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Abstract

Sensors embedded in smart objects, smart machines, and smart buildings produce ever-growing
streams of contextual data that convey information of interest about their operating environment.
Although an increasing number of industries embrace the utilization of sensors in routine operations,
no clear framework is available to guide designers who aim to leverage contextual data collected
from these sensors to develop predictive systems. In this paper, we applied the Design Science
Research methodology to develop and evaluate a general framework that helps designers to build
predictive systems utilizing sensor data. Specifically, we developed a framework for designing
context-aware predictive systems (CAPS). We then evaluated the framework through its application
in MAN Diesel & Turbo, which served as a case company. The framework can be generalized into
a class of demand-forecasting problems that rely on sensor-generated contextual data. The CAPS
framework is unique and can help practitioners make better-informed decisions when designing
context-aware predictive systems.

Keywords: Design framework, Systems design, Sensor data, 10T data, Predictive analytics,
Forecasting, Design Science Research.

[Senior editor name] was the accepting senior editor. This research article was submitted on [manuscript submission
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contextual data (Aarts & Marzano, 2003; Abowd et al.,
1999; Javaid et al, 2021; Uckelmann, Harrison, &
Michahelles, 2011). Such objects can collect, process,
and communicate data about their situation,
functionality, and operating environment that can then
be used for context-aware computing (Cook & Das,

1 Introduction

Context-aware computing emerged as a term with the
introduction of ubiquitous computing (Weiser, 1991).
Context here refers to any information that describes
the situation or environment of an entity, such as a

person, place, or object (Abowd et al., 1999). Sensors
are best equipped to capture context by leveraging
situational and environmental information to offer
timely, situated, and usable content, functions, and
experiences (Perera et al., 2013).

As digital technologies continue to evolve, we see
everyday objects — smartphones, cars, homes, and even
clothes — getting embedded with sensor technologies
that respond to physical stimuli and generate

2004; Shim et al., 2019). Although there are ample
examples of successful utilization of sensor-generated
contextual data, the identification of patterns in such
data for the purpose of harnessing them to make
predictions is still not commonplace in everyday
applications (Sampath et al., 2019).

The data generated by sensors can be used to make
sense of past events and also to predict future events.
Although making predictions is an established practice
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in organizational decision making (Aldahiri, et. al.,
2021; Deming, 2000; Kim et al., 2018), predictive
analytics applications that utilize sensor data are a
relatively recent phenomenon. Predictive analytics
refers to the use of data to predict future trends and
events. It uses historical data to forecast potential
scenarios that can help inform strategic decisions.
Predictive analytics using contextual data differ from
traditional analytics methods in the way in which data
are collected and used (Nardi, 1996). Predictive
analytics using contextual data extract data from
sensors, which are often custom-designed to obtain
specific data types. These sensors can generate and
collect a wide range of data, including readings on
temperature, water levels, air moisture, fuel levels,
electrical impulses, and a host of other metrics
depending on how and where they are deployed and
the needs at hand. The growing demand for additional
trusted data sources to be utilized by predictive
analytics systems has led to the development of new
sensors and smart devices that can generate contextual
data streams.

Applications of predictive analytics include demand
forecasting, which is one of the key processes in
Supply Chain Management (Lapide, 2012; Sroginis,
2021; Suma, 2021). An example is predicting the
behavior of machines or devices used in real-life
business scenarios, such as when manufacturers track
machines or raw materials used during production
(Chen, 2001). As more sensor-enabled smart
devices enter the market, embedded
software solutions and massively improved device
connectivity continue to generate streams of sensor
data. However, working with sensor data in industrial
settings introduces challenges for system designers
(Gungor et al., 2009; Marabelli et al., 2017; Pech et.
al., 2021), and there is no framework or guideline to
help design these systems. This paper offers a design
framework and propositions that can help develop
these applications and advance the science behind
them. Specifically, we pursue the following research
question:

RQ: How can we design sensor-based context-aware
predictive systems in industrial-scale settings?

In this paper, we developed a framework that can
facilitate the process of designing Context-Aware
Predictive Systems (CAPS). We defined CAPS as
information systems that can make predictions (e.g.,
device lifespan, energy used, current temperature, and
longevity) based on contextual data. We developed the
CAPS framework building on Design Science
Research (DSR) (Hevner, March, Park, & Ram, 2004)
and data-driven predictive modeling (Shmueli &
Koppius, 2011). We then evaluated the CAPS
framework through its application in MAN Diesel &
Turbo, which served as a case company. Finally, we
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also derived propositions for future designers through
reflection on feedback from the case company.

The CAPS framework contributes to the growing
stream of domain-specific information systems in
Design Science Research (e.g., Meth, Mueller, &
Maedche, 2015; Muller-Wienbergen, Miiller, Seidel,
& Becker, 2011; Pries-Heje & Baskerville, 2008). The
framework aims not only to shorten the design time
and reduce the cost of context-aware predictive
systems development projects, but also to improve the
quality of such systems. The case of MAN Diesel &
Turbo illustrates the usefulness of the CAPS
framework for developing sensor-based predictive
models.

2 Background and Prior Work

I1S-related research has widely referred to the notion of
“context.” For example, context plays a vital role in
application development (Kumar & Sharma, 2020),
search engine design (Storey, Burton-Jones,
Sugumaran, & Purao, 2008), and human-computer
interaction (Nardi, 1996), as well as in sense-making
(Narock, Yoon, & March, 2012) and general
management (Johns, 2006). Although the exact
characterizations of context seem to vary, the
definition used in the introduction (Cook & Das, 2004)
is rooted in the framing of Dey (2001), who defines
context as “any information that can be used to
characterize the situation of an entity.”

As the fourth industrial revolution sets in, more and
more objects are being embedded with sensors that
generate contextual data, which is used for various
applications (Okano, 2017). For example, factories and
businesses operating in the manufacturing sector are
taking advantage of 10T sensors and data collection
(Suma, 2021). With the use of 10T sensors attached to
factory machines or robots, measures of usage and
lifespan such as temperature, vibration, and wear and
tear can be tracked (Kim, Lee & Shin, 2018). These
data, when fed into an analytics model or algorithm,
can help predict when a machine will likely require
maintenance or replacement. In this way, the manager
can order parts or supplies ahead of time to avoid
costly downtime or expensive machine repairs
(Hellingrath & Cordes, 2014).

Another industrial example is monitoring the physical
and chemical characteristics of water locally to provide
a fine-grained map of water condition. New water
distribution channels are equipped with IoT sensors
that monitor water quality and potential contamination.
Such advanced water monitoring systems help to
control risks related to the spread of polluted water and
diseases (Nikam & Pawar, 2016).

While forecasting has received limited attention in the
IS discipline, it has been studied thoroughly in other
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management disciplines. Naturally, we do not aim to
review all the forecasting techniques in the
management literature here; rather, our goal is
specifically to reveal what constitutes a suitable
forecasting method and how to determine which
technique to use as a state-of-the-art baseline. Notably,
multiple literature reviews in the context of Operations
Research (OR) cover forecasting thoroughly, including
dedicated studies of spare-part demand. Table 1
presents a list of selected methods from Callegaro

The list highlights that the common approaches in OR
research are derived from the development of complex
algorithms to predict the next items in a (time) series
based on the previous values. The primary objective
centers on the transformation of historical data.
Conceptually, this refers to predicting an output of the
black box by analyzing only its prior outputs. In
contrast, the literature on a more informed prediction
that is based on an understanding of the activity within
the so-called black box is limited and problem-specific

(2010) and Bacchetti & Saccani (2012).

(e.g., Hellingrath & Cordes, 2014).

Table 1. Selected Spare-Part Forecasting Methods (Based on Bacchetti & Saccani, 2012; Callegaro, 2010)

('\Zﬂlggse;fication ',:I/I:r;h:d Inputs Description Important Features
Weighted - Historical Mean of past data points with weights - Stresses recent trends
moving sales data (usually the older the sample, the smaller the | - Easy to compute
average - Weights weight)

(constants)
Time series Single - Historical Moving average of demand with smoothing | - Works with a few samples
Arithmetic exponer_mal sales daFa constant - Easy to compute
. smoothing - Smoothing
average with (SES) constant
optional - - - -
e Box-Jenkins - Historical Moving average and auto-regression, - Captures complex trends

additional . S -
method data selected alternatively based on historical and seasonality

features - Multiple error - Requires much historical

constants data to perform well

Grey - Historical Adaptive time series approach using least- - Works under massive
prediction data squares estimate as feedback to correct for uncertainty to predict
model the error events like hurricanes
Croston’s - Historical Single exponential smoothing for both typical | - Performs well with

Croston- method sales data demand magnitude and typical periods materials that have

based? - Smoothing between demand points intermittent demgnd

constants (many periods without

Two average demand)

values with . - - . -

. Syntetos- - Historical Extension of Croston method removing the - Provides a statistically

exponential B PR . h

- oylan sales data positive bias proven bias reduction
smoothing approx. - Smoothing resulting in lower
constants forecast error
Bootstrap - Historical A randomly chosen subset of historical | - Offers a probabilistic
method sales data samples (e.g., forecast for the next 3 periods approach
- Limited is 3 randomly chosen periods from the past)
number for
resampling
Neural - Historical Inference from the connection between input | - Offers a method tested in
networks sales data and output of the training set to estimate various areas as a
- Neural future values predictor
. network

Stochastic layout

Probabilistic Order - Historical Extrapolation of sales orders placed by each - Caters for business where
Over-planning sales data single customer instead of the overall some customers use to
(early sales) demand to estimate future sales purchase well in advance
Failure rate - Equipment Extracting expected lifetime and failure rates | - Caters for spare part and
analysis failure rates of components based on historical data and heavy machinery

- Installed base | extrapolating the forecasted values based on business
data installed base - Requires good data about
historical incidents and
replacement

1 Croston (1972).




The selected models can be broadly sorted into three
classes: (1) models that are based on a computed
forecast as a unidimensional aggregation of previous
observations that are classified into a time series
cluster (Callegaro, 2010); (2) models that are based on
separately computing demand magnitude and interval
demand points and later combining them into
predictions that are clustered as Croston-based
(Croston, 1972); and (3) models that are based on
calculating a forecast value that is based on other
properties of the previous value set, rather than the raw
values, and that are grouped into a Stochastic cluster
(Bartezzaghi, Verganti & Zotteri, 1999).

Our review shows that benchmarks of intermittent
demand forecasting are inconclusive about the relative
performance of any of these models. Petropoulos et al.
(2013) benchmark time series and Croston-based
methods and conclude that their relative performance
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implementation. However, Kourentzes (2013) presents
a study where a stochastic solution — namely, Neural
Networks — outperforms both time series and Croston-
based algorithms. Finally, Teunter & Duncan (2009)
find that time-series methods perform significantly
worse than the other two classes, while there is no
significant difference between the two Croston-based
methods and stochastic bootstrapping.

In the absence of clear conclusions from the related
scientific research, we acknowledge that the Croston-
based methods are the de facto traditional standard. It
is the only method class specifically aimed at
intermittent demand forecasting in standard SAP R/3,
and it is explicitly recommended by SAP for products
with intermittent demand (SAP, 2013, p. 12).

Considering that the Croston method is the most
prevalent in practice, we selected it as the state-of-the-
art baseline for testing against future predictive
methods.

depends heavily on parameters wused in the
Data Explorato
Goal Collection Data pDr v
. N ata
Definition & Study Preparation .
. Analysis
1 2 Design 3 4

5

Choice of Evaluation,
Choice of Potential Validation, Model Use
Variables Methods & Moc'!el & Reporting
6 7 Selection 8

Figure 1. Steps for Building Predictive Empirical Models (Shmueli & Koppius, 2011)

In order to facilitate the use of predictive methods in
IS, Shmueli & Koppius (2011) provide an eight-step
process for building an empirical model including
explicit guidelines on how to execute it for designing
predictive models (see Figure 1). In Step 1, the
prediction goal and the success benchmark are defined
and outlined. In Step 2, key issues regarding data
collection and study design need to be addressed,
including using an experimental versus observational
setting, choosing the data collection instrument(s),
setting the sample size, and selecting candidates for
observed variables. Step 3 deals with data preparation
and outlines actions for data quality controls, including
defining procedures for treating missing values and
choosing a partitioning strategy. In Step 4, the data are
to be evaluated for the purpose of defining variables
for the analysis, and in Step 5, the variables are
selected. In Step 6, the data transformation method is
selected. In Step 7, the evaluation strategy, validation,
and model selection are determined. Finally, in Step 8,
the strategy for research dissemination is chosen and
executed.

Although Shmueli and Koppius’ guidelines on
building empirical models constitute a significant step
toward prescriptive instructions on how a class of
predictive systems could be constructed, they are
concerned only with the data model (Walls et al.,
1992). While an empirical data model (predictive or

explanatory) is a central part of any technological 1S
(Hevner et al., 2004; Orlikowski & lacono, 2001), the
design process of such systems also requires the
consideration of several other aspects, including the
knowledge base it uses, the organization within which
the system is (to be) embedded, and the people who
will use it. Therefore, the process suggested by
Shmueli & Koppius (2011) provides a reasonably good
starting point toward the development of predictive
information systems but lacks adaptability to
organizational challenges and contexts.

Shmueli & Koppius (2011) make a clear distinction
between explanatory statistical models and predictive
models. Typically, an explanatory statistical model is
built for the purpose of testing causal hypothesis that
specify how and why certain empirical phenomena
occur. Predictive analytics include empirical predictive
models (statistical models and other methods such as
data mining algorithms) designed for predicting
new/future observations or scenarios. Predictive power
refers to a model’s ability to generate accurate
predictions of new observations. As seen in Fig. 1,
their focus is on the data process. However, in practice,
designers that instantiate predictive analytics systems
with sensors need to respond to organizational
challenges introduced by data complexity and veracity
and by the contextual meaning of the data in the
organization. When evaluating predictive analytics
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systems, this may introduce the need for both
guantitative and qualitative evaluation, both to ensure
the selected evaluation function performs well in the
industrial setting and to enable a better contextual
understanding of the results to improve the model in
the next iteration. The context in industrial case
settings is particularly relevant to the operational
efficiency of the predictive analytics system.

Based on the above observations, we build on the
predictive analytics process model proposed by
Shmueli & Koppius (2011) and the three cycles model
of Design Science proposed by Hevner et al. (2004) to
develop a generic yet enhanced design process
framework, which we call CAPS, that can be used to
design and build industrial-scale predictive systems.

3 Research Approach

Context-aware predictive systems, like other IT
artifacts, process information to enable or support
predefined tasks. All context-aware systems collect
context information using sensor technology to sense
particular kinds of changes in the environment in
which they are embedded. Predictive systems have a
common modus operandi: they convert input data into
a particular prediction about the future. Although an
increasing number of industries embrace the utilization
of sensor devices and loT, there is no guidance for
designers and developers, let alone for researchers,
who are interested in predictive models that are based
on data collected from sensor systems. Therefore, we
follow the Design Science Research methodology to
address this gap by developing the CAPS framework
(Hevner & Chatterjee, 2010; Meth et al., 2015).

We started by exploring the literature on design as well
as predictive analytics in order to gain a better
perspective on the domain of interest, including
specific challenges and problems facing context-aware
sensor system development. Next, we explored and

merged two relevant yet distinct approaches, namely
DSR (Hevner et al., 2004) and Predictive Analytics
(Shmueli & Koppius, 2011), into a new and enhanced
CAPS framework that is better suited to support our
design objective. The CAPS framework is developed
and presented as one of the key contributions of our
work. To evaluate its applicability and usefulness, we
applied the CAPS framework to an ongoing problem
at MAN Diesel & Turbo. In addition, we improved the
framework based on expert feedback and qualitative
field data. Finally, we derived a set of emerging
propositions and reflected on how they could be
applied in similar design problems. The propositions
aim to assist organizations with the implementation of
the CAPS framework and to realize its value in their
context. The propositions constitute  another
contribution of this paper.

The research approach is explained with the help of a
diagram in Fig. 2 below. Based on the literature on
predictive analytics and DSR, we developed
knowledge about the key features of such systems.
Next, the author team developed a preliminary design
of the CAPS framework. One of the authors was then
embedded inside the MAN Diesel & Turbo Company
for an extended period of time. Placement of the
researcher in the organization facilitated data
collection and contextual understanding. It is also
important to note that although the CAPS framework
was developed prior to the start of this project, we were
able to refine its conceptualization and presentation as
the engaged researcher witnessed firsthand the
dynamic nature of the underlying issues and
challenges. The researcher was able to obtain direct
feedback and insights, which then led to the refinement
of the CAPS framework. Finally, a set of propositions
was established based on the researchers’ direct
experience with evaluating the CAPS framework
inside MAN Diesel & Turbo.

™ B e
Prior Work:
-Shmueli & Koppius Preliminary design of the N Lead researcher
-DSR methodology CAPS framework embedded in MAN Diesel
-Predictive Analytics
/ / N
e ;"
Final CAPSf k &
na ramewor Insights & feedback for Evaluation of CAPS in
Propositions for X
. further refinement of the MAN Diesel
designers and
e CAPS framework
practitioners
\_ -

Figure 2. The Research Process Underlying the CAPS Framework’s Development




It should also be noted that we developed the CAPS
framework to address the problem of designing
context-aware predictive systems. In that sense, the
CAPS framework is also an artifact. However, in the
context of this paper, we refer to the CAPS framework
as a “framework” and to the resulting context-aware
predictive systems as the design “artifacts.”

4 Design Solution — Developing the
CAPS Framework

In this section, we present how the Design Science
Research methodology and Shmueli and Koppius’
predictive empirical model were used to develop a
framework for structuring a design process of Context-
Aware Predictive Systems (CAPS), including
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predictive models that use contextual data (hereinafter,
the CAPS framework).

The DSR methodology (Hevner et al., 2004) provides
a problem-driven process to guide the design for IS
artifacts, and Shmueli & Koppius’ (2011) model
provides a data-driven process to guide the
development of predictive empirical models. We argue
that building on both the DSR methodology and
Shmueli & Koppius’ (2011) model, we can develop a
new comprehensive framework that is better suited to
dealing with the design of predictive analytics systems
that rely on using sensor data and similar digital traces
(Figure 3). While the DSR methodology is geared
towards general problem solving, the CAPS
framework is designed to solve problems that are data-
intensive and require predictive modeling.

DSR Methodology
Hevner et al., 2004

Knowledge
Base

Methods
Kernels

Environment
Design
p &
equ‘ Evaluate Theories
Organization
Roles

Creation of CAPS

:> Framework

o

Predictive Empirical Models
Shmueli & Koppius (2011)

Figure 3. DSR Methodology and Shmueli & Koppius Models Provide Insight into the Creation of the CAPS
Framework

As noted earlier, a comparative analysis of Hevner et
al. (2004) and Shmueli & Koppius’ (2011) models
suggests a partial overlap of the two. These two
conceptualizations demonstrate overlapping and
complementary properties, as illustrated in Figure 4.
The initial step in the Shmueli and Koppius model,
goal definition, involves defining the purpose of the
design process and properties constituting a good
design for that purpose. Although the methodology of
Hevner et al. discusses the evaluation concept
thoroughly, it does not explicitly relate to the goal
definition step. The following five steps are
application-specific actions conceptually included in
the generic develop/build step (marked in blue in

Figure 4). Nevertheless, in the particular context of
artifacts using predictive models, the output
framework will benefit from a clear definition of
activities related to the development/build steps. The
Evaluation, Validation, & Model selection step in
Shmueli & Koppius’s process model corresponds to
the Justify/Evaluate step of Hevner et al. (marked in
green). Finally, the Model Use and Reporting step
matches the Application in the Appropriate
Environment and Addition to the Knowledge Base of
Hevner et al. (marked in orange). Figure 4 provides a
graphical representation that depicts the overlap
between the DSR methodology and Shmueli &
Koppius’s (2011) models.
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Figure 4. Alignment between DSR Methodology and Shmueli & Koppius Predictive Analytics Model

By leveraging these overlaps, we constructed a new
framework for designing context-aware predictive
systems — namely, the CAPS framework, which is

DSR methodology as

shown in Figure 5. It is important to note that we used
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the DSR methodology artifact to create a new artifact
—that is, the CAPS framework.
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Figure 5. Framework for Designing Context-Aware Predictive Systems (CAPS)



As a starting point, in Step 1, Goal Definition, we
explicitly follow the Goal Definition step, which was
previously only present in the DSR methodology in
reference to Business Needs (Hevner et al., 2004). This
is when the designer answers questions, such as what
exactly needs to be designed, what needs to be
predicted, and what could be a benchmark of good
design that fulfills the design objectives in the
underlying context. The Environment informs this step
with explicit business requirements, and the
Knowledge Base provides additional guiding reference
points such as information about already developed
measures and goal evaluation methods.

The environment on the left of the CAPS framework
refers to real-time sensor data sourcing, the
applications to be built, and the myriad of
organizational challenges that a designer can face. A
significant source of data at this stage is from sensors.
These could be environmental sensors (e.g., pressure,
temperature, on/off, wear/tear) that provide real-time
context to our problem. Sensors help us augment our
physical surroundings. However, sensor data may have
weak signals, may be noisy, and may at times be
difficult to make sense of when out of the overall
context. However, once it is possible to process the
data and make sense of it, then the organization has to
decide which application best suits these data. A
relevant question for the organization at this stage
would be: Are we building predictive applications,
building classification applications, or clustering data
to visualize what is happening in our surroundings?
The data analytics team often has to with the
administration to address such organizational
dilemmas in order to move forward with a particular
approach.

Next, in Step 2, IT Artifact Building, we follow DSR’s
Develop/Build logic, but with three sub-steps inspired
by Shmueli and Koppius. We observed that four steps
from Shmueli and Koppius’s model (data collection
and study design, exploratory data analysis, choice of
variables, and choice of potential methods) are tightly
coupled, lacking the required flexibility in step
ordering. To avoid possible ordering confusion, we
structure the Develop/Build step in three sub-steps:
(2a) Right Model Selection for the task at hand (e.g.,
prediction, classification, clustering); (2b) Model
Building, in which the model is constructed (using
appropriate training and testing data sets); and (2c)
Model Implementati