monthly

return, the RET - T30RET is divided by 1 rather than 21.

Excess Return t+1 ret exc lead1m* Excess return (ret exc*) in month t+1

Cumulative Return - Local ri local* We use PRC LOCAL*× TRFD/AJEXDI

Local Return ret local* We use RI LOCAL*/lag(RI LOCAL*) - 1

Time Since Most Recent Return ret lag dif*

We estimate the number of days since the previous return. If

the returns are monthly rather than daily, then the time is in

months

Cumulative Return ri* RI LOCAL* × FX*

Monthly Dividend div tot* We use DIV × FX*. If DIV is missing, we set it to zero

Cash Dividend div cash*
We use DIVD × FX*. If DIVD is unavailable, we set it to

zero

Special Cash Dividend div spc*
We use DIVSP × FX*. If DIVSP is unavailable, we set it to

zero

Bid-Ask Average Dummy bidask* When PRCSTD = 4 then 1, otherwise 0

Asset Pricing Factors

Excess Market Return mktrf* Country specific market return

High Minus Low hml*

Country specific factor following Fama and French (1993) and

using breakpoints from non-micro cap stocks within the coun-

try

Small Minus Big ala Fama-French smb ff*
Average of small portfolios minus average of large portfolios

from hml*
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Name Abbreviation Construction

Return on Equity roe*

Country specific factor following Hou, Xue and Zhang (2015)

and using breakpoints from non-micro cap stocks within the

country. We use double sorts on return on equity and size

rather than triple sorts with investment, due to the limited

number of stocks in some international markets.

Investment inv*

Country specific factor following Hou, Xue and Zhang (2015)

and using breakpoints from non-micro cap stocks within the

country. We use double sorts on investment and size rather

than triple sorts with return on equity, due to the limited

number of stocks in some international markets

Small Minus Big ala Hou et al smb hxz*
Average of small portfolios minus average of large portfolios

from roe* and inv*

Market Volatility for Each Stock mktvol zd* σzD(MKTRF*t) 58

Table AXI. Market Characteristics

Name Abbreviation Construction

Market Based Size Measure

Market Equity market equity ME*t

Equity Payout

Dividend to Price - 12 Months div12m me
∑11

n=0DIV TOT*t−n×SHARES*t−n

ME*t

Change in Shares - 12 Month chcsho 12m SHARES*t×ADJFCT*t

SHARES*t−12×ADJFCT*t−12
− 1

Net Equity Payout - 12 Month eqnpo 12m log

(
RI*t

RI*t−12

)
− log

(
ME*t

ME*t−12

)
Momentum/Reversal

Short Term Reversal ret 1 0 RI*t

RI*t−1
− 1

Momentum 1-3 Months ret 3 1
RI*t−1

RI*t−3
− 1

Momentum 1-6 Months ret 6 1
RI*t−1

RI*t−6
− 1

Momentum 1-9 Months ret 9 1
RI*t−1

RI*t−9
− 1

Momentum 1-12 Months ret 12 1
RI*t−1

RI*t−12
− 1

Momentum 7-12 Months ret 12 7
RI*t−7

RI*t−12
− 1

Momentum 12-60 Months ret 60 12
RI*t−12

RI*t−60
− 1

Seasonality

1 Year Annual Seasonality seas 1 1an Return in month t-12

2 - 5 Year Annual Seasonality seas 2 5an Average return over annual lags from year t-2 to t-5

58Must have enough non-missing values of stock to be estimated
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Name Abbreviation Construction

6 - 10 Year Annual Seasonality seas 6 10an Average return over annual lags from year t-6 to t-10

11 - 15 Year Annual Seasonality seas 11 15an Average return over annual lags from year t-11 to t-15

16 - 20 Year Annual Seasonality seas 16 20an Average return over annual lags from year t-16 to t-20)

1 Year Non-Annual Seasonality seas 1 1na Average return from month t-1 to t-11

2 - 5 Year Non-Annual Seasonality seas 2 5na Average return over non-annual lags from year t-2 to t-5

6 - 10 Year Non-Annual Seasonality seas 6 10na Average return over non-annual lags from year t-6 to t-10

11 - 15 Year Non-Annual Seasonality seas 11 15na Average return over non-annual lags from year t-11 to t-15

16 - 20 Year Non-Annual Seasonality seas 16 20na Average return over non-annual lags from year t-16 to t-20

Combined Accounting and Market Based Characteristics

Let et be defined as described here

60 Month CAPM Beta beta 60m
COVAR 60M(RET*t,MKTRF*t)

V ARC 60M(MKTRF*t)

Performance Based Mispricing mispricing perf59

1

4

(
O SCOREr01

t +RET 12 1r01
t +

GP AT r01
t +NIQ AT r01

t

)

Management Based Mispricing mispricing mgmt

1

6

(
CHCSHO 12Mr01

t + EQNPO 12Mr01
t +

OACCRUALS AT r01
t +NOA AT r01

t +

AT GR1r01
t + PPEINV GR1Ar01

t

)
Residual Momentum - 6 Month resff3 6 1 −1 +

∏6
n=1 1 + et−n

Residual Momentum - 12 Month resff3 12 1 −1 +
∏12
n=1 1 + et−n

Daily Market Data60

Let εt be defined as described here

Return Volatility rvol zd σzD(RET EXC*t)

Maximum Return rmax1 zd MAX1 zD(RET*t)

Mean Maximum Return rmax5 zd 1
5

∑5
n=1 Xn, Xn ∈MAX5 zD(RET*)

Return Skewness rskew zd SKEW zD(RET EXC*t)

Price-to-High prc highprc zd PRC ADJ*t

MAX1 zD(PRC ADJ*t)

59A rank characteristic has the value of that characteristics rank with respect to other companies’ same
characteristic of the same month and country scaled [0, 1]. This is identified with a “r01” superscript.

60Many of the variables in this section are estimated using rolling windows of data, and the variables
are estimated using a variety of window lengths: 21, 126, 252 and 1260 days. In this section, I refer to
the number of days as m as a proxy for any of the possible window lengths.
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Name Abbreviation Construction

Amihud (2002) Measure ami zd

(
|RET*t|

DOLVOL*t

)
zD

∗ 1000000

CAPM Beta beta zd Described in detail here

CAPM Idiosyncratic Vol. ivol capm zd Described in detail here

CAPM Skewness iskew capm zd Described in detail here

Coskewness coskew zd61 (εt×MKTRF DM2
t )

zD√
(ε2t )

zD
×(MKTRF DM2

t )
zD

Fama and French Idiosyncratic Vol. ivol ff3 zd Described in detail here

Fama and French Skewness iskew ff3 zd Described in detail here

Hou, Xue and Zhang Idiosyncratic Vol. ivol hxz4 zd Described in detail here

Hou, Xue and Zhang Skewness iskew hxz4 zd Described in detail here

Dimson Beta beta dimson zd Created as described in Dimson (1979)

Downside Beta betadown zd Described in detail here

Zero Trades zero trades zd

Number of days with zero trades over period. In case of equal

number of zero trading days, turnover zd will decide on the

rank following Liu (2006)

Turnover turnover zd
(

TV OL*t

SHARES*t∗1000000

)
zD

Turnover Volatility turnover var zd
σzD

(
(TV OL*t/SHARES*t)∗1000000

)
TURNOV ER zDt

Dollar Volume dolvol zd DOLV OL*tzD

Dollar Volume Volatility dolvol var zd
σzD(DOLVOL*t)
DOLVOL zDt

Correlation to Market corr zd

The correlation between RET EXC*3l = RET EXC*t +

RET EXC*t−1 + RET EXC*t−2 and MKT EXC 3l =

MKTRF*t +MKTRF*t−1 +MKTRF*t−2

Betting Against Beta betabab 1260d CORR 1260dt×RVOL 252dt
MKTVOL 252d*t

Max Return to Volatility rmax5 rvol 21d RMAX5 21dt
RVOL 252dt

21 Day Bid-Ask High-Low bidaskhl 21d
High-low bid ask estimator created using code from Corwin

and Schultz (2012)

Quality Minus Junk

Quality Minus Junk - Profit qmj prof

ZV
(
ZV (GP ATt) + ZV (NI BEt)+

ZV (NI ATt) + ZV (OCF ATt) + ZV (GP SALE*t)+

ZV (OACCRUALS ATt)
)

61MKTRF DMt = MKTRF*t −MKTRF*tzD
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Name Abbreviation Construction

Quality Minus Junk - Growth qmj growth

ZV
(
ZV (GPOA CH5t) + ZV (ROE CH5t)

+ZV (ROA CH5t) + ZV (CFOA CH5t)+

ZV (GMAR CH5t)
)

Quality Minus Junk - Safety qmj safety
ZV
(
ZV (BETABAB 1260dt) + ZV (DEBT ATt)

+ZV (O SCOREt) + ZV (Z SCOREt) + ZV ( EV OLt)
)

Quality Minus Junk qmj (QMJ PROFt +QMJ GROWTHt +QMJ SAFETYt)/3

Detailed Characteristic Construction

This section includes detailed descriptions how we built characteristics that don’t easily

fit into the Accounting Characteristics or Market Characteristics tables.

� Equity Duration

– Define the following variables:

* horizon: number of months used to estimate helper variables

* r: constant used as assumed discount rate

* roe mean: constant used as the average ROE value

* roe ar1: constant used as the expected growth rate of ROE

* g mean: constant used as the average sales growth rate

* g ar1: constant used as the expected growth rate of sales

– Create initial variables:

roe0 =
NI*t

BE*t−12

g0 =
SALE*t
SALE*t−12

− 1

be0 = BE*t

* If the number of non-missing observations is less than or equal to 12 or the

variables’ respective denominators are less than or equal to 1 roe0t and

g0t are set to missing.
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– Forecast cash distributions

roe c = roe mean× (1− roe ar1)

g c = g mean× (1− g ar1)

roet =
horizon∑
i=1

roe c+ roe ar1× roet−i

gt =
horizon∑
i=1

g c+ g ar1× gt−i

bet =
horizon∑
i=1

bet−i × (1 + gt)

cdt =
horizon∑
i=1

bet × ( roet − gt)

– Create duration helper variables 62

ed constant = horizon+
1 + r

r

ed cw wt =
horizon∑
i=1

ed cd wi−1 + i× cdt
(1 + r)i

ed cdt =
horizon∑
i=1

ed cdi−1 +
cdt

(1 + r)i

– Characteristic: eq durt = ed ed wt×FXt
ME COMPANYt

+ed constant×ME COMPANYt−ed cdt×FXt
ME COMPANYt

� Piotroski F-Score

62ed cw w, ed cd and ed err are equal to 0 at i = 1. ed cw w and ed cd recusrively build upon
themselves over the length of the horiozon, so ed cw wi−1, for example, would be the previous iteration
of ed cw w
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– Create helper variables:

f roat =
NI*t

AT*t−12

f croat =
OCF*t
AT*t−12

f droat = f roat − f roat−12

f acct = f croat − f roat

f lev =
DLTTt
AT*t

− DLTTt−12

AT*t−12

f liqt =
CA*t
CL*t

− CA*t−12

CL*t−12

f eqist = EQIS*t

f gmt =
GP*t

SALE*t
− GP*t−12

SALE*t−12

f aturnt =
SALE*t
AT*t−12

− SALE*t−12

AT*t−24

* For all variables except f acc, f aturn f eqis, if the count of available

observations is less than or equal to 12, then the variable is set to missing.

If f aturn has less than or equal to 24 non-missing observations, it is set

to missing. If a variable has AT*t or AT*t−12 as an input and AT*t ≤ 0

or AT*t−12 ≤ 0, then it is set to missing. If CL*t ≤ 0 or CL*t−12 ≤ 0 then

f liqt is set to missing. If SALE*t ≤ 0 or SALE*t−12 ≤ 0 then f gmt is

set to missing.

– Characteristic63

f scoret = f roa>0,t + f croa>0,t + f droa>0,t + f acc>0,t+

f lev<0,t + f liq>0,t + f eqis=0,t + f gm>0,t + f aturn>0,t

� Ohlson O-Score

63A subscript of > 0, ex: V ARt>0,t, is a dummy for if the variable is greater than zero, and it is
defined similarly for V ARt<0,t or any other specification. Otherwise, not included as an input, Also, if
any variables other than f eqist are missing, then f scoret is set to missing.
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– Create helper variables:

o latt = AT*t−1

o levt =
DEBT*t
AT*t

o wct =
CA*t − CL*t

AT*t

o roet =
NIX*t
AT*t

o caclt =
CL*t
CA*t

o ffot =
PI*t +DPt

LTt

o neg eqt = 1 if LTt > AT*t, otherwise 0

o neg earn = 1 if NIX*t < 0 and NIX*t−12 < 0

o nicht =
NIX*t −NIX*t−12

|NIX*t|+ |NIX*t−12|

* If AT*t ≤ 0, then o latt, o levt, o wct, and o roet are set to missing. If

CA*t ≤ 0 then o caclt is set to missing. If LTT ≤ 0 then o ffot is set

to missing. If LTt or AT*t are missing, then o neg eqt is set to missing.

If there are less than or equal to 12 observations or either of NIX*t and

NIX*t−12 are missing, then o nicht and o neg earnt are set to missing.

– Characteristic:

o scoret =− 1.37− 0.407× o latt + 6.03× o levt + 1.43× o wct+

0.076× o caclt − 1.72× o neg eqt − 2.37× o roet−

1.83× o ffot + 0.285× o neg earnt − 0.52× o nicht

� Altman Z-Score
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– Create helper variables:

z wct =
CA*t − CL*t

AT*t

z ret =
REt
AT*t

z ebt =
EBITDA*t

AT*t

z sat =
SALE*t
AT*t

z met =
ME FISCALt

LTt

* If AT*t ≤ 0 then any variable including AT*t, then it is set to missing. If

LTt ≤ 0, then z met is set to missing.

– Characteristic:

z scoret = 1.2× z wct + 1.4× z ret + 3.3× z ebt + 0.6× z met + 1.0× z sat

� Kaplan-Zingales Index

– Create helper variables:

kz cft =
NI*t +DPt
PPENTt−12

kz qt =
AT*t +ME FISCALt −BE*t

AT*t

kz dbt =
DEBT*t

DEBT*t + SEQ*t

kz dvt =
DIV *t

PPENTt−12

kz cst =
CHEt

PPENTt−12

* If the number of non-missing observations is less than or equal to 12, then

kz cft, kz dvt and kz cst are set to zero. If PPENTt−12 ≤ 0 then

kz cft, kz dvt and kz cst are set to missing. If AT*t ≤ 0 then kz qt is

set to missing. If (DEBT*t + SEQ*t) = 0 then kz dbt is set to missing.

– Characteristic:

kz index = −1.002× kz cft+0.283× kz qt+3.139× kz dbt−39.368× kz dvt−1.315× kz cst

� Intrinsic Value from Frankel and Lee
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– Define r as a constant assumed discount rate

– Create helper variables:

iv pot =
DIV *t
NIX*t

iv roet =
NIX*t

(BE*t +BE*t−12)/2

iv be1t = (1 + (1− iv pot)× iv roet)×BE*t)

* If NIX*t ≤ 0 then

iv pot =
DIV *t

AT*t × 0.06

* If the number of non-missing observations is less than or equal to 12 or

(BE*t +BE*t−12) ≤ 0 then iv roet is set to missing.

– Characteristics:

intrinsic valuet = BE*t +
iv roet − r

1 + r
×BE*t +

iv roet − r
(1 + r)× r

× iv be1t

* If intrinsic valuet ≤ 0 then it is set to missing.

� Net Income Idiosyncratic Volatility

– Define the following variable 64:

ni att =
NI*t
AT*t

– A rolling regression of the following form is run for each company, with the

time series split up into n groups:

ni att = β0 + β1 ni att−12 + ut

where edft = the error degrees of freedom of regression and rmset = root mean

square error of the regression.

– Characteristic:

ni ivolt =

√
rmse2

t × edft
edft + 1

� Beta, Idiosyncratic Volatility and Skewness of Asset Pricing Factor Regressions

– This section describes the construction of beta zd for the CAPM model, and

64If AT*t ≤ 0, then ni att is set to missing
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the idiosyncratic volatility and skewness characteristics, which are estimated

using three different factor models:

* CAPM (capm):

RET EXC*t = β0 + β1MKTRF*t + εt

* Fama-French 3 Factor Model (ff3):

RET EXC*t = β0 + β1MKTRF*t + β2HML*t + β3SMB FF*t + et

* Hou, Xue and Zhang 4 Factor Model (hxz4):

RET EXC*t = β0+β1MKTRF*t+β2SMB HXZ*t+β3ROE*t+β4INV *t+µt

– Characteristics 65:

beta zd = β1 from the CAPM model

ivol capm zdt = σzD(εt)

ivol ff3 zdt = σzD(et)

ivol hxz4 zdt = σzD(µt)

iskew capm zdt = SKEW zD(εt)

iskew ff3 zdt = SKEW zD(et)

iskew hxz4 zdt = SKEW zD(σt)

� Downside Beta

– Define the following regression model run over z days:

RET EXC*t = β0 + β1MKTRF*t + εt

However, we restrict the data to when MKTRF* is negative.

– Characteristic:

* betadown zd = β1

65z indicates over how many days the model is run.
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FX Conversion Rate Construction

This section outlines how we create a daily dataset, beginning 01/01/1950 to now, of X

currency - USD exchange rate using COMPUSTAT. This is run in the macro compustat fx()

in the project macros.sas file.

� We use COMP.EXRT DLY, which has daily conversion rates from GBP to other

currencies ’X’.

� Every day available, we estimate the exchange rate fxt as

fxt =
USDGBP,t

XGBP,t

where XGBP,t is the exchange rate of GBP to currency X on day t.

� In case there are gaps in information, we assume the exchange rate of the last

observation until a new observation is available.

� fxt is quoted as Xt
USDt

, so to go from X to USD, do Xt × fxt
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Chapter 3

Machine Learning and the

Implementable Efficient Frontier

with Bryan Kelly, Semyon Malamud, and Lasse Heje Pedersen.

Abstract

We propose that investment strategies should be evaluated based on their net-of-trading-

cost return for each level of risk, which we term the “implementable efficient frontier.”

While numerous studies use machine learning return forecasts to generate portfolios, their

agnosticism toward trading costs leads to excessive reliance on fleeting small-scale charac-

teristics, resulting in poor net returns. We develop a framework that produces a superior

frontier by integrating trading-cost-aware portfolio optimization with machine learning.

The superior net-of-cost performance is achieved by learning directly about portfolio

weights using an economic objective. Further, our model gives rise to a new measure

of “economic feature importance.”

Kelly is at Yale School of Management, AQR Capital Management, and NBER. Malamud is at Swiss
Finance Institute, EPFL, and CEPR, and is a consultant to AQR. Pedersen is at AQR Capital Manage-
ment, Copenhagen Business School, and CEPR We are grateful for helpful comments from Cliff Asness,
Jules van Binsbergen, Darrell Duffie, Marc Eskildsen, Markus Ibert, Leonid Spesivtsev, and seminar par-
ticipants at Copenhagen Business School and the NBER Big Data and Securities Markets Conference,
Fall 2021. AQR Capital Management is a global investment management firm that may or may not ap-
ply similar investment techniques or methods of analysis as described herein. The views expressed here
are those of the authors and not necessarily those of AQR. Semyon Malamud gratefully acknowledges
the financial support of the Swiss Finance Institute and the Swiss National Science Foundation, Grant
100018 192692. All four authors appreciate the financial support of INQUIRE Europe.
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This paper studies how security information can be used for portfolio selection in a

flexible and realistic setting with transaction costs. The goal is thus both to provide a

powerful tool for portfolio choice and to shed new light on which security characteristics

are economically important drivers of asset pricing.

The financial machine learning (ML) literature provides a flexible framework to com-

bine several characteristics into a single measure of overall expected returns (e.g. Gu et al.,

2020b). The same literature documents the relative “feature importance” of different re-

turn prediction characteristics (e.g. Chen et al., 2021). These findings suggest that the

prediction success of ML methods is often driven by short-lived characteristics that work

well for small and illiquid stocks (e.g. Avramov et al., 2021), suggesting that they might

be less critical for the real economy (e.g. Binsbergen and Opp, 2019). The high trans-

action costs of portfolio strategies based on ML imply that these strategies are difficult

to implement in practice and, more broadly, raise questions about the relevance and in-

terpretation of the predictability documented in this literature. Do ML-based expected

return estimates merely tell us about mispricings that investors don’t bother to arbitrage

away because the costs are too large, the mispricing too fleeting, and the relevant stocks

too small to matter? Or, do trading-cost-aware ML-based predictions also work for large

stocks over significant periods and in a valuable way for large investors, thus providing

information about their preferences?

This paper seeks to generate economically useful predictions. We are interested in de-

riving ML-driven portfolios that can be realistically implemented by market participants

with a substantial fraction of aggregate assets under management, such as large pen-

sion funds or other professional asset managers. If a strategy is implementable at scale,

then the predictive variables that drive such portfolio demands are informative about the

equilibrium discount rates of major companies (Koijen and Yogo (2019)).

While ML with transaction costs is challenging to attack with brute force, we deliver

a tractable solution through the help of economic theory. Specifically, we show how to

integrate the ML problem into a generalized version of the optimal portfolio selection

framework of Gârleanu and Pedersen (2013). The main thrust of our approach is to

feed the objective function explicit knowledge of implementability, so it knows to search

for perhaps subtle but “usable” predictive patterns while discarding more prominent but

costly predictive patterns. We develop an ML method to produce optimal portfolios while

considering realistic frictions from transaction costs of the securities it trades. Our solution

also gives rise to a new measure of “economic feature importance” that captures which

characteristics provide the most investment value; in other words, which characteristics

contribute the most to the overall portfolio’s risk-adjusted returns after trading costs.

Our approach generalizes Gârleanu and Pedersen (2013) in three important ways.

First, while Gârleanu and Pedersen (2013) assume that expected price changes are linear
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functions of a set of signals, we allow expected returns to be a fully general function of

the signals, opening the door for flexible non-linear ML. Second, our setting is based on

stationary returns, not stationary price changes, solving a vexing problem in the portfolio

choice literature and providing a new coherence to empirical analysis over long horizons.1

Third, while Gârleanu and Pedersen (2013) take the data generating process as given,

we integrate the estimation process into the optimization process via ML, showing our

method’s practical and empirical power.

To understand the difference between our approach and the typical use of ML in

finance, note that the latter takes a two-step approach: First, find a function of char-

acteristics that predicts gross returns, and second, use the resulting forecasts to build

portfolios. This typical approach abstracts from transaction costs and turnover, and the

resultant investment strategies produce negative returns net of transaction costs.

Our approach builds transaction costs directly into the objective function, thus en-

suring that the algorithm learns about usable predictability. One element of usable pre-

dictability is that it is relevant for large stocks with low transaction costs. Another

essential element is alpha decay, that is, how persistent a predictor is. With transaction

costs, you will likely own whatever you buy today for a while because the trading costs en-

courage you only slowly to enter or exit positions. Naturally, understanding the expected

return both now and further into the future is relevant.

Empirically, the optimal ML predictor of near-term returns is indeed different from the

optimal ML predictor of returns far into the future. In other words, if fh is the function

that best predicts returns h months into the future, Et[ri,t+h] = fh(sit), then this function

is different across h. Given that the standard ML approach uses only f1, we see that it

misses the information contained in fh at other horizons, h > 1.

One way to implement our approach is to forecast returns across many time horizons

h = 1, 2, ..., then to use all of the predictive functions, fh, appropriately discounted given

risk, risk aversion, and the form of the trading cost function. However, this approach

requires a highly complex ML formulation to accommodate all predictive functions simul-

taneously. Using this approach either leads to serious technical challenges (like massive

computing costs) or requires cutting essential corners.

Our preferred approach instead learns directly about portfolio weights instead of ex-

1Gârleanu and Pedersen (2013) show that the portfolio problem simplifies by looking at numbers
of shares and price changes because this sidesteps the issue of portfolio growth that has plagued the
literature. The portfolio growth is the issue that, if you put 10% of your wealth in IBM stock today,
then you will not have 10% of your wealth in IBM next period before trading – because of the price
change of IBM and other stocks. Working with the number of shares sidesteps this issue (the number of
shares only changes when you trade). Still, the cost is that profit is equal to shares times price changes,
so the model cannot be specified in terms of percentage returns, making empirical analysis difficult. We
have found a way to work with empirically relevant units and preserve tractability via an approximately
optimal solution.
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pected returns.2 This simple approach delivers an essentially closed-form solution to the

highly complex portfolio problem in a single step!

To evaluate the performance of our method, we propose that portfolio choice methods

and ML predictions are assessed based on the net-of-cost investment opportunities they

produce. Indeed, a fundamental insight in portfolio choice is that investors can depict

their investment opportunity set as all the achievable combinations of risk and expected

return, giving rise to the “efficient frontier” depicted in most finance textbooks as the

tangency line to the hyperbola generated by risky investments. The textbook frontier is

drawn in a frictionless setting that abstracts from trading costs, but real-world investors

care about their net return. What does the frontier look like when we take trading costs

into account?

Panel A of Figure 1 illustrates frontiers for various methods that we study. The base-

line for comparison is the cost-agnostic Markowitz-ML solution and the hyperbola of risky

investments – both in gross terms– that is, our implementation of the textbook frontier

using ML. Specifically, these portfolios use ML to build stock-level expected returns, use

the academic analog of Barra to build a covariance matrix, and then form ex-ante efficient

portfolios from these two inputs. Figure 1.A plots the portfolios’ realized out-of-sample

performance. As seen in the figure, while the Markowitz solution is tangent to the hyper-

bola in a textbook analysis with known means and variances, the Markowitz solution is

not precisely tangent in our out-of-sample analysis. In any event, the Markowitz portfolio

performs very well out-of-sample, delivering a Sharpe ratio of roughly 2.0 per annum. But

this is in gross terms. The portfolio’s turnover is enormous and the textbook frontier is

non-implementable in practice.

The other lines in Figure 1 show our concept of an “implementable efficient frontier,”

that is, the achievable combinations of risk and expected return, net of trading costs.

Focusing first on the Markowitz portfolio, we see that its net-of-cost, implementable fron-

tier immediately dives into negative expected return territory as soon as it moves away

from a 100% risk-free allocation, as seen in the bottom curve in Panel A. The shape of

the implementable efficient frontier may be surprising: Whereas the textbook frontier is

a straight line when increasing the allocation to the risky securities while reducing the

risk-free allocation (or applying leverage), the true implementable frontier bends down

because larger positions incur larger transaction costs. Said differently, we show that the

net-of-cost Sharpe ratio declines along the implementable efficient frontier.

To understand the source of the problem for Markowitz-ML at a deeper level, the

2This idea builds on Brandt et al. (2009) who propose using portfolio weights that are parametric
(linear) functions of characteristics in a setting without trading costs. We extend their idea to handle
the much more complex portfolio problem with transaction costs and by using ML to learn about the
optimal weights.
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Figure 1. The Implementable Efficient Frontier: Risk vs. Return Net of
Trading Costs

Note: Panel A shows the implementable efficient frontier for different portfolio methods with a wealth
of $10B by 2020. The dashed lines show indifference curves. The dotted hyperbola is the mean-variance
frontier of risky assets without trading costs, implemented by estimating risk and expected return sep-
arately, out-of-sample. The grey line is the Markowitz-ML efficient frontier before trading cost. After
trading costs, Markowitz-ML and portfolio sort have downward bending frontiers as these methods are
not implementable. Static-ML produces a positive net Sharpe but negative utility, but it works well with
an extra tuning layer, denoted Static-ML∗. Our Portfolio-ML works significantly better out-of-sample.
Panel B shows the implementable efficient frontier at different wealth levels. The dotted hyperbola is the
same mean-variance frontier as in Panel A. The blue line is the optimal portfolio of risky and risk-free as-
sets for an investor with zero wealth, corresponding to no trading costs, estimated using our Portfolio-ML
method for different relative risk aversions. The blue line would be the tangency line to the hyperbola
in a standard in-sample textbook analysis, but it is not exactly tangent out-of-sample. The lower lines
illustrate the mean-variance frontiers with larger wealth levels, also estimated using Portfolio-ML. In
both panels, the relative risk aversions are 1 (circle), 5 (triangle), 10 (square), 20 (plus), and 100 (boxed
cross) and the sample period is 1981-2020. Further details are provided in Section 5.2.

feature importance of this portfolio reveals the culprit: excessive reliance on fleeting small-

scale characteristics (e.g., 1-month reversal for small stocks), which bear high turnover,

high trading costs, and result in poor net returns. Further, Panel A of Figure 1 also shows
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that a standard “portfolio sort” used in the literature is also not implementable.

The difficulty of the standard portfolios from the literature is noteworthy. Still, it is

also interesting to compare our approach to a more sophisticated alternative that may

be used by some large investors. This sophisticated alternative first uses ML to build

expected returns (agnostic of trading costs), then in an additional second-stage optimiza-

tion, takes transaction costs into account to build portfolios. This “Static-ML” approach

delivers a positive net Sharpe but a lower utility than putting all the money in the risk-free

asset, as seen from the indifference curves in Figure 1.A.

To create a more difficult benchmark to beat for our preferred method (Portfolio-ML),

we further enhance the standard approach by adding several extra hyper-parameters that

improve performance by adjusting its scale in various ways. We refer to this approach

as Static-ML∗, where the “∗” indicates that we use an extra tuning stage. Static-ML∗

performs well, delivering high utility as seen in Figure 1.

Despite that Static-ML∗ is a sophisticated multi-stage approach that is much more

highly parameterized than our Portfolio-ML method, our Portfolio-ML method neverthe-

less significantly outperforms Static-ML∗. To understand why Static-ML∗ underperforms

our approach, note that the first-stage ML procedure produces expected returns domi-

nated by short-term signals. This method does not consider which predictors are persis-

tent and which have quick alpha decay. The second-stage optimization reduces turnover,

especially for small stocks, which leads to a much better performance than portfolios that

ignore transaction costs. However, this static approach can nevertheless be improved by

recognizing the dynamic nature of the portfolio using a method that is sensitive to how

expected returns vary across several return horizons (i.e., alpha decay).

In other words, our Portfolio-ML method delivers out-of-sample net-of-cost returns

that outperform a highly sophisticated alternative by roughly 20% in Sharpe ratio terms

and 60% in utility terms. Further, the feature importance across signals changes when

we consider transaction costs. While short-term reversal signals highly influence naive

methods, our method seeks to optimally blend return predictability across multiple future

horizons, especially for liquid stocks. This leads to value and quality earning the highest

feature importance.

Panel B of Figure 1 draws the implementable efficient frontier using our Portfolio-ML

at different levels of wealth or asset under management (AUM). Interestingly, while the

textbook efficient frontier is the same for all investors, the implementable efficient frontier

depends on the investor’s size via the implied trading costs. Indeed, larger investors face

worse (i.e., lower) efficient frontiers that “cut into” the hyperbola.

As an interesting benchmark, the top line shows the Portfolio-ML strategy when trad-

ing costs are nearly zero since the investor has an AUM near zero. This implementable

frontier is obviously good due to the near-zero trading costs, but we note that such so-
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phisticated ML-based trading is hardly feasible for small investors in the real world.3

The frontier at each wealth level shows that the set of optimal implementable portfolios

is strictly worse for higher AUM investors. This degradation happens for two reasons.

First, trading a larger portfolio incurs higher market impact cost. However, the investor

can partly mitigate direct transaction costs by trading less, but this increases opportunity

costs. Indeed, an investor with larger AUM internalizes price impact from their trades,

and this leads the investor to tilt away from highly predictive but costly-to-trade stocks

and signals. Large cost-aware investors opt to forego some predictability in order to hold

trading costs at bay.

Our paper is related to several large literatures. The first applies machine learning

methods to enhance return prediction and enhance portfolio performance, including Gu

et al. (2020b), Freyberger et al. (2020), Chen et al. (2021), Kelly et al. (2019), Gu et al.

(2021), Jensen et al. (2022b), and Han et al. (2021) in US equity markets; Choi et al.

(2021), Leippold et al. (2022), and Cakici and Zaremba (2022) in international equity

markets; and Kelly et al. (2022), Bali et al. (2022), and Bali et al. (2021) in bond and

derivative markets. Recent empirical papers point out that trading strategies based on

these factors and the literature on machine learning in asset pricing cited above involve

large transaction costs in practice. This literature includes Li et al. (2020), Chen and

Velikov (2021), and Detzel et al. (2021). Motivated by these papers, we develop a flexible

portfolio optimization method that lends itself to ML while directly confronting the im-

plementability challenge and explicitly incorporating transaction costs into the ML-based

portfolio optimization problem.

The second related literature extends the frictionless paradigm of Markowitz (1952)

to study portfolio choice in the presence of transaction costs. Constantinides (1986) and

Davis and Norman (1990) analyze settings with a single security, where returns are not

predictable. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) numerically study

single-asset trading with predictable returns and transaction costs. Gârleanu and Ped-

ersen (2013) derive an explicit portfolio solution with multiple assets with predictable

returns and transaction costs when returns are driven by a factor model. Gârleanu and

Pedersen (2016) extend this to more general dynamics in continuous time and Collin-

Dufresne et al. (2020) extend the model to include different liquidity regimes. Our contri-

bution is to derive optimal portfolio rules based on stationary dynamics of returns (rather

than dynamic programming with stationary price changes, as in the literature) and fully

3The strategies we develop would be challenging to implement for small investors as they require
real-time data on many characteristics across more than a thousand stocks, computation of predictive
signals, implementation of ML models, and infrastructure for continually updating and trading these
models. Hence, the methods are most relevant for investors large enough to have a staff that can perform
these tasks, but, given such capabilities, the implementable investment opportunity set is worse for larger
AUM as shown in Figure 1.B.
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general functional forms for return predictability while incorporating an arbitrarily large

set of predictors.

In summary, we provide a theoretical bridge between portfolio optimization and ma-

chine learning with powerful empirical results.

1 Model and the Implementable Efficient Frontier

We consider an economy with N securities traded in discrete time indexed by t =

...,−2,−1, 0, 1, 2, .... The return of asset n from time t to t+ 1 is given by rft+1 + rn,t+1,

where rft+1 is risk-free rate and rn,t+1 is the asset’s excess return. The vector of all assets’

excess returns is denoted rt+1.

An investor observes several characteristics (or signals) for each security, denoted

sn,t ∈ RK , for example, each asset’s valuation ratio, momentum, size, and so on. The

characteristics of all assets are collected in the matrix st ∈ RN×K , and we assume that

st and rt are stationary and ergodic. The signals st fully characterize the investor’s

information about returns in a sense that

rt+1 = µ(st) + εt+1 (3.1)

where the conditional mean µ(st) = Et[rt+1] and variance Σ(st) = Vart[rt+1] = Vart[εt+1]

are bounded Borel-measurable functions of st with Σ being positive definite.

The investor can be seen as a professional asset manager, such as a hedge fund. The

investor has wealth or assets under management (AUM) given by wt at time t. The

asset manager’s AUM grows at a stochastic rate, gwt , so that wt+1 = wt(1 + gwt+1), which

generally depends on performance and on how clients take money in and out of the fund,

as specified in Section 1.2. The investor must choose how much capital, π$
n,t, to invest

in each asset or, equivalently, choose the fraction of the capital invested in each asset,

πn,t = π$
n,t/wt. This portfolio choice implies a dollar profit before transaction costs at

time t+ 1 of

dollar profit before t-costst+1 = (rft + rt+1)′π$
t + (wt − 1′Nπ

$
t )r

f
t = wt(r

f
t + r′t+1πt) (3.2)

where wt − 1′Nπ
$
t is the amount of money in the risk-free money market account, and 1N

is a vector of ones. The corresponding return before trading costs, net of the risk-free

rate, is

rπ,grosst+1 =
dollar profit before t-costst+1

wt
− rft = r′t+1πt (3.3)
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1.1 Trading Costs, Net Returns, and Portfolio Growth

The investor faces transaction costs due to her market impact. Specifically, suppose

the investor chooses to trade dollar values given by τt ∈ RN at any time t. This trade

leads to a market impact of 1
2
Λtτt, where Λt ∈ RN×N is a multivariate version of “Kyle’s

Lambda,” which is symmetric and positive semi-definite such that transaction costs are

non-negative. It may vary as a function of time and the state st of the market.4 The

resulting transaction cost is the product of the trade size and its market impact, that is,

dollar t-costst =
1

2
τ ′tΛtτt . (3.4)

To determine the trade size, note that the dollar position π$
n,t−1 bought at time t− 1 has

grown in value to π$
n,t−1(1+rft +rn,t). The old dollar position has grown due to the return

on the asset (or, said differently, the price change). Hence, the vector of all dollar trade

sizes is
τt = π$

t − diag(1 + rft + rt)π
$
t−1

= wtπt − wt−1 diag(1 + rft + rt)πt−1

= wt (πt − gtπt−1) ,

(3.5)

where diag(v) is a diagonal matrix with the vector v in the diagonal and

gt = diag

(
1 + rft + rt

1 + gwt

)
(3.6)

is the growth of portfolio weights at time t. Combining equations (3.2)–(3.6), we see that

the return as a fraction of wealth in excess of the risk-free rate and trading costs is

rπ,nett+1 = rπ,grosst+1 − TCπ
t = r′t+1πt −

wt
2

(πt − gtπt−1)′ Λt (πt − gtπt−1) . (3.7)

where TCπ
t = dollar t-costst

wt
. The portfolio’s return naturally depends on the portfolio

weights, π, but it also depends on the wealth wt even though the return is measured in

percent of the wealth. This is because trading costs increase by the square of wealth,

such that a larger wealth leads to lower portfolio returns after transaction costs. Said

differently, a larger investor has a larger market impact (for the same portfolio weights

π), thus receiving lower net returns.

4The symmetry of Λ is without loss of generality since, if we start with non-symmetric Λ̃, we can
define Λ = 1

2 (Λ̃ + Λ̃′) and note that τ ′Λτ = τ ′Λ̃τ for any τ .
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1.2 Objective Function

The investor maximizes her expected mean-variance utility of portfolio excess returns

with relative risk aversion γt:

utility = E
[
Et[r

π,net
t+1 ]− Vart[r

π,net
t+1 ]

]
= E

[
µ(st)

′πt −
wt
2

(πt − gtπt−1)′ Λt (πt − gtπt−1)− γt
2
π′tΣ(st)πt

]
.

(3.8)

We make the following assumptions to keep the problem tractable and stationary. First,

the investor has constant risk aversion γt = γ, and the risk Σ is constant over time.

Second, the investor’s wealth (or AUM) grows at an exogenous rate (controlled by how

clients take money in and out), so the wealth remains a stationary part of the overall

market. Specifically, wtΛt = wΛ, such that the investor faces constant transaction costs

relative to her wealth. Under these assumptions, the objective function simplifies as

follows

utility = E
[
µ(st)

′πt −
w

2
(πt − gtπt−1)′ Λ (πt − gtπt−1)− γ

2
π′tΣπt

]
. (3.9)

where the investor chooses πt while st and gt are exogenous. In summary, the investor’s

objective is to maximize utility by choosing her portfolio weights πt = π(~st) at each time

t as a function of all the signals received up until that time, ~s = (..., st−2, st−1, st).

This setting is ideally suited for a flexible ML implementation for two reasons: First,

expected returns are driven by a fully general function, µ. Second, the problem is specified

in terms of stationary units, namely percentage returns and portfolio weights as fractions

of wealth and a stationary objective function.

1.3 The Implementable Efficient Frontier

The utility function depends on risk and expected returns net of trading costs, which

gives rise to the implementable efficient frontier as illustrated in Figure 1 in the introduc-

tion. Specifically, we defined the implementable efficient frontier as the combination of

volatilities and expected net returns, (σ, k(σ))σ≥0, such that the expected net return is as

high as possible for that level of risk:

k(σ) = max
πt∈Π

E
[
rπ,nett+1

]
s.t. E [π′tΣπt] = σ2

(3.10)

We are mainly interested in the implementable efficient frontier when taking the maximum

among all possible portfolios Π, but, as seen in Figure 1, we also consider the frontier

among subsets such as standard portfolio sorts.

As an alternative way to compute the implementable efficient frontier, we can derive
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the optimal portfolio, πγ, for any level of risk aversion, γ. Based on all these optimal

portfolios, we then compute the corresponding combinations of risk and expected net

return:

(
√
E [(πγt )′Σπγt ], E[rπ

γ ,net
t+1 ])γ>0 (3.11)

This generates part of the same implementable efficient frontier, as we show in Ap-

pendix 7.2. The only difference is that, while (3.10) can generate a downward-sloping

curve as seen in Figure 1, (3.11) only produces a part of the frontier that ends before

the downward sloping part, since an investor never wants the dominated portfolios on the

downward-sloping part. The next result characterizes the frontier.

Proposition 11 (Implementable efficient frontier) (i) The net Sharpe ratio, k(σ)/σ,

is decreasing in σ along the implementable efficient frontier for any level of wealth, w > 0,

when transaction costs are positive, Λ > 0; (ii) There exists a critical σ∗ such that k(σ) is

increasing and concave for σ < σ∗; (iii) The part of the frontier σ ∈ (0, σ∗) is generated by

(3.11) as
√
E [(πγt )′Σπγt ] decreases in γ and converges to σ∗ when γ → 0; (iv) If w1 < w2,

then the implementable efficient frontier corresponding to a wealth of w1 is above that of

w2.

Interestingly, the implementable efficient frontier has a declining net Sharpe ratio – it is

not a straight line with a constant Sharpe ratio as in the textbook frontier without trading

costs. The declining net Sharpe ratio reflects that investors cannot freely leverage their

portfolio to the desired risk in the presence of trading costs – because more leveraged

positions are larger and incur more significant trading costs. Further, larger investors

face larger trading costs, leading to a lower frontier. Propositions 12–15 characterize

the implementable efficient frontier at a deeper level via the properties of the underlying

portfolios.

1.4 Empirical Assessments of Portfolios with Trading Costs

The implementable efficient frontier can be computed in-sample or out-of-sample, where

the latter provides a more realistic view of investors’ experience, as discussed in our em-

pirical analysis. More broadly, the empirical counterpart of our utility function provides a

useful way to evaluate the implementability and economic benefit of any trading strategy:

utility(empirical) =
1

T

T∑
t=1

[
rπ,grosst+1 − TCπ

t −
γ

2
π′tΣπt

]
. (3.12)
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The first part of the sum, rπ,grosst = r′t+1πt, is simply the average return of the strategy

before trading costs. This is the standard metric by which most papers in the literature

evaluate trading strategies.

However, real-world trading involves trading costs, so the second term computes the

average trading cost over time, TCπ
t = w

2
(πt − gtπt−1)′ Λ (πt − gtπt−1). This term is a bit

more complex since it involves both the portfolio weights in the last period, πt−1, and the

portfolio in this period, πt. Specifically, the trading cost is the cost of moving from the

grown old portfolio, gtπt−1, to the new portfolio. So the first two terms together yield the

average return net of trading costs.

Lastly, we need to consider that investors are risk-averse. In particular, two trading

strategies that have delivered the same net returns are different if one did so at a much

higher risk. Hence, the last term computes the average disutility of risk. Rather than

looking at the ex-ante risk, we can also evaluate the ex-post realized risk, 1
T

∑
t=1

γ
2
(rπ,nett+1 −

r̄π,net)2, where r̄π,net is the average net return. Therefore, our utility function suggests

that the main object of interest is the average return net of trading cost and risk, which

can be seen as the utility flow each period:

rπ,utilt+1 = rπ,grosst+1 − TCπ
t −

γ

2
(rπ,nett+1 − r̄π,net)2 (3.13)

So, when we evaluate trading strategies empirically, we start with each strategy’s

return gross of costs, rπ,grosst+1 , then compute its return net of trading costs, rπ,nett+1 = rπ,grosst+1 −
TCπ

t , and finally focus on the return net of trading costs and risk, rπ,utilt+1 .

Recall that the net Sharpe ratio declines along the implementable efficient frontier.

This result means that an investor cannot just maximize her Sharpe ratio net of trading

costs and then choose her risk level – as she could in the standard mean-variance analysis.

Instead, she must directly maximize the return net of trading costs and risk, thus jointly

considering risk, return, and trading costs. Hence, our framework provides useful tools to

evaluate the implementability of trading strategies in general – namely, the concepts of

the implementable efficient frontier and the return net of trading cost and risk, rπ,utilt+1 .

2 Solution

We seek to find the optimal portfolio πt that maximizes average returns net of trading

costs and risk (3.9) or its empirical counterpart (3.12). The problem is too complex and

too high-dimensional to attack by brute force ML of a general function πt = π(~s) since

~s = (..., st−2, st−1, st) is simply of too high dimension. So, we need help from economic

theory before we turn to ML.
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2.1 Optimal Dynamic Portfolio Choice

To solve for the optimal portfolio strategy, we use the “discount factor” m defined in

the next lemma. To define this discount factor, we use the notation ḡ = E[gt] for the

mean portfolio growth rate as defined in (3.6), and G ∈ RN×N for the second moments,

Gij = E[gitgjt].

Lemma 3 The fixed point equation

m̃ =
(
w−1Λ−1/2γΣΛ−1/2 + I + Λ−1/2((Λ1/2(I − m̃)Λ1/2) ◦G)Λ−1/2

)−1

(3.14)

has a unique, symmetric, positive-definite solution m̃ ∈ S(0, 1).5 For this solution, all

eigenvalues of Λ−1/2m̃Λ−1/2ḡΛ are between zero and one. Furthermore, m = Λ−1/2m̃Λ1/2

is such that all eigenvalues of mΛ−1ḡΛ are between zero and one.

We explain in Appendix 7.1 how to calculate m, but for now, let us treat it as a known

constant that depends on the exogenous parameters of the model. Based on this known

constant, we can compute the optimal portfolio strategy. We start with a simpler case,

namely where expected returns are constant. Even in this case, the solution is non-trivial,

as is shown by the following proposition.

Proposition 12 (Optimal dynamic strategy: constant expected returns) Let m̃

be the unique solution to (3.14) in S(0, 1), and let m = Λ−1/2m̃Λ1/2. When expected

returns, µ(st) = µ̄ ∈ RN , as well as gwt , r
f
t are constant, then the optimal portfolio is

given by

πt =
∞∑
θ=0

(
θ∏

τ=1

mgt−τ+1

)
1

w
(I −mΛ−1ḡΛ)−1mΛ−1µ̄ (3.15)

Furthermore, it is the unique L2-solution to the stochastic difference equation

πt = mgtπt−1 +
1

w
(I −mΛ−1ḡΛ)−1mΛ−1µ̄ . (3.16)

To understand the intuition for this proposition, note that the optimal portfolio starts with

the old grown position, gtπt−1, and then trades toward a fixed portfolio. To understand

the direction of the trade, it is useful to write the optimal portfolio as

πt = mgtπt−1 + (I −m)A = gtπt−1 + (I −m)(A− gtπt−1) , (3.17)

5The discount factor m is defined by an equation involving the symbol “◦,” which is an element-wise
matrix product. The element-wise product is also called the Hadamard product, and, for any two matrices
A and B, it is computed as the matrix (A◦B)i,j = Ai,jBi,j . Further, S(0, 1) is the set of positive-definite
matrix-valued functions with eigenvalues between zero and one.
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where A is the “aim” portfolio. The aim portfolio has the property that, if the investor

holds this portfolio, then the investor optimally does not trade, and otherwise the investor

trades in the direction of the aim with trading speed I −m. We see from Proposition 12

that the aim portfolio is

A = (I −m)−1(I −mΛ−1ḡΛ)−1 c
1

γ
Σ−1µ̄︸ ︷︷ ︸

Markowitz

, (3.18)

where the matrix c is given by

c =
γ

w
mΛ−1Σ (3.19)

So we see that the aim portfolio is related to the Markowitz portfolio but adjusted to

account for transaction costs.6

We next present a tractable approximation of the optimal portfolio when the expected

returns are not too large. Specifically, we write expected returns as µ(st) = εµ̃(st), where

µ̃ is a given function and ε is a small number that measures the magnitude of expected

returns.

Proposition 13 (Optimal dynamic strategy) Let m̃ be the unique solution to (3.14)

in S(0, 1) and let m = Λ−1/2m̃Λ1/2. With expected returns µ(st) = εµ̃(st) and gwt =

gw +O(ε), rft = rf +O(ε), the optimal portfolio is

πt = mgtπt−1 + (I −m)At + O(ε2) , (3.20)

where the aim portfolio At at time t is

At = (I −m)−1

∞∑
τ=0

(mΛ−1ḡΛ)τ cEt

[
1

γ
Σ−1µ(st+τ )︸ ︷︷ ︸

Markowitzt+τ

]
. (3.21)

This key theoretical result of the paper shows how to choose the optimal portfolio in two

surprisingly simple and intuitive equations. The first equation (3.20) says that one should

always start from the grown position inherited from the last period and then trade toward

an aim portfolio.

The second equation (3.21) shows how the aim portfolio depends on the current and

future Markowitz portfolios, thus providing an optimal risk-return tradeoff along the path

where these stocks are expected to remain in the portfolio while simultaneously econo-

6We note that, under certain conditions, there is only a small adjustment in the sense that (I −
m)−1(I −mΛ−1ḡΛ)−1 c is close to I. For example, this happens in the limit when G is close to 11′. As
we show in the Appendix, when G = 11′, we have ḡ = diag(1), and c = (I −m)2.
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mizing transaction costs.7 Proposition 13 generalizes the Gârleanu and Pedersen (2013)

portfolio optimization principle, “aim in front of the target,” when facing trading cost

frictions. Unlike Gârleanu and Pedersen (2013), we do not require specific assumptions

on return dynamics but, instead, allow a general function µ(·) that predicts returns.

The proposition also leads to several economically intuitive properties, as shown next.

Proposition 14 (Trading speed) The eigenvalues of the matrix m are monotone de-

creasing in G, Σ and γ and increasing in w, in the sense of positive semi-definite order.8

To understand the intuition behind these results, recall from (3.20) that m is the per-

sistence of the optimal portfolio, or, equivalently, I −m is the trading speed toward the

aim. At the same time, m also determines how much the aim portfolio weights near-time

performance versus long-term returns, as seen in (3.21). So, consider what happens when

we move to the right in the implementable efficient frontier in Figure 1 by decreasing risk

aversion. This decreasing risk aversion means that m increases, thus reducing trading

speed and making the aim more focused on persistent signals. In other words, trading

costs increase as the investor takes more risk, but the investor compensates by trading

more slowly toward a more stable aim. Likewise, an investor with larger wealth w has a

lower trading speed because of more significant market impact costs, providing economic

intuition for Figure 1.B.

The next proposition considers limiting portfolios with small are large wealth.

Proposition 15 (Small and large investors) When wealth approaches zero such that

transaction costs become negligible, w → 0, the discount factor converges as m → 0 and

the optimal portfolio policy converges to the Markowitz portfolio, πt → 1
γ
Σ−1µt.

When wealth grows large, w → ∞, the optimal portfolio diminishes, πt → 0, but the

discount factor m and rescaled portfolio, wπt, and aim portfolio, wAt, converge to finite

limits if Λ is diagonal and ḡi = 1+rf+µi
1+gw

> 1 for all i.

Naturally, a tiny investor holds a portfolio close to the Markowitz portfolio because of the

low market impact costs. The limiting behavior as wealth goes to infinity is less obvious:

As wealth grows infinite, the investor ultimately holds almost all wealth in the risk-free

asset as trading a meaningful proportion of wealth in illiquid assets becomes too costly.

However, this result does not mean that the portfolio in dollar terms is not large. Instead,

what happens is that the portfolio, measured in dollar terms, grows toward a finite limit.

In other words, a maximum amount of money can be made in the market, and as wealth

increases, the investors ultimately hold this “maximum dollar portfolio.”

7For the convergence of the series (3.21), it is important that mḡ has all eigenvalues below one in
absolute value. As we show in the Appendix, a stronger claim holds, and Λ1/2ḡ1/2mḡ1/2Λ−1/2 is a
symmetric, positive semi-definite matrix with all eigenvalues between zero and one.

8Given two symmetric matrices A,B, we write A ≥ B in the sense of positive semi-definite order if
A−B is positive semi-definite.
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2.2 Implementing the Solution with Machine Learning

From a machine learning perspective, Proposition 13 is a powerful result if we assume

that st is Markovian. To see the power of this result, note that the proposition transfers

the ML problem from looking for a general function π all current and past signals to a

problem of looking for a function A(st) of only the current signals. This enormous reduc-

tion in dimension vastly simplifies the problem. There are dual ways of using machine

learning to implement Proposition 13, which we call “Multiperiod-ML” and “Portfolio-

ML,” respectively. These approaches are designed to find the dynamic optimal portfolio

while being aware of transaction costs in a theoretically consistent manner. We describe

each approach in turn.

Multiperiod-ML: Machine Learning about Expected Returns across Horizons

The first approach to apply Proposition 13 empirically is to compute the aim portfolio

using the expected returns across multiple future periods. To understand this approach,

recall first that µt = Et(rt+1) is the short-term expected return, so that Et[µt+τ ] =

Et[Et+τ [rt+τ+1]] = Et[rt+τ+1] is the current expectation about returns τ periods in the

future. Using this identity, the aim portfolio can be written as

A(st) = (I −m)−1

∞∑
τ=0

(mḡ)τc
1

γ
Σ−1Et[rt+1+τ ] (3.22)

The aim portfolio depends on expected returns across all future time horizons.

One approach to apply Proposition 13 empirically is first to use standard ML tech-

niques to predict returns, but do this for a range of forecasting horizons, thus produc-

ing proxies for Et[rt+1+τ ] for all τ . Using these forecasts, the aim portfolio is given by

(3.22). The resulting portfolio can be computed recursively using (3.20), which we call

πMultiperiod-ML as it is based on expected returns over multiple periods.

While there exist many ML methods that can be used to forecast returns, we focus

on a single method throughout the paper for its unique combination of flexibility and

simplicity (the appendix contains robustness analysis). Specifically, we use the random

features (RF) method of Rahimi and Recht (2007).9 This method is based on the insight

that any function can be approximated arbitrarily well by a linear combination of known

auxiliary functions. In other words, we can write Et[ri,t+1+τ ] = f(si,t)bτ , where f is a

known family of functions of the signals and bτ is a parameter to be estimated (Section

4.2 details our empirical methodology). The RF method is powerful in predicting returns

and easily adaptable to our second method, discussed next.

9Kelly et al. (2022) analyze i in the context of return prediction and portfolio choice.
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Portfolio-ML: Machine Learning directly about Portfolio Weights

The disadvantage of Multiperiod-ML is that we need a return prediction model for all

future return horizons, not just one period ahead. An alternative, and our preferred

approach, is to learn directly about portfolio weights rather than the two-step procedure

of first predicting returns and then constructing portfolios. We thus refer to this approach

as “Portfolio-ML.”

We use (3.12) directly as our ML objective, where the optimal portfolio π depends

on the aim A, and then search for the function A that maximizes this objective. This

method uses the insights that (i) we can focus on the aim portfolio A, which only depends

on current signals, and (ii) the objective should penalize transaction costs.

To see how this works, note that Proposition 13 shows that the optimal portfolio is a

weighted average of the inherited position and the current aim portfolio via (3.20). We

can express this result as saying that the current optimal portfolio depends on the current

and past aim portfolios and their growth over time:

πt =
∞∑
θ=0

(
θ∏

τ=1

mgt−τ+1

)
(I −m)A(st−θ) . (3.23)

So, we can replace π by this expression in the objective function (3.12), which leaves us

the task of finding the best aim portfolio, A(·), based on an economic objective function.

In other words, we need to find a general function A(st) that maximizes the expected

utility. To do this, we again use the ML insight that any function can be approximated

arbitrarily well by a linear combination of known auxiliary functions. Specifically, we

write At = f(st)β, where f is a set of known functions (random features) of the signals

and β ∈ Rp is an unknown vector of parameters. For example, if portfolio weights were

linear in the signals, we could take f to be the identity such that At = stβ. We take f as

a set of random features, just like we did to predict returns (detailed in Section 4.2).

So we have boiled the portfolio choice problem down to finding the parameter β, and

we next show how to do that in closed form. Plugging A(st) = f(st)β into equation

(3.23), we see that the optimal portfolio depends on known elements and the unknown

parameter β:

πt =

[
∞∑
θ=0

(
θ∏

τ=1

mgt−τ+1

)
(I −m)f(st−θ)

]
β ≡ Πtβ (3.24)

where Πt is defined by the last equation. Using this formulation for πt in the objective
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(3.9), we have

utility =
1

T

∑
t

[
r′t+1πt −

γ

2
π′tΣπt −

w

2
(πt − gtπt−1)′ Λ (πt − gtπt−1)

]
=

1

T

∑
t

[
r′t+1Πtβ −

γ

2
β′Π′tΣΠtβ −

w

2
(Πtβ − gtΠt−1β)′ Λ (Πtβ − gtΠt−1β)

]

=
1

T

∑
t

r′t+1Πt︸ ︷︷ ︸
≡r̃′t+1

β − 1

2
β′ [γΠ′tΣΠt + w(Πt − gtΠt−1)′Λ(Πt − gtΠt−1)]︸ ︷︷ ︸

≡Σ̃t

β


≡ ET [r̃′t+1]β − 1

2
β′ET [Σ̃t]β

(3.25)

So we can maximize utility by maximizing this quadratic equation in the unknown param-

eter β. To ensure a robust solution, we add ridge penalty −λβ′β, yielding the following

solution:

Proposition 16 (Portfolio-ML) The aim portfolio can be estimated as A(st) = f(st)βT ,

and the corresponding optimal portfolio, πPortfolio-ML, is given by (3.24), where

βT = (ET [Σ̃t] + λI)−1ET [r̃t+1] (3.26)

Amazingly, this approach delivers a closed-form solution for the optimal dynamic port-

folio in light of transaction costs. To find the optimal portfolio, we compute the two

“expectations” on the right-hand side of (3.26) as their sample counterparts seen in

(3.25). These sample counterparts depend only on data (rt+1, st), known parameters,

and the ridge parameter λ, which is chosen via ML validation as discussed in Section 4.2.

With enough random features and enough time, the estimated portfolio in Proposition 16

asymptotically recovers the optimal portfolio, as discussed in more detail in the appendix

(Proposition 19).

2.3 Economic Feature Importance

It is important to determine which characteristics are economically important. To address

this issue, we consider the value function V (s), the maximum utility for a given set of

signals s. We define the importance of any feature n as

ιn = V (s)− V (s−n) (3.27)

where s−n is the set of signals s, except that we drop feature n at all times. In other

words, the importance of feature n is the drop in utility when the investor no longer has
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access to this information. The following results provide an intuitive characterization of

the drivers of feature importance.

Proposition 17 In the limit when Λ is small, the investor’s steady-state optimal utility

is V (s) = v(s)− c(s) + O(‖Λ‖2), where

v(s) =
1

2
E[Markowitz′t Σ Markowitzt] , (3.28)

is the value function without transaction costs, and c measures the cost of time-variation

in the Markowitz portfolio:

c(s) =
1

2
E[(Markowitzt+1 − gt+1Markowitzt)

′ Λ (Markowitzt+1 − gt+1Markowitzt)] .

(3.29)

The importance, ιn, of feature n is

ιn = v(s)− v(s−n)︸ ︷︷ ︸
efficiency loss

− (c(s)− c(s−n))︸ ︷︷ ︸
cost reduction

+ O(‖Λ‖2) .
(3.30)

We see that a feature is more important if it is an important contributor to the

Markowitz portfolio (the first term in (3.30)) and if it is a persistent signal such that it

reduces the turnover and, hence, the transaction costs (the second term in (3.30)).

This result provides intuition on economic feature importance based on an approxi-

mation. Empirically, we do not rely on this approximation but, instead, use ML tools to

characterize the economic feature importance (3.27) as described in Section 5.3.

3 Benchmarks based on Standard Approaches

3.1 Standard Approach: Predicting Returns without T-Costs

The standard approach in the literature is to assume away transaction costs, that is,

setting Λ = 0. In this case, the portfolio problem (3.9) becomes static in the sense that

we can choose the optimal portfolio πt at time t without regard to what happens at other

time periods. Hence, the standard approach is focused on finding methods to predict

returns and then using these return predictions to form a portfolio. For example, we

can write the standard ML prediction problem as seeking to find a function f of stock

characteristics sn,t that minimizes the mean-squared forecast errors for future 1-period

(say, 1-month) excess returns rn,t+1:

min
f :RK→R

1

TN

∑
n,t

[rn,t+1 − f(sn,t)]
2 . (3.31)
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This standard approach generates a function that approximates the conditional mean,

f(si,t) ∼= E[ri,t+1|si,t], when returns are stationary across time and assets, and the number

of observations is large. The standard approach to turn such predictions into portfolio

weights is to make factor, πfactor-ML, by going long a value-weighted average of the top

10% of the assets with the highest predicted returns f(si,t) while shorting the bottom

10% of the assets.

This simple factor approach ignores risk and transaction costs, but a more sophisti-

cated method maximizes (3.9) while assuming zero transaction costs. Using the vector of

expected excess returns µ(st) = (f(s1,t), ..., f(sN,t))
′, the solution to (3.9) without trans-

action costs is

πMarkowitz-ML
t =

1

γ
Σ−1µ(st) . (3.32)

which is an ML-based version of the Markowitz portfolio.

3.2 Static Transaction Cost Optimization

A more sophisticated method is first to estimate the vector of expected excess returns

µ(st) via (3.31) and then account for transaction costs in a second step. While this two-

step procedure does not fully account for the dynamic nature of the problem, it serves as

an interesting benchmark for our fully dynamic method. To see how this works, consider

the problem of choosing an optimal portfolio πt given the existing portfolio gtπt−1:

max
πt∈RN

{
π′tµt −

γ

2
π′tΣπt −

w

2φ
(πt − gtπt−1)′Λ(πt − gtπt−1)

}
. (3.33)

Here, the transaction costs are divided by a “transaction-cost amortization parameter”

φ to account for the static nature of the problem in an ad-hoc manner. A naive choice

of this parameter is φ = 1, which would mean that the objective (3.33) compares the

returns earned over the next period (a “flow” variable) with the transaction costs (a

“stock” variable) paid today. This comparison is problematic if the portfolio is expected

to be held for many periods, so having the fudge factor φ is a simple way to address

this problem. In particular, if the portfolio is expected to be held for φ = 6 periods,

we can amortize the trading cost over these six time periods, thus dividing the current

transaction cost by six.

The solution to the static objective (3.33) is:

πstatic-ML
t = (γΣ +

w

φ
Λ)−1(µt +

w

φ
Λgtπt−1)

= mstatic gtπt−1 + (I −mstatic) πMarkowitz-ML
t

(3.34)

where mstatic = (γΣ + w
φ

Λ)−1w
φ

Λ. So we see that this strategy is a weighted average of the

196



inherited grown position, gtπt−1, and the current Markowitz portfolio. Said differently,

this strategy always trades in the direction of the current Markowitz portfolio — so

Markowitz is the “aim portfolio” in this static trading cost formulation. This solution is

similar to our optimal portfolio with two exceptions. First, the aim portfolio in the fully

dynamic model is more forward looking, distinguishing persistent signals from those with

fast alpha decay. Second, the dynamic solution uses the utility optimal discount factor,

m, rather than mstatic.

4 Data and Empirical Methodology

4.1 Data and Inputs to the Portfolio Choice

Returns and Investment Universe

We use the dataset from Jensen et al. (2022b), a publicly available dataset and replication

code of stock returns and characteristics, with the underlying return data sourced from

CRSP and accounting data from Compustat.10 We restrict our sample to US common

stocks (shrcd: 10, 11, and 12) traded on AMEX, NASDAQ, or NYSE (exchcd: 1, 2, or 3)

with a market cap above the 50th percentile of NYSE stocks (denoted as large-cap stocks).

For example, the group of large-cap stocks consists of the largest 1204 stocks at the end of

2020. This sample is deliberately conservative; the effects of trading cost optimization will

be magnified among small, micro, and nano-cap stocks subject to notably larger trading

costs. Our sample runs from 1952 to 2020, where the first part of the sample is used only

for estimation, and our out-of-sample backtests run from 1981 to 2020.

Signals

To predict returns, covariances, and portfolio weights, we use 115 stocks characteristics

(or features) studied in Jensen et al. (2022b).11 We standardize each feature in each

month by mapping the cross-sectional rank into the [0,1] interval. We set missing values

to 0.5 but require at least 57 non-missing features and non-missing market equity at the

beginning of the month.

Investor Wealth and Optimization Methods

We assume that the investor wealth grows according to the realized market return,

wt = wt−1(1 + Rm,t), such that the size of the investor is a stable share of the mar-

10The data, code, and documentation are available at https://github.com/bkelly-lab/

ReplicationCrisis/tree/master/GlobalFactors.
11Jensen et al. (2022b) studies 153 features. However, here we exclude features with poor coverage

early in the sample. Table AI shows an overview of the features.
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ket. This assumption means that the investor withdraws money when the portfolio has

outperformed the market and vice versa when the portfolio has underperformed. For in-

terpretability, we label each investor’s size by the corresponding wealth level by the end of

2020. In our baseline specification, the investor’s wealth evolves with the market return,

so the final wealth by 2020 is $10 billion.

We assume that the investor optimizes the portfolio each month using either Portfolio-

ML, Multiperiod-ML, Static-ML, portfolio sort, or Markowitz-ML, as described below in

Sections 4.2–4.3. These portfolio choice methods depend on trading costs and risks, which

we estimate each month as described next. While we re-estimate trading costs and risks

each month, the investor behaves as if trading costs and risks are constant over time. This

assumption simplifies the ML problem, and while it may hurt out-of-sample performance

that trading costs and risk do change over time, we find that the methods perform well

nevertheless.

Trading Cost Matrix

Trading cost measured in dollars are given TCt = 1
2
τ ′tΛτt for any vector of dollar trades,

τt. In our empirical analysis, we let the trading cost matrix be diagonal and calibrate it

based on the estimates in Frazzini et al. (2018). Specifically, we assume that the (expected

and realized) market impact, 1
2
Λτt, is 0.1% when trading 1% of the daily dollar volume in

a stock. This assumption means that the ith diagonal entry in Λt, denoted Λi,t, satisfies

0.001 = 1
2
Λi,t0.01Vi,t, which means that

Λi,t =
0.2

Vi,t
, (3.35)

where Vi,t is the expected daily dollar volume of stock i at time t. For example, trading

$5 million over a day in a stock with a daily volume of $500 million moves the price by
1
2

0.2
$500m

×$5m = 0.1%, leading to a transaction cost of 1
2

0.2
$500m

× ($5m)2 =$5000. We follow

Frazzini et al. (2018) and assume that the expected daily volume is equal to the average

daily dollar volume over the last six months.

Variance-Covariance Matrix

We need to estimate the variance-covariance matrix, Σt = Vart(rt+1), at each time in a

way that guarantees it to be positive definite and is broadly consistent with our estimates

of expected returns. We use a factor model similar to the MSCI Barra risk model to

accomplish these goals. Specifically, security characteristics are used as observable factor

loadings, and latent factor returns are estimated via a simple regression (MSCI Barra,
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2007).12 Specifically, each trading day, we estimate a cross-sectional regression of stock

returns on stock characteristics

ri,t+1 = S ′i,tf̂t+1 + εi,t+1, (3.36)

and the regression coefficients, f̂t+1, are the estimated factor returns. Here, the observed

characteristics, Si,t, consist of a constant (the number one) and the 13 cluster characteris-

tics from Jensen et al. (2022b). These cluster factors capture the main features of return

predicting factors but do so in a simplified way to have a tractable variance-covariance

matrix (simplified by reducing more than 100 factors to 13 clusters and by using a lin-

ear factor model rather than ML). Specifically, each stock’s cluster characteristic, Si,t,

is its average rank of the characteristics in the cluster, standardized by subtracting the

mean and dividing by the standard deviation each month. This standardization implies

that the associated factors are long-short and dollar neutral, and, at the same time, the

constant corresponds to an equal-weighted market factor. This structure means that the

variance-covariance matrix is:

Σ̂t = StVart(f̂t+1)S ′t + diag (Vart(ε̂i,t+1)) . (3.37)

Here, Vart(f̂t+1) is estimated as the exponentially-weighted sample covariance matrix of

factor returns over the past ten years of daily observations. We weight observations with

exponential decays to put more weight on recent observations and, since correlations

move slower than variances, we use a half-life of 378 days for correlations and 126 days

for variances.13

Lastly, each stock’s idiosyncratic variance, Vart(ε̂i,t+1), is estimated using an exponentially-

weighted moving average of squared residuals, εi,s, from (3.36) with a half-life of 126 days.

We require at least 200 non-missing observations within the last 252 trading days. We

use the median idiosyncratic variance within size groups to impute missing observations

for stocks with less than 200 valid observations.

12The procedure of fixing factor loadings and estimating factor returns differs from models such as
Fama and French (1993c), that fix factor returns and estimate loadings.

13Specifically, observations j days from t gets a weight of wt−j = c0.5j/half-life where c is a constant
ensuring that the sum of the weights is one.
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4.2 Machine Learning Methodology

Machine Learning via Random Fourier Features

We use the machine learning method called random feature (RF) regression from Rahimi

and Recht (2007).14 To understand the intuition behind this method, note that any

function f(st) can be approximated as

f(si,t) ≈ RF (si,t)β, (3.38)

where β ∈ Rp is a vector of parameters and RF consists of random features. The RF

method transforms the original features using random weights and a non-linear activation

function. There are several ways to generate random features. We use so-called random

Fourier features, which essentially approximate a function via its Fourier transformation.15

While this may sound complicated, it is straightforward to do in practice. We first simply

draw some random Normal vectors, wj ∈ R115 ∼ iidN(0, η2I) for j = 1, ..., p/2. Then,

for each j, we create a pair of new features, sin(s′i,tw
j) and cos(s′i,tw

j), where the sine

and cosine functions can capture non-linearities. We finally collect all these p random

features:

RF (si,t) = [sin(s′i,tw
1), cos(s′i,tw

1), . . . , sin(s′i,tw
p/2), cos(s′i,tw

p/2)]′.

The RF method thus involves a vector of parameters β, estimated via a ridge regression,

and two hyper-parameters, namely the number of random features p and the standard

deviation of the random weights, η. We describe below how we choose these hyper-

parameters via tuning.

Machine Learning about Expected Returns: Multiperiod-ML

We estimate expected returns using a ridge regression on the RF-transformed features.

The resulting model can be viewed as a two-layer neural network with non-optimized

weights in the first layer (the random features) and optimized weights in the final layer

(the betas). We predict returns over three different horizons. The first model predicts

excess returns over month t+ 1, the second model predicts the average excess return over

month t+ 2 to t+ 6, and the third model predicts the average excess return over month

t+ 7 to t+ 12.

14See Kelly et al. (2022) for a detailed analysis of the theoretical properties of this RF methodology in
the context of return prediction.

15The approach we use to generate random features is motivated by Sutherland and Schneider (2015),
who find that it is preferable to alternative schemes with Gaussian weights.
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Machine Learning Directly about the Optimal Portfolio: Portfolio-ML

Our Portfolio-ML learns about the aim portfolio via the relation

At = f(st)β = diag

(
1

σi,t

)
RF (st)β, (3.39)

where β ∈ RK is a parameter, we scale each asset’s position by its volatility, σi,t =
√

Σt,ii,

and RF consists of random Fourier features as described above. Note the objective for

estimation is no longer return prediction but utility maximization, and the solution is

given in Proposition 16.

4.3 Portfolio Tuning

The empirical implementation relies on several hyper-parameters as summarized in Ta-

ble I. Consider first how we tune our Portfolio-ML method. This method runs a ridge

regression on RF-transformed features, so we need to find the ridge parameter λ, the

number of random features p, and the standard deviation of random weights η, collected

in h = (λ, p, η).

We tune h as follows. For each h, we compute a “validation backtest” in each year

starting in 1971. Specifically, in each year y ≥ 1971, we compute the optimal beta (3.26)

for that h using monthly data from 1952 to y − 1. Using this beta, we compute the

optimal portfolio for each month in year y and repeat this process each year until the end

of our sample. This process creates – for each h – a backtest from 1971 onwards. These

validation backtests are out-of-sample with respect to beta, but we still need to pick h.

Our “actual backtest” starts in 1981. Each year from 1981 onwards, we pick the

hyper-parameter h with the highest realized utility in the validation backtest up until

now (i.e., from 1971 until the previous year). Using this h and the corresponding beta, we

compute the optimal portfolio over the next year, which is, therefore, truly out-of-sample

with respect to both h and beta.

For the other methods (Multiperiod-ML, Static-ML, Markowitz-ML, portfolio sort),

we first fit a model that predicts returns and then compute the optimal portfolio. We

predict returns using a similar ML method based on random features using the tuning

parameters h shown in Table I.

We show in the next section that Portfolio-ML outperforms Multiperiod-ML and

Static-ML. In fact, the latter methods, in fact, deliver negative utility to the investor

out of sample. This disappointing performance happens even though the ML model to

predict returns works reasonably well in terms of how it ranks stocks. The problem is

that the resulting portfolios tend to be poorly scaled because out-of-sample returns and

risks for optimized portfolios do not match the scale of their ex-ante expected versions.
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Table I. Hyper-Parameters

Hyper-parameter Method

First tuning layer, h Portfolio-ML Multiperiod-ML Static-ML

Ridge penalty, λ {0, e4, e5, . . . e8} {0, e−10, e−9.8, . . . e10} {0, e−10, e−9.8, . . . e10}
#random features, p {26, 27, 28, 29} {21, 22, . . . , 210} {21, 22, . . . , 210}
Std of weights, η {e−3, e−2} {e−4, e−3, e−2, e−1} {e−4, e−3, e−2, e−1}
Second tuning layer, h∗ Multiperiod-ML∗ Static-ML∗

Adjustment to mean, u {0.25, 0.50, 1.00} {0.25, 0.50, 1.00}
Adjustment to variance, v {1, 2, 3} {1, 2, 3}
Adjustment to t-cost, k {1, 2, 3} { 11 ,

1
3 ,

1
5}

Note: The table shows the hyper-parameter space we use for portfolio tuning. For Portfolio-ML, λ is a
ridge penalty, p is the number of random features, and η is the standard deviation of random weights. For
Multiperiod-ML∗ and Static-ML∗ we add a second tuning layer; u shrinks the expected return vectors as
Et[rt+τ ]∗ = uEt[rt+τ ], v increases stock variances as Σ∗t = Σt + v diag(σt), and k controls trading cost as
Λ∗t = kΛt.

So, this finding already shows the power of the Portfolio-ML method, namely its focus

on the economic objective and on directly choosing portfolio weights, which immediately

leads to an appropriate scaling of the portfolio with strong performance.

Nevertheless, we want to give the other methods a chance to compete with the

Portfolio-ML method. To improve these alternative methods, we add an additional layer

of portfolio tuning to Multiperiod-ML and Static-ML, where we add three additional tun-

ing parameters: u, v, k. In particular, u shrinks the expected return vector towards zero,

v increases the diagonal of the covariance matrix, and k increases the trading cost matrix:

E∗t [rt+τ ] = uEt[rt+τ ],

Σ∗t = Σt + v diag(σt),

Λ∗t = kΛt.

(3.40)

To estimate two layers of hyper-parameters, we proceed in the following way (which is

rather involved, but, again, Portfolio-ML avoids this complexity). In the first layer, we

produce a time series of out-of-sample expected returns based on h = (λ, p, η) and, in the

second layer, we produce optimal portfolios based on h∗ = (u, v, k). For the first layer,

we update the RF models based on h each decade using the past 30 years of data. We

estimate the random features models with each set of hyper-parameters over the first 20

years and pick the ones that lead to the lowest mean squared error over the last ten years.

After finding the optimal hyper-parameters h, we re-train the model using all 30 years of

data.

In the second layer of portfolio tuning, we update the hyperparameters h∗ each year

starting in 1981 by choosing the hyper-parameters that led to the highest utility since
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1971. This two-layer approach is based on some experimentation to make these methods

work, which gives these methods an advantage. Again, our main finding is that Portfolio-

ML nevertheless performs even better. Figure A1 in the appendix shows the optimal

parameters over time.

5 Empirical Results

This section reports our empirical results for each of our methods of portfolio choice. In

our baseline specification, we consider an investor with a wealth of $10 billion by the end

of 2020 and a relative risk aversion of 10. We also consider other levels of wealth for

comparison.

5.1 Out-of-Sample Portfolio Performance

Table II shows the out-of-sample performance for each method from 1981 to 2020. Judged

by the performance before trading cost, the Markowitz-ML method is the clear winner

with an impressive gross Sharpe ratio of 2.00. This finding shows that our methods for

predicting risk and return perform well out-of-sample. The gross performance of the

trading cost-aware portfolio choice methods (Portfolio-ML, Multiperiod-ML, Static-ML,

Multiperiod-ML∗, Static-ML∗) is substantially lower than that of Markowitz-ML because

these methods exploit fewer and less extreme trading opportunities to save on trading

costs. Interestingly, several of these methods nevertheless realize a higher gross Sharpe

ratio than the standard portfolio sort, presumably because they utilize information about

risk and return.

After accounting for trading costs, the net return (and net Sharpe ratio) of the

Markowitz-ML and portfolio sort methods are highly negative. Both methods trade too

aggressively and are infeasible for the investor we consider. In contrast, the trading cost-

aware methods still deliver positive net Sharpe ratios, reaching 1.38 for Portfolio-ML, an

impressive performance given that we report out-of-sample results and account for the

trading cost of a large investor with $10 billion invested.

Turning to our main objective, which is to maximize the realized utility (3.12), Table

II shows that the Portfolio-ML approach delivers the highest realized utility. In contrast,

the methods in the top panel deliver negative realized utility. This top panel shows our

results when all methods are fitted with a single layer of tuning (estimating portfolio

weights or expected returns via random feature ML). While Porfolio-ML performs well

with a single layer of tuning, the other methods deliver negative utility.

It is instructive to consider why Static-ML with a single layer of tuning delivers a

negative utility despite its positive net Sharpe ratios. Figure 1.A shows that the indif-
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Table II. Out-of-Sample Performance Statistics

Method R Vol. SRgross TC R-TC SRnet Utility Turnover Lev.

One tuning layer

Portfolio-ML 0.20 0.14 1.43 0.008 0.19 1.38 0.095 0.32 3.60
Multiperiod-ML 0.32 0.34 0.95 0.182 0.14 0.41 -0.437 1.47 12.70
Static-ML 0.28 0.27 1.06 0.033 0.25 0.94 -0.106 0.76 11.21
Portfolio Sort 0.17 0.15 1.10 1.972 -1.81 -11.87 -1.921 2.60 2.00
Markowitz-ML 3.12 1.56 2.00 + - - - 56.33 53.15

Two tuning layers

Multiperiod-ML∗ 0.11 0.08 1.33 0.014 0.09 1.16 0.060 0.40 2.50
Static-ML∗ 0.13 0.10 1.36 0.024 0.11 1.11 0.060 0.61 3.22

Note: The table shows the out-of-sample performance of the various portfolio choice methods, rebalanced
monthly from 1981–2020. Here, R is excess return; Vol. is volatility, SRgross is the Sharpe ratio before
trading cost; TC is trading cost, R-TC is excess return minus trading cost; SRnet is the Sharpe ratio after
trading cost; Utility is the realized utility computed as the excess return after trading cost minus one-
half times the assumed risk aversion of 10 times the realized portfolio variance; Turnover is the monthly
average of the sum of absolute changes in portfolio weights, and Lev. is the portfolio leverage computed as
the monthly average of the sum of absolute portfolio weights. All items except turnover and leverage are
annualized. Portfolio-ML and Multiperiod-ML are the two dynamic trading cost optimization methods
motivated by Proposition 13, Static-ML is the static trading cost optimization method from (3.34),
Portfolio sort goes long/short the 10% of stocks with the highest/lowest 1-month expected return, and
Markowitz-ML is the optimal portfolio absent trading cost from (3.32). For methods with one tuning
layers, we search for the optimal hyper-parameters for a ridge regression implemented on RF-transformed
features. For Multiperiod-ML∗ and Static-ML∗, we add a second tuning layer to modify expected return,
covariance, and trading cost inputs. An entry of “+” or “−” reflects an extremely high or low value.

ference curve corresponding to Static-ML goes below the origin, thus yielding a negative

utility. This happens because this method realizes too high a risk relative to its ex-ante

risk estimate. This is seen in Figure 1.A from the fact that the indifference curve crosses

the frontier rather than being tangent (we note that the Static-ML frontier is not drawn

but has a similar shape as that of Static-ML∗). In other words, two factors determine the

realized utility (i.e., the return net of trading costs and risk), out of sample: (i) how good

the implementable efficient frontier is, and (ii) whether the method places the investor

correctly on the frontier based on the investor’s risk aversion. While Static-ML produces

a frontier that could deliver positive utility, it places the investor too far to the right on

the frontier, thus realizing a negative utility.

To test Portfolio-ML even further, we also compare its performance to versions of the

other methods where we give these other methods an extra “advantage” via a second

layer of tuning as described in Section 4.3. This second layer of tuning is designed to

improve the scaling of the portfolio, thus helping these methods to place the investor

more correctly on the implementable efficient frontier.

Table II shows that the two-layer versions outperform the one-layer versions across

all performance statistics. This result highlight that the second tuning layer is crucial

for these methods based on ML about expected returns. Nevertheless, our Portfolio-ML
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Figure 2. Performance over Time

Note: The left panel shows the cumulative sum of returns before trading cost, rπ,grosst+1 , for each portfolio

method. The middle panel shows the cumulative sum of returns net of trading cost, rπ,nett+1 . The right
panel shows the cumulative return net of trading cost (TC) and net of disutility from risk, computed as

rπ,utilt+1 = rπ,grosst+1 − TCπt −
γ
2 (rπ,nett+1 − r̄

π,net
t+1 )2, corresponding to the realized utility. We assume that the

investors has a relative risk aversion of 10 and invested wealth of $10 billion by the end of 2020.

continues to outperform these methods. This outperformance of Portfolio-ML relative to

the two-layer methods shows a benefit of learning directly about portfolio weights, namely

that the ML algorithm immediately searches for a well-scaled portfolio that delivers high

utility – so no additional tuning layer is needed.

As seen from the notation in Table II, we add a superscript “∗” to the implementations

with two tuning layers. In the remainder of this section, we focus on the comparison

between Portfolio-ML and the two-layers alternatives, Multiperiod-ML∗ and Static-ML∗,

studying their performance over time and the statistical significance of their performance

differences.

Figure 2 shows that the outperformance of Portfolio-ML in terms of net returns and

realized utility is consistent over time. The outperformance of Portfolio-ML is all the

more remarkable when considering that the other methods were given the advantage of a

second level of tuning to make them perform better. Figure 2 also shows some interesting

time-series patterns in performance. For example, we see that several of these methods

had a relatively lower performance during the dot-com bubble in 2000, the global financial

crisis in 2008, and the COVID-19 crash in 2020.

One of the reasons behind the outperformance of Portfolio-ML is that this method

keeps trading costs lower. This lower trading cost is achieved via a lower monthly turnover

of 32% relative to 40% and 61% for Multiperiod-ML∗ and Static-ML∗, respectively, as seen
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Figure 3. Portfolio Statistics over Time

Note: The top panel shows the ex-ante volatility of each portfolio method based on a monthly updated
covariance matrix. The middle panel shows portfolio leverage defined as the sum of absolute portfolio
weights. The lower panel shows the monthly portfolio turnover defined as

∑
i |(πt − gtπt−1)i|, the sum

of absolute differences between the current portfolio weight, πt, and the grown portfolio weight from last
month, gtπt−1. We use a logarithmic scale for the y-axis because of large differences across methods.

from Table II. Figure 3 shows how the ex-ante volatility, leverage, and turnover evolve

over time, again showing that Portfolio-ML tends to have a lower turnover.

To visualize an example of some specific portfolio weights over time, Figure 4 depicts

how the portfolio weights for Apply and Xerox stocks evolve for each method. Portfolio-

ML adjusts its positions more slowly than the other methods, especially for the less liquid

stock (Xerox).

Table III reports the statistical significance of the relative performance differences

across portfolio choice methods. Specifically, the table reports the Bayesian probability

that each method outperforms any of the other methods. To compute these pairwise

probabilities of one method outperforming another, we first compute the utility flow

(return net of trading costs and risk) of each method π at time t+ 1 as rπ,utilt+1 = rπ,grosst+1 −
TCπ

t −
γ
2
(rπ,nett+1 − r̄

π,net
t+1 )2, where the relative risk aversion is γ = 10 as before. We then

compute the utility difference between any two methods, say π and π̃, as dπ,π̃,t+1 =
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Figure 4. Portfolio Weights: Apple vs. Xerox

Note: The figure shows the portfolio weights of Apple and Xerox for each of the five portfolio choice
methods, 2015–2020. Apple is chosen as an example of a relatively liquid stock and Xerox as a relatively
illiquid stock over this time period. By the end of 2020, the average daily dollar volume over the past six
months was $16.39B for Apple and $0.06B for Xerox.

rπ,utilt+1 − rπ̃,utilt+1 . The posterior of the true utility difference is then normally distributed

with mean d̄π,π̃ = 1
T

∑T
t=1 dπ,π̃,t and variance 1

T−1

∑T
t=1(dπ,π̃,t − d̄π,π̃)2 assuming that the

difference is normally distributed with a non-informative prior about the mean and a

known variance. Based on these calculations, Table III reports the posterior probability

that dπ,π̃ > 0, that is, the posterior probability that the first portfolio choice method, π,

delivers a higher average utility than the second method, π̃.

Table III shows that the probability that Portfolio-ML delivers a higher expected

utility than Multiperiod-ML∗, Static-ML∗, Portfolio sort, and Markowitz-ML are, respec-

tively, 95%, 96%, 100%, and 100%, suggesting that the superiority of Portfolio-ML is not

just random noise.

Alternatively, we can think of the probabilities in Table III as being approximately

the p-value of a one-sided test that the realized utility of i is greater than j. Hence, we

see that we can reject that Portfolio-ML delivers a lower realized utility than the other

methods at conventional levels of significance.
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Table III. Relative Probability of Outperformance

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort Markowitz-ML
Portfolio-ML 95% 96% 100% 100%
Multiperiod-ML∗ 5% 51% 100% 100%
Static-ML∗ 4% 49% 100% 100%
Portfolio Sort 0% 0% 0% 100%
Markowitz-ML 0% 0% 0% 0%

Note: The table shows the probability of the row method having a higher average utility than the column
method. The probability is computed via an uninformative prior, assuming that the difference in utility
is normally distributed. The utility flow of any method π at time t + 1 is rπ,utilt+1 = rπ,grosst+1 − TCπt −
γ
2 (rπ,nett+1 − r̄

π,net
t+1 )2. One can also think of each number as the p-value in the test of whether the average

utility of the portfolio choice method in the row is greater than the average utility of the method in the
column.

Lastly, Table IV reports the return correlations of the various portfolio choice methods.

We see that all methods are positively correlated, but the correlations tend to be modest

in size. In addition to showing the relative connection across these methods of portfolio

choice, these findings may also be informative about asset pricing more generally. Indeed,

the Markowitz-ML portfolio return can be viewed as an estimate of the minimum-variance

stochastic discount factor (SDF) in a frictionless market as shown by Hansen and Jagan-

nathan (1991). Since risk adjustments depend on covariance with the SDF, a natural

question is how closely SDF aligns with the corresponding measure designed for a market

with frictions. The correlation between Portfolio-ML and Markowitz-ML is only 0.17,

indicating that the marginal utility of an investor with $10 billion using Portfolio-ML

could be very different from risk adjustments in a frictionless market.

In summary, this section shows that Portfolio-ML outperforms the other methods, de-

livering a high net Sharpe ratio and high utility. While this strong performance suggests

that Portfolio-ML works well, a few words of warning are in order. First, while the net

performance is extremely good in our simulation, real-world investors seeking to achieve

this performance must often pay fees to an asset manager (e.g., a hedge fund) running

such strategies and face other real-world complications, potentially reducing performance.

Second, investors might not have been able to realize this performance in real-time due to

more limited computing power and a less developed ML methodology in the early sample.

Table IV. Portfolio Correlations

Portfolio-ML Multiperiod-ML∗ Static-ML∗ Portfolio Sort
Multiperiod-ML∗ 0.51
Static-ML∗ 0.55 0.80
Portfolio Sort 0.24 0.46 0.53
Markowitz-ML 0.17 0.50 0.59 0.56

Note: The table shows the time-series correlation of the returns before trading costs for the various
portfolio choice methods, 1981-2020.
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In any case, this warning applies to any simulation, and the statistically significant out-

performance of Portfolio-ML relative to other methods is an encouraging apples-to-apples

test.

5.2 Evidence on the Implementable Efficient Frontier

Textbooks and real-world investors often depict their investment opportunities in terms

of the achievable combinations of risk and expected return. This illustration highlights

that investors seek a portfolio on the efficient frontier with the highest expected return

for any level of risk. The textbook version of the efficient frontier – without trading costs

– is a straight-line tangent to the hyperbola of risky investments. However, we propose

that investors should focus on what we call the implementable efficient frontier, namely

the efficient frontier net of trading costs.

Figure 1 illustrates our estimated implementable efficient frontier, out-of-sample. To

understand how we have generated this plot, we start by describing the two benchmarks

for a world without trading costs. The hyperbola is a mean-variance frontier of risky

assets inspired by Markowitz (1952, 1959). We generate the points on the frontier by

minimizing variance for a given mean and requiring that portfolio weights sum to 1:

min
πt∈RN

π′tΣtπt,

s.t. π′tµt = k,

π′t1N = 1,

where k is the required mean return, and 1N is a vector of ones. The solution is given by

πt =
ctk − bt
dt

Σ−1
t µt +

(at − btk)

dt
Σ−1
t 1N , (3.41)

where at = µ′tΣ
−1
t µt, bt = 1′NΣ−1

t µt, ct = 1′NΣ−1
t 1N , and dt = atct − b2

t are constants.

Implementing this solution for a range of k’s generates the hyperbola. A standard presen-

tation of the frontier uses one cross-section of stocks (i.e., one µt and one Σt) and presents

the ex-ante expected frontier. In contrast, we show the realized frontier out-of-sample.

Specifically, for each k, we update portfolio weights each month using (3.41). We then

record the realized return and volatility before trading cost over the sample, 1981-2020.

In contrast to the standard textbook presentation, the efficient frontier of risky assets

in Figure 1 also accounts for out-of-sample performance decay. As such, it gives a more

realistic picture of what investors could achieve absent trading costs.

The second benchmark for the case without trading cost is the Markowitz-ML port-

folio. In a standard presentation, the line from this portfolio would be tangent to the
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hyperbola. However, because our analysis is out-of-sample, this outcome is not ensured.

In fact, the Markowitz-ML portfolio lies above the hyperbola.16

Next, we shift the attention from the frictionless benchmarks to our main focus, namely

the implementable efficient frontier. These are computed via equation (3.11). Figure

1.A shows the efficient frontier after trading cost for an investor using different portfolio

methods. We implement each method assuming an investor with a wealth that reaches

$10b by 2020.

We illustrate the performance of Markowitz-ML and portfolio sort with trading cost

by scaling each portfolio to ex-post volatilities ranging from 0 to 10% in increments of

1%. We see their returns after trading costs are negative, except at very low volatilities.

Hence, implementable efficient frontiers of these standard methods show that an investor

maximizes utility by putting almost all wealth into the risk-free asset, thus choosing to

hardly trade on these standard methods.

Turning to the trading-cost-aware methods, Portfolio-ML and Static-ML∗, we see that

their performance is much better. Instead of varying the ex-post volatilities, we imple-

ment the methods under five different relative risk aversions, γ ∈ {1, 5, 10, 20, 100}, and

interpolate between their realized performance to plot an efficient frontier. Comparing

the two implied frontiers, we see that Portfolio-ML leads to a higher achievable return for

the same volatility. More generally, the figure shows that it is feasible for a large investor

to generate an attractive implementable efficient frontier, even net of trading costs.

Panel B of Figure 1 shows how the implementable efficient frontier varies by investor

size. Specifically, we implement the Portfolio-ML method for the same relative risk aver-

sions as above, but now we also vary the investor wealth, w2020 ∈ {0, 109, 1010, 1011}.
Such a plot is not interesting without trading costs since the efficient frontier is the same

regardless of investor size. With trading costs, this is no longer the case. Price impact

is increasing in trade size, so a larger investor must trade more slowly and focus more

on liquid stocks. Naturally, these effects imply that larger investors have a worse risk-

return tradeoff. The results in Figure 1.B quantifies how much worse. The figure shows

the substantial cost of being a large investor. For example, an investor with $10B and

a relative risk aversion of 10 gets a net excess return of 19% at 14% volatility. If the

16This result might be surprising since the Markowitz-ML portfolio in a given period is proportional
to the tangency portfolio of risky assets. Specifically, the tangency portfolio is πTPF = 1

bt
Σ−1t µt, while

the Markowitz-ML portfolio is πMarkowitz-ML
t = 1

γΣ−1t µt. However, the scaling constant for Markowitz-

ML, γ−1, is fixed across time periods, while the scaling constant for the tangency portfolio, b−1t , varies
significantly over time and even turns negative during a minority of periods. So the Markowitz portfolio
can dominate the hyperbola for two reasons. First, when bt is negative, the Markowitz portfolio shorts
the tangency portfolio (which is on the lower branch of the hyperbola during such times), and the efficient
frontier lies strictly above the hyperbola. Second, the differing time-varying scales of πMarkowitz-ML

t and
πTPF (i.e., the different timing of the common underlying portfolio) turn out to work in favor of the
Markowitz portfolio.
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same investor had $1B, a 14% volatility would provide a net return of 22%. In summary,

once we introduce trading costs, we no longer have a unique, efficient frontier. Instead,

the implementable efficient frontier depends on the investor’s size and portfolio choice

method.
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Figure 5. Feature Importance: Counterfactual Implementable Efficient
Frontiers

Note: Panel A shows the implementable efficient frontier with trading costs for an investor with a wealth
of $10B by 2020. We implement the Portfolio-ML method using a counterfactual data set, where we
permute all feature values related to either quality, value, or short-term reversal. The solid blue line
shows the frontier using the actual data. Panel B shows the same analysis without trading cost, now
using the Markowitz-ML method. In both panels, the relative risk aversions are 1 (circle), 5 (triangle),
10 (square), 20 (plus), and 100 (boxed cross) and the sample period is 1981-2020.

Finally, Figure 5 shows how the efficient frontier depends on access to certain features.

We use a methodology known as permutation feature importance to assess this depen-

dence. We provide a detailed description of this methodology in Section 5.3. Briefly, for

a specific theme, say quality, we randomly shuffle (permute) all features related to this

theme, effectively breaking their informational content. Using this counterfactual data,
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we then implement Portfolio-ML (Panel A) or Markowitz-ML (Panel B). If the theme is

important, breaking its informational content should lead to a worse risk-return tradeoff.

In other words, destroying important features leads to a less desirable efficient frontier.

We build separate counterfactual data sets by permuting quality, value, and short-term

reversal signals. The solid blue line shows the efficient frontier with the original data.

Panel A shows the impact on the efficient frontier generated by Portfolio-ML, after

trading cost, for an investor with $10B in wealth. We see that quality and value signals are

crucial for the implementable frontier. In contrast, destroying the informational content

in short-term reversal signals barely changes the achievable frontier because these trading-

cost-aware portfolio choice methods hardly use this signal anyway.

Panel B shows the impact on the efficient frontier generated by Markowitz-ML before

trading cost. Here, all three themes are important. Interestingly, while short-term reversal

has a minor effect on the implementable frontier with trading costs in Panel A, it greatly

impacts the frontier without trading costs in Panel B.

In summary, looking at the efficient frontier without trading cost suggest that value,

quality, and short-term reversal signals are all important for the efficient frontier. How-

ever, looking at the implementable efficient frontier of a large investor, value and quality

remain important while short-term reversal does not. These results highlight that feature

importance can change drastically when accounting for trading costs, and we explore this

finding further in the next section.

5.3 Economic Feature Importance

Following the theoretical discussion in Section 2.3, we define economic feature importance

as the drop in realized utility when excluding a feature from the information set of the

investor. To implement this idea, we use the concept of permutation feature importance,

introduced by Breiman (2001), which is a standard model-agnostic method for assessing

feature importance of machine learning models (Molnar, 2022). The basic idea behind

permutation feature importance is to permute features randomly and assess the decline in

a user-defined value function. As such, we do not exclude the feature from the information

set but destroy any predictive relationship between the feature and the outcome variable.

To compute economic feature importance for any portfolio choice method i, say

Portfolio-ML, we first compute the baseline realized utility, utility[πi(sorig)], of the port-

folio, πi, computed based on the original features, sorig. Next, for each feature j, we

randomly permute its associated values at each given time while keeping all other fea-

tures at their actual values. We then implement the portfolio method using the same

parameters as in the original specification, but now with the permuted features, sperm,j,

as inputs. Finally, we compute the economic feature importance as the resulting drop in
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utility, FIij = utility[πi(sorig)]− utility[πi(sperm,j)]. In other words, a feature j is economi-

cally important for method i if destroying its informational content leads to a large drop

in realized utility, that is, a large FIij.

A potential issue with permuting each feature separately is that substitution effects

can distort the inference. For example, we include many different value features, so

the effect of permuting a specific feature, such as book-to-market, is muted because the

method can rely on other value features, such as assets-to-market or earnings-to-price. To

handle substitution effects, we permute all features within a specific theme (or cluster)

and record feature importance at the theme level. We use the 13 themes from Jensen

et al. (2022b), shown in Table AI in the appendix.

Figure 6 shows the features’ importance for three different methods. The left and

middle panels show feature importance after trading costs for a large investor with a

wealth of $10b by 2020 for, respectively, Portfolio-ML and Multiperiod-ML∗. The right

panel shows feature importance without trading costs for Markowitz-ML, where we ignore

trading costs because this method does not work after trading costs, making it meaningless

to discuss net-of-cost feature importance. As such, the right panel serves as the benchmark

of a frictionless market.
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Figure 6. Economic Feature Importance

Note: The figure shows a utility-based feature importance measure for Portfolio-ML and Multiperiod-
ML∗, the two trading cost-aware methods motivated by Proposition 13, and Markowitz-ML, which is the
optimal solution absent trading cost from (3.32). We randomly shuffle the associated features for each
theme while keeping all other features at their actual value. We then implement each method based on
this counterfactual data and measure feature importance as the difference in realized utility relative to
the implementation that uses the actual data. For Markowitz-ML, we assume that the investor can trade
without incurring the trading cost.

Looking at the frictionless benchmark in the right panel of Figure 6, we see that the
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important feature themes before trading costs are value, short-term reversal, and low risk.

Turning to the net-of-cost feature importance in the left and middle panels, we see that

value remains important for a large investor. In contrast, short-term and low-risk are far

less important due to the high turnover of many factors within these themes (see figure

A2). This finding is consistent with the theoretical results of Section 2.3, namely that

high-frequency features are less important in the presence of trading costs.

For example, the short-term reversal theme includes the short-term reversal factor,

which has a monthly autocorrelation of −0.04. This autocorrelation is not just low but

actually negative, giving rise to large portfolio turnover.17 For a large investor, the pre-

dictive ability of short-term reversal is not enough to overcome the cost of trading it.

Similarly, the low-risk theme includes features such as the past-month volatility or the

maximum return over the past month, where the predictive ability is short-lived. (We

note that some of the factors in these themes have low turnover, e.g., market beta, and

may individually have a meaningful feature importance, but our results indicate that the

overall themes are less important net of trading costs.) In comparison, book-to-market

has a monthly autocorrelation of 0.94, indicating that it is a highly persistent feature,

thus economizing on trading costs.

For Portfolio-ML, quality emerges as the most important theme. The median monthly

autocorrelation of quality features is 0.93, so the result is again consistent with the the-

oretical findings. Perhaps surprisingly, momentum, generally considered a “fast” signal,

is one of the most important themes for a large investor. However, several momentum

features actually do exhibit meaningful persistence; for example, 12-month return mo-

mentum has a monthly autocorrelation of 0.87. Furthermore, momentum and value are

negatively correlated, which leads to less trading because the two signals offset each other.

In summary, value, quality, and momentum are the economically important feature

themes for a large investor facing trading costs. Before trading costs, high-frequency

signals such as short-term reversal are the most important.

6 Conclusion

We develop a bridge between ML and portfolio choice with trading costs. To accomplish

this bridge, we solve the optimal portfolio problem with transaction costs when returns

are predictable via an arbitrary function of security characteristics and then show how the

solution can be computed in a tractable way via machine learning directly about portfolio

weights.

To evaluate the usefulness of our method – and, in fact, any method of portfolio

17The autocorrelation of a feature is computed as the average autocorrelation across all stocks with at
least five years of monthly observations.
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choice – we propose that investors should focus on the implementable efficient frontier,

not the standard cost-agnostic efficient frontier. We show empirically that our method

expands the implementable efficient frontier relative to other methods of portfolio choice.

In other words, we find significant out-of-sample gains from our method even relative

to sophisticated and more highly parameterized alternatives. We also consider several

comparative statics, showing how the implementable efficient frontier contracts for larger

investors facing higher market impact costs.

Finally, the method implies a novel view of which securities are important. Indeed,

while standard methods that ignore transaction costs focus on transient features that

work well on paper for small stocks, our method naturally selects persistent features of

economic importance.
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7 Appendix

The appendix is organized as follows. Appendix 7.1 presents implementation details,

including how to compute the discount factor m (section 7.1) and details on Multiperiod-

ML (7.1).

Appendix 7.2 contains proofs, including a key technical lemma for verifying optimality

of policies (7.2), properties of m used in the proofs (7.2), proofs of Propositions 12 and

13 (7.2), proofs of Propositions 14 and 15 (7.2), the optimality of Portfolio ML (7.2), and

economic feature importance (7.2).

Appendix 7.3 contains further empirical information, including an overview of the

security characteristics used empirically (7.3), the estimated hyper-parameters over time

(7.3), and the autocorrelation of the features and their importance for different return

prediction horizons (7.3).

7.1 Implementation Details

Computing the Discount Factor m

Lemma 4 Suppose that Λ and Σ are both diagonal. Let Λ−1/2ΣΛ−1/2 = diag(qi,i) is

diagonal, then there exists a unique diagonal solution m̃ to (3.111) such that Λ−1/2m̃Λ1/2ḡ

has all eigenvalues below one in absolute value. It is given by

mi,i =
2

w−1γqi,i +Gi,i + 1 +
√

(w−1γqi,i +Gi,i + 1)2 − 4Gi,i

(3.42)

Proof of [. Proof of Lemma 4] The proof follows by direct calculation.

Another special case with a closed-form solution is when G has a rank of one, which

is not a realistic case, but turns out to be a useful approximation. Specifically, we have

that G = ḡḡ′ + 1
(1+rf+µ̄)2 Σ ∼= ḡḡ′, where18 ḡ = (1 + rf + µ̄)−1(1 + rf + E[µ]) and the

approximation is based on the idea that ḡ is a vector of numbers close to one, whereas

Σ is much smaller with numbers of the order of 0.102 when monthly volatility is around

10%.

Lemma 5 Suppose that Λ is diagonal. In the case when G = ξξ′ for some vector ξ > 0,

then the unique solution m to (3.99) such that m diag(ξ) has all eigenvalues below one in

absolute value and m̃ ∈ S(0, 1) given by m = Λ−1/2m̃Λ1/2 where

m̃ = diag(ξ)−1/2 0.5(Σ̂−
(

Σ̂2 − 4I
)1/2

) diag(ξ)−1/2 (3.43)

18We abuse the notation and use ḡ to denote both the vector and the diagonal matrix.
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and Σ̂ = diag(ξ)−1/2(w−1Λ−1/2γΣΛ−1/2 + diag((ξ2
i + 1))) diag(ξ)−1/2 and

(
Σ̂2 − 4I

)1/2

is the unique positive-definite square root.

Proof of [. Proof of Lemma 5] We have that (3.111) takes the form

m̃ =
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2 diag(ξ)(Λ1/2(I − m̃)Λ1/2) diag(ξ)Λ−1/2
)−1

. (3.44)

and the assumption of a diagonal Λ implies

m̃ =
(

Λ−1/2ΣΛ−1/2 + I + diag(ξ)(I − m̃) diag(ξ)
)−1

. (3.45)

We abuse the notation and use ξ to denote diag(ξ). Let Σ̃ = Λ−1/2ΣΛ−1/2 +I+ξ2. Then,

(3.45) takes the form

m̃ =
(

Σ̃− ξm̃ξ
)−1

. (3.46)

Define

Σ̂ = ξ−1/2Σ̃ξ−1/2 = ξ−1/2Λ−1/2ΣΛ−1/2ξ−1/2 + ξ−1 + ξ > 2I ,

where the last inequality follows because ξ + ξ−1 ≥ 2 for any positive number ξ. Let also

m̂ = ξ1/2m̃ξ1/2. Then, we get

m̂2 − Σ̂m̂ + I = 0 (3.47)

which has 2N solutions. The smallest solution is given by

m̂ = 0.5(Σ̂− (Σ̂2 − 4I)1/2) . (3.48)

The function f(x) = 0.5(x− (x2 − 4)1/2) = 2/(x+ (x2 − 4)1/2) < 1 for all x > 2, and the

claim follows.

Starting with this approximation, we can compute the exact m stepwise, as follows.

Note first that the set S of symmetric, positive definite matrices is a partially-ordered

set with respect to the positive semi-definite order: We say that m1 ≤ m2 if m2 −m1 is

positive semi-definite. Further, we let S(0, 1) be the set of positive semi-definite matrices

with eigenvalues between zero and one.

Suppose for simplicity that Λ is diagonal. Since the optimum is unique, the proof

of Proposition 12 implies that (3.111) has a unique solution m̃ ∈ S(0, 1). Remarkably,

this solution automatically satisfies the transversality condition ḡ1/2m̃ḡ1/2 ∈ S(0, 1). The

following lemma shows how to construct this unique solution.

Lemma 6 The unique solution m̃ ∈ S(0, 1) to (3.111) can be computed as follows: m =
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Λ−1/2m̃Λ1/2, where m̃ can be found by iterating the mapping F :

F (m̃) =
(
w−1Λ−1/2γΣΛ−1/2 + I + Λ−1/2((Λ1/2(I − m̃)Λ1/2) ◦G)Λ−1/2

)−1

. (3.49)

Indeed, F maps S(0, 1) into itself, is monotonic with respect to the positive semi-definite

order. Furthermore, it has a unique fixed point m̃∗ ∈ S(0, 1), and its iterations converge to

this unique fixed point from any starting point m0 in S(0, 1) satisfying either m0 ≤ F (m0)

or m0 ≥ F (m0). In particular, it converges upward from the smallest starting point 0 ∈
S(0, 1) :

F (0) ≤ F (F (0)) ≤ · · · ≤ F (· · · (F (0))) → m̃∗

Furthermore, the map F is monotone decreasing in the matrix G in the sense of positive

semi-definite order: m̃(G1) ≤ m̃(G2) whenever G1 ≥ G2. In particular, if G = ḡḡ′ +
1

(1+rf+µ̄)2 Σ with ḡ = (1 + rf + µ̄)−1(1 + rf + E[µ]), and if Λ is diagonal, then it also

converges downward from the starting point m̃(ḡ) from Lemma 5:

F (m̃(ḡ)) ≥ F (F (m̃(ḡ))) ≥ · · · ≥ F (· · · (F (m̃(ḡ)))) → m̃∗ (3.50)

so the first iterations of these provide lower and upper bounds:(
w−1Λ−1/2γΣΛ−1/2 + diag((Gi,i + 1))

)−1

≤ m̃∗ ≤
(
w−1Λ−1/2γΣΛ−1/2 + I + ((I − m̃(ḡ)) ◦G)

)−1

.
(3.51)

Proof of T. he only claim that requires proof is the fact that m̃(ḡ) ≥ F (m̃(ḡ);G).

Indeed, by the monotonicity of F in G we have

m̃(ḡ) = F (m̃(ḡ); ḡḡ′) ≥ F (m̃(ḡ);G) ,

and the claim follows. This inequality, combined with monotonicity, implies the required

sequence of inequalities (3.50).
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Implementation Details for Multiperiod-ML

Suppose that Λ is diagonal. While formula (3.21) requires an infinite sum, in our numerical

implementation, we use the approximation

At = (I −m)−1(I − (m diag(ḡ)))2(I − (m diag(ḡ)))−2

∞∑
τ=0

(m diag(ḡ))τcΣ−1Et[rt+1+τ ]

= (I −m)−1(I − (m diag(ḡ)))2

∞∑
τ=0

(m diag(ḡ))τ (I − (m diag(ḡ)))−2cΣ−1Et[rt+1+τ ]

= (I −m)−1(I − (m diag(ḡ)))(I − (m diag(ḡ)))
∞∑
τ=0

(m diag(ḡ))τ c̃Σ−1Et[rt+1+τ ]

≈ (I −m)−1(I − (m diag(ḡ)))2(I − (m diag(ḡ))k+1)−1

k∑
τ=0

(m diag(ḡ))τ c̃Σ−1Et[rt+1+τ ]

(3.52)

where we have defined

c̃ = (I − (m diag(ḡ)))−2c . (3.53)

7.2 Proofs

Properties of the Implementable Efficient Frontier

We note that the textbook efficient frontier is usually defined in terms of a risk-minimization

problem rather than the return-maximization in (3.10). Hence, we could consider the cor-

responding definition of the implementable efficient frontier as the combination of volatil-

ities and expected net returns, (σ(k), k)k≥0, such that risk is minimal for that level of net

return:

σ(k)2 = min
πt

E [π′tΣπt] s.t. E
[
rπ,nett+1

]
= k (3.54)

However, this definition is less helpful for two reasons. First, no solution exists for large

enough k. Second, this definition cannot produce the downward-sloping portion of the

frontier seen in Figure 1.

Proof of [. Proof of Proposition 11] (i) We first show that the net Sharpe ratio is

decreasing along the frontier. To see that, consider two risk levels, σ1 < σ2. Let π2 be

the frontier portfolio corresponding to σ2. This portfolio has the highest expected net

return for this risk level and the highest net Sharpe ratio. If we scale down this portfolio

to π1 = σ1

σ2
π2 (putting the rest of the money in the risk-free asset), then the risk becomes

σ1

σ2
σ2 = σ1. Then we have:

max
πt∈Π s.t. E[π′tΣπt]=σ

2
1

E
[
rπ,nett+1

]
≥ E

[
rπ

1,net
t+1

]
>
σ1

σ2

E
[
rπ

2,net
t+1

]
(3.55)
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Here, the first inequality follows from the definition of the frontier as the maximum. The

second inequality follows from the fact that gross returns are linear, but transaction costs

are quadratic and σ1

σ2
< 1. Dividing both sides of (3.60) by σ1, we see that the net Sharpe

ratio is decreasing in σ.

(vi) Consider the implementable efficient frontier corresponding to a wealth of w1 and

w2, where w1 < w2. Take a point on the frontier of w2 corresponding to the risk of σ and

a portfolio π2. Then with wealth w1, the portfolio π2 delivers a higher net return with

the same risk (and there may exist another portfolio with an even higher net return for

this level of wealth), so the frontier of w1 must be above that of w2.

(ii)–(iii) To prove the concavity of the implementable efficient frontier, consider two

risk levels, σ1, σ2. Let π(σ) be the frontier portfolio corresponding to σ, and let

R(σ) = max
πt∈Π s.t. E[π′tΣπt]=σ

E
[
rπ,nett+1

]
(3.56)

Define

π̃ = 0.5(π(σ1) + π(σ2)) . (3.57)

Then,

E[π̃′Σπ̃] = E[0.25((π(σ1)′Σπ(σ1) + (π(σ2)′Σπ(σ2) + 2(π(σ1)′Σπ(σ2))]

≤ 0.25(σ2
1 + σ2

2 + 2σ1σ2) = (0.5(σ1 + σ2))2 ,
(3.58)

where we have used a modified Cauchy-Schwarz inequality

E[(π(σ1)′Σπ(σ2)] ≤ E[((π(σ1)′Σπ(σ1))1/2((π(σ2)′Σπ(σ2))1/2]

≤ E[((π(σ1)′Σπ(σ1))]1/2E[((π(σ2)′Σπ(σ2))]1/2 ≤ σ1σ2

(3.59)

Therefore,

0.5(R(σ1) +R(σ2)) = 0.5(E
[
r
π(σ1),net
t+1

]
+ E

[
r
π(σ1),net
t+1

]
)

= E
[
r′t+1π̃ − 0.5(TCπ(σ1) + TCπ(σ2))

]
.

(3.60)

Since transaction costs are convex in πt, we have

−0.5(TCπ(σ1) + TCπ(σ2)) ≤ −TC π̃ .

Thus,

E
[
rπ̃,nett+1

]
≥ 0.5(R(σ1) +R(σ2)) ,

while

σ(π̃) = (E[π̃′Σπ̃])1/2 ≤ 0.5(σ1 + σ2) .
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Thus, we get R(σ(π̃)) ≥ 0.5(R(σ1) +R(σ2)), and hence, the required concavity follows if

R(σ) is increasing on [0.5(σ1 + σ2), σ(π̃)] .

Now, pick a γ > 0. Then, clearly, πγ belongs to the efficient frontier, corresponding to

some σ(γ) : Otherwise, we could increase net expected return keeping the variance fixed.

We also note that for large γ, the effect of transaction costs is negligible and, hence, the

efficient frontier for σ ≈ 0 approximately coincides with the frictionless one, and hence

k(σ) is monotone increasing for σ ≈ 0.

The set of eligible portfolios (adapted, square-integrable processes) is a Hilbert space

H we can define operators A,B and a vector x ∈ H so that E[rπ,net] = 〈x, π〉−0.5〈Ax, x〉
and E[π′Σπ] = 〈πB, π〉, where 〈·, ·〉 is the inner product in the Hilbert space. We consider

finite-dimensional approximations of the quadratic problem and thus assume that A,B

are finite-dimensional matrices. Then, the first order condition is

x − Aπ = λBπ (3.61)

where λ is the Lagrange multiplier of the constraint 〈π,Bπ〉 = σ2. Now,

π = (A+ λB)−1x , (3.62)

and we need to solve the equation

〈(A+ λB)−1B(A+ λB)−1x, x〉 = σ2 (3.63)

For the increasing part of the frontier, the constraint 〈π,Bπ〉 ≤ σ2 is binding and λ > 0.

This defines σ2
∗ = 〈A−1BA−1x, x〉.

Beyond that we need to use the eigen-decomposition of B−1/2AB−1/2 and define x̃ =

B−1/2x. Then, if νi are the eigenvalues of BB−1/2AB−1/2 and x̃i are the coordinates of x̃

in the eigen-basis, we get that we need to maximize

〈x, (A+ λB)−1x〉 − 0.5〈(A+ λB)−1(A+ λB − λB)x, (A+ λB)−1x〉

= 0.5〈x, (A+ λB)−1x〉+ 0.5λσ2

= 0.5
∑
i

x̃2
i (1 + λνi)

−1 + 0.5λσ2

(3.64)

under the constraint ∑
i

x̃2
i (1 + λνi)

−2 = σ2 . (3.65)

This function (as a function of λ) explodes for λ = −1/νi.
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Now, for the mean-variance optimization problem, the solution is

π = (A+ γB)−1x (3.66)

and the variance

〈(A+ γB)−1x,B(A+ γB)−1x〉 (3.67)

is monotone decreasing in γ and converges to σ2
∗ when γ → 0. At the same time,

R(γ) = 〈(A+ γB)−1x, x〉 (3.68)

is also monotone decreasing in γ.

Verification Lemma

Our proofs are based on the following auxiliary result.

Lemma 7 For simplicity, we normalize γ/w = 1. Let Λ̄t = Et[gt+1Λgt+1]. For any

solution mt to

mt = (Σ + Λ + Λ̄t)
−1

(
Et[gt+1Λmt+1gt+1]mt + Λ

)
, (3.69)

define

Nt,t+τ =
θ∏

τ=1

mt−τ+1 gt−τ+1 (3.70)

and

Ñt,t+τ =
θ∏

τ=1

mt−τ+1 Λ−1gt−τ+1Λ . (3.71)

Suppose that
∞∑
τ=1

‖Et[N ′t,t+τNt,t+τ ]‖1/2 <∞ (3.72)

and
∞∑
τ=1

‖Et[Ñ ′t,t+τ Ñt,t+τ ]‖1/2 <∞ . (3.73)

Define

ct = mtΛ
−1Σ (3.74)

and

Qt = Et

[
∞∑
τ=0

Ñt,t+τct+τMarkowitzt+τ

]
(3.75)
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and let

πt = π(st, st−) =
∞∑
θ=0

Nt−θ,tQ(st−θ) . (3.76)

Then, all series converge in L2 and πt is optimal among all bounded stationary processes

πt. Furthermore, it satisfies the recursive relationship

π(st, st−) = Q(st) + mtgtπ(st−1, st−1−) (3.77)

Proof of [. Proof of Lemma 7] Due to the strict convexity of the objective, it suffices to

verify the first order conditions. Let

O(π) = min
π∈L2

E
[
−2µ(st)

′πt + π′tΣπt + (πt − gtπt−1)′ Λ (πt − gtπt−1)
]

(3.78)

Standard convexity arguments imply that it suffices to derive and verify the first order

conditions for our candidate solution.

Let st− denote the history of st and πt = π(st, st−) be a candidate optimal policy and

Then, by direct calculation, using the ergodicity property, we get while the law of iterated

expectations implies that

E[π′t−1gtΛgtπt−1] = E[π′tgt+1Λgt+1πt] = E[π′tΛ̂tπt] ,

where

Λ̄t = Et[gt+1Λgt+1] . (3.79)

Therefore,

O(π)

= E

[
− 2µ(st)

′π(st, st−) + π(st, st−)′(Σ + Λ + Λ̄t)π(st, st−)

]
− 2E[π(st, st−)′gt+1Λπ(st+1, st+1−)] ,

(3.80)

In order to compute the first order conditions, we need to calculate the Frechet derivative

of (3.80) with respect to π. To this end, we consider a small perturbation π → π + εY

and calculate the first order term in ε, so that

O(πt + εYt) = O(πt) + εE[D(πt)
′ Yt] + O(ε2) (3.81)
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and D(π) is the Frechet derivative. To this end, we compute

E[µ(st)
′(π(st, st−) + εYt)] = E[µ(st)

′π(st, st−)] + εE[µ(st)
′Yt]

E[(π(st, st−) + εYt)
′(Σ + Λ + Λ̄t)(π(st, st−) + εYt)]

= E[π(st, st−)′(Σ + Λ + Λ̄t)π(st, st−)]

+ 2εE[π(st, st−)′(Σ + Λ + Λ̄)Yt] + O(ε2)

E[(π(st, st−) + Yt)
′gt+1Λ(π(st+1, st+1−) + Yt+1)]

= E[π(st, st−)′gt+1Λπ(st+1, st+1−)]

+ ε

(
E[Y ′tEt[gt+1Λπ(st+1, st+1−)]] + E[π(st, st−)′gt+1ΛYt+1]

)
(3.82)

Furthermore, by stationarity,

E[π(st, st−)Yt+1] = E[π(st−1, st−1−)Yt] .

We conclude that the Frechet derivative is given by

D(π) = −2µ(st) + 2(Σ + Λ + Λ̄)π(st, st−)

− 2Et[gt+1Λπ(st+1, st+1−)] − 2Λgtπ(st−1, st−1−) ,
(3.83)

where Λ̄(st) = Et[Λ(st+1)], implying that a bounded π is optimal if it satisfies the integral

equation

π(st, st−) = (Σ + Λ + Λ̄t)
−1

(
µ(st) + Et[gt+1Λπ(st+1, st+1−)] + Λgtπ(st−1, st−1−)

)
.

(3.84)

Substituting the Ansatz

πt = Qt + mgtπt−1 (3.85)

into this equation, we get

Qt + mtgtπt−1

= (Σ + Λ + Λ̄t)
−1

(
µ(st)

+ Et[gt+1Λ(Qt+1 +mt+1gt+1Qt +mt+1gt+1mtgtπt−1)] + Λgtπt−1

)
.

(3.86)
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Equating the coefficients on πt−1 gives an integral equation for mt :

mtgt = (Σ + Λ + Λ̄t)
−1

(
Et[gt+1Λmt+1gt+1mtgt] + Λgt

)
, (3.87)

and (3.86) turns into an integral equation for Qt :

Qt = (Σ + Λ + Λ̄t)
−1

(
µ(st) + Et[gt+1Λ(Qt+1 +mt+1gt+1Qt)]

)
. (3.88)

Dividing by gt, we get that (3.87) turns into the required equation (3.69). Furthermore,

we can rewrite (3.87) as

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1])mt = (Σ + Λ + Λ̄t)

−1Λ , (3.89)

which implies

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1]) = (Σ + Λ + Λ̄t)

−1Λm−1
t . (3.90)

After a few algebraic transformations, we get that (3.88) is equivalent to

(I − (Σ + Λ + Λ̄t)
−1Et[gt+1Λmt+1gt+1])Qt = (Σ + Λ + Λ̄t)

−1

(
µ(st) + Et[gt+1ΛQt+1]

)
.

(3.91)

Substituting from (3.90), we can rewrite (3.91) as

Qt = mtΛ
−1

(
µ(st) + Et[gt+1ΛQt+1]

)
. (3.92)

Defining

ct = MtΛ
−1
t Σt, (3.93)

we get

Qt = ctMarkowitzt + Et[mtΛ
−1gt+1ΛQt+1] . (3.94)

Iterating this equation, we get the required up to the convergence statement. Convergence

in L2 follows directly from the made assumptions. Indeed,

E[Et[X]2] ≤ E[X2] , (3.95)

and hence we can ignore Et[] when proving convergence. Furthermore, by the made
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uniform boundedness assumptions and the uniform positive-definiteness of Σt, we have

‖qt+τ‖ = ‖ct+τMarkowitzt+τ‖ ≤ K

for some K > 0, almost surely. Since

‖Qt‖ = ‖Et

[
∞∑
τ=0

Nt,t+τct+τMarkowitzt+τ

]
‖ ≤

∑
τ

‖Nt,t+τqt+τ‖ , (3.96)

to prove the convergence of Qt it suffices to show that∑
τ

E[q′t+τN
′
t,t+τNt,t+τqt+τ ]

1/2 < ∞ (3.97)

which follows from the made assumptions. Convergence of the series representation for

πt also follows from the made assumptions.

Recall that gt is the diagonal matrix of vec(gt) on the diagonal. For the case when µ

is constant, we have that

Gt = Et[vac(gt+1)vec(gt+1)′] = (1 + gwt )−2(Σ + (1 + rft + µt)(1 + rft + µt)
′) . (3.98)

When gwt , r
f
t , and µt are all constant, we get that Gt = G is also constant, and we arrive

at the following result, which is a direct consequence of Lemma 7.

Lemma 8 For simplicity, we normalize γ/w = 1. Suppose that µt = µ, gwt , r
f
t are con-

stant. Let Λ̄ = Λ ◦G. For any solution m to

m = (Σ + Λ + Λ̄)−1

(
((Λm) ◦G)m+ Λ

)
, (3.99)

define

Nt,t+τ =
θ∏

τ=1

mgt−τ+1 (3.100)

and

Ñt,t+τ =
θ∏

τ=1

mΛ−1gt−τ+1Λ . (3.101)

Suppose that
∞∑
τ=1

‖Et[N ′t,t+τNt,t+τ ]‖1/2 <∞ (3.102)
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and
∞∑
τ=1

‖Et[Ñ ′t,t+τ Ñt,t+τ ]‖1/2 <∞ . (3.103)

Define

c = mΛ−1Σ (3.104)

and

Qt = (I −mΛ−1ḡΛ)−1cMarkowitz (3.105)

and let

πt = π(st, st−) =
∞∑
θ=0

Nt−θ,tQ(st−θ) . (3.106)

Then, all series converge in L2, and πt is optimal among all bounded stationary processes

πt. Furthermore, it satisfies the recursive relationship

π(st, st−) = Q(st) + mgtπ(st−1, st−1−) . (3.107)

Properties the Discount Factor m

This section shows some useful properties of the discount factor m solving (3.99). We

start with the following observation

Lemma 9 For simplicity, we normalize γ/w = 1. A matrix-valued function m(st) = mt

solves

mt = (Σ + Λ + Λ̄t)
−1

(
Et[gt+1Λmt+1gt+1]mt + Λ

)
(3.108)

if and only if m̃t = Λ1/2mtΛ
−1/2 solves

m̃t =
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ1/2(I − m̃t+1)Λ1/2gt+1]Λ−1/2
)−1

. (3.109)

In particular, if Gt is constant, then a matrix m solves

m = (Σ + Λ + Λ̄)−1

(
((Λm) ◦G)m+ Λ

)
(3.110)

with Λ̄ = Λ ◦G if and only if the matrix m̃ = Λ1/2mΛ−1/2 solves

m̃ =
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2(G ◦ (Λ1/2(I − m̃)Λ1/2))Λ−1/2
)−1

. (3.111)
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Proof of [. Proof of Lemma 9] We have

(Σ + Λ + Λ̄t)mt =

(
Et[gt+1Λmt+1gt+1]mt + Λ

)
. (3.112)

Writing mt = Λ−1/2m̃tΛ
1/2, we get

(Σ + Λ + Λ̄t)Λ
−1/2m̃tΛ

1/2 =

(
Et[gt+1ΛΛ−1/2m̃t+1Λ1/2gt+1]Λ−1/2m̃tΛ

1/2 + Λ

)
. (3.113)

Multiplying by Λ−1/2m̃−1
t from the right and by Λ−1/2 from the left, we get

Λ−1/2(Σ + Λ + Λ̄t)Λ
−1/2 =

(
Λ−1/2Et[gt+1Λ1/2m̃t+1Λ1/2gt+1]Λ−1/2 + m̃−1

t

)
. (3.114)

This is equivalent to

m̃−1
t = Λ−1/2(Σ + Λ + Λ̄t − Et[gt+1Λ1/2m̃t+1Λ1/2gt+1])Λ−1/2 , (3.115)

which is, in turn, equivalent to

m̃t =
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ1/2(I − m̃t+1)Λ1/2gt+1]Λ−1/2
)−1

. (3.116)

In the case when mt = m is constant and Gt = G is constant, we get

Et[gt+1Λ1/2(I − m̃)Λ1/2gt+1] = G ◦ (Λ1/2(I − m̃)Λ1/2) ,

and we get the required.

Recall that S(0, 1) is the set of symmetric, positive semi-definite matrices with eigen-

values in (0, 1).

Proposition 18 Suppose that there exists a solution m̃ ∈ S(0, 1) to (3.111). Let q∗ < 1

be the largest eigenvalue of m̃. Let m = Λ−1/2m̃Λ1/2 and

Πt−θ,t =

(
θ∏

τ=1

mgt−τ+1

)
. (3.117)

Then,

lim
θ→∞

q−θ∗ E[‖Πt−θ,t(ν)‖2] = 0 . (3.118)
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Similarly, if we define

Π̂t,t+θ =
θ∏

τ=1

(mΛ−1gt+τ−1Λ) .

Then,

lim
θ→∞

q−θ∗ E[‖Π̂t,t+θ‖2] = 0 . (3.119)

Proof of [. Proof of Proposition 18] For simplicity, we normalize γ/w = 1. Recall that S
is the set of symmetric matrices, and S(a, b) is the set of positive semi-definite matrices

with eigenvalues between a and b.

Equation (3.111) can be rewritten as

m̃
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ1/2(I − m̃t+1)Λ1/2gt+1]Λ−1/2
)
m̃ = m̃ . (3.120)

Define the map

Ξ(Z) = m̃Λ−1/2Et[gt+1Λ1/2ZΛ1/2gt+1]Λ−1/2m̃ (3.121)

mapping the cone of positive semi-definite matrices into itself. Then, (3.120) implies that

Ξ(I − m̃) = m̃− m̃2 − m̃Λ−1/2ΣΛ−1/2m̃ < m̃(I − m̃) ≤ q∗(I − m̃) . (3.122)

Now, the map Ξ leaves the proper cone S(0,+∞) invariant, and hence, by the Krein and

Rutman (1950) theorem, its spectral radius corresponds to a strictly positive eigenvalue

λ∗ > 0. Let Z ∈ S(0,+∞) be the corresponding eigenvector. Then,

Ξ(Z) = λ∗ Z .

Since I−m̃ is strictly positive definite, there exists a constant a∗ > 0 such that aZ ≤ I−m̃
if and only if a ≤ a∗. Then,

λa∗Z = Ξ(a∗Z) ≤ Ξ(I − m̃) < q∗ (I − m̃)

Thus, (λa∗/q∗)Z ≤ I − m̃ implying that, by the definition of a∗, we must have λ/q∗ < 1.

Note also that the transformation

Ξ̂(Z) = A−1m̃Et[Λ
−1/2gt+1Λ1/2AZA′Λ1/2gt+1Λ−1/2]m̃(A′)−1

is similar to Ξ for any invertible matrix A. Hence, Ξ and Ξ̂ have the same spectral radius.

Pick A = m̃Λ−1/2. Then,

Ξ̂(Z) = Et[gt+1Λ1/2m̃Λ−1/2ZΛ−1/2m̃Λ1/2gt+1] = Et[gt+1m
′Zmgt+1] .
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By direct calculation,

E[Π′t−θ,tΠt−θ,t] = Ξ̂θ(I) ,

and

E[Π̂t,t+θΠ̂
′
t,t+θ] = Ξθ(I) ,

and the claim follows.

Proofs of Propositions 12 and 13

Lemma 10 For simplicity, we normalize γ/w = 1. Consider the map F mapping the

convex set of S(0, 1)-valued matrix functions into itself and defined via

F (m̃t) =
(

Λ−1/2ΣΛ−1/2 + I + Λ−1/2Et[gt+1Λ1/2(I − m̃t+1)Λ1/2gt+1]Λ−1/2
)−1

. (3.123)

This map is strictly monotone increasing in the positive semi-definite order and hence

has at least one fixed point in S(0, 1). The set of fixed points has a unique maximal and

a unique minimal element. The minimal element is obtained by iterating F on 0. The

maximal element is obtained by iterating F on I.

Proof of [. Proof of Lemma 10] The proof follows directly from the fact that the map

A→ A−1 is monotone decreasing in the positive semi-definite order, and the same is true

for the map m̃t+1 → Et[gt+1Λ1/2(I − m̃t+1)Λ1/2gt+1].

When µ is stochastic, things are a bit more tricky, as shown by the following lemma.

Lemma 11 Suppose that µ(st) = εµ̃(st), g
w
t = gw +O(ε), rft = rf +O(ε). Then,

Gt = G + O(ε) (3.124)

where G = E[vec(gt)vec(gt)
′] and hence, for every solution m̃ ∈ S(0, 1) to (3.111) and

any sufficiently small ε > 0 there exists a unique solution m̃t to (3.109) satisfying

m̃t = m̃ + O(ε) . (3.125)

Proof of [. Proof of Lemma 11] The proof follows directly from the implicit function

theorem and the fact that the map F from Lemma 10 is strictly monotone on S(0, 1) and

(by direct calculation) has a non-degenerate Jacobian.

Proof of [. Proof of Proposition 12] By Lemma 10, there exists a m̃ ∈ S(0, 1) solving

(3.111). By Proposition 18, the technical conditions (3.102) and (3.103) are satisfied.

Lemma 9 implies that m solves (3.99) and hence Lemma 8 implies that the policy π is

optimal. Its uniqueness follows from the strict concavity of the objective.
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Proof of [. Proof of Proposition 13] By Lemma 10, there exists a m̃ ∈ S(0, 1) solving

(3.111). By Lemma 11, there exists a m̃t solving (3.109) satisfying mt = m̃ + O(ε). By

a small modification of the proof of Lemma 18, the technical conditions (3.72) and (3.73)

are satisfied. Lemma 9 implies that mt solves (3.108) and hence Lemma 7 implies that

the policy

π∗t = π(st, st−) =
∞∑
θ=0

Nt−θ,tQ(st−θ) . (3.126)

is optimal with

Qt = Et

[
∞∑
τ=0

Ñt,t+τct+τMarkowitzt+τ

]
(3.127)

and

Nt,t+τ =
θ∏

τ=1

mt−τ+1 gt−τ+1 (3.128)

and

Ñt,t+τ =
θ∏

τ=1

mt−τ+1 Λ−1gt−τ+1Λ . (3.129)

and ct = mtΛ
−1Σ. Its uniqueness follows from the strict concavity of the objective. Now,

substituting mt = m + O(ε) into these equations, we get that π∗t differs from (3.20) by

O(ε) (technical conditions (3.72)-(3.73) ensure that the infinite sum also is O(ε).) The

proof is complete.

Proofs of Propositions 14 and 15

We have m = Λ−1/2m̃Λ1/2 and hence m and m̃ have identical eigenvalues, and the claim

of Proposition 14 follows from Lemma 6 and the monotonicity of the map F.

The convergence of m to zero when w → 0 follows directly from (3.111). When

w →∞, to prove convergence, we need to show that the technical conditions (3.102) and

(3.103) hold uniformly when w → ∞. By Proposition 18, to this end we need to show

that q∗, the maximal eigenvalue of m̃ stays uniformly bounded away from 1. This follows

from Lemma 6: Since m̃ ≤ m̃(ḡ), it suffices to establish this fact for m̃(ḡ). From the proof

of Lemma 5, we have

m̃(ξ) = ξ−1/2m̂ξ−1/2

where

m̂ = 0.5(Σ̂− (Σ̂2 − 4I)1/2) = 2(Σ̂ + (Σ̂2 − 4I)1/2)−1 (3.130)

and

Σ̂ = ξ−1/2Σ̃ξ−1/2 = γw−1ξ−1/2Λ−1/2ΣΛ−1/2ξ−1/2 + ξ−1 + ξ .
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and hence Σ̂→ ξ−1 + ξ when w →∞. Thus,

m̃ → 0.5ξ−1(ξ−1 + ξ − |ξ − ξ−1|)

Suppose that ξ > 1. Then, we get m̃ = ξ−2 < 1. If ξ < 1, then we get m̃→ 1.

On the Optimality of Portfolio-ML

Given a function A(·), denote

Π∗t (A(·), ~s) =
∞∑
θ=0

(
θ∏

τ=1

mgt−τ+1

)
(I −m)A(st−θ) . (3.131)

We formalize the above observations in the following lemma.

Lemma 12 Suppose that µ(st) = εµ̃(st) where ε is a small number. Then, the solution

to the aim optimization problem

max
A(·)

E

[
µ(st)

′Π∗t (A(·), ~s)

− w

2

(
Π∗t (A(·), ~st)− gtΠ∗t (A(·), ~st−1)

)′
Λ
(

Π∗t (A(·), ~st)− gtΠ∗t (A(·), ~st−1)
)

− γ

2
(Π∗t (A(·), ~st))′Σ (Π∗t (A(·), ~st))

] (3.132)

coincides with (3.21) up to terms of the order ε2.

Lemma 12 reduces the infeasible (due to infinite history dependence) portfolio optimiza-

tion problem (3.9) to a feasible aim optimization problem (3.132), where only the function

A(st) of the current state needs to be optimized. As we now show, it is possible to use

machine learning methods to further reduce (3.132) to a linear-quadratic problem that

can be solved analytically. We will need the following assumption.

Assumption 1 Let s−i denote the vector of signals for all stocks except i. There exists

a function a(si, s−i) such that (A(st))i = ai(si,t, s−i,t).

Assumption 1 is not restrictive and naturally holds whenever Λi,j and Σi,j only depend

on si, sj for any pair of stocks i, j. It ensures that the dependence of the aim on signals is

the same for all stocks.
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Assumption 2 Suppose that a family of functions {fk(s)}k≥1 has the universal approxi-

mation property: For any ε > 0 there exists a P > 0 and a vector β ∈ RP such that

‖a(s)−
∑
k

βkfk(s)‖2 ≤ ε . (3.133)

Let now F (s) = (fk(si, s−i))
n,P
i,k=1. Then, Assumptions 1 and 2 imply the existence of

a vector β such that

‖A(s)− F (s)β‖2 ≤ ε , (3.134)

and hence we can rewrite (3.131) as

πt = Xtβ + O(ε) , (3.135)

where

Xt ≡

[
∞∑
θ=0

(
θ∏

τ=1

mgt−τ+1

)
(I −m)f(st−θ)

]
. (3.136)

Using this formulation for πt in the objective (3.132), we can rewrite it as

E
[
r′t+1Xtβ −

γ

2
β′X ′tΣXtβ −

w

2
(Xtβ − gtXt−1β)′ Λ (Xtβ − gtXt−1β)

]
=

1

T
E

r′t+1Xt︸ ︷︷ ︸
≡r̃′t+1

β − 1

2
β′ [γX ′tΣXt + w(Xt − gtXt−1)′Λ(Xt − gtXt−1)]︸ ︷︷ ︸

≡Σ̃t

β


≡ E[r̃′t+1]β − 1

2
β′E[Σ̃t]β .

(3.137)

and the optimal β is given by

β∗ = E[Σ̃t]
−1E[r̃t+1] (3.138)

Uniform boundedness of all coefficients implies that the solution to the approximate op-

timization problem achieves approximate optimum in (3.132). Thus, we can maximize

utility by maximizing this quadratic equation in the unknown parameter vector β.

Proposition 19 (Portfolio-ML) Suppose that µ(st) = εµ̃(st) where ε is a small num-

ber. Let βT be a finite sample counter-part of (3.138). Then, in the limit as T → ∞,
βT converges to β∗. Furthermore, the optimal portfolio (3.24) achieves the optimal utility

(3.9) up to an error of the order ε2 + ε, where ε is defined in (3.133).
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Proofs related to Economic Feature Importance

The optimal portfolio admits a simpler analytical expression when transaction costs are

small as seen in the following result.

Proposition 20 Suppose that ‖Λ‖ is small and Λ is diagonal. Then, the aim portfolio

At is given by

At = Markowitzt

+ Σ−1Et[Λgt+1Markowitzt+1 − gt+1Λgt+1Markowitzt)] + O(‖Λ‖2) ,
(3.139)

while investor’s utility is given by the same expression as in Proposition 17 .

Proof of [. Proof of Proposition 17 and Proposition 20] Under the made assumption, we

have

mt = Σ−1Λ− Σ−1(Λ + Et[gt+1Λgt+1])Σ−1Λ + O(ε3)

and therefore

ct = mtΛ
−1Σt. = I − Σ−1(Λ + Et[gt+1Λgt+1]) + O(ε2) .

Let νt = Markowitzt. Then,

At = (I −mt)
−1

∞∑
τ=0

Et [Mt,t+τ ct+τ Markowitzt+τ ]

= (I −mt)
−1(ctνt + Et[mtΛ

−1Λgt+1ct+1νt+1]) + O(ε2)

= (I + Σ−1Λ)
(
ctνt + Et[Σ

−1ΛΛ−1Λgt+1ct+1νt+1]
)

+ O(ε2)

= (I + Σ−1Λ)
((
I − Σ−1(Λ + Et[gt+1Λgt+1])

)
νt

+ Et[Σ
−1ΛΛ−1Λgt+1

(
I − Σ−1(Λ + Et[gt+1Λgt+1])

)
νt+1]

)
+ O(ε2)

= (I − Σ−1Et[gt+1Λgt+1])νt + Et[Σ
−1Λgt+1νt+1] + O(ε2)

= νt + Σ−1Et[Λgt+1νt+1 − gt+1Λgt+1νt)] + O(ε2) .

(3.140)

and

πt = mtgtπt−1 + (I −mt)At

= mtgtνt−1 + (I −mt)(νt + Σ−1Et[Λgt+1(νt+1 − gt+1νt)]) + O(ε2)

= νt + Σ−1Et[Λgt+1(νt+1 − gt+1νt)] + Σ−1Λ(gtνt−1 − νt) + O(ε2)

= νt + ξt + O(ε2) .

(3.141)
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Hence

E[µ(xt)
′πt − 0.5π′tΣπt − 0.5(πt − gt πt−1)′Λ(πt − πt−1)]

= E[µ(xt)
′πt − 0.5π′t(Σ + Λ + Et[gt+1Λgt+1])πt + π′t−1gtΛπt]

= E[µ′t(νt + ξt)

− 0.5(νt + ξt)
′(Σ + Λ + Et[gt+1Λgt+1])(νt + ξt)

+ (νt−1 + ξt−1)′gtΛ(νt + ξt)]

= 0.5E[µ′tΣ
−1µt] + E[µ′t(Σ

−1Et[Λgt+1(νt+1 − gt+1νt)] + Σ−1Λ(gtνt−1 − νt))]

− E[ν ′tΣξt] − 0.5E[ν ′t(Λ + Et[gt+1Λgt+1]))νt]

+ E[ν ′t−1gtΛνt−1]

= 0.5E[µ′tΣ
−1µt] − 0.5E[ν ′t(Λ + Et[gt+1Λgt+1]))νt] + E[ν ′tgt+1Λνt+1]

= 0.5E[µ′tΣ
−1µt] − 0.5E[(νt − gtνt−1)′Λ(νt − gtνt−1)] +O(ε2) .

7.3 Data and Empirical Results

Information of Stock Characteristics (Features)

Table AI shows the security characteristics that we use as features for all portfolio meth-

ods. The features are a subset of the 153 characteristics used in Jensen et al. (2022b)

plus 1-year trailing volatility (rvol 252d),19 where the subset is chosen to have sufficient

coverage in the early parts of our sample. Specifically, we select all features with a non-

missing value for at least 70% of our sample by the end of 1952. The cluster assignments

in Table AI are also from Jensen et al. (2022b) except rvol 252d, which we assign to the

low-risk cluster.

Portfolio Tuning

Panel A shows the optimal hyper-parameters for the RF method that predicts expected re-

turns. The 1 month model is used by all methods except Portfolio-ML, while the expected

return over 2-6 and 7-12 months is only used by Multiperiod-ML and Multiperiod-ML∗.

Panel B shows the optimal hyper-parameters for Portfolio-ML and the second layer of

portfolio tuning used by Multiperiod-ML∗ and Static-ML∗. Section 4.3 describes how we

choose hyper-parameters and table I the range of possible hyper-parameters.

19We add 1-year trailing volatility because of its close connection to the covariance matrix. For example,
suppose volatility is unrelated to expected returns. In that case, the optimal portfolio should have a higher
allocation to low volatility assets, all else equal.
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Table AI. Feature Information

Characteristic Cluster Characteristic Cluster Characteristic Cluster
1 cowc gr1a accruals 40 ivol capm 252d low risk 79 opex at quality
2 oaccruals at accruals 41 ivol ff3 21d low risk 80 qmj prof quality
3 oaccruals ni accruals 42 rmax1 21d low risk 81 qmj safety quality
4 taccruals at accruals 43 rmax5 21d low risk 82 sale bev quality
5 taccruals ni accruals 44 rvol 21d low risk 83 corr 1260d seasonality
6 fnl gr1a debt issuance 45 turnover 126d low risk 84 coskew 21d seasonality
7 ncol gr1a debt issuance 46 zero trades 126d low risk 85 dbnetis at seasonality
8 nfna gr1a debt issuance 47 zero trades 21d low risk 86 kz index seasonality
9 noa at debt issuance 48 zero trades 252d low risk 87 lti gr1a seasonality
10 aliq at investment 49 rvol 252d low risk 88 pi nix seasonality
11 at gr1 investment 50 prc highprc 252d momentum 89 seas 11 15an seasonality
12 be gr1a investment 51 ret 12 1 momentum 90 seas 11 15na seasonality
13 capx gr1 investment 52 ret 3 1 momentum 91 seas 2 5an seasonality
14 coa gr1a investment 53 ret 6 1 momentum 92 seas 6 10an seasonality
15 col gr1a investment 54 ret 9 1 momentum 93 ami 126d size
16 emp gr1 investment 55 seas 1 1na momentum 94 dolvol 126d size
17 inv gr1 investment 56 ocf at chg1 profit growth 95 market equity size
18 inv gr1a investment 57 ret 12 7 profit growth 96 prc size
19 lnoa gr1a investment 58 sale emp gr1 profit growth 97 iskew capm 21d short-term reversal
20 mispricing mgmt investment 59 seas 1 1an profit growth 98 iskew ff3 21d short-term reversal
21 ncoa gr1a investment 60 tax gr1a profit growth 99 ret 1 0 short-term reversal
22 nncoa gr1a investment 61 dolvol var 126d profitability 100 rmax5 rvol 21d short-term reversal
23 noa gr1a investment 62 ebit bev profitability 101 rskew 21d short-term reversal
24 ppeinv gr1a investment 63 ebit sale profitability 102 at me value
25 ret 60 12 investment 64 intrinsic value profitability 103 be me value
26 sale gr1 investment 65 ni be profitability 104 bev mev value
27 seas 2 5na investment 66 o score profitability 105 chcsho 12m value
28 age leverage 67 ocf at profitability 106 debt me value
29 aliq mat leverage 68 ope be profitability 107 div12m me value
30 at be leverage 69 ope bel1 profitability 108 ebitda mev value
31 bidaskhl 21d leverage 70 turnover var 126d profitability 109 eq dur value
32 cash at leverage 71 at turnover quality 110 eqnpo 12m value
33 netdebt me leverage 72 cop at quality 111 fcf me value
34 tangibility leverage 73 cop atl1 quality 112 ni me value
35 beta 60m low risk 74 gp at quality 113 ocf me value
36 beta dimson 21d low risk 75 gp atl1 quality 114 sale me value
37 betabab 1260d low risk 76 mispricing perf quality 115 seas 6 10na value
38 betadown 252d low risk 77 op at quality
39 ivol capm 21d low risk 78 op atl1 quality

Note: The table shows the security characteristics we use as features for the portfolio methods. The
characteristics are from Jensen et al. (2022b), and we refer to this paper for details about the construction
methodology.

Feature Persistence and Importance across Return Horizons

Figure A2 shows the monthly autocorrelation of all prediction features. Features grouped

into themes following Jensen et al. (2022b). We see that most features are highly persistent

from month to month but that we also include a substantial amount of fast-moving predic-

tors. These high-frequency predictors are particularly present in the low-risk, seasonality,

and short-term reversal themes. Figure A3 shows a measure of feature importance for

each of the three models that predicts future returns. The short-term model that pre-

dicts returns one month ahead is used by all portfolio methods except Portfolio-ML, while

only Multiperiod-ML uses the two other longer-term models. Notably, feature importance

for the short-term model differs from the others by distributing importance more evenly

across themes. In contrast, the two longer-term models mainly use value and momentum

features.
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Panel A: Expected Return Tuning
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Panel B: Portfolio Tuning
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Figure A1. Optimal Portfolio Hyper-parameters

Note: Panel A shows the optimal hyper-parameters used for predicting expected returns via. Ridge
regression of RF transformed features. Panel B shows the optimal hyper-parameters for selecting portfolio
weights for Portfolio-ML, Multiperiod-ML∗, and Static-ML∗. We show the range of possible hyper-
parameters in table I.
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Figure A2. Feature Autocorrelation

Note: The figure shows the monthly autocorrelation for each feature in our sample. We first compute
each feature’s monthly autocorrelation for all stocks with at least five years of monthly data. Next, we
average the stock-level autocorrelations to arrive at the final estimate. The features are grouped by theme
and sorted by average theme autocorrelation.
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Horizon: 1 month Horizon: 2−6 months Horizon: 7−12 months
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Figure A3. Feature Importance across Return Horizons

Note: The figure shows feature importance for the three random feature-based models that predict returns
in month t+ 1, the average return over month t+ 2 to t+ 6, and the average return over month t+ 7 to
t + 12. For each model, we randomly permute the associated features for each theme while keeping all
other features at their actual value. We then implement each method based on this counterfactual data
and measure feature importance as the difference in the mean-squared error relative to the implementation
that uses the actual data. For comparability, we re-scale the difference by scaling all differences by the
largest difference. Hence, feature importance is measured relative to the best feature theme within a
specific horizon.
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Essays in Empirical Asset Pricing

4. Claes Bäckman
Essays on Housing Markets

5. Kirsti Reitan Andersen
 Stabilizing Sustainability
in the Textile and Fashion Industry

6. Kira Hoffmann
Cost Behavior: An Empirical Analysis
of Determinants and Consequences
of Asymmetries

7. Tobin Hanspal
Essays in Household Finance

8. Nina Lange
Correlation in Energy Markets

9. Anjum Fayyaz
Donor Interventions and SME
Networking in Industrial Clusters in
Punjab Province, Pakistan

10. Magnus Paulsen Hansen
 Trying the unemployed. Justifi ca-
tion and critique, emancipation and
coercion towards the ‘active society’.
A study of contemporary reforms in
France and Denmark

11. Sameer Azizi
 Corporate Social Responsibility in
Afghanistan
 – a critical case study of the mobile
telecommunications industry



12. Malene Myhre
  The internationalization of small and
medium-sized enterprises:
A qualitative study

13. Thomas Presskorn-Thygesen
  The Signifi cance of Normativity –
 Studies in Post-Kantian Philosophy and
Social Theory

14. Federico Clementi
  Essays on multinational production and
international trade

15. Lara Anne Hale
  Experimental Standards in Sustainability
Transitions: Insights from the Building
Sector

16. Richard Pucci
 Accounting for Financial Instruments in
an Uncertain World
 Controversies in IFRS in the Aftermath
of the 2008 Financial Crisis

17. Sarah Maria Denta
 Kommunale offentlige private
partnerskaber
Regulering I skyggen af Farumsagen

18. Christian Östlund
 Design for e-training

19. Amalie Martinus Hauge
 Organizing Valuations – a pragmatic
inquiry

20. Tim Holst Celik
 Tension-fi lled Governance? Exploring
the Emergence, Consolidation and
Reconfi guration of Legitimatory and
Fiscal State-crafting

21. Christian Bason
 Leading Public Design: How managers
engage with design to transform public
governance

22. Davide Tomio
 Essays on Arbitrage and Market
Liquidity

23. Simone Stæhr
 Financial Analysts’ Forecasts
 Behavioral Aspects and the Impact of
Personal Characteristics

24. Mikkel Godt Gregersen
 Management Control, Intrinsic
Motivation and Creativity
– How Can They Coexist

25. Kristjan Johannes Suse Jespersen
 Advancing the Payments for Ecosystem
Service Discourse Through Institutional
Theory

26. Kristian Bondo Hansen
 Crowds and Speculation: A study of
crowd phenomena in the U.S. fi nancial
markets 1890 to 1940

27. Lars Balslev
 Actors and practices – An institutional
study on management accounting
change in Air Greenland

28. Sven Klingler
 Essays on Asset Pricing with
Financial Frictions

29. Klement Ahrensbach Rasmussen
Business Model Innovation
The Role of Organizational Design

30. Giulio Zichella
 Entrepreneurial Cognition.
Three essays on entrepreneurial
behavior and cognition under risk
and uncertainty

31. Richard Ledborg Hansen
 En forkærlighed til det eksister-
ende – mellemlederens oplevelse af
forandringsmodstand i organisatoriske
forandringer

32. Vilhelm Stefan Holsting
Militært chefvirke: Kritik og
retfærdiggørelse mellem politik og
profession



33. Thomas Jensen
Shipping Information Pipeline:
 An information infrastructure to
improve international containerized
shipping

34. Dzmitry Bartalevich
Do economic theories inform policy?
 Analysis of the infl uence of the Chicago
School on European Union competition
policy

35. Kristian Roed Nielsen
 Crowdfunding for Sustainability: A
study on the potential of reward-based
crowdfunding in supporting sustainable
entrepreneurship

36. Emil Husted
 There is always an alternative: A study
of control and commitment in political
organization

37. Anders Ludvig Sevelsted
 Interpreting Bonds and Boundaries of
Obligation. A genealogy of the emer-
gence and development of Protestant
voluntary social work in Denmark as
shown through the cases of the Co-
penhagen Home Mission and the Blue
Cross (1850 – 1950)

38. Niklas Kohl
Essays on Stock Issuance

39. Maya Christiane Flensborg Jensen
 BOUNDARIES OF
PROFESSIONALIZATION AT WORK
 An ethnography-inspired study of care
workers’ dilemmas at the margin

40. Andreas Kamstrup
 Crowdsourcing and the Architectural
Competition as Organisational
Technologies

41. Louise Lyngfeldt Gorm Hansen
 Triggering Earthquakes in Science,
Politics and Chinese Hydropower
- A Controversy Study

2018





34.  Maitane Elorriaga-Rubio
 The behavioral foundations of
 strategic decision-making: A
 contextual perspective

35.  Roddy Walker
 Leadership Development as
 Organisational Rehabilitation:
 Shaping Middle-Managers as
 Double Agents

36.  Jinsun Bae
 Producing Garments for Global
 Markets Corporate social
 responsibility (CSR) in
 Myanmar’s export garment
 industry 2011–2015

37.  Queralt Prat-i-Pubill
 Axiological knowledge in a knowledge
 driven world. Considerations for
 organizations.

38.  Pia Mølgaard
 Essays on Corporate Loans and
 Credit Risk

39.  Marzia Aricò
 Service Design as a
 Transformative Force:
 Introduction and Adoption in an
 Organizational Context

40.  Christian Dyrlund Wåhlin-
 Jacobsen
 Constructing change initiatives
 in workplace voice activities
 Studies from a social interaction
 perspective

41.  Peter Kalum Schou
 Institutional Logics in
 Entrepreneurial Ventures: How
 Competing Logics arise and
 shape organizational processes
 and outcomes during scale-up

42.  Per Henriksen
 Enterprise Risk Management
 Rationaler og paradokser i en
 moderne ledelsesteknologi

43.  Maximilian Schellmann
 The Politics of Organizing
 Refugee Camps

44. Jacob Halvas Bjerre
 Excluding the Jews: The
 Aryanization of Danish-
 German Trade and German
 Anti-Jewish Policy in
 Denmark 1937-1943

45.  Ida Schrøder
 Hybridising accounting and
 caring: A symmetrical study
 of how costs and needs are
 connected in Danish child
 protection work

46.  Katrine Kunst
 Electronic Word of Behavior:
 Transforming digital traces of
 consumer behaviors into
 communicative content in
 product design

47.  Viktor Avlonitis
 Essays on the role of
 modularity in management:
 Towards a unified
 perspective of modular and
 integral design

48.  Anne Sofie Fischer
 Negotiating Spaces of
 Everyday Politics:
 -An ethnographic study of
 organizing for social
 transformation for women in
 urban poverty, Delhi, India



2019

1.  Shihan Du
 ESSAYS IN EMPIRICAL STUDIES
 BASED ON ADMINISTRATIVE
 LABOUR  MARKET DATA

2.  Mart Laatsit
 Policy learning in innovation
 policy: A comparative analysis of
 European Union member states

3.  Peter J. Wynne
 Proactively Building Capabilities for
 the Post-Acquisition Integration
 of Information Systems

4.  Kalina S. Staykova
 Generative Mechanisms for Digital
 Platform Ecosystem Evolution

5.  Ieva Linkeviciute
 Essays on the Demand-Side
 Management in Electricity Markets

6.  Jonatan Echebarria Fernández
 Jurisdiction and Arbitration
 Agreements in Contracts for the
 Carriage of Goods by Sea –
 Limitations on Party Autonomy

7.  Louise Thorn Bøttkjær
 Votes for sale. Essays on
 clientelism in new democracies.

8.  Ditte Vilstrup Holm
 The Poetics of Participation:
 the organizing of participation in
 contemporary art

9.  Philip Rosenbaum
 Essays in Labor Markets –
 Gender, Fertility and Education

10.  Mia Olsen
 Mobile Betalinger - Succesfaktorer
 og Adfærdsmæssige Konsekvenser

11.  Adrián Luis Mérida Gutiérrez
 Entrepreneurial Careers:
 Determinants, Trajectories, and
 Outcomes

12. Frederik Regli 
 Essays on Crude Oil Tanker Markets

13. Cancan Wang
 Becoming Adaptive through Social
 Media: Transforming Governance and
 Organizational Form in Collaborative
 E-government

14. Lena Lindbjerg Sperling
 Economic and Cultural Development:
 Empirical Studies of Micro-level Data

15. Xia Zhang
 Obligation, face and facework:
 An empirical study of the communi-
 cative act of cancellation of an
 obligation by Chinese, Danish and
 British business professionals in both
 L1 and ELF contexts

16. Stefan Kirkegaard Sløk-Madsen
 Entrepreneurial Judgment and 
 Commercialization

17. Erin Leitheiser
 The Comparative Dynamics of Private
 Governance 
 The case of the Bangladesh Ready-
 Made Garment Industry

18. Lone Christensen
 STRATEGIIMPLEMENTERING: 
 STYRINGSBESTRÆBELSER, IDENTITET
 OG AFFEKT

19. Thomas Kjær Poulsen
 Essays on Asset Pricing with Financial 
 Frictions

20. Maria Lundberg
 Trust and self-trust in leadership iden-
 tity constructions: A qualitative explo-
 ration of narrative ecology in the dis-
 cursive aftermath of heroic discourse 



21.  Tina Joanes
 Sufficiency for sustainability
 Determinants and strategies for reducing  
 clothing consumption

22. Benjamin Johannes Flesch
 Social Set Visualizer (SoSeVi): Design,
 Development and Evaluation of a Visual 
 Analytics Tool for Computational Set
 Analysis of Big Social Data

23. Henriette Sophia Groskopff
 Tvede Schleimann
 Creating innovation through collaboration
 – Partnering in the maritime sector

24. Kristian Steensen Nielsen
 The Role of Self-Regulation in
 Environmental Behavior Change

25. Lydia L. Jørgensen
 Moving Organizational Atmospheres

26. Theodor Lucian Vladasel
 Embracing Heterogeneity: Essays in
 Entrepreneurship and Human Capital

27. Seidi Suurmets
 Contextual Effects in Consumer Research:  
 An Investigation of Consumer Information  
 Processing and Behavior via the Applicati 
 on of Eye-tracking Methodology

28. Marie Sundby Palle Nickelsen
 Reformer mellem integritet og innovation:
 Reform af reformens form i den danske
 centraladministration fra 1920 til 2019

29. Vibeke Kristine Scheller
 The temporal organizing of same-day 
 discharge: A tempography of a Cardiac  
 Day Unit

30. Qian Sun
 Adopting Artificial Intelligence in 
 Healthcare in the Digital Age: Perceived  
 Challenges, Frame Incongruence, and 
 Social Power

 
 

31. Dorthe Thorning Mejlhede
 Artful change agency and organizing for 
 innovation – the case of a Nordic fintech
 cooperative

32. Benjamin Christoffersen
 Corporate Default Models:
 Empirical Evidence and Methodical
 Contributions

33. Filipe Antonio Bonito Vieira
 Essays on Pensions and Fiscal Sustainability

34. Morten Nicklas Bigler Jensen
 Earnings Management in Private Firms:
 An Empirical Analysis of Determinants
 and Consequences of Earnings
 Management in Private Firms

2020

1.  Christian Hendriksen
 Inside the Blue Box: Explaining industry
 influence in the International Maritime
 Organization

2. Vasileios Kosmas
 Environmental and social issues in global  
 supply chains:
 Emission reduction in the maritime
 transport industry and maritime search and  
 rescue operational response to migration

3. Thorben Peter Simonsen 
 The spatial organization of psychiatric   
 practice: A situated inquiry into ‘healing  
 architecture’

4. Signe Bruskin
 The infinite storm: An ethnographic study  
 of organizational change in a bank

5. Rasmus Corlin Christensen
 Politics and Professionals: Transnational  
 Struggles to Change International Taxation

6. Robert Lorenz Törmer
 The Architectural Enablement of a Digital
 Platform Strategy
 



7.  Anna Kirkebæk Johansson Gosovic
 Ethics as Practice: An ethnographic
 study  of business ethics in a multi-
 national biopharmaceutical company

8. Frank Meier
 Making up leaders in leadership
 development

9. Kai Basner
 Servitization at work:
 On proliferation and containment

10.  Anestis Keremis
 Anti-corruption in action: How is anti-
 corruption practiced in multinational
 companies?

11.  Marie Larsen Ryberg
 Governing Interdisciolinarity: Stakes and  
 translations of interdisciplinarity in Danish  
 high school education.

12.  Jannick Friis Christensen
 Queering organisation(s): Norm-critical  
 orientations to organising and researching  
 diversity

13.  Thorsteinn Sigurdur Sveinsson
 Essays on Macroeconomic Implications of
 Demographic Change

14. Catherine Casler
 Reconstruction in strategy and
 organization: For a pragmatic stance

15. Luisa Murphy
 Revisiting the standard organization of  
 multi-stakeholder initiatives (MSIs):
 The case of a meta-MSI in Southeast Asia

16. Friedrich Bergmann
 Essays on International Trade

17. Nicholas Haagensen
 European Legal Networks in Crisis: The  
 Legal Construction of Economic Policy

18.  Charlotte Biil
 Samskabelse med en sommerfugle-
 model: Hybrid ret i forbindelse med
 et partnerskabsprojekt mellem 100
 selvejende daginstitutioner, deres
 paraplyorganisation, tre kommuner
 og CBS

19. Andreas Dimmelmeier
 The Role of Economic Ideas in
 Sustainable Finance: From Paradigms  
 to Policy

20. Maibrith Kempka Jensen
 Ledelse og autoritet i interaktion
 - En interaktionsbaseret undersøgelse
 af autoritet i ledelse i praksis

21. Thomas Burø
 LAND OF LIGHT:  Assembling the  
 Ecology of Culture in Odsherred  
 2000-2018

22. Prins Marcus Valiant Lantz
 Timely Emotion: The Rhetorical
 Framing of Strategic Decision
 Making

23. Thorbjørn Vittenhof Fejerskov
 Fra værdi til invitationer - offentlig  
 værdiskabelse gennem affekt,
 potentialitet og begivenhed

24. Lea Acre Foverskov
 Demographic Change and Employ- 
 ment: Path dependencies and
 institutional logics in the European  
 Commission

25. Anirudh Agrawal
 A Doctoral Dissertation

26. Julie Marx
 Households in the housing market

27. Hadar Gafni
 Alternative Digital Methods of
 Providing Entrepreneurial Finance



28. Mathilde Hjerrild Carlsen
 Ledelse af engagementer: En undersøgelse  
 af samarbejde mellem folkeskoler og
 virksomheder i Danmark

29. Suen Wang
 Essays on the Gendered Origins and
 Implications of Social Policies in the
 Developing World

30. Stine Hald Larsen
 The Story of the Relative: A Systems-
 Theoretical Analysis of the Role of the
 Relative in Danish Eldercare Policy from
 1930 to 2020

31. Christian Casper Hofma 
 Immersive technologies and organizational  
 routines: When head-mounted displays  
 meet organizational routines

32. Jonathan Feddersen
 The temporal emergence of social 
 relations: An event-based perspective of  
 organising

33. Nageswaran Vaidyanathan
 ENRICHING RETAIL CUSTOMER
 EXPERIENCE USING AUGMENTED REALITY 

2021

1.  Vanya Rusinova
 The Determinants of Firms’ Engagement
 in Corporate Social Responsibility:
 Evidence from Natural Experiments

2. Lívia Lopes Barakat
 Knowledge management mechanisms
 at MNCs:
 The enhancing effect of absorptive
 capacity and its effects on performance  
 and innovation

3. Søren Bundgaard Brøgger
 Essays on Modern Derivatives Markets

4. Martin Friis Nielsen
 Consuming Memory: Towards a conceptu-
 alization of social media platforms as
 organizational technologies of consumption
 

05. Fei Liu
 Emergent Technology Use in Consumer  
 Decision Journeys: A Process-as-Propensity  
 Approach

06. Jakob Rømer Barfod 
 Ledelse i militære højrisikoteams

07. Elham Shafiei Gol 
 Creative Crowdwork Arrangements

08. Árni Jóhan Petersen
 Collective Imaginary as (Residual) Fantasy:
 A Case Study of the Faroese Oil Bonanza

09. Søren Bering
 “Manufacturing, Forward Integration
 and Governance Strategy”

10. Lars Oehler
 Technological Change and the Decom-
 position of Innovation:
 Choices and Consequences for Latecomer  
 Firm Upgrading: The Case of China’s Wind  
 Energy Sector

11. Lise Dahl Arvedsen
 Leadership in interaction in a virtual 
 context:
 A study of the role of leadership processes  
 in a complex context, and how such
 processes are accomplished in practice

12. Jacob Emil Jeppesen
 Essays on Knowledge networks, scientific
 impact and new knowledge adoption

13. Kasper Ingeman Beck
 Essays on Chinese State-Owned
 Enterprises:
 Reform, Corporate Governance
 and Subnational Diversity

14. Sönnich Dahl Sönnichsen
 Exploring the interface between public  
 demand and private supply for implemen- 
 tation of circular economy principles

15. Benjamin Knox
 Essays on Financial Markets
 and Monetary Policy



16. Anita Eskesen
 Essays on Utility Regulation:
 Evaluating Negotiation-Based Approaches  
 inthe Context of Danish Utility Regulation

17. Agnes Guenther
 Essays on Firm Strategy and Human
 Capital

18. Sophie Marie Cappelen
 Walking on Eggshells: The balancing act  
 of temporal work in a setting of culinary  
 change

19. Manar Saleh Alnamlah
 About Gender Gaps in Entrepreneurial   
 Finance

20. Kirsten Tangaa Nielsen
 Essays on the Value of CEOs and Directors

21. Renée Ridgway
 Re:search - the Personalised Subject vs.
 the Anonymous User

22. Codrina Ana Maria Lauth
 IMPACT Industrial Hackathons:
 Findings from a longitudinal case study on  
 short-term vs long-term IMPACT imple-  
 mentations from industrial hackathons  
 within Grundfos

23. Wolf-Hendrik Uhlbach
 Scientist Mobility: Essays on knowledge  
 production and innovation

24. Tomaz Sedej
 Blockchain technology and inter-organiza- 
 tional relationships

25. Lasse Bundgaard
 Public Private Innovation Partnerships:
 Creating Public Value & Scaling Up 
 Sustainable City Solutions

26. Dimitra Makri Andersen
 Walking through Temporal Walls: 
 Rethinking NGO Organizing for Sus-  
 tainability through a Temporal Lens on  
 NGO-Business Partnerships

27. Louise Fjord Kjærsgaard
 Allocation of the Right to Tax Income  
 from Digital Products and Services:
 A legal analysis of international tax  
 treaty law

28. Sara Dahlman
 Marginal alternativity: Organizing for
 sustainable investing

29. Henrik Gundelach
 Performance determinants:
 An Investigation of the Relationship  
 between Resources, Experience and  
 Performance in Challenging Business  
 Environments

30. Tom Wraight
 Confronting the Developmental  
 State: American Trade Policy in the  
 Neoliberal Era

31. Mathias Fjællegaard Jensen
 Essays on Gender and Skills in the
 Labour Market

32. Daniel Lundgaard
 Using Social Media to Discuss Global  
 Challenges: Case Studies of the
 Climate Change Debate on Twitter

33. Jonas Sveistrup Søgaard
 Designs for Accounting Information  
 Systems using Distributed Ledger  
 Technology

34. Sarosh Asad
 CEO narcissism and board compo- 
	 sition:	Implications	for	firm	strategy		
 and performance

35. Johann Ole Willers
 Experts and Markets in Cybersecurity
	 On	Definitional	Power	and	the
 Organization of Cyber Risks

36. Alexander Kronies
 Opportunities and Risks in
 Alternative Investments



37. Niels Fuglsang
 The Politics of Economic Models: An 
 inquiry into the possibilities and limits
 concerning the rise of macroeconomic
 forecasting models and what this means 
 for policymaking

38. David Howoldt
 Policy Instruments and Policy Mixes for 
 Innovation: Analysing Their Relation to  
 Grand Challenges, Entrepreneurship and  
 Innovation Capability with Natural 
 Language Processing and Latent Variable  
 Methods

2022

01. Ditte Thøgersen
 Managing Public Innovation on the 
 Frontline

02. Rasmus Jørgensen
 Essays on Empirical Asset Pricing and
 Private Equity

03. Nicola Giommetti
 Essays on Private Equity

04. Laila Starr
 When Is Health Innovation Worth It?
 Essays On New Approaches To Value   
 Creation In Health

05. Maria Krysfeldt Rasmussen
 Den transformative ledelsesbyrde
 – etnografisk studie af en religionsinspireret 
 ledelsesfilosofi i en dansk modevirksomhed

06. Rikke Sejer Nielsen
 Mortgage Decisions of Households:
 Consequences for Consumption and Savings

07. Myriam Noémy Marending
 Essays on development challenges of low  
 income countries: Evidence from conflict,  
 pest and credit

08. Selorm Agbleze
 A BEHAVIORAL THEORY OF FIRM 
 FORMALIZATION

09. Rasmus Arler Bogetoft
 Rettighedshavers faktisk lidte tab i imma- 
 terialretssager: Studier af dansk ret med   
 støtte i økonomisk teori og metode

10. Franz Maximilian Buchmann
 Driving the Green Transition of the Mari-  
 time Industry through Clean Technology   
 Adoption and Environmental Policies

11. Ivan Olav Vulchanov
 The role of English as an organisational 
 language in international workplaces

12. Anne Agerbak Bilde
 TRANSFORMATIONER AF SKOLELEDELSE
 - en systemteoretisk analyse af hvordan
 betingelser for skoleledelse forandres
 med læring som genstand i perioden   
 1958-2020

13. JUAN JOSE PRICE ELTON
 EFFICIENCY AND PRODUCTIVITY
 ANALYSIS: TWO EMPIRICAL APPLICATIONS  
 AND A METHODOLOGICAL CONTRIBUTION

14. Catarina Pessanha Gomes
 The Art of Occupying: Romanticism as  
 Political Culture in French Prefigurative  
 politics 

15. Mark Ørberg
 Fondsretten og den levende vedtægt

16. Majbritt Greve
 Maersk’s Role in Economic Development:  
 A Study of Shipping and Logistics Foreign  
 Direct Investment in Global Trade 

17. Sille Julie J. Abildgaard
 Doing-Being Creative: Empirical Studies of  
 Interaction in Design Work

18. Jette Sandager
 Glitter, Glamour, and the Future of (More)  
 Girls in STEM: Gendered Formations of STEM  
 Aspirations

19. Casper Hein Winther
 Inside the innovation lab - How paradoxical  
 tensions persist in ambidextrous organiza- 
 tions over time



20. Nikola Kostić
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