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Enhanced Portfolio 
Optimization
Lasse Heje Pedersen , Abhilash Babu, CFA , and Ari Levine
Lasse Heje Pedersen is a principal at AQR Capital Management and a professor at Copenhagen Business School, Frederiksberg, Denmark. 
Abhilash Babu, CFA, is a vice president at AQR Capital Management, Greenwich, Connecticut. Ari Levine is a principal at AQR Capital 
Management, Greenwich, Connecticut.

Investors seek to construct portfolios that optimally trade off risk and 
expected return. A standard tool to achieve this goal is mean–variance 
optimization (Markowitz 1952), but mean–variance optimization (MVO) 

often produces large and unintuitive bets that perform poorly in practice 
(Michaud 1989). Indeed, finding optimization methods that beat the sim-
ple 1/N portfolio that allocates capital (or risk) equally across securities 
has proven surprisingly difficult (DeMiguel, Garlappi, and Uppal 2009). 
Perhaps as a result, many investors skip optimization altogether. Similarly, 
standard academic factors that bet on such characteristics as value (high 
book-to-market ratio minus low book-to-market ratio, or HML), size 
(small minus big, or SMB), and momentum (up minus down, or UMD) are 
constructed without the use of optimization or, in fact, the use of any 
volatility or correlation information (e.g., the factor models of Fama and 
French 1993, 2015). Theoretically, optimization should be a big help, but 
the practical failure of standard MVO raises several questions: Why does 
standard optimization perform so poorly? Is there a better way to use 
the information contained in estimated risks, correlations, and expected 
returns? If so, how much does this method improve performance?

In the study reported here, we sought to demystify optimization by 
addressing these questions. In short, we show (1) where the problem 
with standard optimization arises, (2) how to fix it in a simple way, (3) 
how the fix explains and unifies a number of enhanced optimization 
methods in the literature, and (4) that the fix works surprisingly well. 
Specifically, we show the following: 

1.  It is well-known that the problems with standard MVO arise because of 
noise in the estimation of risk and expected return,1 but our contribu-
tion is to identify the “problem portfolios” that cause trouble for MVO. 

2.  Our fix is an “enhanced portfolio optimization” (EPO) method 
designed to downweight these problem portfolios. We provide a 
simple closed-form solution that makes EPO as simple to implement 
as standard MVO. 

Portfolio optimization should 
provide large benefits for inves-
tors, but standard mean–variance 
optimization (MVO) works so poorly 
in practice that optimization is often 
abandoned. Many of the approaches 
developed to address this issue are 
surrounded by mystique regarding 
how, why, and whether they really 
work. So, we sought to simplify, 
unify, and demystify optimization. 
We identified the portfolios that 
cause problems in standard MVO, 
and we present here a simple 
“enhanced portfolio optimization” 
method. Applying this method to 
industry momentum and time-
series momentum across equities 
and global asset classes, we found 
significant alpha beyond the market, 
the 1/N portfolio, and standard 
asset pricing factors.
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3. The method unifies a broad range of existing 
methods to enhance portfolio optimization; it 
shows what these methods have in common and 
how they can be implemented in a simple way. 

4. The EPO method improves industry momentum 
and time-series momentum performance in an 
economically and statistically significant way 
relative to standard benchmarks. For example, 
the EPO time-series momentum portfolio in 
global equities, bonds, currencies, and com-
modities shows a large improvement in Sharpe 
ratio and statistically significant alpha relative 
to equal-notional-weighted and equal-volatility-
weighted time-series momentum portfolios. 
Similarly, in equities, we found large perfor-
mance improvements relative to standard factors 
when we applied the EPO method to optimize 
industry momentum. These findings mean that 
the EPO method can be a powerful tool both for 
investment practice and for constructing strong 
academic factors.

To understand the poor performance of standard 
MVO, consider how optimization works in practice. 
An investor first identifies the securities that she 
likes and dislikes—or, said differently, estimates the 
securities’ expected returns. Then, she estimates 
the securities’ risks (volatilities and correlations). All 
these estimates naturally have measurement errors, 
which can lead MVO to take large unintuitive bets 
that work poorly in practice.

What are the problem portfolios that plague stan-
dard MVO? We show how to find them in a simple 
way. To do this, we transform the standard optimiza-
tion problem into the space of principal components; 
that is, we work with long–short portfolios that are 
uncorrelated with each other and are ranked by their 
importance—namely, their variance. Working with 
principal components greatly simplifies the diag-
nosis of the problems with standard MVO because 
principal components are by definition uncorrelated, 
which means, in turn, that the risk that MVO takes 
in each principal component is simply proportional 
to its Sharpe ratio. The least important principal 
components are exactly the portfolios that cause 
trouble for standard MVO. Indeed, these portfolios 
have the lowest estimated risk, and as a result, 
their risks tend to be slightly underestimated, as 
shown in Panel A of Figure 1. (In Figure 1, the least 
important principal components are those with the 
highest numbers. Figure 1 is explained in detail in the 
subsection “Identifying Problem Portfolios” in the 
section “EPO in Practice.”) Furthermore, although 

expected returns decrease with the principal-com-
ponent number, the expected returns of the least 
important principal components are nevertheless too 
high relative to their realized returns, as can be seen 
in Panel B of Figure 1. As a result, from the perspec-
tive of standard MVO, these problem portfolios have 
large estimated Sharpe ratios, as shown in Panel C of 
Figure 1. These bets perform poorly in practice, as 
can be seen from their low realized Sharpe ratios in 
Panel C. MVO takes large risks in these portfolios, as 
shown in Panel D of Figure 1. 

Having identified the problem portfolios, we show 
how to address the problem. In the simplest form, 
the solution is to reduce the estimated Sharpe ratios 
of the least important principal components—to 
make their ex ante Sharpe ratios more consistent 
with the realized Sharpe ratios seen in Panel C 
of Figure 1. Reducing estimated Sharpe ratios of 
the least important principal components can be 
achieved by increasing their estimated volatilities. 
Furthermore, we show that increasing the ex ante 
volatilities of the problem portfolios is exactly the 
same as shrinking correlations of the original assets 
toward zero! Thus, correlation shrinkage directly 
reduces the estimated Sharpe ratios of the problem 
portfolios.

This method is what we call the “simple EPO.” The 
simple EPO first shrinks all correlations toward zero 
and then computes the standard MVO portfolio. 
The two key insights are (1) correlation shrinkage 
can fix errors in both risk and expected return and 
(2) this can be achieved by choosing the shrinkage 
parameter to maximize the portfolio’s Sharpe ratio 
(out of sample). This approach contrasts with the 
existing literature cited below that chooses correla-
tion shrinkage to maximize the fit of the correlation 
(or variance–covariance) matrix. Tuning to maximize 
Sharpe ratios yields a much larger shrinkage param-
eter, which empirically provides a large improvement 
in performance and is motivated by the theory that 
we develop. Indeed, recall that shrinkage correlations 
of the original assets corresponds to increasing the 
ex ante volatilities of the problem portfolios, which 
further corresponds to shrinking their Sharpe ratios, 
so this shrinkage addresses errors in both the risk 
model and expected returns.

This insight—that tuning correlation shrinkage to 
maximize risk-adjusted returns has more power than 
correlation shrinkage to reduce errors in risk alone—
has deep theoretical foundations based on Bayesian 
estimation and robust optimization. Indeed, we solve 
a new form of robust optimization and show that 
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uncertainty about expected returns leads endog-
enously to shrinkage of correlations, even when 
correlations are known without error. Furthermore, 
we show that the solution to this robust optimization 
equals the solution to the seminal model of Black 
and Litterman (1992) and methods used in machine 
learning. In addition to unifying these approaches, a 
key contribution of this article is to explain why these 
methods work—namely, because they shrink correla-
tions, which fixes the problem portfolios.

To see how the simple EPO works in practice, 
consider a shrinkage parameter w ∈ [0,1]. First, we 
replace the off-diagonal correlation Wij between any 
pair of assets i and j with (1 - w) Wij. Then, we use 
this modified variance–covariance matrix to perform 
MVO. That is it! 

Note how easy it is to do. When the EPO parameter 
is w = 0, there is no shrinkage, so our method yields 
the standard MVO. When w = 1, then all correlations 

Figure 1. Understanding Problem Portfolios, 1985–2018
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problem portfolios but EPO does not (Panel D). The sample consisted of monthly data for 55 global equities, bonds, commodities, 
and currencies. 
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are set to zero and the solution is essentially the 
same as not optimizing (similar to the use of standard 
Fama–French factors and even more similar to the 
signal-weighted portfolios considered in Asness, 
Moskowitz, and Pedersen 2013). With any shrinkage 
w ∈ (0,1), we get somewhere in between standard 
MVO and no optimizing but in a way that works 
surprisingly well.2

How much shrinkage is needed? The simple answer 
is that this matter is an empirical question. We 
empirically choose out-of-sample w as follows: Each 
time period, we estimate what choice of w would 
have produced the highest Sharpe ratio in the time 
period up until today; then, we use this estimate in 
the next time period. In several applications, w = 75% 
worked well. Our theory provides some intuition 
for this finding. First, shrinking correlations means 
increasing the risk of unimportant principal compo-
nents. To “fix” the correlation matrix (i.e., to fix errors 
in the risk model alone), we typically need to shrink 
the correlation matrix only about 5%–10%. So, why 
do we need a much larger shrinkage, around 75%? 
As explained previously, we show theoretically that 
errors in the estimates of expected returns also make 
correlation shrinkage useful, and these errors may be 
much larger than the errors in the correlation matrix 
itself. We found strong optimization improvements 
when we used a surprisingly large amount of shrink-
age (surprisingly large from the perspective of what 
is needed to fix the correlation matrix from a pure 
risk perspective).

We also develop here a general form of EPO that 
allows the investor to control how close the solu-
tion stays to an “anchor portfolio.” For example, an 
investor benchmarked to a certain stock index may 
desire to control how much his optimized portfolio 
deviates from this benchmark; that is, he is using the 
benchmark as an anchor. Or an investor may have a 
heuristic way to construct a portfolio—for example, 
splitting her money equally among good stocks 
(1/N)—and may wish for that optimized portfolio to 
stay close to the anchor.

Empirically, we applied our EPO method to optimize 
momentum portfolios using several realistic datasets. 
We show that EPO produces significant performance 
gains relative to standard benchmarks in the litera-
ture. When applied to a universe of global equity 
indexes, bonds, currencies, and commodities, the 
EPO time-series momentum portfolio substantially 
outperformed several benchmarks that are known 
to be difficult to beat. Indeed, EPO outperformed 
1/N portfolios, equal-notional-weighted time-series 

momentum factors, equal-volatility-weighted time-
series momentum factors, standard MVO, and MVO 
methods with enhanced risk models.

Furthermore, in the context of equity industry 
portfolios, the EPO industry momentum portfolio 
significantly outperformed the market portfolio, 1/N 
portfolios, standard MVO, MVO with an enhanced 
risk model, and standard industry momentum. The 
out-of-sample EPO industry momentum portfolio 
had significant alpha relative to the Fama–French 
five-factor model augmented with a standard indus-
try momentum factor.

Related Literature
Our study is related to several approaches in the lit-
erature; indeed, one of our theoretical contributions 
is to unify and demystify these seemingly different 
frameworks.3 First, some papers have focused on 
using shrinkage to improve the variance–covariance 
estimate (Ledoit and Wolf 2003; Elton, Gruber, and 
Spitzer 2006), factor models (Fan, Fan, and Lv 2008), 
or random matrix theory (e.g., Ledoit and Wolf 
2004, 2012, 2017; El Karoui 2008; Bun, Bouchaud, 
and Potters 2017). We found that the EPO solution 
significantly outperforms such approaches because 
EPO uses a much larger shrinkage to account for 
noise in estimates of both risk and expected returns 
(as discussed).

Second, Black and Litterman (1992) pioneered the 
focus on noise in expected returns. Despite the fame 
of their paper, it remains mysterious to many readers, 
who find it difficult to apply and find where the result 
comes from difficult to understand, including what 
is being assumed and what the parameters mean. 
Although the EPO solution is seemingly different 
from Black and Litterman, we show that it is, in fact, 
equivalent to Black and Litterman. But EPO is simpler 
to apply and more transparent in how and why it 
works. Indeed, the EPO solution is given as a new 
expression, which shows how correlation shrinkage 
can help address uncertainty in expected returns.4 
Furthermore, we demystify the whole approach 
by proposing an easy and transparent method (the 
simple EPO) and by illustrating how it fixes the 
problem portfolios.

Third, we link our approach to the literature on 
robust optimization (see the survey by Fabozzi, 
Huang, and Zhou 2010 and references in it) by show-
ing how to solve a problem with a general “ellipsoi-
dal uncertainty” set on the mean and by showing, 
perhaps surprisingly, the exact equivalence between 
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this form of robust optimization and the Bayesian 
estimator. Garlappi, Uppal, and Wang (2007) dis-
cussed robustness based on ambiguity aversion and 
uncovered a connection between their approach and 
shrinkage estimators. Raponi, Uppal, and Zaffaroni 
(2020) found strong results for robust portfolio 
optimization.

Fourth, Britten-Jones (1999) showed that standard 
MVO can be seen as the regression coefficient when 
a constant is being regressed on realized returns. 
Machine learning has many ways to regularize 
regressions, and Ao, Li, and Zheng (2019) found that 
a so-called LASSO regression significantly improves 
performance. These papers assumed that assets 
have constant expected returns, whereas we allow 
signals to vary over time. Furthermore, we show 
that the EPO can be viewed as a “ridge regression,” 
another form of regularization used in machine 
learning. To generate the most general form of EPO, 
we must consider the regression of expected returns 
on the variance–covariance matrix, which is related 
to the elastic net regression of Kozak, Nagel, and 
Santosh (2020).

Fifth, our empirical results extend and enhance stan-
dard factor models—in particular, industry momentum 
(Moskowitz and Grinblatt 1999) and time-series 
momentum (Moskowitz, Ooi, Pedersen 2012). See 
Baltas (2015), Yang, Qian, and Belton (2019), and 
Baltas and Kosowski (2020) for other enhancements of 
time-series momentum based on risk-parity methods. 

Finally, Clarke, de Silva, and Thorley (2006), studying 
the performance of the minimum-variance portfo-
lio, showed the power of risk modeling when using 
principal components and Bayesian shrinkage even in 
the absence of return predictors.

Identifying the Problem with 
Standard Optimization
We first lay out the standard framework for portfolio 
choice. Then, we show how to identify problem portfo-
lios. Appendix A contains a summary of our notation.

Standard Mean–Variance Optimization.  
Consider an investor’s problem of choosing a portfolio 
of n risky assets and a risk-free security. The risk-free 
return is rf, and the risky assets have excess returns 
given by r = ′( ,..., )r rn1 . The investor receives a signal, 
s, about the assets (such as their past momentum) 
and, using this signal, computes the vector of the risky 

assets’ conditional expected excess returns, αα = E( | )r s .  
For now, assume that the investor ignores potential 
noise in the signal. Furthermore, rather than consider-
ing an abstract signal, assume for simplicity that the 
signal is already scaled to be the conditional expected 
excess return—that is, a = s. Similarly, the investor 
computes a risk model—that is, the conditional vari-
ance–covariance matrix of excess returns, ΣΣ = var( | )r s .

The investor starts with a wealth of W0 and chooses 
a portfolio x = ( )′x xn1,..., . Specifically, xi is the 
fraction of capital invested in security i; expressed 
differently, the investor buys x Wi 0 dollars worth of 
security i. Given this portfolio choice, the investor’s 
future wealth is

W W rf= + + ′( )0 1 x r .

The investor seeks to maximize mean–variance utility 
over final wealth with absolute risk aversion γ γ= /W0: 

E( | ) ( | )W W W rfs s x s x x− = + + ′ − ′







γ γ
2

1
20var .ΣΣ   (1)

Hence, to pick the investor’s optimal portfolio x, the 
investor optimizes as follows:

max .
x

x s x x′ − ′







γ
2

ΣΣ   (2)

Based on the first-order condition, 0 = −s xγΣΣ , we get 
the standard mean–variance-optimal portfolio:

x sMVO = −1 1
γ

ΣΣ .   (3)

This portfolio has the highest possible Sharpe ratio 
among all portfolios if the expected excess return 
and risk are measured correctly, but the MVO portfo-
lio is sensitive to measurement errors.

Problem Portfolios. We first show here how the 
problem portfolios for standard MVO can be identi-
fied by using principal components of the correlation 
matrix. To understand, note that the variance–covari-
ance matrix, S = sWs, can be decomposed into the 
correlation matrix, W, and the diagonal matrix of 
asset volatilities, 

σσ = …( )diag Σ Σ11 , , .nn
 (4)
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Focusing on the correlation matrix essentially means 
that we first scale all the original assets to have 
equal volatility (but we could also use the variance–
covariance matrix itself).

For background on principal components, note 
that the first principal component maximizes the 
function ′h hΩ  subject to ′ =h h 1. In other words, it 
maximizes the variance ′h hΩ  of any portfolio h (in the 
space of assets that have been scaled to unit volatil-
ity, given that we are working with the correlation 
matrix instead of the variance–covariance matrix). 
Hence, the first principal component is the most 
risky portfolio (for a given sum of squared weights). 
The second principal component maximizes the 
same function ′h hΩΩ  subject to being independent of 
the first, and so on. The last principal components 
are exactly those portfolios that potentially give 
trouble to the standard mean–variance optimiza-
tion. These portfolios have, by definition, the small-
est possible variance among all portfolios (relative 
to their sum of squared portfolio weights) but not 
necessarily a small magnitude of estimated expected 
returns. In other words, for these portfolios, the 
noise can easily swamp the signal, and what is 
worse, standard MVO tends to take large lever-
aged bets on these noise-driven portfolios. These 
points are illustrated in Figure 1 as discussed in the 
introduction and explained in detail in the section 
“EPO in Practice.”

To identify the principal components, we consider 
the eigendecomposition of the correlation matrix, 

−= 1,PDPΩ  (5)

where P is a matrix whose columns are the principal 
components (also called eigenvectors) and D is a 
diagonal matrix of the variances of each principal 
component (also called eigenvalues). 

Each principal component is scaled such that the sum 
of square weights is 1—that is, PP I′ = , so that P P− = ′1 .  
The principal-component (PC) portfolios have real-
ized excess returns ′ −P rσσ 1 , with expected excess 
returns of s P sp = ′ −σσ 1  and variance given by D. 
Because D is diagonal, these PC portfolios are uncor-
related (by construction). The portfolio optimization 
problem can be written as

′ ′

′ ′ ′

− =

′ − ′ = ′ − ′

x s x x

P x s P x D P x z s z Dzp p

γ

γ γ
2

2 2

ΣΣ

σσ σσ σσ( ) ( ) ( ) ,   (6)

where z P x= ′σσ  is the overall portfolio weight mea-
sured in terms of the principal-component portfolios. 
Thus, the optimal portfolio weight, z, for the principal 
components is 

z D spMVO = −1 1
γ

.  (7)

Given that all principal components are uncorrelated 
(that is, D-1 is also a diagonal matrix calculated by 
simply replacing each diagonal element in D with its 
reciprocal), this solution means that the risk taken in 
principal-component portfolio i is proportional to its 
Sharpe ratio:

z
s
Di

MVO

i

i
P

inotional 
position 

in portfolio 
Sharpe 
rati

 � =
1
γ

oo of 
portfolio 

desired
volatillity for

portfolio 

 

i

i

�

� �� ��

1
DDi

leverage
needed to
achieve a

volatility of 1
for portfolio ii

�
.  (8)

The least important principal components are those 
with the lowest volatilities, Di . Any error in the 
estimation of the risk model is likely to lead to an 
underestimation of the volatilities of these portfolios 
(because they have been chosen as the lowest-risk 
portfolios). Furthermore, any noise in the estimation 
of expected return si

P will probably be large relative 
to the risk. Hence, as seen in Equation 8, estima-
tion noise has two problematic effects for the least 
important principal components: (1) The optimizer 
may have a large desired volatility for such a prob-
lem portfolio because of a large (absolute value of 
the) Sharpe ratio (because of noise in the estimate 
of expected return, which is large relative to the 
low risk). (2) The low estimated risk, Di , leads the 
optimizer to apply high leverage to these portfolios 
to achieve a given level of risk. Furthermore, these 
two problems exacerbate each other.

Addressing the Problem: Enhanced 
Portfolio Optimization
Now that the problem with MVO has been identi-
fied, the solution is straightforward: Increase the 
estimated risk of the problem portfolios, which can 
be achieved by shrinking the estimated correlations 
of the assets, leading to the simple EPO as shown in 
the next subsection. The simple EPO underlies most 
of our empirical analysis, so readers who want to 
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immediately apply these insights can go directly to 
the empirical section, “EPO in Practice,” after reading 
the next subsection, “Shrinking Correlations: The 
Simple EPO.” Readers who are interested in why this 
simple EPO approach works well, how to anchor the 
EPO portfolio to a benchmark, and how various opti-
mization techniques are connected should continue 
with all the following subsections.

Shrinking Correlations: The Simple 
EPO. As discussed previously, principal compo-
nents (PCs) can be viewed as portfolios that are 
ordered by their degree of troublesomeness for 
portfolio optimization. In essence, the problem is 
that the estimated variances are likely to be too low 
for the safest portfolios (and too high for the riskiest 
ones). An easy fix is to shrink the estimated variances 
toward their average.5 The average variance of these 
PC portfolios is 1 (because they are the principal 
components of the correlation matrix, which has 1s 
along the diagonal). Hence, we can use the modified 
risks of the PCs:

D D I= − +( ) ,1 θ θ   (9)

where θ∈[ , ]0 1  is the degree of shrinkage, I is the 
identity matrix, and the tilde (~) over the D means 
that it has been adjusted to account for estimated 
error. The corresponding correlation matrix for the 
original assets is


ΩΩ ΩΩ= ′ = − +  ′ = − +PDP P D I P I( ) ( ) .1 1θ θ θ θ   (10)

Hence, one can see that the adjusted correlation 
matrix is simply original matrix W shrunk toward the 
identity matrix. In other words, we have shown the 
following:

Observation: Adjusting the volatilities of PC 
portfolios corresponds to adjusting the correla-
tions of the original assets. Specifically, increas-
ing the volatility of the problem portfolios 
while lowering the volatility of the important 
PC portfolios is the same as multiplying all the 
correlations of the original assets by 1 - q.

The variance–covariance matrix with the shrunk 
correlations is  ΣΣ σσΩΩσσ= , which we can use as an 
input in portfolio optimization. The result is a simple 
enhanced portfolio optimization: 

EPO ss = −1 1
γ
ΣΣ .  (11)

This shrinkage is not only helpful in addressing mis-
specification of the variances; it also addresses mis-
specification in expected returns because it implicitly 
shrinks the Sharpe ratios of the PC portfolios, as we 
discuss further in the next subsections. That is, the 
simple EPO uses enough correlation information to 
improve diversification relative to an unoptimized 
portfolio but not too much correlation information in 
order to avoid the problems of standard MVO.

Anchoring Expected Returns: A Bayesian 
Approach. We next address that the inves-
tor’s signal, s, is observed with noise. This section 
considers a Bayesian approach following Black and 
Litterman (1992) but with a different way of express-
ing the solution (and different notation). We first 
describe the assumptions and then provide some 
intuition. The investor observes a vector of signals 
s = m + e, which is the true (unobserved) expected 
return vector, m, plus the noise term, e, that captures 
measurement errors about expected returns. The 
noise is normally distributed with a mean of zero and 
a covariance of L.

The investor must try to estimate true expected 
return m on the basis of noisy signal s. Although stan-
dard MVO estimates the true expected return simply 
as the signal s that contains measurement errors, we 
consider a Bayesian investor who updates his “prior 
beliefs” about m to make a better estimate of true 
expected returns by using the observed signal—that 
is, E( | )sµ . The investor’s prior beliefs about the assets’ 
true expected return vector, m, is given by

µµ ΣΣ ηη= +γ a ,   (12)

where γΣΣa is constant and h represents random 
fluctuations in investment opportunities. Specifically, 
h is normally distributed with mean zero and a 
covariance of τΣΣ for some constant t.6 The first term 
in Equation 12, γΣΣa, is the unconditional average 
return, which is written (without loss of generality) 
as a product of risk aversion g (defined in the sub-
section “Standard Mean–Variance Optimization” in 
the section “Identifying the Problem with Standard 
Optimization”); the variance–covariance matrix of 
returns, S (also defined in the subsection “Standard 
Mean–Variance Optimization”); and an anchor port-
folio, a. Writing the average return in this way means 
that the anchor is the investor’s “typical portfolio.” 

Intuitively, this model means that the investor 
is aware that the signal is estimated with error 
and has a framework for the nature of this error. 
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This framework involves some standard parameters 
(the risk, S; the signal about expected returns, s; and 
risk aversion, g), and other more mysterious param-
eters L, t, and anchor portfolio a. The mysterious 
parameters can be explained as follows: The anchor 
portfolio is basically the investor’s typical portfolio or 
strategic asset allocation, t indicates the variation in 
the investor’s optimal portfolio, and L is the amount 
of measurement error. We need not worry too much 
about these parameters, however, because we show 
in the upcoming subsection “Putting Optimization to 
Work” how the simple EPO makes all these mysteri-
ous parameters disappear!

We also consider an anchored EPO, which makes 
all the mysterious parameters disappear except 
the anchor, because having an anchor can be use-
ful in practice—for example, to control how much 
an optimized portfolio deviates from a benchmark. 
Indeed, we can think of the anchor as the investor’s 
benchmark, strategic asset allocation, or typical 
investment strategy. To understand the anchor, note 
that when expected returns are at their average 
value (i.e., h = 0), the optimal portfolio is the anchor 
(i.e., x a= =−(( ))ΣΣ µµ1 1/γ ).7

To solve the model, we first compute the inves-
tor’s view on expected returns based on her signal 
and prior—namely, E( )µµ|s . Given that the investor 
maximizes her mean–variance utility (as defined in 
the section “Identifying the Problem with Standard 
Optimization”), the solution to the enhanced portfo-
lio optimization problem is then ( / )1 1γ ΣΣ µµ− E( | )s . The 
following proposition summarizes the result, and all 
proofs can be found in Appendix B.

Proposition 1. In this Bayesian model, given 
the observed signal, the investor’s expected 
return is

E( | )µµ ΣΣ ΣΣ ΛΛ ΛΛs s a= + +−( )τ τ γ1( ),   (13)

and the solution to the enhanced portfolio 
optimization problem is

x s a= + +−1 1
γ

τ τ γ( ) .( )ΣΣ ΛΛ ΛΛ   (14)

Interestingly, the optimal portfolio, Equation 14, 
looks like the solution to an MVO when both the 
mean and variance have been modified, even though 
here, we have only assumed that the mean contains 
errors. That is, errors in expected returns alone lead 
to the shrinkage of correlations, even when correla-
tions are assumed to be known without error.

Anchoring Expected Returns: Robust 
Optimization. An alternative approach to address 
noise in expected returns is to use robust optimiza-
tion. Robust optimization aims to improve upon 
standard MVO by explicitly modeling uncertainty 
around expected returns as a part of the optimiza-
tion problem. Specifically, we want to choose the 
portfolio that gives the highest utility even if the 
expected return is the worst possible, within some 
uncertainty region:

maxmin ( )
x

x a x x
µµ

µµ ΣΣ− ′ − ′





γ
2

  subject to 

µµ µµ µµ ΛΛ µµ∈ − ′ − ≤{ }−| ( ) .( )s s1 2c
 

(15)

This specification means that we seek to be robust 
to measurement error in the signal s about expected 
returns. In other words, the true expected return, m, 
can deviate from s, and we wish to ensure good 
performance even for the worst possible m. The 
parameters L and c control how much the true 
expected return can deviate from the signal—that is, 
the amount of measurement error in the signal s. But 
these mysterious parameters disappear in the simple 
EPO as explained in the next subsection. Finally, we 
interpret the anchor portfolio, a, as a benchmark 
portfolio that we wish to outperform (or are afraid of 
underperforming)—for example, the market portfolio.8 
The solution is given in the following proposition.

Proposition 2. The solution to the robust portfo-
lio optimization problem is 

x s a= + +−1 1
γ

τ τ γ( ) ,( )ΣΣ ΛΛ ΛΛ  (16)

where t depends on c and the set of solutions 
for c ∈ (0,∞) equals the set of solutions for 
t ∈ (0,∞).

This result shows how robust optimization can 
be done via shrinkage of the mean and variance–
covariance matrices. Surprisingly, the optimal portfo-
lio (Equation 16) is exactly the same as the solution 
in the previous subsection! This result provides a 
new link between robust optimization and Bayesian 
optimization. What is the intuition behind this link? 
Both methods capture the ideas that signal s con-
tains imperfect information about the conditional 
expected returns, that the amount of noise in the 
signal is related to L, and that there exists an anchor 
portfolio, a, that one might not want to deviate too 
much from.
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Putting Optimization to Work: Simple 
EPO and Anchored EPO. We have discussed 
that estimation errors occur in both the variance–
covariance matrix and in expected returns. Hence, 
we first fix the problem with the variance–covariance 
matrix by using simple shrinkage as shown in the 
subsection “Shrinking Correlations: The Simple EPO” 
(or using the random matrix theory discussed in 
Appendix A), giving rise to enhanced risk estimate 
ΣΣ, and second, we enhance expected returns as 
described in the two sections on anchoring returns, 
leading to the general EPO solution:

EPO = + +−1 1
γ

τ τ γ( ) .( )ΣΣ ΛΛ ΛΛs a   (17)

The general EPO solution in Equation 17 depends on 
several parameters, some of which are straightfor-
ward to estimate, but others are tricky. So, we will 
provide some guidance. Let us start with the easier 
ones: The variance–covariance matrix, ΣΣ, can be 
estimated in the standard way based on the sample 
counterpart, possibly enhanced with shrinkage as 
discussed in “Shrinking Correlations: The Simple 
EPO.” The signal about expected returns, s, is the 
investor’s favorite predictor of returns. (To be clear, 
predicting returns is never easy, but an investor 
would probably not be interested in portfolio optimi-
zation if he did not have some predictors to opti-
mize.) The trickier parameters are the anchor, a, the 
risk aversion, g, the magnitude of shocks to expected 
returns, t, and the uncertainty matrix, L. 

Starting with the uncertainty matrix, a natural 
assumption is that the noise in the measurement of 
expected returns is independent across assets; that 
is, L = lV, where l is a constant and V is the diago-
nal matrix of variances or, equivalently, the matrix 
of squared volatilities, V = σσ2. The independence 
across assets arises, for example, from the common 
practice of estimating signals about returns in a way 
that is unrelated to the estimation of risk.9 Under this 
assumption, the EPO solution can be written as

EPO w w ww( ( ) ,) = − +










−ΣΣ 1 1 1
γ

s Va   (18)

where Sw is a shrunk variance–covariance matrix cor-
responding to a shrunk correlation matrix, Ω:

ΣΣ ΣΣ

ΩΩ
w w w

w w
= − +

= − + 

( )
( ) ,

1
1





V
Iσ σ

  (19)

and we denote w = + ∈λ τ λ/( ) [ , ]0 1  as the “EPO 
shrinkage parameter.” A benefit of Equation 18 is that 
two of the tricky parameters (l and t) disappear, so 
we need to keep track of only their relative magni-
tude via w.

The EPO shrinkage parameter. The shrinkage 
parameter, w, plays a key role in our empirical imple-
mentation. We see from Equations 18 and 19 that 
the EPO shrinkage parameter controls the shrink-
age of both (1) expected returns toward the anchor 
and (2) the correlations toward zero. For example, a 
shrinkage of w = 0 gives the standard MVO solution; 
a shrinkage of w = 100% yields the anchor portfolio. 
For the empirical implementation, we chose the 
shrinkage parameter in a pragmatic way—namely, as 
the value that yields the best risk-adjusted returns—
and we show how to choose w both in-sample and 
out-of-sample. 

Because w becomes an empirical choice variable, 
we write the EPO solution as a function of w—that 
is, EPO(w). On the one hand, intuitively, the optimal 
shrinkage parameter is larger when measurement 
errors are larger—because of, for example, poor data 
quality, illiquidity, or using a weak return predictor 
(i.e., w is increasing in l). On the other hand, the 
shrinkage is smaller when true expected returns 
fluctuate more (i.e., w is decreasing in t). 

Simple EPO. A particularly simple expression arises 
if we choose the anchor portfolio as a V s= −( / ) .1 1γ 10 

In this case, we recover the simple EPO already 
discussed in the subsection “Shrinking Correlations: 
The Simple EPO”:

EPO ws
w( ) ,= −1 1

γ
ΣΣ s   (20)

where Sw is the shrunk variance–covariance matrix 
from Equation 19. 

Remarkably, Equation 20 is the same as the solu-
tion to a standard MVO except that the correlations 
(or variance–covariance matrix) have been shrunk. 
So, surprisingly, errors in the estimation of mean and 
variance make it helpful to shrink the correlations; 
that is, these correlations are shrunk beyond what is 
justified by the errors in the variance alone because 
errors in the estimates of expected returns also 
make correlation shrinkage useful. Furthermore, the 
simple EPO solution given in Equation 20 is linear in 
the risk tolerance, so performance statistics such as 
the Sharpe ratio do not depend on risk aversion g. 
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Therefore, this expression is straightforward to 
implement—for example, by setting g = 1 or any other 
number that corresponds to a desirable level of risk. 

Anchored EPO. Some investors prefer their portfo-
lios to be tied to an anchor, so it is useful to consider 
a practical implementation of an anchored EPO. For 
example, an investor might have a signal, s, about the 
assets’ expected returns based on their momentum 
and an anchor, a, based on the 1/N portfolio or based 
on a benchmark portfolio. In this case, we know all 
the inputs in Equation 18 except w, which we choose 
empirically, and risk aversion g. So, the last question 
is how to choose the risk aversion. The risk aversion 
g can be chosen based on the investor’s preferences 
(typically, a number between 1 and 10).11 But using 
Equation 18 with a g based on risk aversion requires 
that the signal be measured in the right “units.” 
Specifically, the signal must not only predict returns; 
it should also be scaled so that, for instance, si = 2% 
means that asset i has an expected return of 2%. 

Suppose, instead, that our signal is proportional 
to expected returns but we do not really know 
the scale. For example, an asset’s past momentum 
predicts that it will outperform in the future, but we 
do not know by how much. Or, as another example, 
suppose the signal is a relative ranking of securities 
based on their valuations. In these cases, the risk 
aversion g can be chosen based on the insight that 
the investor apparently likes the risk level inherent 
in the anchor portfolio. Note that the EPO solution 
(Equation 18) is essentially a mixture of the anchor 
portfolio and the portfolio ΣΣw

−1 1( / ) ,γ s  so we can pick g 
to equalize the variance of these portfolios: 

γ =
′

′

− −s s

a a

ΣΣ ΣΣΣΣ

ΣΣ
w w

1 1




,  (21)

which yields12

EPO w w wa
w

w w

( ) ( ) .= −
′

′
+















−
− −

ΣΣ
ΣΣ

ΣΣ ΣΣΣΣ
1

1 1
1 a  a

s s
s Va



 
 (22)

Equation 22 is our anchored EPO solution for anchor 
a based on shrinkage parameter w, where risk aver-
sion is chosen endogenously.

A Unified Approach to Optimization.  
In summary, we have derived a general enhanced 
portfolio optimization method (Equation 17) and two 
straightforward ways to implement this method—the 

simple EPO (Equation 20) and the anchored EPO 
(Equation 22), which are used in our empirical imple-
mentations. The reader has already seen that the 
EPO method is related to several other approaches 
to portfolio optimization and, as described in the 
following proposition, the method has, in fact, even 
broader links to the literature.

Proposition 3. The EPO solution (Equation 17) is 
equal to

1.  standard MVO when the estimate of vari-
ance has no noise, so ΣΣ ΣΣ= , and the signal of 
expected returns has no noise, so L = 0;

2. the anchor when t = 0 as in reverse MVO;

3.  the Bayesian estimator from “Anchoring 
Expected Returns: A Bayesian Approach,” 
which is equivalent to Black–Litterman (1992) 
when the anchor portfolio is the market 
portfolio, the signal is their “view portfolios,” 
and we assume that the variance–covariance 
matrix is estimated without error;

4.  the solution to robust optimization with 
ellipsoidal uncertainty set as defined in 
“Anchoring Expected Returns: Robust 
Optimization”; and

5.  a generalized ridge regression (a form of 
regularization used in machine learning) of 
expected returns on the variance–covariance 
matrix.13

Proposition 3 shows how the EPO method helps 
unify seemingly unrelated strands of literature. 
Regarding Parts 1 and 2, EPO obviously contains 
as special cases the standard MVO and the anchor, 
which is trivial in itself, but by nesting these 
approaches, we get an enhanced version of things 
we already know. Furthermore, when using expected 
returns that imply the anchor is the optimal portfolio 
(Part 2), we get what is called “reverse MVO” in the 
context of an optimization that includes a set of 
constraints. The reason is that the optimal portfolio 
is taken as given and optimization is performed with 
the “implied expected returns,” E( | )µµ ΣΣs a=  , which is 
the expected return that makes the anchor portfolio 
optimal in the absence of constraints.

Regarding Part 3, we see that the Bayesian estima-
tor from “Anchoring Expected Returns: A Bayesian 
Approach” is connected to the Black–Litterman 
(1992) formula, which is not surprising given the 
similar Bayesian structure. Despite this connec-
tion, we note that our empirical implementation 
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is very different from previous applications of 
Black–Litterman: Black and Litterman always took 
the anchor portfolio to be the market portfolio. 
They considered certain “view portfolios” rather 
than maintaining our direct focus on a signal about 
expected returns. They considered a relatively small 
set of assets. And they ignored noise in the variance–
covariance matrix. In contrast, we focus on different 
anchors, including where the anchor essentially 
disappears in the simple EPO, we use the shrinkage 
parameter as the key tuning variable, we consider 
noise in estimates of both risk and expected return, 
and we consider a number of datasets with many 
more assets.

Regarding Parts 4 and 5 of Proposition 3, note the 
interesting—and far from obvious—aspect that the 
Bayesian estimator corresponds to both robust opti-
mization (as derived in “Anchoring Expected Returns: 
Robust Optimization”) and regularization methods 
used in other strands of statistics and machine 
learning (not discussed previously here; the proof in 
Appendix B, however, describes ridge regressions 
and other regularizations).

EPO in Practice: Empirical Results
In this section, we describe the data and methodol-
ogy for our empirical study and discuss results for 
application of the method to global asset classes and 
equity portfolios.

Data and Methodology. For our empirical 
implementation, we constructed optimized industry 
momentum and time-series momentum portfolios for 
11 samples that differed in terms of their test assets 
and methodology, as summarized in Table 1. The 
data used, the number of test assets, the methods 
used, the start date of the data, and the start date of 
our backtests are provided in Table 1. The first three 
samples—Global 1, Global 2, and Global 3—consist 
of equity indexes, bond futures, commodities, and 
currencies (foreign exchange, or FX); the Equity 1 
through Equity 8 samples consist of equity portfolios, 
as we describe in detail next. The samples consist 
of various datasets and methodologies in order to 
examine the robustness of the EPO method.

Test assets and data. Our data for Global 1–Global 3 
in Table 1 consist of 55 liquid futures and forward 
contracts described in Moskowitz et al. (2012). 
Specifically, in addition to every equity, commodity, 
and bond futures contract used in Moskowitz et al., 
we used the nine currency pairs in Moskowitz et al. 

that involve the US dollar. We excluded non-USD 
cross-currency pairs to ensure that the variance–
covariance matrix would be of full rank.14 For each 
instrument, we constructed a return series by 
computing the daily excess return of the most liquid 
contract at each point in time and then compounded 
daily returns to a cumulative return index from which 
we could compute returns at any horizon. The data 
start in 1970 and extend through 2018. Following 
Moskowitz et al. (2012), we started the backtest in 
1985, at which time we had data for a broad set of 
instruments. Furthermore, having the earlier data 
allowed us to choose an initial out-of-sample EPO 
shrinkage parameter without shortening the time 
series relative to the Moskowitz et al. study.

The samples for Equity 1 through Equity 7 in Table 1 
are the 49 value-weighted US equity industry port-
folios from Kenneth French’s website.15 As noted, 
for Equity 8, we split each industry portfolio into two 
components, for a total of 2 × 49 = 98 test assets. 
Specifically, using the CRSP data on the underly-
ing stocks, we computed a “high-momentum” and 
“low-momentum” portfolio within each of the 49 
industry portfolios. Each low-momentum portfolio 
return is a value-weighted average of the half of the 
stocks in that industry with the lowest past 12-month 
returns, and the construction is similar for the high-
momentum portfolio. To calculate excess returns of all 
the equity portfolios, we subtracted the one-month 
US T-bill rate, also sourced from French’s website. The 
equity portfolio data begin in 1927 and end in 2018. 
To ensure enough data from which to select an initial 
out-of-sample EPO shrinkage parameter using only 
past information, we evaluated EPO performance for 
a sample period beginning 15 years after data were 
first available (as we did for shrunk Global 1–Global 3), 
so all equity backtests ran from 1942 to 2018.

Benchmark factors. We used monthly returns from 
French’s website to evaluate the returns of optimized 
equity industry momentum portfolios relative to 
the Fama–French (2015) five-factor model. We also 
evaluated optimized time-series momentum port-
folios relative to the time-series momentum bench-
marks described in Appendix A.

Optimization methods. Table 1 shows the opti-
mization methods we considered. To demonstrate 
the robustness of our results, we considered vari-
ous optimization methods, various signals about 
expected returns, and various ways to estimate risk. 
Specifically, we used the simple EPO method from 
Equation 20 in the sample of global assets and in 
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Equity 1 through Equity 5 and Equity 8; we used the 
anchored EPO method from Equation 22 in Equity 6 
and Equity 7. In Equity 6, the anchor portfolio is 
the 1/N portfolio that gives equal notional weight 
to each industry portfolio. In Equity 7, the anchor 
portfolio is the 1/σ portfolio that assigns equal ex 
ante volatility to each industry portfolio. Specifically, 
this portfolio has a notional weight in industry i given 
by ( ) / ( )σ σt

i
j t

j− −1 1ΣΣ , where σt
i  is the estimated volatility 

of industry i at time t.

Risk models. Table 1 further shows how we esti-
mated risk—again considering various methods to 
demonstrate robustness. For Global 1, we used a 
method similar to that of commercial risk models. 
The volatility of each instrument was estimated by 
using exponentially weighted daily returns with a 
60-day center of mass. The correlations,  Global 1Ω , 
were estimated by using exponentially weighted 
3-day overlapping returns with a 150-day center of 
mass.16 We used three-day returns, r ri t

d
k t k

i
,
3

0
2= = −ΣΣ ,  

to mitigate the effects of asynchronous trading 
among global assets, which affects correlations 
but not volatilities. For Global 2, we used the 
same risk model as Global 1, except that all nondi-
agonal correlations were shrunk 5% toward zero: 

= + 
Global 2 Global 10.95 0.05 IΩ Ω . For Global 3, we 

started with the risk model of Global 1 and then 
enhanced the model by using random matrix theory, 

= 
Global 3 Global 1( )RIEΩ Ω , where RIE stands for rota-

tionally invariant estimator (see Bun, Bouchaud, and 
Potters 2016) as described in Appendix A, with n set 
to the number of securities available at each given 
point in time and T = 300, which is twice the center 
of mass of 150 days. We then combined each of 
these correlation matrices with the diagonal matrix, 
s, of volatility estimates to arrive at variance–covari-
ance matrix  ΣΣ == σσΩΩσσ.

For the Equity 1 through Equity 8 samples, we 
started with the standard equal-weighted estimates 
of variances and covariances for 60 months, for 
40 days, and for 120 days of data.17 We then shrank 
all off-diagonal correlations (or, equivalently, covari-
ances) 5% toward zero.

Signals about expected returns. Finally, we needed 
a signal about expected returns in each sample. 
To have a simple signal that we knew correlates 
with future returns, we decided on past 12-month 
returns,18 which we used as our signal throughout 
this analysis. Note, however, that our EPO method 
is general and can be used to optimize any predic-
tor of future returns (or combination of predictors), 
not just those predictors based on past returns. 

For Global 1–Global 3, we used TSMOM signals, 
meaning that the signal of expected return for each 
instrument was related to its past 12-month excess 
return. Specifically, the signal about the expected 
return of instrument i in month t was

s rt
i

t
i

t t
i= × × −0 1 12. .,σ sign( )  (23)

Equation 23 means that each instrument had a 
positive expected excess return when the sign 
of the past 12-month excess return was positive 
(otherwise, expected excess return was negative) 
and that the monthly Sharpe ratio for each asset 
was constant and equal to 0.1. The assumption of a 
constant Sharpe ratio is consistent with the implicit 
assumption of Moskowitz et al. (2012) because they 
used a constant volatility target for each asset. The 
scaling of 0.1 is consistent with the average real-
ized Sharpe ratios reported by Moskowitz et al. and, 
more recently, by Babu, Levine, Ooi, Pedersen, and 
Stamelos (2020),19 but this choice is inconsequen-
tial for the Sharpe ratio of the final EPO portfolio. 
To ensure that the fully shrunk EPO portfolio—
EPO ws ( )%=100 —exactly matched the TSMOM 
strategy of Moskowitz et al., we used a risk aversion 
coefficient of γt tn= / %40 , where nt is the number of 
instruments at time t.20

For Equity 1 through 3 and Equity 6 through 8, 
we considered a simple version of cross-sectional 
momentum (XSMOM), meaning that the signal of 
each instrument depended on its past 12-month 
relative outperformance (i.e., its return minus the 
average return across all instruments):

12, 12,
1, ,

1 ,: ji i i
t t t t t t t

j n
s XSMOM c r r

n− −
=  … 

 
 = −
  

= ∑   (24)

where the scaling factor, ct, was chosen such that 
the positive and negative signals would sum to 1.0; 
that is, 

i
t
i

s
i

t
i

ss s
t
i

t
i∑ ∑> <= =1 1 10 0{ } { } .  (25)

For Equity 4, each industry’s signal of expected 
returns is its past 12-month outperformance multi-
plied by its volatility, 

s XSMOMt
i

t
i

t
i= ×σ .  (26)
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This choice of multiplying by volatility is similar 
in spirit to the scaling of TSMOM as defined in 
Equation 23. To see again that this choice is natural, 
consider the implications for the fully shrunk EPO 
portfolio. This portfolio has a notional weight of each 
industry i given by 

EPO w
s XSMOMs i t
i

t
i

t
i

t
i( )%

( )
,= = =100 1

2γ σ γσ
 (27)

which is proportional to the Sharpe ratio of its 
outperformance—an intuitive scaling. Furthermore, 
the fully shrunk EPO’s risk weight in industry i is 
σ γt
i
t
i

t
ia XSMOM= / , implying that when the absolute 

values of these risk weights are summed over all 
instruments, this total risk weight is constant over 
time (because of the definition of ct). So, Equation 27 
is also an expression of an intuitive scaling if we 
believe that the investment opportunity set is not 
varying much over time. 

Finally, for Equity 5, we let s XSMOMt
i

t
i

t
i= ×( )σ 2 ,  

which implies that the fully shrunk EPO portfolio, 
EPO w XSMOMs i

t
i( ) /% ,= =100 γ  is proportional to 

each industry’s outperformance.

Global Asset Classes: Beating Time-Series 
Momentum. In this subsection, we consider the 
performance of EPO versus benchmarks, how to 
identify problem portfolios, the alphas of EPO, and 
leverage and turnover.

Performance of EPO vs. benchmark portfo-
lios. Turning to our empirical results, we first 
consider the performance of optimized TSMOM 
portfolios relative to key benchmarks for global 
assets, such as long-only portfolios and standard 
TSMOM factor portfolios, as shown in Table 2. 

The first portfolio that we consider is the 1/N portfo-
lio that invests an equal notional exposure across all 
assets. This portfolio delivered a Sharpe ratio of 0.44, 
arising from the equity risk premium and similar risk 
premiums in other asset classes. The 1/σ portfolio 
targeted an equal amount of standalone volatility 
in each asset; for example, the notional exposure in 

asset i was σ σt
i

j t
i( ) ( )− −1 1

/ ΣΣ . This portfolio delivered 

a higher Sharpe ratio of 0.76. The Sharpe ratios are 
even higher for the standard time-series momentum 
factors. The risk-weighted TSMOM factor already 
had a high Sharpe ratio of 1.09 because it does 
several things that an optimizer hopes to achieve: It 

takes into account expected returns by trading on 
TSMOM, and it takes into account volatility differ-
ences across assets and over time by scaling posi-
tions accordingly. Said differently, although the 1/N 
portfolio is normally difficult to beat, we also consider 
benchmarks such as TSMOM that already beat 1/N 
hands down—so these benchmarks set a high bar. 

Nevertheless, the out-of-sample EPO significantly out-
performed TSMOM—by 14%—delivering, as Table 2 
shows, a Sharpe ratio of 1.24 in Global 1 and Global 2 

Table 2.  Gross Sharpe Ratios of Optimized 
TSMOM Portfolios: Global 1–
Global 3, 1985–2018

Global 1
Global 2 
(Shrunk)

Global 3 
(RMT)

Portfolio

Long only: 1/N 0.44 0.44 0.44

Long only: 1/σ 0.76 0.76 0.76

TSMOM: equal 
notional weight

0.74 0.74 0.74

TSMOM: equal 
volatility weight

1.09 1.09 1.09

EPOs: out-of-sample 1.24 1.24 1.23

EPOs(w): shrinkage parameter w

0% (naive MVO) 0.87 1.08 1.02

10% 1.15 1.18 1.19

25% 1.24 1.26 1.26

50% 1.31 1.31 1.32

75% 1.32 1.31 1.32

90% 1.26 1.26 1.26

99% 1.13 1.13 1.13

100% (anchor) 1.09 1.09 1.09

Notes: Global 1–Global 3 samples are described in Table 1. 
The long-only 1/N portfolio invests with equal notional expo-
sure across all assets; the 1/σ portfolio invests with equal vola-
tility weight in each asset; the TSMOM strategy invests with 
equal notional exposure in each asset; the TSMOM strategy 
invests with equal volatility weight in each asset and a range 
of optimized portfolios. The optimized portfolios consist of the 
simple out-of-sample EPO and a range of in-sample EPO port-
folios that differ on the basis of EPO shrinkage parameter w. 
The out-of-sample EPO uses only past data to choose w. For 
Global 1, the correlation matrix was estimated in the standard 
way; Global 2 had a 5% shrunk correlation matrix; Global 3 
used a cleaned correlation matrix based on random matrix 
theory (RMT).
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and 1.23 in Global 3. Recall that these samples differ 
in their estimation of the risk model. Global 2 shrinks 
correlations initially by 5%, and Global 3 uses random 
matrix theory (RMT). This performance of the EPO 
TSMOM portfolio is remarkably strong.

In our tests, the EPO portfolio relied on a single 
parameter—namely, the EPO shrinkage parameter, w. 
The out-of-sample EPO chose this parameter in an 
expanding fashion, using only data available before 
each month to decide on the parameter to use next 
month. Also informative is the performance of EPO 
when a constant w was used. The unshrunk EPO with 
w = 0 corresponds to standard MVO, and Table 2 
shows that MVO performs worse than equal-volatil-
ity-weighted TSMOM. In other words, standard MVO 
does not work here. The fully shrunk EPO with w = 1 
means that we invested in the anchor portfolio, which 
is the TSMOM factor by construction. With shrinkage 
factors in between zero and 100%, we can see that 
performance improves. It peaks at an even higher 
level than the out-of-sample EPO (which we will now 
call “OOS EPO”), but of course, picking the in-sample 
highest w is not implementable in real time.

Figure 2 shows the evolution of the OOS EPO 
shrinkage parameter over time for the Global 2 sam-
ple. Note that at least 15 years of data are required 
to select an initial OOS EPO shrinkage parameter. 
Over time, the shrinkage parameter used by the 
OOS EPO method approaches the optimal in-sample 
value, but initially OOS EPO used a lower shrinkage, 
and some time had to pass for the out-of-sample 
process to settle on the optimal shrinkage parameter. 
This aspect explains why the performance of OOS 
EPO is a bit below the in-sample maximum Sharpe 
ratio in Table 2.

Figure 3 shows how the realized Sharpe ratios of 
optimized portfolios also vary with the choice of EPO 
shrinkage parameter. The EPO performance is strong 
for a wide range of shrinkage parameters, reflect-
ing the robustness of the process. Furthermore, the 
enhancements of the correlation matrix in Global 2 
and Global 3 improve the performance relative to 
Global 1 in the case of w = 0 (the left side of the 
graph), which corresponds to standard MVO, but 
have almost no effect on the peak of the curve. 
In other words, improving the correlation matrix is 
important for standard MVO but has little effect 
when we subsequently shrink the correlation by a 
large factor. 

Identifying problem portfolios. We have shown 
that standard MVO performs poorly whereas EPO 

performs strongly, so an interesting question is, 
what is the source of this difference? For simplicity, 
we illustrate problem portfolios for the sample in 
Global 1.

Following the ideas in “Shrinking Correlations: The 
Simple EPO,” we uncovered the problem portfolios 
as follows. Each month t, we first estimated the 
volatilities and correlation matrix of global assets tΩ  
as described in “Data and Methodology.” We then 
computed the eigendecomposition of the correlation 
matrix,

ΩΩt t t t= −P D P 1,  (28)

where P P Pt t t
nt= …( )1, ,  is the matrix in which each 

column is a PC portfolio. 

We then studied the expected returns, ex ante 
volatilities, and ex ante Sharpe ratios of these PC 
portfolios (which were rebalanced monthly). We 
were comparing these ex ante data with the realized 
data. To compute these statistics, we considered 
the assets rescaled to have unit volatility, σσt t

−
+

1
1r , 

with an ex ante variance–covariance matrix equal to 
the correlation matrix (recall that σσt is the diagonal 
matrix of volatilities). Similarly, PC portfolio i has a 
return P rt

i
t t( )′ −

+σσ 1
1.

Therefore, based on this time series, we can com-
pute the realized average excess return, volatility, 

Figure 2. EPO Shrinkage Parameter 
over Time: Global 2, 1985–2018

Out-of-Sample EPO Shrinkage Parameter, w
1.0

0.8
0.9
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1/31/1985 1/31/1994 1/31/20121/31/2003

Notes: We empirically chose w out-of-sample as follows: For 
each time period, we estimated what choice of w (within a 
finite grid of possible values) would have produced the highest 
EPO portfolio Sharpe ratio in the time period up until that 
date. Then, we used this estimate in the next time period.
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and Sharpe ratio. The ex ante expected return is 
( )P st

i
t t′ −σσ 1 , where signal st about the expected return 

is given in Equation 23. The ex ante volatility of PC 
portfolio i is given by its corresponding eigenvalue, 
Dt
i , and the ex ante Sharpe is the ratio of expected 

return and ex ante volatility.21

Figure 1 plots the results. Looking back at it, first 
consider Panel A, showing the volatilities of the 
principal-component portfolios. By construction, 
PC#1 had the highest ex ante volatility and PC#55 
had the lowest ex ante volatility. Looking at the real-
ized volatilities of these portfolios, we see that the 
realized returns are also decreasing in the PC number 
with volatility levels that roughly match their average 
ex ante counterparts, indicating that the risk model 
works reasonably well. However, we do see system-
atic errors: The least important PCs (those with the 
highest numbers) have higher realized volatilities 
than their average ex ante volatility. The reason is 
that these portfolios have been chosen as those 
with the lowest ex ante volatility, so errors in the risk 
model may lead to underestimation of the ex ante 
risk of these portfolios. This low level of estimated 
risk leads the optimizer to apply excess leverage to 
these noise portfolios to achieve a given level of risk.

Now consider PC returns, plotted in Panel B of 
Figure 1. Naturally, realized returns are noisy; 
expected returns are smoother simply because real-
ized performance always has an element of chance. 
Nevertheless, we see that both expected and real-
ized returns tend to be lower for the less important 

PCs. Furthermore, we see that realized returns 
approach zero faster than the expected returns do. 
Said differently, the expected returns appear to be 
too high for the least important PCs, which adds to 
the problem identified in Panel A. Any noise in the 
expected returns of the actual assets leads to non-
zero expected returns of the unimportant PCs, and 
because the optimizer can always choose the sign of 
the portfolio to make a nonzero expected return into 
a positive expected return, the optimizer wants to 
take a large position in these noise PCs.

Panel C of Figure 1 illustrates how the problems with 
risk and expected return interact by looking at the 
corresponding Sharpe ratios. We see a dramatic dif-
ference between ex ante and realized Sharpe ratios: 
Realized Sharpe ratios decrease with the PC number, 
whereas ex ante Sharpe ratios increase. Realized 
Sharpe ratios decrease because the important 
low-numbered PCs are more likely to be driven by 
true economic factors whereas the high-numbered 
PCs are unintuitive long–short factors. Said differ-
ently, the low-numbered PCs have larger signal-
to-noise ratios than the high-numbered PCs. The 
ex ante Sharpe ratios are high for the unimportant 
PCs because their risk is underestimated, and their 
expected return is overestimated, especially relative 
to their level of risk.

To see the implications of this discrepancy, note in 
Panel D of Figure 1 the relative importance of each 
PC for the MVO and EPO portfolios. Specifically, we 
plotted the realized risk for each PC of the standard 

Figure 3. Performance 
of Optimized TSMOM 
(Global) Portfolios, 
1985–2018

Sharpe Ra�o
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Notes: Global 1–Global 3 data were used. The three correlation matrices are the standard sample 
correlation matrix (“Standard” in the figure), a correlation matrix with 5% correlation shrink-
age applied (“Shrunk”), and a cleaned correlation matrix based on RMT. A shrinkage of 0% is 
standard mean–variance optimization, 100% shrinkage is the anchor portfolio, and in between 
is EPO.
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MVO portfolio and the OOS EPO portfolio (where 
both portfolios were scaled to realize 10% volatility 
over the full sample to focus on differences in rela-
tive risks across PC portfolios). We see that the erro-
neous pattern in ex ante Sharpe ratios leads standard 
MVO to take large amounts of risk in the unimport-
ant PC portfolios, which turns out, ex post, to be 
largely betting on noise in past data. Furthermore, 
the notional weights on the unimportant PC port-
folios are even larger because these portfolios need 
to be leveraged as a result of their low risk per 
notional amount (not shown in Figure 1). This large 
risk exposure to “problem portfolios” highlights why 
standard mean–variance optimization techniques 
often perform poorly out-of-sample. In contrast, 
the EPO method accommodates this problem. 
Indeed, EPO shrinkage corresponds to reducing the 
ex ante Sharpe ratio of unimportant PC portfolios, 

which leads, in turn, to much smaller amounts of real-
ized risk in the unimportant PC portfolios, as Panel D 
shows.

The alpha of EPO. Having shown the underlying 
cause of EPO’s economically significant performance 
improvements, we now report the alphas of EPO 
over passive market exposures and other known 
factors. Table 3 shows the alphas of OOS EPO for 
TSMOM (using the Global 2 sample) in relation to 
several benchmarks (with all variables standard-
ized ex post to 10% volatility for comparability of 
coefficients). In column 1, we simply controlled for 
the volatility-adjusted TSMOM factor. The result-
ing improvement in Sharpe ratio that we saw in 
Table 2 translates into a statistically significant 
alpha and a large information ratio despite the high 
R2. Column 2 reflects a further adjustment for the 

Table 3.  Alpha of Out-of-Sample EPO for TSMOM: Global 2, 1985–2018

 
 

Dependent Variable

EPO EPO EPO TSMOM TSMOM

Alpha 2.48% 2.17% 2.11% –0.43% –0.34%

 (3.36) (2.92) (2.93) (–0.57) (–0.45)

Long only (1/σ)  0.06 0.07 –0.02

  (2.77) (3.57) (–0.86)

TSMOM 0.91 0.90   

 (44.82) (43.77)   

TSMOM(COM)   0.53  

   (26.02)  

TSMOM(EQ)   0.30  

   (14.99)  

TSMOM(FI)   0.34  

   (16.77)  

TSMOM(FX)   0.32  

   (15.69)  

EPO    0.91 0.92

    (44.82) (43.77)

Information ratio 0.60 0.53 0.54 –0.10 –0.08

R2 83% 84% 85% 83% 83%

Notes: The alphas are for OOS EPO (using the Global 2 sample described in Table 1) when controlling for a volatility-scaled long-
only portfolio diversified across all instruments and volatility-scaled TSMOM portfolios diversified across all instruments or all 
instruments within each asset class. Also reported are alphas of the volatility-scaled TSMOM portfolios in relation to OOS EPO. All 
variables were ex post standardized to an annualized full-sample volatility of 10% to make the alphas comparable. The scaling did 
not affect the t-statistics, which are reported in parentheses.
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volatility-adjusted long-only portfolio (called 1/σ), 
which also had good performance, to see whether 
EPO simply benefits from being more long passive 
market exposures. Table 3 shows that the alpha 
remains statistically significant. Column 3 reflects 
controls for volatility-adjusted TSMOM strategies in 
each of the four asset classes to see whether EPO 
statically exploits a different asset allocation strat-
egy. This test is stringent because we are now con-
trolling for five high-performance volatility-adjusted 
strategies that already implicitly do part of the job 
that we hoped an optimizer would do. Nevertheless, 
the alpha of EPO remains statistically significant. 
The last two columns of Table 3 turn things around, 
regressing the volatility-adjusted TSMOM strategy 
on the EPO portfolio. We found an insignificant 
alpha, which is consistent with the dominant perfor-
mance of EPO.

Leverage and turnover. Finally, to show that EPO 
produces realistic and implementable portfolios, 
we considered the turnover and gross leverage 
profiles of EPO portfolios. Table 4 shows leverage 
and turnover statistics for the benchmark portfolios, 
the OOS EPO portfolio, and the EPO with various 
constant shrinkage parameters. We focus on the 
sample from Global 2 with a 5% shrunk correlation 
matrix. Furthermore, for comparability, gross lever-
age statistics are shown for portfolios ex post scaled 
to 10% annualized volatility, and annualized turnover 
statistics are reported as a percentage of average 
gross leverage. The lower EPO shrinkage parameters 
exhibit larger turnover and more gross leverage. For 
example, the standard MVO portfolio arising from 
an EPO shrinkage parameter of zero has substan-
tially more turnover and leverage than the anchor 
portfolio arising from an EPO shrinkage parameter 
of 100%. Nevertheless, an EPO shrinkage parameter 
of 90% would yield turnover and leverage similar 
to the anchor, with a substantial improvement in 
performance, as shown in Table 2. The OOS EPO has 
a larger turnover and leverage than the anchor, but 
they remain of the same order of magnitude. In sum-
mary, when the EPO shrinkage parameter is chosen 
appropriately, EPO yields implementable portfolios 
with realistic leverage and turnover profiles, as well 
as substantial performance improvements over the 
standard TSMOM factors in the literature. Although 
the EPO method shown here abstracts from transac-
tion costs, modeling transaction costs explicitly as a 
part of the optimization can potentially reduce turn-
over. Gârleanu and Pedersen (2013, 2016) derived 
the optimal portfolio in light of transaction costs but 
without taking estimation uncertainty into account, 

so their model could be combined with our enhance-
ments in future research.

Results for Equity Portfolios: Beating 
Industry Momentum, the Market, 1/N, and 
Standard Factors. We have seen that EPO sub-
stantially improves the performance of time-series 
momentum predictors applied to a universe of global 
assets. We next consider the performance of EPO 
for equity portfolios and study the robustness of the 
performance to a range of choices on optimization, 
risk estimation, and signals about expected returns.

EPO performance vs. benchmarks. Table 5 reports 
the Sharpe ratios of the OOS EPO portfolio, a range 
of EPO portfolios with various constant shrink-
age parameters, and three benchmark portfolios. 
The benchmark portfolios are the 1/N portfolio, a 
standard industry momentum (INDMOM) portfolio 

Table 4.  Leverage and Turnover of 
Optimized TSMOM Portfolios: 
Global 2, 1985–2018

 

Gross 
Leverage 
per 10% 
Volatility

Annualized 
Turnover 

as % of Avg. 
Gross Leverage

Portfolio   

Long only: 1/N 135% 26%

Long only: 1/σ 267 43

TSMOM: equal 
notional weight

167 153

TSMOM: equal risk 358 163

EPOs: out-of-sample 457 254

EPOs(w): shrinkage parameter w

0% (naive MVO) 991% 546%

10% 767 480

25% 649 417

50% 551 339

75% 479 263

90% 424 208

99% 368 166

100% (anchor) 358 163

Notes: For comparability, all statistics are reported for portfo-
lios that were ex post scaled to an annualized full-sample vola-
tility of 10%. Annualized turnover is reported as a percentage 
of each portfolio’s average gross leverage.
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(following Moskowitz and Grinblatt 1999) with 
notional weights given by XSMOMt

i in Equation 24, 
and a standard MVO using unshrunk correlations.

In all cases in Table 5, the OOS EPO portfolio 
outperformed 1/N, INDMOM, and the standard 
MVO portfolios—often by a substantial margin. The 
robustness of these results is noteworthy in light 
of the range of specifications. Recall that Equity 1 
through Equity 3 varied the risk model from 40 days 
to 60 months—a broad span of risk models. Equity 4 
and Equity 5 used different ways to scale the signals 
about expected returns. Equity 6 and Equity 7 used 
different implementations of the EPO method—the 
anchored EPO rather than the simple EPO—while 
considering different anchors. Finally, Equity 8 was 
based on a more granular set of test assets—that is, 
two portfolios per industry.

The OOS EPO portfolio comes close to realizing 
the highest in-sample Sharpe ratio among all EPO 
portfolios with a constant shrinkage parameter in 

all samples except for Equity 2, which shows the 
robustness of the process. Also, note that all the 
OOS EPO portfolios realized higher Sharpe ratios 
than all five Fama–French factors, despite the fact 
that the Fama–French factors are based on individual 
stocks whereas the EPO factors rely only on industry 
returns. In fact, the best OOS EPO factors even out-
performed a portfolio that simultaneously invested 
in all five Fama–French factors (equal weighted) over 
the comparable time period.22 

Alpha to standard factors. Table 6 reports returns 
after controlling for a nonoptimized INDMOM portfo-
lio (the anchor) as well as the Fama–French five-factor 
model. The alpha is positive in all cases. Furthermore, 
the positive alphas are statistically significant at the 
5% level in all samples except for Equity 6, where 
the t-statistic of 1.80 is significant only at the 10% 
level. For Equity 2 through Equity 4, the t-statistic is 
greater than 6, which is highly statistically significant. 
The weaker risk-adjusted return of Equity 6 may 

Table 5.  Realized Gross Sharpe Ratios of Optimized Equity Portfolios, 1942–2018

Equity 1 Equity 2 Equity 3 Equity 4 Equity 5 Equity 6 Equity 7 Equity 8

Portfolio         

1/N 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.57

INDMOM 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.67

MVO (no correlation 
shrinkage)

0.19 –0.02 0.92 0.84 0.47 0.21 0.21 0.01

EPO: out-of-sample 0.79 0.72 0.96 0.99 0.66 0.83 0.90 0.90

EPO(w): in-sample with shrinkage of w

0% (MVO with 
5% correlation 
shrinkage)

0.56 0.82 0.97 0.96 0.66 0.50 0.51 0.60

10% 0.68 0.89 0.98 0.99 0.71 0.59 0.60 0.80

25% 0.75 0.92 0.98 0.99 0.72 0.66 0.67 0.91

50% 0.79 0.93 0.96 0.97 0.71 0.72 0.75 0.98
75% 0.80 0.91 0.93 0.94 0.69 0.85 0.91 0.98

90% 0.79 0.88 0.89 0.92 0.67 0.83 0.90 0.94

99% 0.73 0.77 0.77 0.91 0.65 0.60 0.63 0.86

100% (anchor) 0.71 0.73 0.73 0.91 0.63 0.59 0.62 0.81

Notes: The Equity 1 through Equity 8 samples are described in Table 1. The long-only 1/N portfolio invests with equal notional 
exposure across all industries; the INDMOM portfolio is long industries that outperformed over the past 12 months and short 
industries that underperformed; the standard MVO portfolio is without correlation shrinkage. The optimized portfolios are the 
out-of-sample and in-sample EPO portfolios. The optimal in-sample EPO portfolio and the out-of-sample EPO portfolio are shown 
in bold in each column. We considered in-sample EPO portfolios for a range of shrinkage parameters. The OOS EPO chose w by 
using only past data.
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result from the fact that in this specification, the EPO 
is anchored to the long-only 1/N portfolio, which cre-
ates two issues: (1) a large market loading of 0.85 and 
(2) a trade-off (in the choice of the shrinkage param-
eter) between stabilizing the optimization and moving 
toward a long-only portfolio, which does not exploit 
signals about expected returns. Nevertheless, the 
EPO portfolios delivered strong performance across a 
range of settings, and this strong performance cannot 
be explained by standard factors.

Conclusion: A Practical Guide 
to Optimization
We developed a simple and transparent method 
to make portfolio optimization work in practice. 
The method is essentially as simple as standard 
mean–variance optimization. The simple EPO 
method uses a single extra input—namely, a correla-
tion shrinkage parameter, which is chosen to maxi-
mize risk-adjusted returns in past data. EPO improves 

portfolio performance by accounting for noise in 
the investor’s estimates of risk and expected return. 
The method encompasses several optimization pro-
cedures in the literature—notably, Black–Litterman 
(1992), robust optimization, and regularization 
methods used in machine learning—so it demystifies, 
unifies, and simplifies much of this literature.

To illuminate why standard MVO techniques often 
fail, we identified the problem portfolios, to which 
MVO gives large weight despite their poor perfor-
mance. Our EPO method addresses this issue via 
correlation shrinkage, which, perhaps surprisingly, 
downweights the problem portfolios.

Despite the method’s simplicity, EPO delivers power-
ful results empirically. Applying our EPO method to 
several realistic examples, we found surprisingly large 
performance improvements in optimized industry 
momentum and time-series momentum portfolios rel-
ative to standard benchmarks and predictors used in 
the literature. When applied to global assets, our EPO 

Table 6.  Alpha of EPO for Equity Portfolios, 1963–2018

 
 

Dependent Variable: OOS EPO Portfolio

Equity 1 Equity 2 Equity 3 Equity 4 Equity 5 Equity 6 Equity 7 Equity 8

Alpha (annualized) 3.82% 8.09% 7.65% 6.25% 2.50% 1.07% 1.31% 4.40%

 (4.41) (6.68) (6.29) (6.07) (2.38) (1.80) (2.49) (5.07)

INDMOM 0.78 0.53 0.53 0.69 0.67 0.31 0.33 0.78

 (32.11) (15.66) (15.64) (24.00) (22.71) (18.85) (22.43) (32.21)

Mkt – RF 0.08 –0.09 –0.07 –0.07 –0.04 0.85 0.91 0.10

 (3.12) (–2.38) (–1.95) (–2.10) (–1.23) (45.87) (55.57) (3.69)

SMB –0.06 –0.04 –0.02 –0.04 –0.07 0.16 0.09 –0.05

 (–2.27) (–1.14) (–0.66) (–1.32) (–2.14) (9.33) (5.88) (–2.04)

HML –0.01 0.10 0.10 0.04 0.01 0.03 0.05 –0.03

 (–0.44) (2.04) (2.12) (0.94) (0.23) (1.40) (2.31) (–1.01)

CMA –0.14 –0.12 –0.12 –0.05 –0.01 –0.02 0.00 –0.10

 (–4.05) (–2.43) (–2.35) (–1.22) (–0.27) (–0.84) (0.12) (–2.73)

RMW –0.04 –0.04 –0.04 –0.03 0.01 0.06 0.08 –0.03

 (–1.42) (–1.04) (–1.06) (–0.95) (0.40) (3.33) (5.16) (–1.10)

Information ratio 0.63 0.96 0.90 0.87 0.34 0.26 0.36 0.73

R2 64% 29% 28% 49% 46% 83% 87% 64%

Notes: Performance of the OOS EPO portfolios is presented after controlling for standard factors. The Equity 1 through Equity 8 
portfolios are described in Table 1. Each column reports a multivariate regression of EPO on a standard industry momentum factor 
(INDMOM) and the Fama–French five-factor model (Mkt-RF, SMB, HML, CMA, and RMW), from 1963 to 2018. Note that the 
Fama–French five-factor model data series does not begin until 1963. All variables are ex post standardized to an annualized full-
sample volatility of 10% to make coefficients comparable. This scaling did not affect the t-statistics reported in parentheses.
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time-series momentum portfolio substantially outper-
formed the market portfolio, the 1/N portfolio, and 
even relatively sophisticated benchmarks that already 
perform substantially better than the 1/N portfolio. 
Indeed, the EPO method delivered significant alpha 
relative even to volatility-scaled long-only and stan-
dard time-series momentum portfolios. These sophis-
ticated benchmarks already deliver high Sharpe ratios 
because they exploit the lowest hanging fruits of 
optimization by (1) using information about expected 
returns, (2) controlling for volatility differences across 
assets and over time, (3) potentially exploiting market 
risk premiums and risk-parity effects, and (4) poten-
tially readjusting asset class weights. This benchmark 
is a tough one to beat, yet EPO beat it. 

When applied to equities, our EPO industry momen-
tum portfolio substantially outperformed the market 

portfolio, the 1/N benchmark, and a standard industry 
momentum portfolio. This strong outperformance 
of EPO cannot be explained by exposure to existing 
factors in the literature, such as the Fama–French 
factors. Furthermore, the performance enhancements 
are robust to a range of specifications. Although for 
simplicity we focused on momentum predictors, 
future research could use this approach to enhance 
other predictors.

Appendix A. Summary of Notation 
and Auxiliary Results
In addition to a summary of the notation, we discuss 
the construction of TSMOM factors and random 
matrix theory.

Summary of Notation

Symbol Meaning

r = ( )′r rn1,..., Vector of excess returns

x = ( )′x xn1,..., Vector of portfolio holdings

g Relative risk aversion

s = ( )′s sn1,..., Vector of signals about expected excess returns

ΣΣ = var( | )r s Variance–covariance matrix

ΣΣ Enhanced risk estimate 

ΣΣw w wV= − +( )1 Σ Shrunk variance–covariance matrix

w EPO shrinkage parameter

σσ = …( ) = …diag diag(Σ Σ11 1, , , , )nn nσ σ Diagonal matrix of volatilities

V = σσ2 Diagonal matrix of variances

ΩΩ = ′PDP Correlation matrix

P Matrix whose columns are principal-component portfolio weights 
(eigenvectors)

D Diagonal matrix of variances of principal-component portfolios 
(eigenvalues)

a Anchor portfolio 

m True, but unobserved, expected return

t Variation in true expected returns

ΛΛ , l Error in the estimation of expected returns
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Standard Time-Series Momentum 
(TSMOM) Factors
Following Moskowitz et al. (2012), we used the 
“global assets” data to construct standard TSMOM 
factors. In particular, we considered the equal-
notional-weighted TSMOM factor with the following 
notional positions:

x
n

rt
TSMOM equal notional weighted

t
t t
i, sign- -

, .= ( )−
1

12
  

(A1)

This factor goes long or short depending on the sign 
of the past 12 months’ excess returns and invests 
equally across the nt available assets. Notional-
weighted portfolios are not common in practice 
when investing across asset classes with large 
cross-sectional dispersion of volatilities. In such 
cases, a notional-weighted portfolio’s risk may be 
dominated by a few assets or asset classes with 
higher volatilities. Nevertheless, we include com-
parisons to notional-weighted portfolios because 
they are the standard benchmark in the academic 
literature, are close to the 1/N portfolio, and are 
still used by some investors in practice (e.g., many 
investors who are benchmarked to a 60/40 stock/
bond portfolio). We also considered the equal-
volatility-weighted TSMOM factor with notional 
positions given by

x
n

rt
t t

i t t
iTSMOM, equal-volatility-weighted sign= ( )−

1 40
12

%
,σ

..
 

 (A2)

Baltas (2015) and Yang et al. (2019) considered 
equal-risk-contribution TSMOM portfolios by 
extending the concept of “equal risk contribution” 
to long–short portfolios. In contrast, our anchor 
portfolio simply targets equal standalone volatility 
in each asset, thus matching the Moskowitz et al. 
(2012) implementation.

Random Matrix Theory
The subsection “Problem Portfolios” in the sec-
tion “Identifying the Problem with Standard 
Optimization” shows that errors in the estimated risk 
model lead to problems for MVO. Specifically, small 
eigenvalues of the variance–covariance matrix give 
rise to “problem portfolios.” These problem portfolios 
may be accommodated by stabilizing the correlation 
matrix, but what is the best way to do this?

The subsection “Shrinking Correlations: The Simple 
EPO” discusses a simple way to stabilize risk—namely, 
by shrinking correlations toward zero. How do we 
choose the shrinkage parameter, q? One approach 
is to choose a parameter that works well empirically 
(by looking at past data), but one can also use random 
matrix theory to derive an asymptotically optimal 
choice (Ledoit and Wolf 2004). Furthermore, RMT 
can be used to derive more general forms of stabi-
lized correlation matrices, such as a nonlinear shrink-
age of the eigenvalues (see El Karoui 2008; Ledoit 
and Wolf 2017; Bun et al. 2017; and the references 
in them). 

Whereas standard statistics relies on estimates to 
be close to the true values when the number of 
time periods, T, is large, RMT, instead, deals with 
the “big data” environment of modern financial 
markets—that is, when we have large values of both 
the number of securities, n, and the number of time 
periods. Specifically, RMT considers what happens 
when T → ∞ and n → ∞ such that n T q/ → , where the 
number q is typically in (0,1). In practice, this aspect 
of the theory means that we can learn a lot about a 
variance–covariance matrix simply from knowing the 
ratio of the number of securities to the number of 
time periods used for estimation.

In line with our analysis in “Shrinking Correlations: 
The Simple EPO,” RMT is focused on the eigenval-
ues of the matrix. A basic result is that if all returns 
are independent across securities and over time, 
then the asymptotic distribution of the eigenvalues 
is known explicitly and is given by Marčenko and 
Pastur (1967). As shown in the example in Figure A1, 
the Marčenko–Pastur distribution fits the distribu-
tion of the observed eigenvalues well even in a single 
sample. This characteristic is called the self-averaging 
property of random matrices. 

Of course, security returns from real financial data 
are not independent, so the distribution of eigen-
values from real data does not closely fit Marčenko 
and Pastur (1967). The point is that on the basis of 
Marčenko and Pastur, we know what random noise 
in eigenvalues looks like. In particular, the “bulk” of 
small eigenvalues inside the Marčenko–Pastur dis-
tribution are probably just noise, whereas the larger 
eigenvalues outside the bulk are more likely to reflect 
true common return factors. Interestingly, we can 
talk about a specific “bulk” because the Marčenko–
Pastur distribution is concentrated on a bounded 
interval; this distribution is very different from the 
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normal distribution that we are used to seeing as a 
limiting distribution in standard statistics. 

RMT offers various methods to “clean” the correla-
tion matrix in the following two steps. First, we 
replace the estimated eigenvalues, D Dn1, ,…( ),  
with cleaned eigenvalues  D Dn1, ,…( ) while, typi-
cally, leaving the eigenvectors, P, unchanged.23 For 
this cleaning of eigenvalues, we focus here on the 
“IWs” method described in Bun et al. (2017), which is 
essentially the same as the RIE (rotationally invariant 
estimator) method described in Box 1 of Bun et al. 
(2016), with the extra steps of sorting the cleaned 
eigenvalues by size (to ensure that the ordering of 
the cleaned eigenvalues matches that of the original 
eigenvalues) and rescaling the cleaned eigenvalues 
to ensure that their sum matches that of the original 
eigenvalues. Then, we recover the cleaned correla-
tion matrix as  ΩΩ = −PDP 1 and the cleaned variance–
covariance matrix as  ΣΣ σσΩΩσσ= .

To understand Marčenko and Pastur (1967) in more 
detail, we start with the estimated correlation matrix, 
W, for n i.i.d. random returns observed over T time 
periods:

Ω
σ σij

t

T
t
i i

i
t
j j

jT
r r r r

=
−











−











=
∑1

1
,

 

(A3)

where r i is the average return of security i and σi 
is the standard deviation of the return. In standard 
“frequentist statistics,” we then let the number of 
time periods go to infinity, concluding that the esti-
mated correlation matrix converges to the population 
counterpart (and having access to the central limit 
theorem). 

RMT, instead, considers the limit T n, → ∞ such that 
n T q/ → . The remarkable result is that the empirical 
distribution of eigenvalues of W converges to the 
Marčenko–Pastur distribution. When ratio q satis-
fies q∈ ( , )0 1 , then density f of the Marčenko–Pastur 
distribution is given by

f d
q d d q

qd
( )

( )( )
=

− −+ −

2π   
(A4) 

Figure A1. Distribution 
of Eigenvalues for 
Independent Securities 
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Notes: This figure is a histogram of the eigenvalues for the correlation matrix for 1,000 securities 
with returns simulated over 2,000 days, where the returns are assumed to be independently 
and identically distributed (i.i.d.) normal. The true eigenvalues are all 1 for a correlation matrix of 
independent securities, but estimation noise creates randomness (smaller and larger estimated 
eigenvalues), which is well captured by Marčenko and Pastur (1967).
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for d q q∈ − +( , ) , and otherwise, f(d) = 0, where 

q q− = −( )1
2
 and q q+ = +( )1

2
. A slightly more  

complicated result holds for q >1. This density is 
plotted in Figure A1 together with a histogram of 
estimated eigenvalues. This is a form of central limit 
theorem for RMT. 

Appendix B. Proofs

Proof of Proposition 1
This model yields the following posterior mean for m:

E( | E( ) cov( ) var( ) E( )µµ µµ µµs s s s s) , ( )= + −−1

= + + −−γ γΣΣ ΣΣ ΣΣ ΛΛ ΣΣa s aτ τ( ) )(1

= + + − + 
− −ΣΣ ΣΣ ΛΛ ΣΣ ΣΣ ΛΛ ΣΣ(τ τ γ τ τ) ( )1 1s I a

= + + +− −ΣΣ ΣΣ ΛΛ ΣΣ ΣΣ ΛΛ ΛΛ( ) ( )τ τ τ1 1s aγ

= + +−ΣΣ ΣΣ ΛΛ ΛΛ(τ τ) ),(1 s aγ

where the first equality is due to the standard formula 
for conditional means of normally distributed random 
variables (or, equivalently, the standard ordinary least-
squares, OLS, formula for regressing m on s) and the 
fourth equality uses the Woodbury matrix identity.24

Proof of Proposition 2
We first solve the minimization problem inside 
Equation 15. For this, consider the Lagrangian:

L l c= − ′ + − ′ − −





−( ) ( ) ,( )x a s sµµ µµ ΛΛ µµ1 2

where l is the Lagrange multiplier. Differentiating 
with respect to m, we get the first-order condition:

0 2 1= − + −−( ) ( )x a slΛΛ µµ

so µµ ΛΛ= − −s x a1
2l

( ). Choosing l so that the constraint 

specifying the uncertainty region is satisfied with 
equality, we see that the solution to the minimization 
problem is

µµ
ΛΛ

ΛΛ= −
− ′ −

−s
x a x a

x ac
( ( )

(
)

).

Based on this solution to the minimization problem, 
we can write the robust portfolio problem in the 
following way:

max ( ) ( ) ( ) .
x

x a s x x x a x a− ′ − − − ′ −′





γ
2

ΣΣ ΛΛc

Given that c can be chosen freely, the set of solu-
tions (as we vary the parameter c) is the same as the 
set of solutions where we drop the square root (see 
Lemma 1 below). Further, for consistency with the 
other sections, we replace the parameter c by the 
parameter t (which we put in the denominator) and 
drop constant terms:

max ( ) ( ) .
x

′ − − − ′ −′





x s x x x a x aγ γ
τ2 2

ΣΣ ΛΛ

The first-order condition is

0 = − − −s x x aγ
γ

ΣΣ ΛΛ ,,
τ

( )

which yields the final solution to the robust portfolio 
optimization problem:

x s a= + +−1 1
γ

τ γ( ) ( ).ΣΣ ΛΛ ΛΛτ

Lemma 1
For any vector a Rn∈  and positive definite matri-
ces B C Rn n, ∈ × , the set of solutions to Problem A, 
x*A

c
(c){ } ≥0

, equals the set of solutions to Problem B, 

x*B
d

(d){ } ≥0
, where

Problem A: max
x

x a x Bx x Cx( )′ ′− − ′c

Problem B: max .( )
x

x a x Bx x'Cx′ ′− − d

Proof of Lemma 1
For a given c, note that the solution x* ( )A c  to Problem A 
satisfies the first-order condition:

0 = − −a Bx x2cC .

We wish to show that x* ( )A c  also satisfies the first-
order condition corresponding to Problem B for an 
appropriate choice of d:
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0 = − −
′

a Bx
x Cx

Cxd .

We see that the result holds for 

d c c c= ( )′2 x Cx* *( () )A A .

Similarly, for any given d with corresponding solu-
tion x B* ( )d  to Problem B, we see that this vec-
tor is also a solution to Problem A when we let 

c d d d= ( )′







/ ) )( (2 x Cx*B *B

.

Proof of Proposition 3
Parts 1 and 2 are clear. Regarding part 3, the deriva-
tion is shown in “Anchoring Expected Returns: A 
Bayesian Approach.” Regarding the relation to Black 
and Litterman (1992), we use the superscript BL 
to indicate their notation. With the relations that 
ΠΠ ΣΣBL = γ a, Q sBL = , PBL = I, ΩΩ ΛΛBL = , ΣΣ ΣΣBL = , and 
τ τBL = , their expression in point 8 of their appendix 
can be shown to equal our expression for the condi-
tional mean:

E( |µµ ΣΣ ΣΣ ΛΛ ΛΛs s a) ( ) )(= + +−τ τ γ1

= + +− −( )) (τ τ γI s aΛΛΣΣ ΛΛ1 1

= + +− − − −( )) (τ τ γΛΛ ΣΣ ΛΛ ΛΛ1 1 1 1 s a

= + +− − − −( )) (τ τ γΛΛ ΣΣ ΛΛ1 1 1 1s a

= +  +− − − − −( () )τΣΣ ΛΛ ΛΛ1 1 1 1 1τ γa s

= + 

+⋅ 

− − −

− −

( )

( ) ) .

( )

(B

τ

τ

BL BL BL

L BL BL BL BL

ΣΣ ΩΩ

ΣΣ ΠΠ ΩΩ

1 1 1

1 1Q

Regarding our part 4, the derivation of robust opti-
mization is in “Anchoring Expected Returns: Robust 
Optimization,” using Lemma 1, which is stated and 
proved in this appendix.

Regarding part 5, note that a ridge regression is 
a method used to mitigate noise and collinearity 
in a regression setting. Specifically, consider the 
regression y z= +ββ εε, where b is the vector of regres-
sion coefficients. The ridge regression chooses the 
b that minimizes the sum of squared errors plus a 
scalar, say l, times the sum of squared regression 
coefficients, ( ) ( )y z y z− ′ − + ′ββ ββ ββ ββλ . The solution is 

ridge 1( )ˆ −′ ′= + λz z I z yβ , so we see that the symmetric 
matrix ′z z is being pushed toward the identity matrix 
I, ensuring invertibility. So, if expected returns 

(summarized by s) are estimated in a regression, then 
a ridge regression can be used to stabilize the param-
eter estimates. This is related to, but somewhat 
different from, the stabilization of the optimization 
behind the EPO solution.

To see the direct relation to EPO, recall that we seek 
to solve the first-order condition for the optimal 
portfolio problem (Equation 3), s x= γΣΣ . That is, we 
need to solve for the optimal portfolio x based on 
the noisy data on S and s. We rewrite this equation 

as 1 1 2 1 2
γ

ΣΣ ΣΣ εε− = +/ /s x , introducing an error term e 

in order to interpret this equation as a regression 
(and to indicate that we are willing to accept that the 
equation does not hold with equality, in exchange for 
robustness).25 We interpret the left-hand side as the 
dependent variable in a regression and the right-
hand side as the independent variable multiplied by 
the “regression coefficient” x. The ridge regression 
estimator is x I s= + −1 1

γ
λ( )ΣΣ , which is closely related 

to the EPO solution.

The Tikhonov regularization introduces a matrix G 
(instead of the multiple of the identity matrix, λI) 
and minimizes ( ) ( )y y− ′ − + ′ ′zββ ββ ββ ΓΓ ΓΓββz  with solution 


ββ ΓΓ ΓΓTikhonov = + ′ ′′ −( )z z z y1 . In our context, we can use 
the same regression as above with ΓΓ σσ= λ , which 
yields x = + −1 1

γ
( )ΣΣ λV s using V = ′σσ σσ. This solution 

is proportional to the simple EPO—that is, it is the 
simple EPO solution with a different risk aversion.

Next, consider the Lavrentiev regularization (which is 
a generalized version of the Tikhonov regularization 
when z is symmetric and positive definite), which 
generally solves y z= +ββ εε by choosing b in order to 

minimize z y z Qββ ββ ββ− + −−1
2

0
2 , where the norm is 

defined as x x QxQ
2 = ′ , Q is a symmetric matrix, and 

b0 is a base-case parameter choice. The solution is 
Lavrentiev 1

0 .ˆ ( ( ))−= + +z Q y Qβ β  Next, consider this 

regularization for the regression 1
γ

s x= +ΣΣ εε, where 

again, we are solving for x, letting the anchor port-

folio a play the role of ββ0 and 1
τ

ΛΛ play the role of Q. 

Then, we have x s a= +





 +











−

ΣΣ ΛΛ ΛΛ
1 1 11

τ γ τ
, which is 

exactly equal to the EPO portfolio.

Lastly, consider the regression of a vector of ones, 
1, on a matrix, R, of realized excess returns for all 
n assets over T time periods, 1 Rx= + εε. As pointed 
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out by Britten-Jones (1999), the OLS estimate, 

x R R R 1= ′





′
−1 11

T T
, is the standard MVO when we 

view the average realized return, 1
T

′R 1, as the signal 

about expected returns and the realized second 

moment, 1 1

T
′





−
R R , as the variance estimate. If we 

use the Tikhonov regularization with ΓΓ σσ= λT , we 

get x R R V R 1= +





′′
−1 11

T T
λ , which is the simple EPO 

under the stated assumptions.
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Notes
1. A large literature has addressed estimation noise—for 

example, Ledoit and Wolf (2003, 2004) on noise in 
variance–covariance matrices and Black and Litterman 
(1992) on noise in expected returns.

2. Note that this result is not simply the same as saying that 
averaging portfolios improves performance (as shown by 
Tu and Zhou 2011). We found that EPO can work even 
better. For example, if we first compute the standard 
MVO portfolio without shrinkage, xw=0, and the solution 
with full shrinkage, xw=1, and then take the average of 
these, ax a xw w= =+ −0 11( ) , the result does not work as well 
as our EPO method for any a, especially if the MVO is 
particularly ill behaved. The EPO method first shrinks and 
then optimizes, not the other way around, which is useful 
because shrinking the correlations stabilizes the optimiza-
tion process.

3. We unify several leading approaches to optimization, but 
EPO obviously does not nest all methods. Roncalli (2013) 
and Bruder, Gaussel, Richard, and Roncalli (2013) reviewed 
various methods of regularizing MVO, including a discus-
sion of the eigendecomposition of the variance–covariance 
matrix similar to our problem portfolios, showing that 
the risk of these portfolios is low. We additionally show 
that the expected return of problem portfolios is too high 
(see Panel B of Figure 1) and that large EPO shrinkage 
can help address both these problems. DeMiguel et al. 
(2009), considering 14 methods of optimization, found that 
none consistently outperformed the simple 1/N portfolio. 
Some methods do show promise in outperforming the 
1/N portfolio, however, such as methods that constrain 
the portfolio norm (Jagannathan and Ma 2003; DeMiguel, 
Garlappi, Nogales, and Uppal 2009), methods based on 
ambiguity aversion (Garlappi, Uppal, and Wang 2007), 
methods that average several approaches (Tu and Zhou 
2011), and methods that apply careful MVO with good 
inputs (Allen, Lizieri, and Satchell 2019).

4. Although a version of EPO can be shown to be equivalent 
to Black and Litterman (1992), there are several differ-
ences. Indeed, Black and Litterman always shrank toward 
the market portfolio, whereas we consider a general 
anchor (or no anchor); they considered long–short “view 
portfolios,” whereas we simply consider signals about 
expected returns, such as industry momentum or time-
series momentum, and we allow “double shrinkage”—of 
both the estimated expected returns and the variance–
covariance matrix. Most importantly, our contribution is 
to unify this approach with other optimization methods 

by showing the link to correlation shrinkage (which is not 
clear from the equations in Black and Litterman, p. 42), by 
presenting a simple, new, and powerful way to operation-
alize the method, and by documenting empirically how it 
works.

5. Appendix A describes a method to stabilize the risk model 
that is more sophisticated than shrinking correlations 
called “random matrix theory” (RMT). We have found 
empirically, however, that EPO works as well with simple 
correlation shrinkage as with RMT.

6. The variance of h is proportional to S in order to capture 
the idea that true fluctuations in expected returns are cor-
related across correlated assets (similar to the assumption 
made in Point 7 of the appendix of Black and Litterman 
1992). Expressed in a different way, the PC portfolios 
have expected returns ′ = ′ + ′− − −P P a Pσσ µµ σσ ΣΣ σσ ηη1 1 1γ , 
where the random fluctuation term, ′ −P σσ ηη1 , has variance 
τ τ′ =− −P P Dσσ ΣΣσσ1 1 , implying that the expected returns of 
the least important principal components vary the least.

7. To understand the anchor at a deeper level, consider 
again the case of h = 0. In this case, the expected 
excess return on any asset—say, asset number 1, is 
E( ) cov ( )r r ra1 11 0 0= … =γ γ( , , , ) , |   ΣΣa s . Using this relationship 
for anchor portfolio a and solving for γ = E( ) var( )r raa / |s ,  
we get E( ) cov( ) var( ) E( ) E( )r r r r r ra a a a a1 1 1=   =, | / | : , s s ββ . If a is 
the market portfolio, this relationship is simply the condi-
tional capital asset pricing model (CAPM). Hence, Equation 
12 defining m means that the CAPM holds, on average, 
but h pushes the expected returns around in such a way 
that the CAPM does not always hold exactly, resulting in 
trading opportunities. More generally, Equation 12 says 
that the anchor is the tangency portfolio when there are 
no shocks (h = 0).

8. To our knowledge, the specification of Equation 15 and 
its solution is new, but Fabozzi et al. (2010) considered a 
version of Equation 15 that is simpler in two ways: First, 
whereas we consider a general L, Fabozzi et al. assumed 
that L equals S, which means that there is no shrinkage of 
the variance–covariance matrix, and second, Fabozzi et al. 
did not have an anchor portfolio.

9. The assumption of independence of errors in the expected 
returns across securities, ΛΛ = λV, implies that the error in 
the measurement of the expected return of the principal 
components has a variance given by ′ =− −P V Pσ λ σ λ1 1( ) I,  
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where I is the identity matrix. That is, errors of all the 
principal components are independent and of equal 
magnitude.

10. Alternatively, we can think of the anchor being a = 0, which 
gives the same result as Equation 20 up to a constant that 
can be absorbed in the risk aversion coefficient. However, 
we think of the anchor as also being the EPO portfolio 
with full shrinkage, w = 1, implying that a V s= −( / )1 1γ  is the 
more natural interpretation of Equation 20.

11. Investors can also avoid specifying g altogether by solving 
an equivalent optimization that maximizes expected 
returns subject to a maximum volatility constraint, thus 
specifying a volatility target in lieu of g.

12. Choosing g may be done in several other, related ways, 
some of which work better than others. For example, 
although g in Equation 22 equalizes the variance of the 
anchor with that of ( / )1 1γ ΣΣw

− s, one could also replace the 
latter with the variance of the standard MVO solution, 
( )1 1/γ ΣΣ− s, but this is a poor choice if the standard MVO is 
ill behaved. Ao et al. (2019) and Raponi et al. (2020) also 
considered methods where g is based on variance.

13. Specifically, the general EPO is the solution to a Lavrentiev 
regularization (Lavrentiev 1967), and the simple EPO is the 
solution to a Tikhonov regularization. The simple EPO can 
also be seen as a ridge regression of a vector of 1s on the 
matrix of realized returns when risk and expected returns 
are estimated by their sample counterparts.

14. If we had included non-USD currency pairs, then the 
variance–covariance matrix would not be of full rank 
because, for example, EUR–USD, EUR–JPY, and USD–JPY 
are linked through a triangular arbitrage.

15. Available at https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html.

16. The annualized variance of instrument i was esti-
mated as ( ) ( ) ,( ), ,σ δ δ∞t

i k
t k
i

t
i

k r r2
1

2
0261 1= − −− −= …∑     

where rt
i is the exponentially weighted average return 

computed similarly, 261 annualizes the daily returns, 
and d was chosen to achieve a center of mass of 

( ) /( ), , 1 1 600 − = − == …∑ δ δ δ δ∞
k

k k      days. The correla-
tions were estimated by first computing covariance and 
volatilities in the corresponding way—using 3-day returns 
with 150-day center of mass—and then computing the 
correlations as ratios of the covariances to the product of 
the volatilities. We required at least 300 days of data to 
be available for an asset before it entered the covariance 
matrix.

17. In other words, the covariance of assets i and j is estimated 
as 1 1

1
/( )

, ,
K r r r r

k K
t k
i

t
i

t k
j

t
j−[ ] −( ) −( )

= …
− −∑

   
.

18. Some studies have considered longer time horizons—for 
example, past five-year returns. Past long-term returns, 
however, predict returns negatively, if at all, perhaps 
because securities that have risen in price over a long time 
have become expensive (De Bondt and Thaler 1985). Alas, 
comparing optimization methods using a faulty signal of 
expected returns is not informative.

19. Babu et al. (2020) reported a median time-series momen-
tum Sharpe ratio per asset of 0.34 per year (i.e., 0.10 per 
month) for traditional assets.

20. Indeed, this coefficient implies that the EPO portfolio 
with full shrinkage, EPO ws

t t( )%) ( /= = −100 1 1γ V st, has 
a notional exposure to asset i that matches that of 
Moskowitz et al. (2012) given in Appendix A. That is, 
EPO w

s n r

s i

t t
i

t
i

t t
i

t

(

) / )

%)

( / ( / %/

=

= ( ) =





( )
100

1 1 40
2

γ σ σ sign −−( )12,t
i .

21. Because the number of assets in our sample varied over 
time, we scaled the realized and ex ante average returns 
and volatilities to preserve the trace of the correlation 
matrix—that is, ensuring that the sum of variances would 
equal the largest number of assets in our sample, 55.

22. From 1963 to 2018, the five Fama–French factors realized 
Sharpe ratios between 0.27 and 0.49 and the equal-
weighted portfolio of all five factors realized a Sharpe 
ratio of 0.93.

23. Estimates of the eigenvectors are kept equal to the sample 
eigenvectors to make the estimate of the correlation 
matrix rotational invariant, meaning that rotating the data 
by some orthogonal matrix rotates the estimator in the 
same way (see Ledoit and Wolf 2012; Bun et al. 2017).

24. The Woodbury matrix identity shows a way to rewrite 
the inverse of a sum of matrices and, using the Woodbury 
formula, we see that

I I− +( )





= +( ) = +( ) 

= +( )

− − − − −

−

τ τ τ τ

τ

ΣΣ ΛΛ ΣΣ ΛΛ ΣΣ ΛΛ ΛΛ ΣΣ

ΣΣ ΛΛ ΛΛ

1 1 1 1 1

1 .

25. We can also write the regression in a simpler way, 
1
γ

s x= +ΣΣ εε, as we do when we consider the Lavrentiev 

regularization. When we use the standard ridge regres-
sion on this simpler equation, we get x I s= +( )−1 2 1

γ
λΣΣ ΣΣ , 

so we have written the regression differently to avoid the 
S-squared.
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