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Abstract 

Sensors embedded in smart objects, smart machines, and smart buildings produce ever-growing 

streams of contextual data that convey information of interest about their operating environment. 

Although an increasing number of industries embrace the utilization of sensors in routine operations, 

no clear framework is available to guide designers who aim to leverage contextual data collected 

from these sensors to develop predictive systems. In this paper, we applied the Design Science 

Research methodology to develop and evaluate a general framework that helps designers to build 

predictive systems utilizing sensor data. Specifically, we developed a framework for designing 

context-aware predictive systems (CAPS). We then evaluated the framework through its application 

in MAN Diesel & Turbo, which served as a case company. The framework can be generalized into 

a class of demand-forecasting problems that rely on sensor-generated contextual data. The CAPS 

framework is unique and can help practitioners make better-informed decisions when designing 

context-aware predictive systems. 

Keywords: Design framework, Systems design, Sensor data, IoT data, Predictive analytics, 

Forecasting, Design Science Research. 

[Senior editor name] was the accepting senior editor. This research article was submitted on [manuscript submission 

date] and went through [number of revisions] revisions.  

1 Introduction 

Context-aware computing emerged as a term with the 

introduction of ubiquitous computing (Weiser, 1991). 

Context here refers to any information that describes 

the situation or environment of an entity, such as a 

person, place, or object (Abowd et al., 1999). Sensors 

are best equipped to capture context by leveraging 

situational and environmental information to offer 

timely, situated, and usable content, functions, and 

experiences (Perera et al., 2013).  

As digital technologies continue to evolve, we see 

everyday objects – smartphones, cars, homes, and even 

clothes – getting embedded with sensor technologies 

that respond to physical stimuli and generate 

contextual data (Aarts & Marzano, 2003; Abowd et al., 

1999; Javaid et al, 2021; Uckelmann, Harrison, & 

Michahelles, 2011). Such objects can collect, process, 

and communicate data about their situation, 

functionality, and operating environment that can then 

be used for context-aware computing (Cook & Das, 

2004; Shim et al., 2019). Although there are ample 

examples of successful utilization of sensor-generated 

contextual data, the identification of patterns in such 

data for the purpose of harnessing them to make 

predictions is still not commonplace in everyday 

applications (Sampath et al., 2019).  

The data generated by sensors can be used to make 

sense of past events and also to predict future events. 

Although making predictions is an established practice 

mailto:michel@avital.net
mailto:profsamir1@gmail.com
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in organizational decision making (Aldahiri, et. al., 

2021; Deming, 2000; Kim et al., 2018), predictive 

analytics applications that utilize sensor data are a 

relatively recent phenomenon. Predictive analytics 

refers to the use of data to predict future trends and 

events. It uses historical data to forecast potential 

scenarios that can help inform strategic decisions. 

Predictive analytics using contextual data differ from 

traditional analytics methods in the way in which data 

are collected and used (Nardi, 1996). Predictive 

analytics using contextual data extract data from 

sensors, which are often custom-designed to obtain 

specific data types. These sensors can generate and 

collect a wide range of data, including readings on 

temperature, water levels, air moisture, fuel levels, 

electrical impulses, and a host of other metrics 

depending on how and where they are deployed and 

the needs at hand. The growing demand for additional 

trusted data sources to be utilized by predictive 

analytics systems has led to the development of new 

sensors and smart devices that can generate contextual 

data streams. 

Applications of predictive analytics include demand 

forecasting, which is one of the key processes in 

Supply Chain Management (Lapide, 2012; Sroginis, 

2021; Suma, 2021). An example is predicting the 

behavior of machines or devices used in real-life 

business scenarios, such as when manufacturers track 

machines or raw materials used during production 

(Chen, 2001). As more sensor-enabled smart 

devices enter the market, embedded 

software solutions and massively improved device 

connectivity continue to generate streams of sensor 

data. However, working with sensor data in industrial 

settings introduces challenges for system designers 

(Gungor et al., 2009; Marabelli et al., 2017; Pech et. 

al., 2021), and there is no framework or guideline to 

help design these systems. This paper offers a design 

framework and propositions that can help develop 

these applications and advance the science behind 

them. Specifically, we pursue the following research 

question: 

RQ: How can we design sensor-based context-aware 

predictive systems in industrial-scale settings? 

In this paper, we developed a framework that can 

facilitate the process of designing Context-Aware 

Predictive Systems (CAPS). We defined CAPS as 

information systems that can make predictions (e.g., 

device lifespan, energy used, current temperature, and 

longevity) based on contextual data. We developed the 

CAPS framework building on Design Science 

Research (DSR) (Hevner, March, Park, & Ram, 2004) 

and data-driven predictive modeling (Shmueli & 

Koppius, 2011). We then evaluated the CAPS 

framework through its application in MAN Diesel & 

Turbo, which served as a case company. Finally, we 

also derived propositions for future designers through 

reflection on feedback from the case company.  

The CAPS framework contributes to the growing 

stream of domain-specific information systems in 

Design Science Research (e.g., Meth, Mueller, & 

Maedche, 2015; Müller-Wienbergen, Müller, Seidel, 

& Becker, 2011; Pries-Heje & Baskerville, 2008). The 

framework aims not only to shorten the design time 

and reduce the cost of context-aware predictive 

systems development projects, but also to improve the 

quality of such systems. The case of MAN Diesel & 

Turbo illustrates the usefulness of the CAPS 

framework for developing sensor-based predictive 

models. 

2 Background and Prior Work 

IS-related research has widely referred to the notion of 

“context.” For example, context plays a vital role in 

application development (Kumar & Sharma, 2020), 

search engine design (Storey, Burton-Jones, 

Sugumaran, & Purao, 2008), and human-computer 

interaction (Nardi, 1996), as well as in sense-making 

(Narock, Yoon, & March, 2012) and general 

management (Johns, 2006). Although the exact 

characterizations of context seem to vary, the 

definition used in the introduction (Cook & Das, 2004) 

is rooted in the framing of Dey (2001), who defines 

context as “any information that can be used to 

characterize the situation of an entity.” 

As the fourth industrial revolution sets in, more and 

more objects are being embedded with sensors that 

generate contextual data, which is used for various 

applications (Okano, 2017). For example, factories and 

businesses operating in the manufacturing sector are 

taking advantage of IoT sensors and data collection 

(Suma, 2021). With the use of IoT sensors attached to 

factory machines or robots, measures of usage and 

lifespan such as temperature, vibration, and wear and 

tear can be tracked (Kim, Lee  & Shin, 2018). These 

data, when fed into an analytics model or algorithm, 

can help predict when a machine will likely require 

maintenance or replacement. In this way, the manager 

can order parts or supplies ahead of time to avoid 

costly downtime or expensive machine repairs 

(Hellingrath & Cordes, 2014).  

Another industrial example is monitoring the physical 

and chemical characteristics of water locally to provide 

a fine-grained map of water condition. New water 

distribution channels are equipped with IoT sensors 

that monitor water quality and potential contamination. 

Such advanced water monitoring systems help to 

control risks related to the spread of polluted water and 

diseases (Nikam & Pawar, 2016). 

While forecasting has received limited attention in the 

IS discipline, it has been studied thoroughly in other 
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management disciplines. Naturally, we do not aim to 

review all the forecasting techniques in the 

management literature here; rather, our goal is 

specifically to reveal what constitutes a suitable 

forecasting method and how to determine which 

technique to use as a state-of-the-art baseline. Notably, 

multiple literature reviews in the context of Operations 

Research (OR) cover forecasting thoroughly, including 

dedicated studies of spare-part demand. Table 1 

presents a list of selected methods from Callegaro 

(2010) and Bacchetti & Saccani (2012).  

The list highlights that the common approaches in OR 

research are derived from the development of complex 

algorithms to predict the next items in a (time) series 

based on the previous values. The primary objective 

centers on the transformation of historical data. 

Conceptually, this refers to predicting an output of the 

black box by analyzing only its prior outputs. In 

contrast, the literature on a more informed prediction 

that is based on an understanding of the activity within 

the so-called black box is limited and problem-specific 

(e.g., Hellingrath & Cordes, 2014). 

Table 1. Selected Spare-Part Forecasting Methods (Based on Bacchetti & Saccani, 2012; Callegaro, 2010)  

Model  

Classification 

Method 

Name 
Inputs Description Important Features 

Time series 

Arithmetic 

average with 

optional 

additional 

features  

Weighted 

moving 
average 

- Historical 

sales data 
- Weights 

(constants) 

Mean of past data points with weights 

(usually the older the sample, the smaller the 
weight) 

- Stresses recent trends 

- Easy to compute 

Single 

exponential 
smoothing 

(SES) 

- Historical 

sales data 
- Smoothing 

constant 

Moving average of demand with smoothing 

constant 

- Works with a few samples 

- Easy to compute 

Box-Jenkins 
method 

- Historical 
data 

- Multiple 

constants 

Moving average and auto-regression, 
selected alternatively based on historical 

error 

- Captures complex trends 
and seasonality 

- Requires much historical 

data to perform well 

Grey 

prediction 

model 

- Historical 

data  

Adaptive time series approach using least-

squares estimate as feedback to correct for 

the error 

- Works under massive 

uncertainty to predict 

events like hurricanes  

Croston-

based1  

Two average 

values with 

exponential 

smoothing 

Croston’s 
method 

- Historical 
sales data 

- Smoothing 

constants 

Single exponential smoothing for both typical 
demand magnitude and typical periods 

between demand points 

- Performs well with 
materials that have 

intermittent demand 

(many periods without 
demand) 

Syntetos-

Boylan 
approx. 

- Historical 

sales data 
- Smoothing 

constants 

Extension of Croston method removing the 

positive bias 

- Provides a statistically 

proven bias reduction 
resulting in lower 

forecast error 

Stochastic 

Probabilistic 

Bootstrap 

method 

- Historical 

sales data 
- Limited 

number for 

resampling 

A randomly chosen subset of historical 

samples (e.g., forecast for the next 3 periods 
is 3 randomly chosen periods from the past) 

- Offers a probabilistic 

approach 

Neural 

networks 

- Historical 

sales data 

- Neural 
network 

layout 

Inference from the connection between input 

and output of the training set to estimate 

future values 

- Offers a method tested in 

various areas as a 

predictor 

Order  
Over-planning 

(early sales) 

- Historical 
sales data 

Extrapolation of sales orders placed by each 
single customer instead of the overall 

demand to estimate future sales  

- Caters for business where 
some customers use to 

purchase well in advance 

Failure rate 

analysis 

- Equipment 

failure rates 
- Installed base 

data 

Extracting expected lifetime and failure rates 

of components based on historical data and 
extrapolating the forecasted values based on 

installed base  

- Caters for spare part and 

heavy machinery 
business 

- Requires good data about 

historical incidents and 
replacement 

 

1 Croston (1972). 
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The selected models can be broadly sorted into three 

classes: (1) models that are based on a computed 

forecast as a unidimensional aggregation of previous 

observations that are classified into a time series 

cluster (Callegaro, 2010); (2) models that are based on 

separately computing demand magnitude and interval 

demand points and later combining them into 

predictions that are clustered as Croston-based 

(Croston, 1972); and (3) models that are based on 

calculating a forecast value that is based on other 

properties of the previous value set, rather than the raw 

values, and that are grouped into a Stochastic cluster 

(Bartezzaghi, Verganti & Zotteri, 1999). 

Our review shows that benchmarks of intermittent 

demand forecasting are inconclusive about the relative 

performance of any of these models. Petropoulos et al. 

(2013) benchmark time series and Croston-based 

methods and conclude that their relative performance 

depends heavily on parameters used in the 

implementation. However, Kourentzes (2013) presents 

a study where a stochastic solution – namely, Neural 

Networks – outperforms both time series and Croston-

based algorithms. Finally, Teunter & Duncan (2009) 

find that time-series methods perform significantly 

worse than the other two classes, while there is no 

significant difference between the two Croston-based 

methods and stochastic bootstrapping.  

In the absence of clear conclusions from the related 

scientific research, we acknowledge that the Croston-

based methods are the de facto traditional standard. It 

is the only method class specifically aimed at 

intermittent demand forecasting in standard SAP R/3, 

and it is explicitly recommended by SAP for products 

with intermittent demand (SAP, 2013, p. 12). 

Considering that the Croston method is the most 

prevalent in practice, we selected it as the state-of-the-

art baseline for testing against future predictive 

methods.

 

Figure 1. Steps for Building Predictive Empirical Models (Shmueli & Koppius, 2011)  

In order to facilitate the use of predictive methods in 

IS, Shmueli & Koppius (2011) provide an eight-step 

process for building an empirical model including 

explicit guidelines on how to execute it for designing 

predictive models (see Figure 1). In Step 1, the 

prediction goal and the success benchmark are defined 

and outlined. In Step 2, key issues regarding data 

collection and study design need to be addressed, 

including using an experimental versus observational 

setting, choosing the data collection instrument(s), 

setting the sample size, and selecting candidates for 

observed variables. Step 3 deals with data preparation 

and outlines actions for data quality controls, including 

defining procedures for treating missing values and 

choosing a partitioning strategy. In Step 4, the data are 

to be evaluated for the purpose of defining variables 

for the analysis, and in Step 5, the variables are 

selected. In Step 6, the data transformation method is 

selected. In Step 7, the evaluation strategy, validation, 

and model selection are determined. Finally, in Step 8, 

the strategy for research dissemination is chosen and 

executed. 

Although Shmueli and Koppius’ guidelines on 

building empirical models constitute a significant step 

toward prescriptive instructions on how a class of 

predictive systems could be constructed, they are 

concerned only with the data model (Walls et al., 

1992). While an empirical data model (predictive or 

explanatory) is a central part of any technological IS 

(Hevner et al., 2004; Orlikowski & Iacono, 2001), the 

design process of such systems also requires the 

consideration of several other aspects, including the 

knowledge base it uses, the organization within which 

the system is (to be) embedded, and the people who 

will use it. Therefore, the process suggested by 

Shmueli & Koppius (2011) provides a reasonably good 

starting point toward the development of predictive 

information systems but lacks adaptability to 

organizational challenges and contexts. 

Shmueli & Koppius (2011) make a clear distinction 

between explanatory statistical models and predictive 

models. Typically, an explanatory statistical model is 

built for the purpose of testing causal hypothesis that 

specify how and why certain empirical phenomena 

occur. Predictive analytics include empirical predictive 

models (statistical models and other methods such as 

data mining algorithms) designed for predicting 

new/future observations or scenarios. Predictive power 

refers to a model’s ability to generate accurate 

predictions of new observations. As seen in Fig. 1, 

their focus is on the data process. However, in practice, 

designers that instantiate predictive analytics systems 

with sensors need to respond to organizational 

challenges introduced by data complexity and veracity 

and by the contextual meaning of the data in the 

organization. When evaluating predictive analytics 
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systems, this may introduce the need for both 

quantitative and qualitative evaluation, both to ensure 

the selected evaluation function performs well in the 

industrial setting and to enable a better contextual 

understanding of the results to improve the model in 

the next iteration. The context in industrial case 

settings is particularly relevant to the operational 

efficiency of the predictive analytics system. 

Based on the above observations, we build on the 

predictive analytics process model proposed by 

Shmueli & Koppius (2011) and the three cycles model 

of Design Science proposed by Hevner et al. (2004) to 

develop a generic yet enhanced design process 

framework, which we call CAPS, that can be used to 

design and build industrial-scale predictive systems. 

3 Research Approach 

Context-aware predictive systems, like other IT 

artifacts, process information to enable or support 

predefined tasks. All context-aware systems collect 

context information using sensor technology to sense 

particular kinds of changes in the environment in 

which they are embedded. Predictive systems have a 

common modus operandi: they convert input data into 

a particular prediction about the future. Although an 

increasing number of industries embrace the utilization 

of sensor devices and IoT, there is no guidance for 

designers and developers, let alone for researchers, 

who are interested in predictive models that are based 

on data collected from sensor systems. Therefore, we 

follow the Design Science Research methodology to 

address this gap by developing the CAPS framework 

(Hevner & Chatterjee, 2010; Meth et al., 2015).  

We started by exploring the literature on design as well 

as predictive analytics in order to gain a better 

perspective on the domain of interest, including 

specific challenges and problems facing context-aware 

sensor system development. Next, we explored and 

merged two relevant yet distinct approaches, namely 

DSR (Hevner et al., 2004) and Predictive Analytics 

(Shmueli & Koppius, 2011), into a new and enhanced 

CAPS framework that is better suited to support our 

design objective. The CAPS framework is developed 

and presented as one of the key contributions of our 

work. To evaluate its applicability and usefulness, we 

applied the CAPS framework to an ongoing problem 

at MAN Diesel & Turbo. In addition, we improved the 

framework based on expert feedback and qualitative 

field data. Finally, we derived a set of emerging 

propositions and reflected on how they could be 

applied in similar design problems. The propositions 

aim to assist organizations with the implementation of 

the CAPS framework and to realize its value in their 

context. The propositions constitute another 

contribution of this paper.  

The research approach is explained with the help of a 

diagram in Fig. 2 below. Based on the literature on 

predictive analytics and DSR, we developed 

knowledge about the key features of such systems. 

Next, the author team developed a preliminary design 

of the CAPS framework. One of the authors was then 

embedded inside the MAN Diesel & Turbo Company 

for an extended period of time. Placement of the 

researcher in the organization facilitated data 

collection and contextual understanding. It is also 

important to note that although the CAPS framework 

was developed prior to the start of this project, we were 

able to refine its conceptualization and presentation as 

the engaged researcher witnessed firsthand the 

dynamic nature of the underlying issues and 

challenges. The researcher was able to obtain direct 

feedback and insights, which then led to the refinement 

of the CAPS framework. Finally, a set of propositions 

was established based on the researchers’ direct 

experience with evaluating the CAPS framework 

inside MAN Diesel & Turbo.  

 

Figure 2. The Research Process Underlying the CAPS Framework’s Development  
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It should also be noted that we developed the CAPS 

framework to address the problem of designing 

context-aware predictive systems. In that sense, the 

CAPS framework is also an artifact. However, in the 

context of this paper, we refer to the CAPS framework 

as a “framework” and to the resulting context-aware 

predictive systems as the design “artifacts.”  

4 Design Solution – Developing the 

CAPS Framework 

In this section, we present how the Design Science 

Research methodology and Shmueli and Koppius’ 

predictive empirical model were used to develop a 

framework for structuring a design process of Context-

Aware Predictive Systems (CAPS), including 

predictive models that use contextual data (hereinafter, 

the CAPS framework).  

The DSR methodology (Hevner et al., 2004) provides 

a problem-driven process to guide the design for IS 

artifacts, and Shmueli & Koppius’ (2011) model 

provides a data-driven process to guide the 

development of predictive empirical models. We argue 

that building on both the DSR methodology and 

Shmueli & Koppius’ (2011) model, we can develop a 

new comprehensive framework that is better suited to 

dealing with the design of predictive analytics systems 

that rely on using sensor data and similar digital traces 

(Figure 3). While the DSR methodology is geared 

towards general problem solving, the CAPS 

framework is designed to solve problems that are data-

intensive and require predictive modeling.  

 

Figure 3. DSR Methodology and Shmueli & Koppius Models Provide Insight into the Creation of the CAPS 

Framework 

As noted earlier, a comparative analysis of Hevner et 

al. (2004) and Shmueli & Koppius’ (2011) models 

suggests a partial overlap of the two. These two 

conceptualizations demonstrate overlapping and 

complementary properties, as illustrated in Figure 4. 

The initial step in the Shmueli and Koppius model, 

goal definition, involves defining the purpose of the 

design process and properties constituting a good 

design for that purpose. Although the methodology of 

Hevner et al. discusses the evaluation concept 

thoroughly, it does not explicitly relate to the goal 

definition step. The following five steps are 

application-specific actions conceptually included in 

the generic develop/build step (marked in blue in 

Figure 4). Nevertheless, in the particular context of 

artifacts using predictive models, the output 

framework will benefit from a clear definition of 

activities related to the development/build steps. The 

Evaluation, Validation, & Model selection step in 

Shmueli & Koppius’s process model corresponds to 

the Justify/Evaluate step of Hevner et al. (marked in 

green). Finally, the Model Use and Reporting step 

matches the Application in the Appropriate 

Environment and Addition to the Knowledge Base of 

Hevner et al. (marked in orange). Figure 4 provides a 

graphical representation that depicts the overlap 

between the DSR methodology and Shmueli & 

Koppius’s (2011) models. 
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Figure 4. Alignment between DSR Methodology and Shmueli & Koppius Predictive Analytics Model 

By leveraging these overlaps, we constructed a new 

framework for designing context-aware predictive 

systems – namely, the CAPS framework, which is 

shown in Figure 5. It is important to note that we used 

DSR methodology as a research method but also used 

the DSR methodology artifact to create a new artifact 

– that is, the CAPS framework. 

 
Figure 5. Framework for Designing Context-Aware Predictive Systems (CAPS) 
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As a starting point, in Step 1, Goal Definition, we 

explicitly follow the Goal Definition step, which was 

previously only present in the DSR methodology in 

reference to Business Needs (Hevner et al., 2004). This 

is when the designer answers questions, such as what 

exactly needs to be designed, what needs to be 

predicted, and what could be a benchmark of good 

design that fulfills the design objectives in the 

underlying context. The Environment informs this step 

with explicit business requirements, and the 

Knowledge Base provides additional guiding reference 

points such as information about already developed 

measures and goal evaluation methods.  

The environment on the left of the CAPS framework 

refers to real-time sensor data sourcing, the 

applications to be built, and the myriad of 

organizational challenges that a designer can face. A 

significant source of data at this stage is from sensors. 

These could be environmental sensors (e.g., pressure, 

temperature, on/off, wear/tear) that provide real-time 

context to our problem. Sensors help us augment our 

physical surroundings. However, sensor data may have 

weak signals, may be noisy, and may at times be 

difficult to make sense of when out of the overall 

context. However, once it is possible to process the 

data and make sense of it, then the organization has to 

decide which application best suits these data. A 

relevant question for the organization at this stage 

would be: Are we building predictive applications, 

building classification applications, or clustering data 

to visualize what is happening in our surroundings? 

The data analytics team often has to with the 

administration to address such organizational 

dilemmas in order to move forward with a particular 

approach. 

Next, in Step 2, IT Artifact Building, we follow DSR’s 

Develop/Build logic, but with three sub-steps inspired 

by Shmueli and Koppius. We observed that four steps 

from Shmueli and Koppius’s model (data collection 

and study design, exploratory data analysis, choice of 

variables, and choice of potential methods) are tightly 

coupled, lacking the required flexibility in step 

ordering. To avoid possible ordering confusion, we 

structure the Develop/Build step in three sub-steps: 

(2a) Right Model Selection for the task at hand (e.g., 

prediction, classification, clustering); (2b) Model 

Building, in which the model is constructed (using 

appropriate training and testing data sets); and (2c) 

Model Implementation, which details the actual 

implementation process. Specifically, in the case of 

sensor data and digital traces, Model Implementation, 

the third sub-step, requires a thorough investigation of 

the match between sensor-measured quantities and 

predicted values, including potential treatment of 

missing or incorrectly registered values, as well as 

specific data partitioning scenarios that address the 

threat of prediction over-fitting. The Environment 

informs this step with all the usable data and already 

existing business processes, and the Knowledge Base 

provides additional guiding information on a variety of 

machine learning algorithms for prediction purposes. 

Although both models specify the 

evaluation/validation step (Justify/Evaluate in Hevner 

et al. and Evaluation, Validation & Model Selection in 

Shmueli and Koppius’s model) as one of the keys to 

conducting a rigorous study, we concluded that further 

structuring of the evaluation process is required in the 

context of designing predictive analytics information 

systems. We defined the intended Evaluation process 

as an objective and quantified comparison of iterations. 

In addition, we also aimed to generate insight into why 

different methods produce better or worse quantitative 

results and use this insight to identify systematic biases 

that can be corrected.  

In Step 3, Model Evaluation, we follow DSR’s 

Justify/Evaluate step in three sub-steps: Step(3a) Cost 

of Prediction Error Assessment, a quantitative 

evaluation in which we facilitate comparisons and a 

general understanding of the cost of prediction error 

developed in Step 1; Step(3b) Contextual Systematic 

Bias Identification, a qualitative analysis of the context 

of the study to identify any systematic/systemic bias 

using the Environment; and Step(3c) Efficacy, 

Prediction Accuracy, and Performance Evaluation. 

This step includes also Propositions generation to 

generalize the learning so far as a basis for the 

development of new iterations that yield better 

quantitative results with less systematic bias. 

Specifically in the case of sensor data and digital 

traces, in this step, an investigation clarifies whether 

there is a more direct way to monitor predicted values. 

There is a tradeoff between model precision and 

system complexity – in step 3c, the complete design 

process needs to be evaluated in relation to this 

tradeoff. Additionally, designers reflect on how well 

the current instantiation of the model is embedded in 

the Environment and the extent of its contribution to 

the Knowledge Base – typically through 

Organizational context, Sensors and Digital traces, as 

well as forecasting literature and predictive methods. 

The framework concludes with Step 4, Model 

Deployment. In this step, the designer integrates the 

context-aware predictive system with the rest of the 

production system. Specifically, the designer connects 

the sensor traces to enable the integration with the 

underlying operational process in the organization. 

The proposed CAPS framework is illustrated in Figure 

5. 

Overall, the CAPS framework offers guidelines for 

structured development of a context-aware predictive 

system, leading to shorter design and implementation 

times, as well as cost savings. The framework also has 

the potential to serve as an alternative approach to 
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conventional forecasting by boosting explanatory 

forecasting method development and unwrapping the 

black-boxed, time-series-based forecasting routines. 

5 Evaluation of the CAPS 

Framework 

One approach to evaluating the CAPS framework is to 

present the framework to relevant industry experts and 

ask them to comment on the benefits and utility of the 

framework (Dey, 2001). A more robust approach is to 

utilize the framework to build context-aware predictive 

systems in an actual company. We took the latter 

approach, and we describe in this section how we 

utilized the CAPS framework in a development project 

at MAN Diesel & Turbo to design multiple artifacts. 

Figure 6 depicts the evaluation strategy and the design 

process. We built three artifacts with the goal of 

reducing forecasting errors by including sensor-based 

data. We also designed two additional artifacts that 

include more advanced use of sensors. The following 

section provides a short summary of the design 

iterations and describes the five artifacts. 

Due to differences between candidate solutions in our 

case, multiple context-aware artifacts had to be built: 

some solutions could be completely implemented and 

evaluated within the period of the project, while others 

could only be evaluated, based on the current 

knowledge (see Figure 6). 

Currently implemented solutions: 

Designing and deploying  

a sensor-based system  

to forecast spare part demand 

Anticipated later work: 

Evaluating advanced designs of a sensor-based 

system  

to forecast spare part demand 

Artifact 1.1: Croston 

method (state-of-the-

art) 

Artifact 1.2: Croston 

with phase-out 

component 

Artifact 1.3: Activity 

sensor 

Artifact 2.1: Continuous 

multi-sensor monitoring 

Artifact 2.2: Remote 

Monitoring Interface  

Goal:  

Cost of forecasting error minimization 

Goal:  

Evaluation of future designs feasibility 

Figure 6. Using the CAPS Framework to Design Multiple CAPS Artifacts  

Following the CAPS framework, the initial step, Goal 

Definition (see Figure 5), calls for a thorough 

evaluation of the environment to determine what 

makes the predictive design suitable for a given 

context and how to quantitatively measure the cost 

associated with prediction error. The following two 

steps, IT Artifacts Building and Model Evaluation, are 

executed for designs under evaluation using the 

previously defined evaluation criteria (i.e., cost of 

prediction error, contextual systematic bias, and 

efficacy). We suggest starting with a state-of-the-art 

solution from the Knowledge Base to provide a 

baseline and ensure the necessary grounding in 

previous academic work. The model evaluation steps 

(Steps 3a, 3b, and 3c; see Figure 5) should then justify 

and evaluate the previously developed objective 

function as well as identify variables that are not 

monitored, perhaps introducing a systematic bias that 

can be removed in subsequent design iteration. When 

iteration cycles provide a satisfactory output, the 

environment and the installed base can be fed back 

with the newly designed predictive framework and the 

insights acquired during the design process. 

5.1 Settings and context of the evaluation 

MAN Diesel & Turbo is the world market leader for 

very large diesel engines for use in ships and power 

plants, and it is one of the three leading suppliers of 

turbo machines. The roots of the company go back to 

1758. In the years 1893-1897, Rudolf Diesel and MAN 

engineers developed the first diesel engine, and in 

1904 the company constructed its first steam turbine. 

MAN Diesel & Turbo is a market leader – MAN has 

designed about 70% of the world’s engines for active 

goods-carrying vessels, culminating in about 85% of 

seaborne share in world trade (IHS Global Services, 

2009). Overall, MAN engines propel more than half of 

world trade (Maritime-Insight, 2013). Since the 1980s, 

MAN Diesel & Turbo has ceased building engines, and 

the manufacturing process has been outsourced mainly 

to Asian business partners. The company’s strategy 

concentrates on (1) engineering-intensive engine 

design processes, (2) creating revenues from selling 

manufacturing licenses to third parties to build MAN 

engines, (3) generating revenue from engines in use, 

and (4) shifting the focus to the aftersales part of the 

business – namely, offering spare parts and services 

(Song & Zipkin, 1996). 

The focus on aftersales introduces challenges to 

MAN’s supply chain, especially in forecasting spare 

parts and service demand. Aftersales-based business 

models usually involve a higher level of heterogeneity 

and product variation than do initial sales 

environments, leading to higher levels of demand 

uncertainty and making demand predictions relatively 

more difficult (Teunter, Syntetos, & Zied Babai, 

2011). Moreover, in the marine business design, 

changes introduced in the manufacturing process are 

widespread, typically due to local material availability 

or shipyard manufacturing limitations, causing 
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alterations in instantiations of the same design and 

additional variation of the installed base (e.g., Dekker 

et al., 2010; Minner, 2011). Finally, the license-based 

business model implemented by MAN creates 

additional obstructions to aftersales activities because 

it introduces the engine builder (i.e., MAN licensee) as 

an intermediary between MAN and the end customer 

(i.e., ship owner). Thus, the engine builder both 

partners with MAN in the production phase and 

competes with MAN on the aftersales market of spare 

parts. This setup limits information flow between 

customers and MAN and also challenges the current 

process of spare parts demand forecasting. All the 

above is considered in the CAPS framework as 

organizational context.  

The emphasis on demand forecasting in the case 

context is also introduced by the aftersales-oriented 

business model. In the aftersales environment, the 

customer purchases spare parts and services based on 

two main criteria: availability and price. Availability is 

merely dependent on accurate demand prediction. In 

other words, if the demand is expected in advance, 

items or services can be ready at the time the customer 

requests them, thus increasing sales probability 

without the cost of excess inventory. Moreover, 

procuring parts in advance (engine spare parts or 

elements necessary for performing additional engine 

services, such as retrofit installations) enables stable 

production pipelines and lowers overall procurement 

costs by avoiding rush orders and expensive rush 

transportation, helping to keep the price at a level that 

is acceptable for customers. In an installed base 

environment characterized by high heterogeneity and a 

high number of offered products and services (and 

underpinned by potentially incomplete information on 

product build and use), an effective forecasting process 

can be considered non-trivial and very important.  

5.2 CAPS Use Case 1 – Currently 

implemented solutions 

The process of evaluation requires an explicit strategy, 

in which quantitative analysis is performed in an 

experimental setting; data are partitioned into learning 

and test-periods; and predictions are made for test 

periods, based on parameters fine-tuned with the 

learning sample and evaluated by an objective 

function. The qualitative evaluation follows, collecting 

insights related to the pros and cons of the chosen 

approach and also predicting possibilities to improve 

it. Based on these suggestions, which are verified in 

existing literature (Kourentzes, 2013; Tuenter & 

Duncan, 2009), refinements leading to new designs are 

made, which then not only are finalized and 

implemented but also undergo the same systematic 

evaluation process. Moreover, linking qualitative 

feedback to quantitative results should enable 

evaluation not only of holistic solutions but also of 

their systematic properties. 

5.2.1 Three iterations of implementable 

artifact designs   

Referring back to Figure 6, we conducted three 

iterations that resulted in slightly different artifacts, 

which aimed to minimize the cost of forecast error 

measured according to the formula developed in the 

Appendix. The initial state-of-the-art forecasting 

method, an implementation of the Croston method 

(considered the traditional approach), was used in 

order to provide a baseline for new solutions. We used 

a two-step approach intended for products with 

infrequent demand, calculating intervals that are 

separately expected between demand points and the 

magnitude of demand. After gaining a better 

understanding of the sales data (see the Appendix), a 

new artifact, called “Croston with a phase-out 

component” (see Artifact 1.2, Figure 6), was 

implemented and evaluated using the previously 

developed objective function, improving the baseline 

prediction by 4%. 

To correct for the systematic bias in the dataset, we 

introduced another change to the baseline forecasting 

model. The basis for this approach is that if, in a given 

period, an engine is used 20% less than in an ordinary 

period, the calculation of the interval between spare 

parts replacements would extend the expected lifetime 

of spare parts in that engine by at least 20%. To achieve 

this goal, the unit of interval between spare part 

replacements would be measured in actual engine 

activity time, instead of in calendar time (months) as 

proposed by the Croston method. We had access to 

sensor measurements of engine activity (i.e., Figure 6, 

Artifact 1.3) – specifically, its load and a counter of its 

running hours. Based on these measures, we defined a 

new variable called engine activity, measured in 

running hours with maximum load. Intuitively, an 

engine can accomplish one running hour with 

maximum load by running either one hour at full speed 

or two hours at half of the maximum speed and so on. 

The implementation of this method improved the 

quality of prediction measure as the cost of forecast 

error by another 17% compared to the Croston with 

phase-out component solution, as well as by 20% 

compared to that of the baseline. 

In summary, the implemented sensor-based design 

artifacts show prediction quality improvements when 

compared to the baseline Croston solution. Often, the 

quality comes at the price of complexity and specificity 

to a given environment. An initial Croston solution 

could be easily implemented for any data. Sensor-

based solutions require specific additional information, 

and the quality improvement they provide is gradually 

coupled more tightly with the application; in turn, this 

tight coupling and specificity increase prediction 
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quality. Furthermore, the additional information comes 

from sensor installation requiring some specific 

infrastructure, which introduces costs that are not 

present in the basic Croston scenario. Moreover, these 

observations suggest that sensor-enabled forecasting 

solutions can be financially feasible in environments 

characterized by, on the one hand, high level 

uncertainty and, on the other, a high cost associated 

with forecasting error. 

The quantitative output of the three implemented 

designs in Figure 6, the first evaluation of CAPS, is 

presented in Figure 7. Croston with phase-out 

component improves the baseline prediction quality by 

4%, while an activity sensor outperforms the baseline 

by 20% and the Phase-out solution by 17%. This 

activity sensor example shows that, together with the 

additional data, quality problems can occur, as the data 

might have been estimated or generated from a source 

that did not have that specific data usage in mind. In 

such a case, new data management routines should be 

implemented, leading to gradual quality improvement.

 
Figure 7. Result summary of Instantiation 1 of the CAPS framework 

5.3 CAPS Use Case 2 – Anticipated later 

work 

We used the CAPS framework a second time to review 

the feasibility of implementation of more advanced 

system designs. However it should be noted that these 

new designs could not be fully developed and 

evaluated within the time frame of the project. 

However, the overall goal of this exercise remains the 

same – designing, developing, and continuously 

improving a system using CAPS that can predict sales 

in the given context. To exemplify the benefit of the 

CAPS framework, we will use it to guide our 

evaluation in this section. Nonetheless, as new design 

artifacts will not be fully functional, there will be no 

means to quantitatively evaluate their performance as 

in the previously presented use of CAPS, but without 

a full deployment (step 4). As a result, a new 

quantitative evaluation function needs to be developed 

that, on the one hand, is able to provide insights into 

evaluated designs and, on the other, can be executed 

even without complete system implementation. 

The idea behind the proposed objective function 

revolves around the concept that when it is not possible 

to calculate the cost reduction due to improved 

forecast, it is still possible to define what that reduction 

should be to make a given investment in a new system 

feasible: a requirement for developing a sensor-

enabled forecasting system should be that the forecast 

error cost difference ΔCOSTFE between the cost of 

forecast error before system implementation, 

COSTFE_BEFORE, and the cost of forecast error after 

implementation, COSTFE_AFTER, should out-weigh the 

system’s implementation cost, COSTINV, within a 

reasonable time. Our enquiry in the case company 

about what exactly that reasonable time payback 

period should result in an interval from two to five 

years.  

We decided to use a five-year threshold period because 

other innovative solutions toward better customer 

intelligence are currently within the strategic focus of 

the company. As a result, the new objective function 

becomes: 
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5.3.1 Two iterations of advanced artifact 

designs   

The main objective was to assess the feasibility of a 

solution based on the intended development 

environment. Two open projects from the case 

environment are evaluated: 1) continuous multi-sensor 

monitoring, a system collecting data from hundreds of 

simple sensors, and 2) a new interface for remote 

engine monitoring. The continuous multi-sensor 

monitoring system is based on a solution implemented 

in MAN that provides output from approximately 500 

sensors installed on every engine design according to 

MAN specification, initially to facilitate the 

monitoring process for on-site engineers. The majority 

of sensors will monitor the temperature in various 

points of the engine, but there are some that monitor 

air pressure, angle of rotating elements, or other 

environmental settings. If the engine owner enables 

remote monitoring, MAN starts pooling the data into a 

central data warehouse that is used to detect abnormal 

sensor values, which trigger alarms. 

Ideally, a forecasting model based on such a 

monitoring system could rely on measures observing 

the wear of spare parts. Subsequently, by means of 

general forecasting, the historical values could be 

extended into the future, estimating when a certain 

threshold value of wear is reached. As an example, a 

cylinder liner is a part of an engine installed as an inner 

wall of a cylinder, holding a piston in one plane and 

providing minimum friction when the piston is in 

motion. Currently, the decision to replace a cylinder 

liner is based on manual inspection and measurement 

of its thickness, for which an engineer needs to 

dismantle the engine and measure the exact thickness 

of the liner.  

In relation to forecast level improvement justifying 

investment in the system, we can use the objective 

function from the advanced design of artifacts using 

CAPS and MAN historical data to evaluate it. Based 

on the current operational values, including stock-out 

percentage and surplus inventory value, the overall 

estimated cost of over-forecast is 1.8M€, and the cost 

of under-forecast is 4.3M€, totaling 6.1M€. With an 

investment cost estimate of 2.5M€, the requested 

payback period of five years is attainable with a 

forecast cost improvement of 8% (from 6.1 to 5.6 M€), 

assuming no additional maintenance cost of the new 

solution. However, such a significant lowering of 

forecast error cost might be difficult to gain when 

including additional maintenance costs of the new 

solution – assuming that 10% of the installed base will 

be monitored through the interface (about 2,000 

engines) and that, with one remote diagnostic session 

costing 100€, including human cost and satellite 

communication cost, the actual forecast error cost after 

implementing the system needs to be 200k€ less, 

translating to 30% improvement (6.1M€ to 4.3M€). 

The other system that was evaluated is the remote 

engine monitoring interface project. This project 

provides local engineers who need to perform system 

diagnosis of a MAN engine in a remote location (e.g., 

in a ship at sea) with a monitoring device built into a 

protective cap (helmet), equipped with a camera, 

microphone, and other necessary sensors, that is 

connected and networked to MAN headquarters, 

where experienced MAN engineers can “see” and 

“hear” the engine as if they were on site. Subsequently, 

the experienced MAN engineers are able to diagnose 

complex problems with the engine almost immediately 

and to guide the local engineers on how to solve them, 

thereby reducing expensive potential downtime costs 

of an engine on a running vessel. The project is 

currently in the prototype stage, and further 

development awaits market evaluation and input. 

Overall, based on the cost assessment grounded in the 

case environment, we calculated a forecast 

improvement that would result in investment break-

even, which amounts to 8% for the continuous sensor 

monitoring system and 30% for the remote engine 

monitoring project. Based on the improvement factors 

from the first CAPS instantiation, the first solution 

seems much more realistically feasible than the 

second. 

Evaluating and reviewing two rounds of iteration of the 

Later Work evaluation (Figure 6) and the associated 

design cycles, we presented five predictive context-

aware information systems using the following sensor 

technologies: a state-of-the-art Croston 

implementation, a Croston with phase-out component, 

an Activity sensor, the continuous multiple-sensor 

monitoring system, and the remote engine monitoring 

interface. The process of designing and analyzing the 

five artifacts (despite being specific to a single case and 

a particular, well-defined problem) not only led to 

gradual performance improvement but also uncovered 

some general aspects of designing IS predictive 

artifacts with sensor technologies that we discuss 

further in the following section.  

6 Discussion 

The application of the CAPS framework to the case 

provided an opportunity to evaluate the framework and 

engage in further reflection. Our experience with its 

application and evaluation in the MAN Diesel & Turbo 

case offers the opportunity to develop knowledge 

propositions that can be helpful in designing similar 

predictive systems in other companies and other 

problem domains. The propositions aim to help 

organizations to implement the CAPS framework and 

to realize its value in their context. 

The first proposition stems from our design decision to 

utilize sensor data from already established sources 

and other data already collected for a different purpose. 
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This approach not only greatly lowers the cost and 

simplifies the implementation process but also ensures 

a certain level of data quality; if the data are already in 

use, they are being reviewed, and some potential 

quality issues might be spotted and corrected. The risk 

factor for the investment is also significantly lower; at 

the time of design the exact format and structure of the 

data are available, helping to avoid any surprises in 

terms of practical sensor limitations.  

Generalizing these observations beyond the discussed 

case led us to formulate the first proposition for 

designing context-aware predictive systems:  

Proposition 1 (Infrastructure Reusability): The 

readily available sensor data streams should be 

utilized to cut infrastructure costs, reduce system 

complexity, and ensure a certain level of data 

quality.  

While developing an activity-sensor-based predictive 

system, our focus was on data quality and data 

estimation methods. Our experience shows that when 

sample size and data quality problems are predicted 

upfront, they can be mitigated, for example, by 

redesigning sensor infrastructure or data projection, 

capturing essential relationships from a small data 

sample, and encapsulating it into an estimation 

function (as in our implementation of activity sensor 

design). Generalizing these observations beyond the 

discussed case led us to formulate the second 

proposition for designing predictive systems:  

Proposition 2 (Data Quality): Data quality 

measurement mechanisms should be provided as 

soon as possible to substantiate the predictive 

algorithms' assurance and mitigate prediction 

validity concerns. 

The key takeaway from investigating a multi-sensor 

continuous monitoring system is that, when using 

sensor technologies, it is crucial to be clear about what 

is the most interesting variable data to sense and how 

this sensing activity should be implemented. Our 

example has shown that when a system measures a 

phenomenon of interest through a proxy measure, such 

as measuring the wear of piston rings through 

temperature around the rings, the process of analyzing 

the collected data might be both significantly and 

unnecessarily hindered. Generalizing these 

observations beyond the discussed case led us to 

formulate the third proposition for designing predictive 

systems:  

Proposition 3 (Choice of Sensors): Sensors that 

measure metrics of interest should be selected to 

optimally balance between artifact predictive 

ability and complexity. 

The insights related to implementing a remote 

monitoring interface evolve around the cost of forecast 

error. In the IoT world, it is common to dive into a 

sensor project merely because such projects are 

popular, without a well-defined project plan and 

benefits definition. For MAN, the design proved to be 

quite expensive, in terms of both initial 

implementation and running cost of the system, while 

some steps along the way were not completely focused 

on what factors added the most value. In general, the 

benefit of having the system in place must outweigh 

the cost, but this can only happen in an environment 

wherein the cost of prediction is very high and can be 

optimized. Generic solutions, such as our baseline 

approach or those presented in the literature review 

section, will sometimes be more affordable to 

implement, as they do not always require investment 

in new sensor infrastructure. This leads us to suggest 

that sensor-based predictive systems will usually be 

feasible for environments with high prediction error 

cost, typically characterized by high uncertainty, and 

we have formulated that observation as the fourth 

proposition for designing predictive systems:  

Proposition 4 (Contextual Features): Context-aware 

predictive features should be developed to 

improve the prediction quality only when the 

estimated cost of prediction error is higher than the 

implementation cost.  

All four propositions are presented in Table 2.

Table 2. Summary of Knowledge Propositions for Designing Context-Aware Predictive Systems  

with the CAPS Framework 

Proposition 1: Infrastructure Reusability 

The readily available sensor data streams should be utilized to cut infrastructure costs, reduce system complexity, and ensure 

a certain level of data quality. 

Proposition 2: Data Quality 

Data quality measurement mechanisms should be provided as soon as possible to substantiate the predictive algorithms' 

assurance and mitigate prediction validity concerns. 

Proposition 3: Choice of Sensors 

Sensors that measure metrics of interest should be selected to optimally balance between artifact predictive ability and 

complexity. 

Proposition 4: Contextual Features 

Context-aware predictive features should be developed to improve the prediction quality only when the estimated cost of 

prediction error is higher than the implementation cost. 
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Some additional generalizations regarding the 

financial feasibility of sensor-enabled predictive 

systems can be established based on the evaluated 

case. Building on Proposition 4, we refer to financial 

feasibility as the estimated difference between the cost 

and the benefit provided by the investment. Clearly, 

the latter is difficult to estimate reliably before the 

system is in place; thus, we select the cost of 

investment as the primary dimension in our feasibility 

analysis. Moreover, revisiting Proposition 3, the 

system can provide financial benefits when sensors 

provide added value to the prediction, which can be 

best achieved when the phenomenon of interest is 

measured directly (or, from the systems perspective, 

when the measure immediacy is high). The ability to 

obtain direct meaningful and unambiguous measures 

should be considered during the design phase, as also 

indirectly advocated in Proposition 2. Hence, the 

resulting two-by-two matrix for pre-assessing financial 

feasibility of predictive systems builds on two 

dimensions: investment cost and measure immediacy2 

(Figure 8). 

 
Figure 8. Matrix for Pre-Assessing Financial Feasibility of Context-Aware Predictive Systems  

In evaluating the previously presented sensor-based 

solutions based on the matrix, we observe that artifact 

1, Croston with phase-out component and activity 

sensor, will fall into the low investment cost half of the 

matrix (the left-hand side). The activity sensor, due to 

the need for estimation and the indirectness of data 

values, will fall into the medium feasibility quadrant, 

while the Croston with phase-out component will be 

classified into the high feasibility quadrant. The 

designs presented in the future work section will, on 

the other hand, fall into the right-hand side of the 

matrix. A multi-sensor continuous monitoring system, 

as described in the previous section (due to using a 

proxy measure of wear, i.e., temperature instead of the 

actual surface worn), will fall into the low feasibility 

quadrant, while the flexible monitoring system 

(monitoring exactly what makes the most sense in a 

given context) falls into the medium feasibility 

quadrant. The matrix in Figure 8 can also be useful to 

visualize possibilities for increasing the financial 

 
2 Immediacy is used to refer to how directly a phenomenon 

in question is measured. For instance, if engine operating 

temperature is readily available via dedicated sensors, then 

temperature has a high immediacy. If measuring the engine 

feasibility of a system, as the aim of the predictive IS 

designer is to move the system up and to the left. 

The CAPS framework was evaluated based on a case 

that showed that it can provide useful guidelines to 

develop an environment-specific sensor-based 

predictive model that can outperform, in a given 

environment, the state-of-the-art generic predictive 

methods. Furthermore, in the context of Gregor & 

Hevner’s (2013) knowledge contribution matrix, the 

CAPS framework falls within the “improvement” 

category. That is, the CAPS framework helps to 

develop new solutions for a known problem. Overall, 

the CAPS framework sheds light on an overlooked 

design blind spot pertaining to systems that deal with 

sensor data for predictive analytics problems within an 

organizational structure.  

Another purpose of this research project is to theorize 

about the design of context-aware predictive systems. 

The systems that are in the scope of this research 

project are a class of IS artifacts characterized by the 

temperature is also not expensive, then the high immediacy 

and the low cost result in high feasibility (see Figure 8). 
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use of data describing the context of operation (e.g., 

from sensors) and using predictive methods. The utility 

of the CAPS framework rests on the fact that it can 

make the design process more complete and easier to 

manage, while mitigating most common errors and 

ensuring the quality of the outcome.  

The presented contribution fulfills this predefined 

purpose. The CAPS framework for designing sensor-

based predictive systems creates a starting point for 

academics and practitioners alike who are interested in 

designing such a system. The recommendations 

encompassed in the set of propositions can be valuable 

to mitigate some common errors, and the pre-

assessment matrix helps to create a frame of reference 

when exploring new design opportunities. 

It is likely that custom, context-specific predictive 

designs will continue to gain popularity in response to 

the inevitable growth of sensor dissemination and the 

digital traces they produce (Uckelmann, Harrison, & 

Michahelles, 2011). In this paper, we introduced a 

framework facilitating the process of designing 

context-aware predictive systems. The CAPS 

framework can provide both a structure and guidelines 

for developing context-aware systems that are 

environment-specific sensor-based predictive systems.  

Naturally, the CAPS framework provides valuable 

guidance to practitioners. The knowledge propositions 

serve as guiding principles to design predictive IS 

artifacts that can result in shorter design and 

implementation times and lower the cost of 

implementation. As the popularity of context-aware 

predictive systems increases in the industry, the CAPS 

framework enables a better design of quality predictive 

systems. This potential improvement may also have 

significant implications for the forecasting field, 

especially spare-parts forecasting (Yin et. al., 2014), 

boosting explanatory forecasting method development 

(Sroginis, 2021) and unwrapping the black-boxed, 

time-series-based forecasting routines of the past. 

7 Conclusion 

Although digital sensing technologies have become 

ubiquitous and increasingly embedded in industrial 

environments, the ubiquity of smart objects that 

produce ever-growing streams of contextual sensing 

data still presents challenges for forecasting systems. 

We applied the Design Science Research methodology 

to develop a framework for predictive analytics on 

contextual data. Specifically, we developed a 

framework and a set of propositions for designing and 

evaluating context-aware predictive systems. The 

framework can be generalized to similar problems in 

related industrial domains. 

Clearly, the usability and value of the proposed 

framework depend on its applicability to other case 

environments. Although a single case inherently poses 

a threat to external validity and generalization, in this 

study the case-anchored system development and 

evaluation served as a proof-of-concept and an 

exemplification (Zhang et al., 2002). Additionally, the 

scope of application of the framework may be 

perceived as somewhat limited, given that it focuses on 

predictive analytics of context-aware data. However, 

the growing availability of contextual information and 

fast-spreading sensor-based technologies are likely to 

help popularize predictive analytics with sensors.  

Future work can focus on further replication and 

validation of the framework in new environments by 

instantiating it in different cases. MAN Diesel & Turbo 

is a large global company and a market leader in its 

target market, and thus the experience of the CAPS 

framework in the MAN case can possibly translate to 

new insights with regard to predictive maintenance and 

demand forecasting in industries such as airline 

maintenance, wind power generation, and off-shore 

drilling. More specifically, further contextual 

evaluation of systematic biases in other settings can 

provide insights to fine-tune the findings from the 

MAN case. Testing new sensor technologies can also 

provide a significant improvement in sensor-based 

predictions. Lastly, combining sensor data with other 

sources of information available in open data sources 

(Marton et al. 2013), such as pattern recognition 

algorithms, simulations, and even social data, may help 

to further fine-tune the performance of Context-Aware 

Predictive Systems and help managers to make better-

informed decisions. In summary, with the growing 

ubiquity of sensor data, we believe that the utilization 

of predictive analytics on contextual data will become 

prevalent in organizational settings, and we hope that 

the CAPS framework and the propositions provided 

herein offer useful insights into the future development 

of Context-Aware Predictive Systems.  

Acknowledgments 

The authors are grateful to the senior editor Sandeep 

Purao and the anonymous reviewers for their support 

and valuable comments on earlier versions of this 

paper.

 

  



Your Short Title Goes Here: 50 Characters or Less  

 

16 

References 

Aarts, E., & Marzano, S. (2003). The new everyday: 

Views on ambient intelligence. Rotterdam: 010 

Publishers.  

Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., 

& Steggles, P. (1999). Towards a better 

understanding of context and context-

awareness. Proceedings of the First 

International Symposium on Handheld and 

Ubiquitous Computing, 304–307, Karlsruhe, 

Germany.  

Aldahiri, A., Alrashed, B., & Hussain, W. (2021). 

Trends in using IoT with machine learning in 

health prediction system. Forecasting, 3(1), 

181-206. 

Bacchetti, A., & Saccani, N. (2012). Spare parts 

classification and demand forecasting for stock 

control: Investigating the gap between research 

and practice. Omega, 40(6), 722-737.  

Bartezzaghi, E., Verganti, R., & Zotteri, G. (1999). 

Simulation framework for forecasting uncertain 

lumpy demand. International Journal of 

Production Economics, 59(1), 499-510.  

Callegaro, A. (2010). Forecasting Methods for Spare 

Parts. (Doctoral dissertation) Universita’degli 

Studi di Padova. 

http://tesi.cab.unipd.it/25014/1/TesiCallegaro5

80457.pdf 

Chatterjee, S. (2015). Writing my next Design Science 

Research Master-piece: But How Do I Make a 

Theoretical Contribution to DSR? Proceedings 

of the 22nd European Conference on 

Information Systems, Munster, Germany.  

Chen, I. (2001). Planning for ERP systems: Analysis 

and future trend. Business Process 

Management Journal, 7(5), 374-386.  

Cook, D. J., & Das, S. K. (2004). Smart environments: 

Technology, protocols and applications. 

Hoboken, New Jersey: John Wiley & Sons, Inc.  

Croston, J. D. (1972). Forecasting and stock control for 

intermittent demands. Operational Research 

Quarterly (1970-1977), 23(3), 289-303.  

Dekker, R., Pinçe, C., Zuidwijk, R. A., & Jalil, M. N. 

(2010). On the use of installed base information 

for spare parts logistics: A review of ideas and 

industry practice. International Journal of 

Production Economics, 143(2), 536-545 

Deming, W. E. (2000). The new economics: For 

industry, government, education. Cambridge 

MA: MIT press. 

Dey, A. K. (2001). Understanding and using context. 

Personal and ubiquitous computing, 5(1), 4-7. 

Gregor, S., & Hevner, A. R. (2013). Positioning and 

presenting design science research for 

maximum impact. MIS quarterly, 37(2), 337-

355. 

Gregor, S., & Jones, D. (2007). The anatomy of a 

design theory. Journal of the Association for 

Information Systems, 8(5), 312-335.  

Gungor, V. C., & Hancke, G. P. (2009). Industrial 

wireless sensor networks: Challenges, design 

principles, and technical approaches. IEEE 

Transactions on industrial electronics, 56(10), 

4258-4265. 

Hellingrath, B., & Cordes, A. (2014). Conceptual 

approach for integrating condition monitoring 

information and spare parts forecasting 

methods. Production & Manufacturing 

Research, 2(1), 725-737.  

Hevner, A., & Chatterjee, S. (2010). Design research 

in information systems: theory and practice. 
New York: Springer Science & Business 

Media. 

Hevner, A., March, S., Park, J., & Ram, S. (2004). 

Design science in information systems 

research. MIS Quarterly, 28(1), 75-105.  

IHS Global Services (2009). IHS Global Insight 

report. Lexington, MA: IHS 

Javaid, M., Haleem, A., Rab, S., Singh, R. P., & 

Suman, R. (2021). Sensors for daily life: A 

review. Sensors International, 2, 100121. 

Johns, G. (2006). The essential impact of context on 

organizational behavior. Academy of 

Management Review, 31(2), 386-408.  

Kim, S., Lee, M., & Shin, C. (2018). IoT-based 

strawberry disease prediction system for smart 

farming. Sensors, 18(11), 4051. 

Kourentzes, N. (2013) Intermittent demand forecasts 

with neural networks. International Journal of 

Production Economics, 143(1), 198-206. 

Kumar, B. A., & Sharma, B. (2020). Context aware 

mobile learning application development: A 

systematic literature review. Education and 

Information Technologies, 25(3), 2221-2239. 

Lapide, L. (2012). Installed-base supply planning. 

Supply Chain Management Review, 16(3), 4. 

Marabelli, M., Hansen, S., Newell, S., & Frigerio, C. 

(2017). The Light and Dark Side of the Black 

Box: Sensor-based Technology in the 

Automotive Industry. Communications of the 



Journal of the Association for Information Systems 

 

17 

 

Association for Information Systems, 40, 

doi:10.17705/1CAIS.04016 

Maritime-Insight. (2013). Shipbuilding outlook report. 

London: Lloyd's List Intelligence 

Marton, A., Avital, M. and Jensen, T. (2013), 

Reframing Open Big Data, Proceedings of the 

21th European Conference on Information 

Systems (ECIS), Utrecht, Netherlands.  

Meth, H., Mueller, B., & Maedche, A. (2015). 

Designing a requirement mining system. 

Journal of the Association for Information 

Systems, 16(9), 799-837.  

Minner, S. (2011). Forecasting and inventory 

management for spare parts: An installed base 

approach. tsIn Altay, N. Litteral L. (Eds.) 

Service Par Management (pp. 157-169). 

London: Springer.  

Müller-Wienbergen, F., Müller, O., Seidel, S., & 

Becker, J. (2011). Leaving the beaten tracks in 

creative work - A design theory for systems that 

support convergent and divergent thinking. 

Journal of the Association for Information 

Systems, 12(11), 714-740.  

Nardi, B. A. (1996). Context and consciousness: 

Activity theory and human-computer 

interaction. Cambridge MA: MIT Press. 

Narock, T., Yoon, V., & March, S. (2012). On the role 

of context and subjectivity on scientific 

information systems. Communications of the 

Association for Information Systems, 30(1), 12.  

Nikkam, S. M. G. &. Pawar, V.R. (2016). Water 

parameter analysis for industrial application 

using IoT, Proceedings of the International 

Conference on Applied and Theoretical 

Computing and Communication Technology 

(iCATccT), Bangalore, India, pp. 703-707, doi: 

10.1109/ICATCCT.2016.7912090. 

Notteboom, T., & Cariou, P. (2013). Slow steaming in 

container liner shipping: Is there any impact on 

fuel surcharge practices? International Journal 

of Logistics Management, 24(1), 73-86.  

Okano, M. T. (2017). IOT and industry 4.0: The 

industrial new revolution. Proceedings of 

International Conference on Management and 

Information Systems, 25, 75-82. 

Orlikowski, W., & Iacono, C. (2001). Research 

commentary: Desperately seeking the “IT” in 

IT research - A call to theorizing the IT artifact. 

Information Systems Research, 12(2), 121-134.  

Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive 

maintenance and intelligent sensors in smart 

factory. Sensors, 21(4), 1470. 

Perera, C., Zaslavsky, A., Christen, P., & 

Georgakopoulos, D. (2013). Context aware 

computing for the internet of things: A survey. 

IEEE communications surveys & tutorials, 

16(1), 414-454. 

Petropoulos, F., Nikolopoulos, K., Spithourakis, G. P., 

& Assimakopoulos, V. (2013). Empirical 

heuristics for improving intermittent demand 

forecasting. Industrial Management & Data 

Systems, 113(5), 683-696. 

Pries-Heje, J. & Baskerville, R. (2008). The design 

theory nexus. MIS Quarterly, 32(4), 731-755. 

SAP. (2013). Product documentation - Supply chain 

planning and control. 

https://help.sap.com/saphelp_byd1302/en/KTP

/Software-

Components/01200615320100003379/SAP_B

BD/Print_Files/PDF_FILES/SupplyChainPlan

ningAndControl_BA_en.pdf 

Sampath, H. U., Erandi, I. A. S., Jinasena, T. M. K. K., 

& Panditharathna, J. H. (2019). Intelligent 

Traffic Light System Using Wireless Sensor 

Networks and IoT. Proceedings of the 6th 

International Conference on Multidisciplinary 

Approaches (iCMA). 

https://ssrn.com/abstract=3496594 

Shmueli, G., & Koppius, O. R. (2011). Predictive 

analytics in information systems research. MIS 

Quarterly, 35(3), 553-572.  

Song, J., & Zipkin, P. H. (1996). Evaluation of base-

stock policies in multiechelon inventory 

systems with state-dependent demands. Naval 

Research Logistics, 43(3), 381-396. 

Shim, J.P., Avital, M., Dennis, A., Rossi, M., 

Sorensen, C., & French, A. (2019) The 

Transformative Effect of the Internet of Things 

on Business and Society, Communications of 

the AIS, 44(1), 129-140. 

Sroginis, A. (2021). The use of contextual information 

in demand forecasting. (Doctoral dissertation, 

Lancaster University, UK). 

Suma, V. (2021). Internet-of-Things (IoT) based smart 

agriculture in India-an overview. Journal of 

ISMAC, 3(01), 1-15. 

Storey, V. C., Burton-Jones, A., Sugumaran, V., & 

Purao, S. (2008). CONQUER: A methodology 

for context-aware query processing on the 

World Wide Web. Information Systems 

Research, (19)1, 3-25. 

Teunter, R. H. & Duncan, L. (2009) Forecasting 

intermittent demand: a comparative study. 

Journal of the Operational Research Society 

60.3: 321-329. 



Your Short Title Goes Here: 50 Characters or Less  

 

18 

Teunter, R. H., Syntetos, A. A., & Zied Babai, M. 

(2011). Intermittent demand: Linking 

forecasting to inventory obsolescence. 

European Journal of Operational Research, 

214(3), 606-615.  

Uckelmann, D., Harrison, M., & Michahelles, F. 

(2011). An architectural approach towards the 

future internet of things. In Architecting the 

Internet of Things (pp. 1-24). Springer Berlin 

Heidelberg. 

Walls, J. G., Widmeyer, G. R., & El Sawy, O. A. 

(1992). Building an information system design 

theory for vigilant EIS. Information Systems 

Research, 3(1), 36.  

Weiser, M. (1991). The computer for the 21st century, 

Scientific American, 265(3), 66–75.  

Yin, J., Fan, L., Yang, Z., & Li, K. (2014). Slow 

steaming of liner trade: Its economic and 

environmental impacts. Maritime Policy & 

Management, 41(2), 149-158.  

Zhang, P., Benbasat, I., Carey, J., Davis, F., Galletta, 

D., & Strong, D. (2002). AMCIS 2002 panels 

and workshops I: Human-computer interaction 

research in the MIS discipline. 

Communications of the Association for 

Information Systems, 9(1), 20. 

 

 



Journal of the Association for Information Systems 

 

19 

Appendix 

Calculating the cost of forecast error 

The key to a legitimate quantitative evaluation of a design is a meaningful objective function that can also work in a 

given organizational context. There are many standard measures for a prediction error, but because of their generic 

properties, they are not able to capture very context-specific factors, such as asymmetry in the error cost. To address 

this diversity, two separate cost functions – over- and under-forecasting scenarios – are necessary. The actual cost 

associated with an under-forecasting situation occurs due to missed sales potential: because goods are not available 

when demand occurs, some customers will decide to drop the order rather than wait for the items. The percentage of 

customers dropping orders can be determined by the difference in the conversion ratio of quotes to orders (also referred 

to as hit rate) for in-stock quotes versus stock-out quotes.  

For example, in the component group of piston ring sales at MAN, in a scenario where goods are in stock, the average 

hit rate is X, but in the case of a stock-out only Y of the issued quotes would convert to orders, where Y is 9 percent 

point lower than X, and, ceteris paribus, 9% of customers gave up the purchase probably due to lack of availability. 

In order to calculate lost profit, the average hit rate difference between in-stock quotes (HRis) and the stock-out hit rate 

factor (HRso) needs to be multiplied by under-forecasted volume Uvol (to compute sales volume missed due to stock-

out) and, to convert sales turnover to earnings before interest and taxes EBIT, multiplied by the average contribution 

margin CM. 

The cost associated with over-forecasting can be divided into two categories: opportunity cost, also known as the cost 

of frozen capital, as well as the cost of potential depreciation and scrap, both proportional to over-forecast volume 

(OFVOL). The opportunity cost is experienced because the investment in inventory is unnecessary and the capital can 

be invested differently, bringing certain profit to the company. Most of the firms have some baseline working capital 

ratio (OC) to be used for such calculations. In the context of MAN Turbo & Diesel, sales are expected every month, 

so over-forecasting in one month will lead to lower replenishment costs in the following month, and the frozen capital 

cost will be calculated for a single month. In the case of the cost of depreciation and scrap factor (DF), this reflects a 

possibility that unsold inventory will not move for a period of time. This leads the inventory to be written off by a 

certain depreciation factor, and, if parts are no longer sellable, to be written down completely and scrapped. Putting all 

the parameters together, the cost of forecast error, COSTFE, in the case context can be described as: 

COSTFE = (HRIS – HRSO)∙UFVOL∙CM + OFVOL∙(OC + DF) 

 

Developing three artifacts to minimize the cost of forecast error 

The baseline “Croston” method had to be improved. This was done by exploring sales data as depicted in Figure A1. 

A product was sold four times in the baseline year – in January, March, June, and October – in quantities of 8, 7, 8, 

and 9 pieces, respectively. The forecast for the subsequent year was calculated in two steps: by calculating a demand 

magnitude when demand occurs and an interval between demand points. Then, the forecasted magnitude was computed 

based on historical quantities (the original method uses exponential smoothing; here, for clarity, we use an average), 

resulting in eight pieces (average of 8, 7, 8 and 9). The same was done for intervals between historical sales: the sale 

in March was two months after the one in January; the one in June was three months after the one in March; and the 

one in October was four months after the one in June. The mean of these intervals is three months, on average, between 

demand points. The forecast is the calculated magnitude spaced by the calculated interval (see Figure A1). This kind 

of calculation can be performed for every product. 
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Figure A1. Croston Base-Line Method Forecast 

During the qualitative evaluation of the Croston solution, the demand planning team from the organization pointed out 

that the test data set included years around the financial crisis, but the purchase patterns before and after the crisis were 

significantly different. According to their insights, as a consequence of financial crisis, the number of shipments 

dropped significantly, shrinking the margins of shipping companies. As a result, the shippers invested in new, bigger, 

and more fuel-efficient vessels, causing a massive turnover of ships. The difference in the engine product mix between 

the test and learning samples could lead to avoidable variance and lower quality of prediction in the test sample. To 

control for the changes in the product mix, we implemented an additional feature in the Croston model that removed 

from the test and the learning data sets the engine installations that were phased out. We could track the changes in the 

active product mix by tracing insurance registries data about the registration and removal of engine by ship owners.  

The new model, called “Croston with a phase-out component” (see Artifact 1.2, Figure 6), was implemented and 

evaluated using a previously developed objective function, improving the baseline prediction by 4%. The quantitative 

evaluation was followed by the qualitative one. Demand planners, together with sales engineers, drew our attention to 

market changes occurring during the period of the study. As an effect of the lower demand for transportation services, 

which was the result of the global financial crisis, the sailing patterns of most of the customers had changed. Rather 

than cruising with maximum frequency and speed, the vessel management companies prioritized cost reductions and 

maximizing load per vessel at the expense of the transport time. Moreover, to optimize fuel consumption and vessel 

wear, ships would travel with the most efficient, rather than maximum, speed. After the global economy started to 

recover from the crisis, the situation started to slowly return to the previous status quo. All these changes could 

potentially lead to a significant change in wear and demand for spare parts, “polluting” the learning set with 

discontinued behaviors that were not present in the test sample (Notteboom & Cariou, 2013; Yin et al., 2014). 

 

  



Journal of the Association for Information Systems 

 

21 

About the Authors 

Michel Avital is a Professor of Digitalization at Copenhagen Business School. Michel is an advocate of openness and 

an avid proponent of cross-boundaries exchange and collaboration. His research focuses on the relationships between 

digital innovation ecosystems and organizational practices. He studies how emergent technologies are developed, 

applied, managed, and used to transform and shape organizations. He has published more than 100 articles on topics 

such as blockchain technology, the future of work, sharing economy, open data, open design, generative design, 

creativity, and innovation. He is a senior editor and editorial board member of leading IS journals and serves in various 

organizing capacities at major international conferences on digital technology and organization studies. Michel is a 

recipient of the AIS Fellow Award. Further information: http://avital.net  

Samir Chatterjee is a Professor and Fletcher Jones Chair of Technology Management and Design at Claremont 

Graduate University. He has published more than 160 peer reviewed articles in the IS and Computer Science area. He 

serves as co-EIC of the journal Health Systems. He is currently on the editorial boards of ISR and JAIS and has served 

as AE on MISQ and several IEEE/ACM journals. He is the co-author of the best-selling book Design Research in 

Information Systems and is the founder of the DESRIST conference. He regularly serves as a chair or member of the 

technical program committees at numerous IEEE, ACM, and AIS conferences. He has received over $3.6 million in 

funding from federal (NSF, NIH) and private foundations. He is the Founder & CEO of DCL Health, a digital 

healthcare startup. When he is not busy with science and design, he is an avid musician and composer. In 2021, his 

debut new age album under the stage name Samir Bodhi made it to the Grammy ballots for nomination. He lives in 

Southern California with his wife and son. 

Szymon Furtak earned his PhD from Copenhagen Business School. His research focuses on practical aspects of 

advanced data usage in organizations, especially regarding building advanced models for predictions. As a practitioner, 

he has been involved in innovative approaches to spare part forecasting and supply chain development, among others, 

in MAN Diesel & Turbo and MAN Energy Solutions. He currently works with green energy transformation at Sunnon 

Limited and is primarily interested in balancing smart electrical grids in photovoltaic power plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2019 by the Association for Information Systems. Permission to make digital or hard copies of all or part 

of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for 

components of this work owned by others than the Association for Information Systems must be honored. Abstracting 

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior 

specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, 

GA, 30301-2712 Attn: Reprints, or via email from publications@aisnet.org. 


	Sensing the Future: A Design Framework for Context-Aware Predictive Systems
	Recommended Citation

	tmp.1682546014.pdf.JOIt0

