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a b s t r a c t 

I present closed-form solutions for prices, portfolios, and beliefs in a model where four 

types of investors trade assets over time: naive investors who learn via a social net- 

work, “fanatics” possibly spreading fake news, and rational short- and long-term investors. 

I show that fanatic and rational views dominate over time, and their relative impor- 

tance depends on their following by influencers. Securities markets exhibit social network 

spillovers, large effects of influencers and thought leaders, bubbles, bursts of high volume, 

price momentum, fundamental momentum, and reversal. The model sheds new light on 

the GameStop event, historical bubbles, and asset markets more generally. 
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Communication in social networks has influenced in- 

vestors since equity trading started in trading clubs con- 

nected to Amsterdam Stock Exchange. In fact, London Stock 

Exchange started in coffee houses in the 17th century, and 

the social dynamics in these coffee houses gave rise to 

such events as the South See Bubble. 1 More recently, so- 

cial media have made social networks larger and more ob- 

servable to researchers, but how do social networks affect 

asset markets? 
1 De la Vega (1688) and Petram (2014) describe how Amsterdam Stock 

Exchange started in 1602 with social elements. Standage (2006) ch. 8 

describes how London’s stock trading started in what the author calls 

the “coffeehouse internet,” pointing out that “the drama of the South 

Sea Bubble, a fraudulent investment scheme that collapsed in September 

1720, ruining thousands of investors, was played out in coffeehouses.”
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4 Thought leadership is a generalization of the concept “social influ- 
This paper presents a model of how investment ideas

can propagate through a social network and affect mar-

ket behavior and prices. When investors learn through

their social network, they can disagree for extensive time

periods, and their disagreement is time-varying and pre-

dictable based on the social network. This disagreement

can generate a trading frenzy with a spike in turnover, high

volatility, price momentum as a bubble builds, and a value

effect as the bubble bursts. Rational investors exploit net-

work dynamics and may initially ride the bubble, but even-

tually bet on reversal to fundamentals. As an illustration of

these insights of the model, the paper presents the dra-

matic events related to the GameStop stock in early 2021

as well as broader connections to historical bubbles and

market dynamics. 

To study social network effects in the simplest possi-

ble way, I introduce rational agents and financial markets

into an otherwise standard DeGroot (1974) model. 2 In the

DeGroot model, people update their beliefs by listening to

other people in their social network. While this method

of updating may initially be rational, the continued updat-

ing over multiple rounds of communication does not take

into account that the same information may echo back

many times ( DeMarzo et al., 2003 ). While standard net-

work models assume that everyone behaves in this naive

way, I introduce rational learners into the model to cap-

ture the effects of sophisticated professional investors (or

arbitrageurs). 

Characterizing rational behavior in a network can be

highly complex, 3 but I show that the updating of rational

agents becomes very tractable when they can use the ra-

tional strategy of listening to everyone. The tractability af-

forded by my setting allows me to solve all agents’ beliefs

at all times in closed form, and, further, allows me to de-

rive closed-form solutions for portfolios and market prices,

as well as their limits as time increases. 

The model has several important implications for how

social networks affect opinions and asset prices. First, the

model shows how rational agents can have a large effect

on prices, both via their own trades and via their effect

on the general opinion. Rational agents are initially ex-

tremely flexible, listening to all available information, and

paying no special attention to their own initial view. How-

ever, once a rational agent has processed all the available

information, the agent becomes completely “stubborn” in

the sense that seeing a different view presented again and

again does not sway the rational agent if the different view

does not contain any new information. Therefore, rational
2 In doing so, I contribute to the network literature by developing 

a tractable dynamic model of financial markets with network effects, 

showing the separate equilibrium effects of influencers, thought lead- 

ers, naive agents, and rational forward-looking agents who exploit pre- 

dictability arising from network dynamics, including momentum and re- 

versal effects. Surveys on network economics include Jackson (2010) and 

Golub and Sadler (2016) , and networks and trading are studied in a ra- 

tional expectations equilibrium by Colla and Mele (2010) , Ozsoylev and 

Walden (2011) , and Walden (2019) and in an over-the-counter setting by 

Babus and Kondor (2018) . 
3 E.g., DeMarzo et al. (2003) state that “We should emphasize that the 

calculations that agents must perform even in this simple case where the 

network is common knowledge can be very complicated” (p. 927). 

1098 
agents quickly become stubborn. Hence, they keep repeat- 

ing their rational view, and this anchored opinion has an 

increasing influence on naive investors over time. This ef- 

fect, which I denote the “stubbornness of truth,” makes the 

market rational in the long term when the only stubborn 

agents are the rational ones. 

However, “fanatic” agents who are stubborn about their 

own personal view, however irrational, can also have a 

large influence over time if others are willing to listen. In 

the long run, all agents’ views converge to a combination 

of the various stubborn views, but investors differ in their 

reliance on rational or fanatic views. I show that the ag- 

gregate importance (or “thought leadership”) of each stub- 

born view is the sum-product of the attention it gets from 

its followers and the “influencer values” of their follow- 

ers. Influencer values can be easily computed, and I show 

how thought leadership and influencer values affect asset 

prices. 4 

The resulting differences of opinions lead to trading 

activity, but the trading activity dies down over time as 

views stabilize (since trading arises from view changes). 

Nevertheless, investors’ portfolios differ, even in the long 

run, in contrast to the prediction of the standard capital 

asset pricing model (CAPM). These network effects can fur- 

ther lead to high prices (bubbles), low prices (anti-bubbles 

or deep value), and large and prolonged price swings. 

The model can therefore help explain pervasive market 

effects such as price momentum and reversal effects (see 

Asness et al. 2013 and references therein), large trading 

volume with poor performance of the retail investors who 

trade the most ( Odean, 1999 ), the relation between volume 

and momentum ( Lee and Swaminathan, 20 0 0 ), and ex- 

cess volatility ( Shiller, 1981 ) driven by chat in social media 

( Antweiler and Frank, 2004 ). Also, while rational investors 

and efficient prices react almost immediately to earnings 

announcements and other news, investors learning via a 

social network react only gradually, so the model can also 

help explain post-earnings announcement drift ( Ball and 

Brown, 1968 ) and other kinds of fundamental momentum 

and announcement effects. 

While there already exist theories for several of these 

phenomena, 5 the key distinguishing feature of my theory 

is that it predicts that trading behavior spreads via a social 

network. This specific prediction of the theory is confirmed 

by Bailey et al. (2018) who use Facebook data to show 
ence” used in the literature following DeGroot (1974) while influencer 

values are new to the literature, to the best of my knowledge. Stubborn 

agents have also been studied by Ghaderi and Srikant (2014) and others; 

I contribute by showing that rational agents also become “stubborn,” by 

showing how influencers affect stubborn agents’ thought leadership, and 

by developing implications for financial markets. 
5 Differences of opinions can generate bubbles (see Harrison and 

Kreps, 1978 for a seminal model) and turnover ( Harris and Raviv, 1993 ). 

Theories of momentum and reversal based on psychological biases 

include Barberis et al. (1998) , Daniel et al. (1998) , and Hong and 

Stein (1999) . Models of information percolation via random search (rather 

than a network) include Duffie et al. (2009) , Andrei and Cujean (2017) , 

Burnside et al. (2016) who apply such a framework to housing booms 

and busts, and Hirshleifer (2020) who assumes that each random interac- 

tion is associated with a “social transmission bias.” Han et al. (2022) show 

how social transmission bias can spread active strategies. 
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6 Likewise, De la Vega (1688) states that “means are not lacking to rec- 

ognize what political or business opinions are held by persons of influ- 

ence. He who makes it his business to watch these things conscientiously, 

without blind passion and irritating stubbornness, will hit upon the right 

thing innumerable times, though not always” (p. 41). 
7 Kindleberger (20 0 0) p.16, who traces the ideas of “overtrading” to 

Adam Smith and John Stuart Mill, also cites Minsky for the element of 

expansion of credit, from which I abstract. 
8 Brunnermeier and Nagel (2004) provide evidence that hedge funds 

initially rode the internet bubble and eventually reduced or reversed their 

positions, just like the short-term investors in my model. 
9 Kindleberger (20 0 0) p.17. 
that people with friends who experienced recent house

price gains increase their housing market expectations and

“buy larger houses and pay more for a given house.” Fur-

ther, investors’ local social network can also help explain

their local bias in their equity investments, and the result-

ing social network effects have an impact on firm values

( Kuchler et al., 2020 ). 

To test the model’s predictions on thought leadership,

suppose that fanatics cheering for a stock are more likely

to reside in the same county as the firm’s headquar-

ter (e.g., the executives of the firm). Then these fanat-

ics can elevate prices more if they have greater thought

leadership, that is, are more connected to investors, and

Kuchler et al. (2020) create a measure of Facebook friends

between the firm’s county and institutional investors’

counties, denoted the firm’s “social proximity to capital.”

They find that firms with stronger social proximity to cap-

ital indeed have higher institutional ownership and higher

valuations. Also, Cookson et al. (2020) provide evidence of

echo chamber effects in investor beliefs. 

Social networks have also been shown empirically to af-

fect equity market participation of retail investors ( Hong

et al., 2004; Brown et al., 2008; Kaustia and Knüpfer,

2012 ), affect the portfolios of money managers ( Hong

et al., 2005; Cohen et al., 2008 ) and retail investors

( Bhamra et al., 2021 ), and potentially serve as a useful

source of information ( Chen et al., 2014 ). Moreover, social

media facilitate pump-and-dump schemes in cryptocurren-

cies ( Li et al., 2020 ) and professional traders’ discussions

on social media have been central to litigation of finan-

cial market misconduct (see, e.g., Financial Times, 11/12/14,

“Traders’ forex chatroom banter exposed”). 

In the GameStop case, investors on social media sig-

naled their stubborn commitment to buying and holding

the stock via the meme “diamond hands.” They spurred

each other via Reddit, Twitter, YouTube, and other so-

cial media, and signaled an extreme view of the poten-

tial valuation via the “rocket” meme. The price increased

when Elon Musk, an influencer on social media (and much

more), tweeted a link to the Reddit site hosting the most

fanatic GameStop traders, WallStreetBets. The stock price

increased by orders of magnitude at enormous trading vol-

ume and volatility, coinciding with an increase in social

media attention. 

Eaton et al. (2021) exploit platform outages for the

broker used by many GameStop traders, Robinhood, to

identify the causal effects of retail traders on finan-

cial markets. The paper finds that exogenous negative

shocks to Robinhood participation leads to lower return

volatility among stocks favored by Robinhood investors.

Barber et al. (2022) also study trades by customers of

Robinhood, reporting that “intense buying by Robinhood

users forecast negative returns.”

GameStop can be viewed as the latest example

in a long history of bubbles, and my model sheds

new light on the “anatomy” of bubbles described by

Kindleberger (20 0 0) and Shleifer (20 0 0) , ch. 6.2. As il-

lustrated in Table 1 , the anatomy starts with an “initial

displacement,” which is captured in my model by fanatic

agents who observe positive news and decide to focus all

their attention on this positive aspect of the asset. 
1099 
Next, the price increases further due to “speculation for 

price increases” by sophisticated short-term traders. Short- 

traders are also modelled by De Long et al. (1990) , but in 

my model their speculation is based on an understanding 

of predictability due to the network communication. In the 

spirit of my model, Soros (2003) reports riding bubbles 

based on the communicated sentiment among investors, 

e.g.: “if an idea was appealing enough to attract me on first 

hearing, it was likely to have the same effect on others. If, 

on further investigation, I found it to be flawed I could al- 

ways turn around and liquidate my position with a profit 

provided I was not the last one to hear it” (p. 36). 6 

The bubble is then sustained as a “larger and larger 

group of people seeks to become rich without a real un- 

derstanding of the processes involved.”7 This “mania” is 

captured in my model via the social network that enables 

the idea to spread across people, detailing this “emulation”

step by step. 

The bubble is further expanded by an “authoritative 

blessing,” captured in my model via the effect of influ- 

encers. When an influencer listens to fanatics, the in- 

fluencer spreads the idea to a broader group of people, 

further increasing the price (as Elon Musk did in the 

GameStop case). 

At the bubble’s late stage, rational “insiders sell out,”

just as rational investors do in my model. 8 The final stage 

is a “crash,” which can start from a “revelation of a swin- 

dle” or a “revulsion.”9 I capture the former by modeling 

the possibility that the true asset value is revealed, which 

leads to an abrupt crash (or “panic”). I capture the lat- 

ter via fanatics who are optimistic due to the positive dis- 

placement, but not entirely stubborn. In this case, their ini- 

tial optimism creates a bubble, but, as they learn the ratio- 

nal truth over time, their optimism turns to revulsion, and 

the bubble peters out. As seen in Table 1 , these model el- 

ements also describe the GameStop case and help explain 

several key asset pricing anomalies (as discussed earlier). 

The related literature also includes models of “rational 

bubbles,” in which bubbles may exist simply because they 

can (in some of multiple equilibria). In contrast, I model 

the economics underlying the anatomy of bubbles as peo- 

ple learn via their network. My framework is also funda- 

mentally different from standard models of “private infor- 

mation” where people learn from prices. Said simply, my 

framework captures the situation where your cab driver 

tells you about the opportunity in bitcoin that he learned 

about from his friends, not from the price. People in my 

model seek to learn the facts directly via communication 

and their trades inform the price – not the other way 
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Table 1 

Model implications. The first column contains the key elements of my model, showing how an investment idea starts in the model (A), initially affects 

prices (B), evolves over time (C,D), and how rationality ultimately sets in (E,F). The second column shows how these model elements capture the stylized 

evolution of historical bubbles, that is, the bubble anatomy of Kindleberger (20 0 0) and Shleifer (20 0 0) . The third column shows how each element played a 

role in the GameStop case. Finally, the last column shows how these model elements help explain certain general asset-pricing effects in financial markets. 

Model elements Bubble anatomy GameStop 2021 Asset pricing 

A. Investors receive news, 

fanatics focus on one element 

Initial displacement Retail investors focus on plan 

to pivot online 

Announcement effects, e.g., 

post-earnings drift 

B. Short-term investors bet on 

network spillovers 

Speculation Some institutional investors 

are long 

Momentum and fundamental 

momentum 

C. Opinions spread through 

the network 

Mania and emulation More and more people hear 

about GameStop 

Local bias and network 

spillover effects 

D. Influencers follow a fanatic Authoritative blessing Elon Musk tweets a link to 

WallStreetBets 

Excess volatility 

E. Rational traders bet on 

reversal 

Insiders sell out Institutional investors sell Value investing 

F. Fundamentals are revealed 

or fanatics gradually learn 

Crash: revelation or revulsion Drops in January, March 

earnings announcement, etc. 

Long-run reversal and value 

effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

around. My model thus captures situations in which in-

formation is “out there” to be found by rational investors,

but naive investors nevertheless learn gradually and imper-

fectly via their network. 10 

Consistent with my premise, Shiller and

Pound (1989) report survey evidence that “interpersonal

communications are very important in investor decisions”

and Shiller (2001) argues that “word-of-mouth communi-

cations, either positive or negative, are an essential part of

the propagation of speculative bubbles.” Shiller (2001) also

considers a standard epidemic model to capture this phe-

nomenon, discussing how people can “infect” each other

with an investment idea. Hirshleifer (2020) considers a

time-varying infection rate or “buzz” and, more broadly,

calls for a greater focus on social interaction in finance. My

model contributes to this approach by deriving equilibrium

prices when different rational and fanatic ideas attract at-

tention from investors via their communication in a social

network in which some people are more influential than

others (rather than a single idea spreading via random

matching among identical myopic investors). 

Lastly, my paper is related to the emerging literature on

expectation formation (see, Bordalo et al., 2019 and refer-

ences therein). My model shows how inter-personal com-

munication can spread the intra-personal judgment biases

documented in this literature. 

In summary, this paper contributes to the literature by

developing a simple model of rational and naive investors

who interact via a social network in order to trade assets. 11
10 Tirole (1982) shows that bubbles cannot exist in many situations in 

which all agents are fully rational, while Allen et al. (1993) show that 

rational bubbles can exist when people have private information, short- 

sale constraints, and trade is not common knowledge. 
11 Relative to the seminal paper by DeMarzo et al. (2003) , my contri- 

bution is to consider rational and stubborn agents, to define and ana- 

lyze influencers and thought leaders, and to combine the network model 

with an economic equilibrium in an asset market. As cited earlier in 

the introduction, the paper is also related to behavioral finance (see sur- 

vey by Hirshleifer, 2015 ). One challenge to behavioral finance is that in- 

vestor mistakes would not matter in aggregate if they were uncorre- 

lated, but a standard response is that people make correlated mistakes 

because they have common biases. My response is simply: people talk. 

Mackay (1850) starts his classic treatment of the “madness of crowds” by 

stating that “Popular delusions began so early, spread so widely, and have 

1100 
The model yields closed-form beliefs, prices, and portfolios, 

and provides a new mechanism of a number of financial 

market properties such as social-network spillover effects, 

the effects of influencers and thought leaders, momentum, 

reversal, high trading volume, the anatomy of bubbles in 

general, and the GameStop case in particular. 

1. Model 

The economy has N investors who communicate with 

each other and trade an asset in discrete time indexed by 

t = 0 , 1 , 2 , . . . , as described in this section. 

Asset and signals. The asset has a supply of shares 

given by s . Its fundamental value is given by v + u (t) ∈ R , 

where u (t) is a publicly observed random walk and v is 

an unobserved random variable that investors try to learn 

about. The random walk has innovations with constant 

variance given by σ 2 
u = Var (u (t) − u (t − 1)) . We can think 

of u (t) as the value of assets in place (e.g., GameStop’s 

retail stores) and v as the value of a new uncertain in- 

vestment opportunity (e.g., GameStop’s opportunity to sell 

games online). 

At time 0, each person i starts with a signal about the 

value v given by the random variable x i (0) = v i . This signal 

gives each agent a useful, but incomplete, piece of informa- 

tion about v . Collectively, all agents have full information 

about v , which is modeled via the relation v = 

∑ N 
i =1 κi v i , 

where the known weights sum to one, 
∑ N 

i =1 κi = 1 . Each 

weight, κi , is a measure of the importance of agent i ’s sig- 

nal; for example, if all agents receive signals of the same 

importance, then the weights are equal, κi = 

1 
N . In any 

event, agents have an incentive to communicate with oth- 

ers to learn about v . 12 

The unobserved value, v , is revealed each time period 

with probability π and remains unknown with probability 
lasted so long, that instead of two or three volumes, fifty would scarcely 

suffice to detail their history.” See Kuchler et al. (2020) for a survey on 

the empirical finance literature on social networks. 
12 The information structure is slightly simpler than the standard 

information-theoretic framework (e.g., Hellwig, 1980 ) in which the sig- 

nals equal the true v plus random noise. The standard framework yields 

the same solution, except that one must adjust the definitions of x r and 

σ 2 
u , as shown in Appendix A.3. 
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1 − π. Said differently, v is revealed at the random time

τ , with a geometric distribution. When v is revealed, the

price equals its total value, v + u (τ ) . For example, the firm

could be acquired or liquidated for v + u (τ ) , or the firm

could continue with investors knowing the fundamental

value v + u (t) when t ≥ τ . The objective of the model is to

understand how beliefs, trading, and prices evolve before

the value is revealed. 13 

Naive and rational learning in a social network. Peo-

ple communicate with each other as follows. At each time

t , everyone states their current views, collected in the

vector x (t) = (x 1 (t ) , . . . , x N (t )) ′ , to everyone who listens. 14

The economy consists of people with two methods of pay-

ing attention, “rational learners” and boundedly-rational

ones denoted as “naive” for brevity. Each naive learner i se-

lectively follows a subset of people that he views as most

informative or most entertaining. Further, he uses the same

method for updating each round. Specifically, he uses the

row vector A i ∈ R 

1 ×N 
≥0 

to make the update, such that his

view in the next time period becomes 

x i (t + 1) = A i x (t) (1)

where the weights add up to one, 
∑ 

j A i j = 1 . The

network is therefore characterized by A , which is

called the adjacency matrix (or weight matrix) in the

DeGroot (1974) model. The i ’th row, A i , can have many ze-

ros, representing all the people that i does not “follow.”

The non-zero elements represent the list of people that

i “follows” and the amount of attention paid to each of

them. Similarly, the i ’th column contains the list of i ’s “fol-

lowers.” DeMarzo et al. (2003) show that the first-round

updating can be seen as rational Bayesian updating given

that an agent only listens to the people with non-zero

weights. Hence, the naivety of this investor comes from his

selective listening and from the fact that the agent keeps

using the same method of updating, which can be justi-

fied based on imperfect recall ( Molavi et al., 2018 ). In par-

ticular, the naive agent does not take into account that

the same information may be received many times, which

DeMarzo et al. (2003) denote as “persuasion bias.” Naive

agents who only listen to themselves A j j = 1 are denoted

as fanatics, and they play a special role in my analysis. 

In the literature that follows the standard DeGroot

model, everyone is naive, but I also consider rational learn-

ers to capture the effects of sophisticated investors. A

rational learner i listens to everyone in the first round

of communication (as this is the rational way to listen

with unbounded attention). 15 Based on hearing everyone’s

views, the rational learner updates her view to x (1) = x r ,
i 

13 The model is intended to be as simple as possible, but note that the 

model could easily be extended in several ways. For example, while the 

model is focused on a single asset, the analysis is straightforward to ex- 

tend to the case of any number of assets as shown in Appendix A.4 (by 

letting x i (t) be a row vector with investor i ’s views about the different 

assets, implying that x (t) becomes a matrix of all investors’ views about 

all assets). 
14 If agent i prefers to stay silent, then this can be captured by having an 

adjacency matrix A in which column i has zeros outside the diagonal, but 

I assume that rational agents still have a way of getting this information. 

The conclusion discusses pump-and-dump and other forms of strategic 

communication. 

1101 
where the rational view x r is given by: 

x r = E(v | x 1 (0) , . . . , x N (0)) = (κ1 , . . . , κN ) x (0) = v (2) 

Naturally, the rational view uses the information contained 

in all signals, and here the weighted average of all signals 

in fact reveals v for simplicity. Further, the rational person 

never changes her view about v after the first round since 

no new information arrives, x i (t) = x i = x r for all t ≥ 1 . In 

other words, a rational agent i can also be seen as updat- 

ing her views using the adjacency matrix as in (1) , but she 

initially uses the row κ ′ and thereafter she uses A i = e i , 

where e i = (0 , . . . , 0 , 1 , 0 , . . . , 0) is the i ’th unit vector. 

Portfolios and prices. Trading starts at time 1, after 

the first round of communication. At any time t after the 

value of v has been revealed (i.e., t ≥ τ ), the price natu- 

rally equals the commonly known total value, v + u (t) . Be- 

fore revelation, the endogenous price of the asset at time t

is denoted by p(t) . So the price can be written as 

price (t) = p(t)1 (t<τ ) + [ v + u (t)]1 (t≥τ ) (3) 

All agents take this price as given and the equilibrium mar- 

ket price is determined such that the total demand equals 

the supply of shares s , that is, 

s = 

N ∑ 

i =1 

d i (t) (4) 

where d i (t) is the demand of agent i at time t , which de- 

pends on the price as described next. 

The agents behave as either long-term investors or 

short-term traders, where long-term investors think in 

terms of the long-term asset value at revelation, whereas 

short-term investors think in terms of the one-period ex- 

pected gains each time period. Specifically, naive, fanatic, 

and some of the rational learners behave as long-term in- 

vestors, while the remaining rational learners behave as 

short-term investors — so the economy has these four 

types of agents (naive, fanatic, rational long-term, rational 

short-term). 

Any naive, fanatic, or rational long-term investor i 

chooses his investment demand to maximize his mean- 

variance utility at the revelation time, τ . To compute this 

utility, note that the investor earns a profit per share of 

v + u (τ ) − p(t) from buying at time t for p(t) and sell- 

ing at time τ when the asset is worth v + u (τ ) . Hence, the 

utility of buying d i shares is 

max 
d i 

d i E t [ x i (t) + u (τ ) − p(t) ] 

− 1 

2 w i 

Var t [ d i (x i (t) + u (τ ) − p(t)) ] (5) 

where v is replaced by x i (t) because rational investors have 

learned the true value of v at time 1, and naive and fanatic 

investors behave as if their current belief is also the true 

value. The utility also depends on w i , which is investor 

i ’s absolute risk tolerance, that is, the ratio of the agent’s 

wealth and relative risk aversion, w i = wealth i /γi . To ease 
15 If rational agents could only listen to a subset of agents, they could 

still learn all signals in finite time under certain conditions, after which 

time the model would be the same. 
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the discussion, I refer to w i simply as wealth, so risk aver-

sion can be taken to be equal across agents, say γi = 1 , or

simply think of the word “wealth” as shorthand for risk-

bearing capacity. 16 

Maximizing the utility (5) with a risk given by

Var t (u τ ) = σ 2 
u /π , the investor’s optimal portfolio is seen to

be 17 

d i (t) = 

πw i 

σ 2 
u 

(x i (t) + u (t) − p(t)) (6)

Naturally, the asset demand increases in the perceived gap

between the value and the price, and the price sensitivity

is larger if the agent is wealthier (larger w i ), the value is

realized sooner (larger π ), and if the risk ( σu ) is smaller. 

Turning to rational short-term traders, any such agent

i maximizes her one-period mean-variance utility, which

depends on the difference between the current price and

the price in the next time period. The expected price in

the next time period is the average of the price without

and with revelation of the fundamental value, weighted by

their respective probabilities, 1 − π and π : 

E t ( price ( t + 1 ) ) = ( 1 − π) E t ( p ( t + 1 ) ) + π( x r + u ( t ) ) 

(7)

Given this expected price and the one-period risk of σ 2 
u =

Var t (u (t + 1) − u (t)) , the demand of any short-term in-

vestor is 18 

d i (t) = 

w i 

σ 2 
u 

[ (1 − π) E t (p(t + 1)) + π(x r + u (t)) − p(t) ] 

(8)

What is special about the short-term investors is that they

seek to exploit predictable price changes due to the net-

work spillover effects in the equilibrium price. 

Notation. In summary, the economy has four types of

agents who communicate to learn about an asset that they

are trading: Naive investors, fanatics, rational long-term in-

vestors, and rational short-term traders. Agents are ordered

such that the first N n agents are naive, the next N f are fa-

natics, the next N l are long-term investors, and the last N s

are short-term investors, where N = N n + N f + N l + N s . 

The latter three types are denoted as “hardheaded” ( h )

since these investors keep constant views after time 1. The

column vector of all views can be decomposed as x (t) =
(x n (t) ; x h ) , where x n (t) = (x 1 (t) ; . . . ; x N n (t)) contains the

naive views and x h = (x f ; x l ; x s ) contains the hardheaded

views. Note that x h is not indexed by t since these hard-

headed views are constant after time 1, but I use the nota-

tion x (0) for the initial views of these investors. 
h 

16 Differences in real-world investors’ risk tolerance is mostly driven by 

wealth since relative risk aversion varies only by one order of magnitude 

( γi is usually between 1 and 10) while invested wealth varies by many 

orders of magnitude (between $10 0 0 and billions of dollars). 
17 The risk is Var t (u τ ) = Var (�u τ + . . . + �u t+1 ) = E(�u τ + . . . + 

�u t+1 ) 
2 = σ 2 

u E(τ − t) = σ 2 
u /π , based on the optional stopping theorem 

and using E(τ − t) = 

∑ ∞ 
k =1 k (1 − π) k −1 π = 1 /π . 

18 When computing the risk of price changes, short-term investors focus 

on Var t (u (t + 1) − u (t)) and are risk-neutral with respect to uncertainty 

about the revelation time, for simplicity. Note that the model retains its 

tractability for any linear demand. 

1102 
I use a similar notation for the vector of all agents’ 

wealth, w = (w 1 , . . . , w N ) 
′ and its naive and hardheaded 

components, w = (w n ; w h ) , where w h = (w f ; w l ; w s ) . 

All notation is summarized in Table A.1 in the appendix. 

2. Belief formation in a social network 

To get some intuition for how beliefs are formed over 

time in a social network, I first consider the special cases 

in which all agents are naive ( Section 2.1 ), or all but one 

agent are naive ( Sections 2.2 –2.3 ). Then I show how beliefs 

are formed in the main model ( Section 2.4 ) when naive 

agents are influenced by many different fanatic and ratio- 

nal agents. 

2.1. Social influence when everyone is naive and connected 

Suppose first that everyone is naive, which is the classic 

DeGroot model. In this case, agents’ views after t rounds of 

communication is 

x (t) = A 

t x (0) (9) 

If all agents are “strongly connected” (everyone indi- 

rectly influences everyone) and listen to themselves, then 

DeGroot (1974) and DeMarzo et al. (2003) show that a 

unique z ∈ R 

N exists such that z ′ A = z ′ and, as t → ∞ , 19 

x (t) = A 

t x (0) → 1 N z 
′ x (0) (10) 

In other words, everyone ends up with the consensus view 

z ′ x (0) . The consensus view weights the different agents’ 

signals by their “social influence” z i , whereas the ratio- 

nal solution would weight all agents’ signals by the pre- 

cision κi . In particular, person i ’s social influence, z i , is the 

weighted-average of the social influence of everyone that 

listens to i , that is, z i = 

∑ 

j A i j z j . So a person becomes in- 

fluential by having the ear of influential people. This eigen- 

vector property is also the idea behind Google’s PageRank. 

2.2. A fanatic in an echo chamber: stubborn fake news 

Consider next the case in which one agent is completely 

stubborn and all other agents are naive as above. The stub- 

born agent can be interpreted as a fanatic or someone who 

deliberately tries to shut down all alternative views. In par- 

ticular, suppose that agent N is stubborn, meaning that 

N’th row of A is the N’th unit vector, A N = e ′ 
N 

. Mathemat- 

ically, this corresponds to a Markov chain with an absorb- 

ing state, and opinions evolve as follows 

x (t) = A 

t x (0) → 1 N e 
′ 
N x (0) = 1 N x N (0) (11) 

meaning that everyone ends up having the same view as 

the stubborn person (a special case of Proposition 1 be- 

low). So, in this case, the stubborn agent becomes the 
19 Strongly connected means that A is irreducible, that is, any agent j

can influence any other agent i (specifically, agents k 1 , . . . , k z exist such 

that A ik 1 > 0 , A k 1 k 2 > 0 , . . . , A k z j > 0 ). Further, A is aperiodic since people 

listen to themselves, A j j > 0 , meaning that infinite cycles cannot arise. 

Hence, A corresponds to an irreducible aperiodic positive matrix, which 

ensures convergence of views via the Perron-Frobenius Theorem, and 

z can also be seen as the stationary distribution of the corresponding 

Markov chain. 
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only person with social influence as he listens to no one

but himself. What happens is that, each time period, the

other agents move a little toward the stubborn agent (and

toward each other) and, since the stubborn agent never

moves, all other agents end up moving closer and closer to

the stubborn view. Said differently, the naive agents keep

hearing the stubborn view, and other views influenced by

the stubborn view, so this situation can be seen as an

“echo chamber” in which these agents are cut off from ra-

tional opinions and fail to realize that the stubborn opinion

echoes through the system many times. 

This phenomenon does not arise with Google’s

PageRank, because a website does not get credit for

linking to itself, so, perhaps as a result, social influence

via stubbornness is not the standard case in economics.

However, stubbornness is important in this model because

people can be stubborn and, in fact, rationality is a form

of stubbornness, as discussed next. 

2.3. Rationality in an echo chamber: the stubbornness of 

truth 

Suppose alternatively that one agent is fully rational,

while the rest are naive and connected. Recall that, after

one round of communication, the rational agent already

knows the “truth,” that is, the best possible estimate of the

value, v , given by x r . Hence, from time 1 and onwards, the

rational agent does not further update her views. Said dif-

ferently, the rational behaves as if she is completely stub-

born. Therefore, by the same logic as above, views con-

verge as follows 

x (t) → 1 N x r (12)

meaning that everyone ends up having the same rational

view. 

Note that fanaticism and rationality look similar to a

casual observer since such agents behave similarly in all

rounds of communication except the first one. Indeed, a

rational person is completely flexible in the first round

of communication, seeking out all sources of information,

having no special attachment to her own information, and

logically aggregates all of this information. However, once

all the information is aggregated, the rational person has

no interest in hearing the same views again, does not

budge to hearing a particular view repeated many times,

and simply sticks to the same opinion forever (or at least

until truly new information arrives). 

Golub and Jackson (2010) describe another way to en-

sure rationality, even when all agents are naive. They show

“that all opinions in a large society converge to the truth

if and only if the influence of the most influential agent

vanishes as the society grows.” While a mathematically

beautiful benchmark, the condition that the most influen-

tial agent has a vanishingly small influence seems clearly

violated in the modern world of social media where, for

example, Kim Kardashian has more than 300 million fol-

lowers on Instagram as of this writing. Hence, for rational-

ity to prevail, the mechanism developed here based on the

presence of rational agents and the stubbornness of truth

may have a better chance of success. 
1103 
2.4. Fanaticism vs. rationality: main model of a social 

network 

In the most general and realistic case, the economy has 

some of all the types of agents: naive, fanatic, and ratio- 

nal. This framework is the focus of the rest of the paper. 

After time 1, all rational agents are completely stubborn 

since they know the truth, and fanatics are stubborn for 

other reasons. So a central ingredient to the model is un- 

derstanding the dynamics of an economy in which some 

agents are hardheaded (“h ”) and others are naive. 

Recall that agents are ordered such that the first agents 

N n are naive and the rest are hardheaded — specifically, 

the next N f are fanatics, the last N l + N s ones are rational. 

In this case, the adjacency matrix has the form: 

A = 

(
A nn A nh 

0 I 

)
(13) 

where A nn ∈ R 

N n ×N n is a matrix that determines how the 

naive agents listen to each other, and A nh ∈ R 

N n ×(N f + N l + N s ) 

is a matrix that determines how they listen to the hard- 

headed agents. The lower rows of A consist of a matrix of 

zeros and the identity matrix since each hardheaded agent 

only listens to himself. The top rows of A must satisfy the 

following natural assumption, which is imposed from now 

on. 

Assumption 1 . Any agent i is hardheaded (rational or fa- 

natic) or influenced by a hardheaded agent j, either di- 

rectly (i.e., A i j > 0 ) or indirectly (i.e., there exist agents 

k 1 , . . . , k z such that A ik 1 
> 0 , A k 1 k 2 

> 0 , . . . , A k z j > 0 ). 

This assumption says that any naive agent either lis- 

tens to one of the hardheaded agents or listens to someone 

who listens to someone who does. Whereas the literature 

is focused on “strongly connected” agents ( Section 2.1 ), 

my focus on “hardheaded-connected” agents is dictated by 

the existence of rational agents and possibly also fanatic 

agents. 

Example 1 . To illustrate how the model works, consider the 

following numerical example: ⎛ 

⎜ ⎜ ⎝ 

x 1 (t) 
x 2 (t) 
x 3 (t) 

x f 
x r 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

70% 0 0 20% 10% 

40% 40% 0 10% 10% 

40% 0 40% 10% 10% 

0 0 0 1 0 

0 0 0 0 1 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

x 1 (t − 1) 
x 2 (t − 1) 
x 3 (t − 1) 

x f 
x r 

⎞ 

⎟ ⎟ ⎠ 

(14) 

As seen in the first row, agent 1 gives 70% weight to his 

own previous opinion, no weight to each of the other two 

naive agents, 20% to the fanatic agent, and 10% to the ratio- 

nal. Agents 2 and 3 also give 40% weight to their own re- 

spective views, 40% weight to agent 1, none to each other, 

and 10% to the fanatic and rational agents. The zeros in 

this example illustrate in a simplified way that, in the real 

world, each row has millions of entries – one for each per- 

son – but usually all but a few hundred entries are zero 

as most people only follow a limited number of others. 

Nevertheless, some columns can have millions of non-zero 

entries as some people have many followers. For example, 

agent 1 in this example is an “influencer” in the sense that 
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other agents pay strong attention to his views. Finally, the

last two rows in (14) show that the views of the fanatic

and a rational learner (agents 4 and 5) do not change after

time 1. 

The first step in solving the model is to determine the

vector of naive views, x n (t) , at each point in time. Natu-

rally, the vector of naive views depends on itself, on the

vector of beliefs by fanatics and rational agents after the

rational agents have learned the truth, x h = (x f ; x l ; x s ) , and

their views before rational agents have learned anything,

x h (0) = (x f ; x l (0) ; x s (0)) . The following proposition shows

that the hardheaded views dominate over time as these

opinions continue to “echo” through the population. All

proofs are in the appendix. 

Proposition 1 (Network belief spillover and con-

vergence). The views of naive agents at time 1 is

x n (1) = A nn x n (0) + A nh x h (0) and, for t = 2 , 3 , . . . , their

views are 

x n ( t ) = A 

t−1 
nn x n ( 1 ) + 

t−2 ∑ 

k =0 

A 

k 
nn A nh x h (15)

In the limit as t → ∞ , each naive agent’s view is a convex

combination of the views of fanatics and rational agents 

x n ( t ) → ( I − A nn ) 
−1 A nh x h (16)

The first part of the proposition shows how the naive

agents are initially influenced by each other and by ratio-

nal and fanatic views ( Eq. (15) ). The second part of the

proposition shows how the naive investors end up with

views that are a mixture of the fanatic and rational views,

x h . The relative weights given to the views of different fa-

natic and rational people have a natural interpretation as

discussed next. 

2.5. Influencers versus thought leaders 

Recall that the standard strongly-connected DeGroot

model of Section 2.1 has the property that everyone

reaches a consensus in the long run, which implies a

simple measure of social influence, namely the weight of

agent i ’s opinion in the consensus. Social influence works

differently, however, in my setting of Section 2.4 with

hardheaded-connected agents. In this case, people never

reach a consensus, but the focus on the consensus can be

replaced by a focus on the average opinion , defined as 

x̄ (t) = 

N ∑ 

i =1 

w i 

w ·
x i (t) = 

1 

w ·
w 

′ x (t) (17)

The opinions are weighted by each agent’s wealth w i , using

the notation w = (w 1 , . . . w N ) 
′ for the vector of all agents’

wealth and w · = 

∑ N 
i =1 w i for the aggregate wealth. I focus

on wealth-weighted opinions since this is what matters for

prices (as shown in the next section), but the results in this

section obviously hold for any weighting vector w , includ-

ing equal-weighted. 

Proposition 1 shows that each agent’s opinion con-

verges over time, so the average opinion also has a well-

defined limit. This limit, the “long-run average opinion,” is
1104 
important to the equilibrium. The long-run average opin- 

ion is determined by agents’ thought leadership , as defined 

next. 

Definition 1 (Thought leadership). The vector of all agents’ 

thought leaderships is 

θ ′ = 

1 

w ·
w 

′ lim 

t→∞ 

A 

t (18) 

which adds to one, 
∑ N 

j=1 θ j = 1 , and provides agents’ 

weights in the long-run overall view: 

x̄ (t) → θ ′ x (1) = 

N ∑ 

j=1 

θ j x j (1) (19) 

Proposition 1 shows that naive agents’ views disappear 

in the long term (except in how they initially affect ratio- 

nal views) so their thought leadership is zero. Neverthe- 

less, the communication of naive agents still matters, be- 

cause this communication determines the thought leader- 

ship of the various fanatic and rational views. To capture 

this idea, I introduce the following definition of the influ- 

encer value of any naive agent. 

Definition 2 (Influencer value). The vector μ of naive 

agents’ influencer values is 

μ′ = μ′ A nn + 

w 

′ 
n 

w ·
= 

w 

′ 
n 

w ·
(I − A nn ) 

−1 (20) 

The first equation shows that each influencer value is 

the sum of how much the agent influences others (com- 

puted as the sum-product of how much people listen and 

their influencer values, μ′ A nn ) and himself (weighted by 

his wealth as a fraction of total wealth). The second equa- 

tion shows how influencer values can be computed eas- 

ily. Importantly, influencer values determine hardheaded 

agents’ thought leadership as follows. 

Proposition 2 (Influencers and thought leaders). A. The 

thought leadership of any naive agent is zero, θi = 0 , and the 

vector of thought leaderships of hardheaded agents, θh , de- 

pends on how much attention they get from naive agents, 

A nh , and their influencer values, μ: 

θ ′ 
h = μ′ A nh + 

w 

′ 
h 

w ·
(21) 

B. If naive agent i increases his following A i j of hardheaded 

agent j by ε at the expense of a lower following of other 

hardheaded agents, then 

∂θ j 

∂ε 
= μi (22) 

The intuition behind this result is that hardheaded 

agents become thought leaders due to their commitment 

to their views. Influencers, on the other hand, are not com- 

mitted to any particular view, and their fluid opinions end 

up without thought leadership. Nevertheless, naive agents 

affect which hardheaded agents have most thought leader- 

ship. Specifically, (21) shows that the thought leadership of 

any hardheaded agent j is: 

θ j = 

N n ∑ 

i =1 

μi A i j + 

w j 

w ·
(23) 
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The last term, 
w j 

w · , simply means that the hardheaded

agent influences his own opinion, which counts towards

the overall opinion based on his own share of aggregate

wealth. More interesting, the first term says that thought

leadership comes from the sum-product of the following

of naive agents, A i j , and the followers’ influencer values,

μi . Hence, a thought leader can increase his impact by ac-

quiring the following of an “influencer,” that is, an agent

with a large influencer value. In fact, the influencer value is

precisely the impact on the thought leadership of a greater

following, as seen in (22) . 

Interestingly, my framework implies separate roles for

influencers and thought leaders, while these are inter-

twined in the standard strongly-connected DeGroot model

of Section 2.1 . In the strongly-connected case, an agent

essentially becomes a thought leader by being an influ-

encer, that is, by having many influential followers. What

is different here, is that the fluid opinion of an influencer

changes over time and ends up being dominated by the

views of thought leaders. Hence, over time, an influencer’s

impact comes from influencing the relative popularity of

the various thought-leading ideas. 20 

To understand this at a deeper level, note that the in-

fluencer values are wealth-weighted sums of the columns

in the “echo matrix,” (I − A nn ) −1 as seen in (20) . The echo

matrix can be written as 

(I − A nn ) 
−1 = 

∞ ∑ 

k =0 

A 

k 
nn (24)

so agent i ’s influencer value can be seen as an infinite sum.

In other words, if i follows a hardheaded agent, then this

changes the overall opinion via a series of terms that cap-

ture how the idea spreads, step by step. The first term

is the effect on agent i ’s own view, which is simply the

agent’s wealth multiplied by 1 (coming from the i ’th col-

umn in A 

0 
nn = I). The next term captures the agent’s direct

following among other naive investors (i.e., the i ’th column

of A nn ). Then comes his indirect following (i.e., the i ’th col-

umn of A 

2 
nn ), his next-order indirect following (i.e., the i ’th

column of A 

3 
nn ), and so on. In other words, the echo matrix

provides the overall effect (or echo) of a hardheaded agent

influencing a naive agent, and, through him, other naive

agents. 

An implication of Proposition 2 is that the economy is

more rational if there are more rational people to begin

with, if fanatics have views closer to the rational view, and

if the naive people listen more to the rational ones, espe-

cially if the influential naive people do so. So education

makes the economy more rational if it teaches naive peo-

ple to be rational or to listen to those who are, and educa-

tion of influencers is particularly effective. 

As another example, religious beliefs may become

thought leading partly by committing to a fixed text such

as the bible. Simultaneously, science becomes thought
20 Mathematically, in the strongly-connected DeGroot model, social in- 

fluence is determined via z ′ = z ′ A . In my framework, it also holds that 

θ ′ = θ ′ A , but this relation does not pin down θ because of the N − N n 
dimensions of this eigenspace. Instead, thought leadership is determined 

via similar relations, (20) –(21) . 

1105 
leading by collecting as much data as possible and com- 

mitting to a scientific understanding of the laws of na- 

ture. Continuously preaching these relatively fixed princi- 

ples creates thought leadership. 

Example 1 , continued. Revisiting the numerical exam- 

ple in Eq. (14) , we can calculate the influencer values of 

agents 1, 2, and 3 using Eq. (20) assuming, for example, 

that all agents have equal wealth. In this case, their in- 

fluencer values are 1.56, 0.33, and 0.33, respectively. Nat- 

urally, agent 1 has the largest influencer value since other 

people pay most attention to him. The thought leadership 

of the fanatic is 57.8% based on (21) , and the thought lead- 

ership of the rational agent is 42.2%. The fanatic has a 

larger thought leadership because of her larger following 

by the influencer. 

It is interesting to consider what happens if agent 1 in- 

creases his following of the fanatic by 1 percentage point 

(i.e., from 20% to 21%) at the expense of a lower follow- 

ing of the rational agent (from 10% to 9%). This increases 

the thought leadership of the fanatic to 59.3%. The in- 

crease in the fanatic agent’s thought leadership of 59.3%- 

57.8% = 1.56% equals agent 1’s influencer value 1.56 times 

the 1% view change, which helps explain the meaning of 

influencer value. If instead agent 2 increases his following 

of the fanatic by 1 percentage point (from 10% to 11%) at 

the expense of a lower following of the rational, then the 

fanatic’s thought leadership only increases by 0.33%, again 

matching the 0.33 influencer value of agent 2 times the 1% 

view change. 

The next section shows that influencer values and 

thought leadership are also useful in quantifying the social 

network effects on prices. 

3. Market behavior with a social network 

3.1. Prices with a social network 

When the fundamental asset value is revealed, the price 
equals the fundamental, v + u t , and, before that time, the 
equilibrium price is determined by equalizing the supply 
s and the total demand. The equilibrium condition (4) can 

be written as: 

p ( t ) = ( 1 − c ) 

[
w n ·
w ·

x n ( t ) + 

w f ·
w ·

x f + 

w l· + w s ·
w ·

x r + u ( t ) − sσ 2 
u 

πw ·

]
+ cE t ( p ( t + 1 ) ) (25) 

which depends on the wealth-weighted average view 

among naive investors, x̄ n (t) , the weighted average view 

among fanatics, x̄ f , and the aggregate wealth of naive 

agents ( w n ·), fanatics ( w f ·), long-term rationals ( w l ·), and 

short-term rationals ( w s ·), relative to that of all agents ( w ·). 
Further, the constant c is defined as 

c = 

1 

1 + 

w ·
w s ·

π
1 −π

∈ (0 , 1) (26) 

Iterating this equation forward to infinity yields the equi- 

librium price. 

Proposition 3 (Rational price). If all wealth is in the hands of 

rational long-term or short-term investors (i.e., w = 0 for all 
i 
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naive and fanatic agents), then the equilibrium price is 

p r (t) = x r + u (t) − sσ 2 
u 

πw ·
(27)

The rational price, p r (t) , is the expected fundamental

value, x r + u (t) , less a risk premium that depends on the

supply of shares ( s ), the fundamental risk ( σ 2 
u ), the speed

of revelation( π ), and the aggregate wealth (or risk-bearing

capacity) of investors ( w ·). This rational price is a useful

benchmark when considering the equilibrium price in the

presence of naive investors and fanatics. As seen in the

next proposition, the general price also depends on the av-

erage view among naive investors, x̄ n (t) , and among fanat-

ics, x̄ f , weighted by their wealth. 21 

Proposition 4 (Network effects on price). The equilibrium

price before the fundamental value is revealed is the sum, 

p(t) = p r (t) + p n (t) , (28)

of the rational price, p r (t) , and the following social network

price component: 

p n (t) = 

w n ·(1 − c) 

w ·

∞ ∑ 

k =0 

c k ( ̄x n (t + k ) − x r ) + 

w f ·
w ·

( ̄x f − x r ) 

(29)

where c and p r are given in (26) , (27) . This equilibrium price

is unique under the transversality condition that p t − u t is

bounded in t state by state. As t → ∞ , the network part of

the price converges to 

p ∞ 

n = 

N n + N f ∑ 

j= N n +1 

θ j (x j − x r ) (30)

which is the fanatics’ mispricings, x j − x r , weighted by their

thought leadership, θ j . 

The market price when investors learn through a social

network can deviate significantly from the rational price.

In particular, Eq. (29) shows how the price depends on

all investors’ views, which are determined via their social

network interactions. These network effects are seen from

the price dependence on the naive view x̄ n (t) , which can

be traced back to the investors’ original views and their

spillover through the network as seen from Proposition 1 .

The price also depends on expected future network effects,

since the rational short-term investors anticipate these fu-

ture network effects and adjust their asset demand accord-

ingly, as seen from the terms depending on x̄ n (t + k ) with

k > 0 in Eq. (29) . 

Over the longer term, naive investors’ views are com-

pletely dominated by the fanatic and rational views, and

therefore the long-term prices depend on these hard-

headed views and their thought leaderships, as seen in

(30) . These social dynamics can generate prices way above

the fundamentals (bubbles) and way below fundamen-

tals (anti-bubbles, or deep value). Naturally, the bubble
21 The weighted average opinion of naive agents is computed as x̄ n (t) = 

1 
w n ·

w 

′ 
n x n (t) and similarly for x̄ f . 

1106 
gets larger if fanatics have more extreme valuations. In- 

terestingly, this effect is larger if the fanatics have greater 

thought leadership. 

Proposition 5 (Fanatic effect on price). The price increases in 

the valuation, x j , of fanatic agent j, and this price sensitivity 

is larger if the agent has greater thought leadership θ j : 

∂ p ∞ 

n 

∂x j 
= θ j (31) 

Another aspect of the social network dynamic is the ef- 

fect of influencers. 

Proposition 6 (Influencer effect on price). If naive agent i 

with influencer value μi increases his following A i j of fanatic 

agent j by ε at the expense of a lower following of a rational 

agent, then the effect on price is: 

∂ p ∞ 

n 

∂ε 
= μi (x j − x r ) (32) 

This proposition shows that a naive agent can affect the 

price by elevating the thought leadership of a fanatic. This 

effect is naturally larger if the naive agent has a greater 

influencer value. For example, when Elon Musk tweeted a 

link to WallStreetBets with its fanatically high valuation of 

GameStop, the price of GameStop increased. 

In summary, Propositions 4 –6 show that the price devi- 

ates more from the rational price when (i) a larger fraction 

of wealth is held by the fanatic or naive; (ii) fanatic views 

are more extreme, (iii) fanatics have higher thought leader- 

ship because more naive people listen to them, people de- 

vote more attention to fanatics, wealthier people listen, or 

influencers listen, thus affecting other naive investors indi- 

rectly; or (iv) investors are uncertain about a larger fraction 

of the stock value (i.e., v is a larger part of v + u t ). 

Example 1 , continued. Suppose that the rational ex- 

pected value of v is x r = 400 and the supply is s = 0 , such 

that the rational price is p r (t) = 400 + u (t) regardless of 

σ 2 
u and π as seen in (27) . If the fanatic assigns a value to 

the asset of x f = x r + 100 = 500 , then the long-term net- 

work price can be calculated from (30) to be p ∞ 

n = 57 . 8 , 

corresponding to a long-term total price before revelation 

of 457 . 8 + u (t) , which is 57.8% toward the valuation of the 

fanatic relative to that of the rational because of the fa- 

natic’s 57.8% thought leadership (as calculated in the end 

of Section 2.5 ). 

If the fanatic increases his valuation to 600, then the 

long-term price increases to 515 . 6 + u (t) , a price increase 

of 57.8. This price increase is a 100 times the fanatic’s 

thought leadership of 57.8%, consistent with (31) . If instead 

the rational view changes by 100, this leads to a price 

change of 42.2, which is a smaller price move due to the 

lower thought leadership of the rational agent. 

To illustrate the importance of influencers, sup- 

pose that agent 1 increases his following of the fa- 

natic by 10 percentage points. Then the long-term net- 

work price increases from p ∞ 

n = 57 . 8 to 73.3. As seen 

from (32) , the price increase of 15.6 can be computed 

directly as �p ∞ 

n = (�A 1 f ) μ1 (x f − x r ) = 10% × μ1 × 100 = 

10 μ1 = 15 . 6 , where � indicates change and agent 1’s in- 

fluencer value, μ = 1 . 56 , is calculated in Section 2.5 . If 
1 
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instead agent 2 increases his following of the fanatic by

10 percentage points, then the price increases only by

3.3, again 10 times the influencer value, �p ∞ 

n = 10 μ2 . The

price is clearly more sensitive to the actions of agent 1 be-

cause of his larger influencer value. 

3.2. Value, momentum, trading volume, and volatility 

The model has interesting predictions for asset returns,

defined as r(t + 1) = �price (t + 1) , where � means the

change over time and the price is given in (3) . The ex-

pected return is E t (r(t + 1)) = 0 after the revelation of v
since the price becomes a random walk after that time. Be-

fore revelation, t < τ , the expected return is: 

E t (r(t + 1)) = (1 − π) E t (�p(t + 1)) 

+ π(x r + u (t) − p(t)) 

= (1 − π) �p n (t + 1) ︸ ︷︷ ︸ 
momentum 

+ π b(t) ︸︷︷︸ 
value 

(33)

because �p(t + 1) = �p n (t + 1) + �u (t + 1) and �u (t +
1) is unpredictable. We see that returns are predicted by

value and momentum factors. To understand this, note that

the second term is the “valuation metric,” defined as the

difference between the fundamental value and the price,

b(t) := x r + u (t) − p(t) , similar to book-to-price and other

metrics used by value investors. This value metric is mul-

tiplied by the probability of revelation, that is, the mean

reversion toward the fundamental value. 

The first term is the future momentum of the network

effect, �p n , which can be predicted by rational investors.

This network momentum is multiplied by the probability

that the network dynamics continue, 1 − π , that is, no rev-

elation (or the bubble does not burst). Interestingly, this

network momentum can be proxied by standard price mo-

mentum. Indeed, given that the network effect is a smooth

function of time, the recent network price momentum may

proxy for its future momentum, �p n (t + 1) ∼= 

�p n (t) . Fur-

ther, the recent price momentum is a noisy, but unbi-

ased, estimate of this network momentum, r(t) = �p(t) =
�p n (t) + �u (t) . Hence, the model can help explain why

value and momentum predict returns. 

This finding, which relies on an approximation, can be

made precise in specific settings. For example, consider the

case in which naive agents have equal wealth, they listen

to each other in a symmetric way (their adjacency matrix

can be written as A nn = a 0 1 N n 1 
′ 
N n 

+ a 1 I for scalers a 0 , a 1 ∈
R ), and there exist non-zero numbers of naive and fanatic

agents ( N n > 0 and N f > 0 ). The model has a particularly

simple solution in this “symmetric naive case” as shown in

appendix, leading to the following result. 

Proposition 7 (Value and momentum effects). In the sym-

metric naive case, there exists a number a > 0 such that the

value-momentum strategy, b(t) + a �p(t) , has a positive ex-

pected return, E [ (b(t) + a �p(t)) r t+1 ] > 0 , for all t. 

It is also interesting to consider how short-term in-

vestors trade in light of the network dynamics driving the

price. The demand (8) of short-term investors before reve-
1107 
lation can be rewritten as 

d i (t) = 

(1 − π) w i 

σ 2 
u 

�p n ( t + 1) + 

πw i 

σ 2 
u 

b(t) (34) 

which is proportional to the expected return in (33) . The 

first term shows that a short-term investor has an incen- 

tive to “ride” a bubble in the sense that the short-term in- 

vestor looks at the expected network price change if the 

fundamental is not revealed. This first term captures the 

“momentum of the bubble,” a more sophisticated form 

of momentum trading than looking simply at past prices 

changes, �p(t) , but I refer to this term also as a form of 

“momentum trading.”

The second term in (34) shows that a short-term in- 

vestor also worries about the magnitude of the bubble, re- 

alizing that a revelation of the fundamental will burst the 

bubble, leading to an expected price move equal to the 

difference between the price and the fundamental, b(t) = 

x r + u (t) − p(t) . At any point in time, short-term traders 

act as either momentum traders, value investors, or both 

(i.e., d i (t) must have the same sign as the first term in (34) , 

the second term, or both) and the next proposition shows 

how their portfolios evolve in the simple case of symme- 

try. 

Proposition 8 (Value and momentum trading). Consider an 

economy in the symmetric naive case as defined above. In 

case of a positive bubble, p ∞ 

n > 0 , short-term investors ini- 

tially buy a rising undervalued asset (value and momen- 

tum investing), continue to hold when the asset becomes 

over-valued (momentum), and finally shorts when the over- 

valuation is large enough (value on the short side). Short- 

term investors only go through the latter one or two phases 

(momentum buying and value shorting) depending on the ini- 

tial price p(1) (i.e., depending on the initial signals). 

Conversely, in case of an anti-bubble, p ∞ 

n < 0 , the short- 

term investor initially shorts a falling over-valued asset (mo- 

mentum and value shorting), continues to short as the asset 

becomes cheap (momentum), and eventually buys when the 

asset is cheap enough (value), or only goes through the latter 

one or two phases depending on p(1) . 

Short-term traders face a trade off between riding a 

bubble and betting on its burst. Proposition 8 shows that 

this trade off leads them to initially ride the bubble when 

the network component of the price drifts quickly up- 

ward due to strong network-spillover effects and, at the 

same time, the cost of a potential bursting bubble is lim- 

ited due to its moderate initial size. Eventually, however, 

naive investors’ views converge as the echo resides, im- 

plying that further price moves become small, and, more- 

over, the size of the bubble grows large, so the short-term 

traders ultimately trade against the bubble. Further, social 

network effects increase the trading volume and create an- 

other source of price variation, as shown next. 

Proposition 9 (Spike in volume and excess volatility). With 

naive and fanatic agents, the trading volume is greater but 

dies down over time (until the fundamental is revealed when 

final trading may happen) and the valuation metric b(t) 

varies more, relative to when all agents are rational. 



L.H. Pedersen Journal of Financial Economics 146 (2022) 1097–1119 

Fig. 1. Investor beliefs over time. The left panel shows how investors’ beliefs about the fundamental asset value change over time in Example 2. The line 

on top (identified with cross-marks) shows the fanatic view, the dotted line shows the rational view, and the solid curves show the naive investors’ views. 

Naive investors converge to different limits because of their differing social ties to fanatic or rational agents. The right panel shows the same, except that 

“fanatics” are not completely fanatic, they put 3% weight on the rational view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model has the property that, initially when in-

vestors receive signals that lead to disagreement, trading

volume is high ( Proposition 9 ) and the momentum effect

is strong ( Proposition 7 ), creating a bubble that later re-

verses. So momentum is strong when the trading volume

is high, and this interaction between volume and momen-

tum is consistent with the empirical findings of Lee and

Swaminathan (20 0 0) . Indeed, these authors find that mo-

mentum is strongest among high-volume stocks (their Ta-

ble II) and that this momentum return partially reverses

after 5 years (Table VI). 

The model also has implications for when bubbles burst

and trading volume dies down. The price can stay a bub-

ble as long as fanatics remain unmoved by rational opin-

ion and fundamentals remain unrevealed. Indeed, agents

disagree until revelation in contrast to standard DeGroot

models in which all agents converge to the same opinion

exponentially fast (see Section 2.1 ). Such long-term dis-

agreement leads to a long-term bubble in the price and

long-term differences in portfolios across agents. But, in-

terestingly, even as the bubble stays high, the trading vol-

ume declines fast. 22 This decline in trading volume hap-

pens as the level of bubble steadies and opinions settle

over time because trading arises from new – not existing –

differences of opinions. This prediction appears consistent

with the GameStop case as discussed in Section 4 . Portfo-

lios are discussed further in the context of many assets in

Appendix A.4 . 

Example 2 . The economy has N = 100 investors with equal

wealth w i = . 2 , 96 of which are naive, 2 are fanatics, 1 is a

long-term investor, and 1 is a short-term investor. The sup-

ply of shares is normalized to s = 1 and the asset’s funda-
22 Beliefs evolve based on A t , which has an eigenvalue of 1 and other 

eigenvalues of smaller magnitudes. Denoting the magnitude of the second 

largest eigenvalue by φ ∈ (0 , 1) , we see that belief dynamics and other 

endogenous quantities converge to their limit at the same speed as φt 

converges to zero. 

1108 
mental value is v + u (t) , where u (t) = �u (1) + . . . + �u (t) 

with �u (t) ∼ N(0 , 2 2 ) . Investors’ initial signals are x i (0) = 

v̄ + ε i , where v̄ ∼ N(100 , 0 2 ) and ε i ∼ N(0 , 5 2 ) , except that 

the fanatics draw a signal of x f = 500 . The unobserved 

value is v = 

∑ 100 
i =1 κi x i (0) , where each fanatic j have weight 

κ j = 25% while other agents share the remaining weight, 

50%/98 each. Revelation happens with probability π = 4% . 

After receiving these initial signals, the agents communi- 

cate in a social network. Any naive agent i puts a weight 

of A ii = 50% on his own previous view, splits 10% across 

naive agents, and, once and for all, randomly allocates the 

remaining 40% across fanatic and rational agents. Rational 

agents initially listen to everyone, learn the truth x r = v ∼= 

300 , and keep this updated view from time 1 and onwards. 

I consider two versions of fanatic investors: In the “fully fa- 

natic” case, they only listen to themselves, A j j = 1 ; in the 

“nearly fanatic” case, they put 3% weight on the rational 

view (i.e., A j j = 97% and A j, 100 = 3% ), so strictly speaking 

they are very self-reliant optimists rather than true fanat- 

ics. 

Fig. 1 shows how investors’ beliefs evolve over time. 

The left panel shows the views when fanatics are fully fa- 

natic, and the right panel shows the nearly fanatic case. 

The “initial displacement” (using Kindleberger’s terminol- 

ogy as discussed in the introduction) is that fanatics re- 

ceive positive news. Rational investors learn about this dis- 

placement at time 1, but their rational update is smaller 

than that of fanatics, who overweight their own signals. 

Naive investors learn about this positive news only grad- 

ually as they communicate via their social network. Hence, 

naive views start too low, grow as they learn about the 

initial displacement, and eventually end up between the 

rational and fanatic view. Some naive investors develop 

views close to the fanatic view while others become close 

to rational, depending on who they listen to the most, but 

all naive investors are too optimistic in the end – a “ma- 

nia.” In the left panel with full fanaticism, beliefs converge 

to different limits (long-term polarized opinions), while all 
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Fig. 2. Price bubble and volume. The top left panel shows the evolution of the asset price over time in Example 2 when fanatics are fully fanatic and the 

bubble bursts at time 50 when the fundamental value is revealed. The top right figure shows the price when fanatics put a small weight on the rational 

view, so the bubble peters out even though the fundamental value is not revealed over the shown time period. The bottom panes show the trading volume 

with fully fanatic agents (left) and fanatics who put a small weight on the rational view (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

views eventually converge to the rational view in the right

panel when fanatics eventually learn the truth as a revul-

sion against their extreme views sets in. 

The top panels of Fig. 2 show the resulting equilibrium

price. As before, the left panel illustrates the case when

fanatics are fully fanatic, and the right panel shows the

nearly fanatic case. Further, in the left panel, the bubble

bursts at time 50 because the fundamental value is re-

vealed at this time. In the right panel, the fundamental

value is never revealed over this time range, but the bub-

ble nevertheless peters out as fanatics’ optimism turns to

revulsion. The figures illustrate how the price starts too

low as the initial news is incorporated into prices only

gradually, the price grows into a bubble as naive investors

are swayed by fanatics, and ultimately the bubble bursts

(left panel) or peters out (right panel). 

The bottom panels of Fig. 2 show the total trading vol-

ume. The figure illustrates how trading volume is initially

very high, but the trading volume dies down even before

the bubble bursts. 
1109 
Finally, Fig. 3 shows the asset position of rational short- 

term traders. These traders initially buy the asset aggres- 

sively for two reasons: (a) the price starts below the ra- 

tional value since naive investors have not yet understood 

the full importance of the initial displacement; and (b) 

the price is trending up as naive investors are expected 

to grow increasingly optimistic. As the asset becomes ex- 

pensive, the short-term investors continue their momen- 

tum trading with a reduced position size. Eventually, as the 

bubble grows too large, short-term investors start shorting 

the asset. 

4. A case study of GameStop 

The case of GameStop offers a window into the ef- 

fects of social networks on asset markets due to its well- 

publicized and extreme events. While the introduction 

cites scientific evidence in support of the model, GameStop 

offers an interesting illustration that may spur ideas for fu- 

ture research, hopefully ideas that also apply in less ex- 
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Fig. 3. Asset position of short-term investors. This figure shows the asset position of short-term investors over time in Example 2 assuming no revelation. 

Fanatics are fully fanatic in the left panel and nearly fanatic in the right panel. Short-term investors are initially long the asset, acting as momentum traders 

who ride the bubble. Later in time, short-term investors act as value investors who bet of a price reversion toward fundamentals when the bubble bursts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

treme cases such that they can help explain the general

principles of social market behavior. 

Gamified trading of GameStop. In early 2021, the

world’s largest video game retailer, GameStop, was strug-

gling as games were increasingly sold online and the re-

tail industry was hit by the Covid-19 crisis. Nevertheless,

a group of investors caught an almost fanatic liking to

the stock, a trend that was reinforced through social net-

works. Keith Gill (better known under various social media

aliases) became the most followed of these traders and he

expressed an unwavering belief in the stock at all observed

price levels — so he can be represented in the model as

one of the fanatics. Gill and others believed that GameStop

could pivot online and capture a share of the large digital

software distribution market while simultaneously benefit-

ing from their physical locations with the help of recent

block investor and board member, Ryan Cohen, and others

(the initial displacement in Kindleberger’s terminology). 

The most well-publicised group of retail investors in-

terested in GameStop communicated through the platform

Reddit, in the community (subreddit) called WallStreet-

Bets. Some investors believed like Gill that GameStop was

undervalued, while others stated an intention to buy the

share because of its large short interest of just over 100% of

shares outstanding at the beginning of the year (or around

140% of all floating shares). Some GameStop investors re-

sented shortsellers or expressed a view that pushing up

the stock price could lead to a short squeeze, but by

March 2021 the focus on shortsellers dissipated. The ex-

treme view of the stock price was reinforced with rocket

memes and by labelling GameStop a YOLO trade. Similarly

in the model, the fanatics have a larger effect on the price

if they express a more extreme valuation, x̄ f , as seen in

Proposition 4 and this effect is larger if the fanatics have

more thought leadership ( Proposition 5 ). 

As another sign of the importance of social media, the

interest in GameStop was spurred by a tweet by Elon Musk

on January 26, with the single word “Gamestonk!!” along
1110 
with a link to WallStreetBets. In the model, Elon Musk can 

be represented as an influencer who chooses to follow the 

fanatic. That is, the agent i representing Musk puts a pos- 

itive weight, A i f > 0 , on the fanatic’s view, and Musk is 

an influencer in the sense that many other investors j fol- 

low Elon Musk, A ji > 0 . In the model, when an influencer 

follows a fanatic with a very bullish view, this increases 

the stock price ( Proposition 6 ), as it did in the case of 

GameStop. In the terminology discussed in the introduc- 

tion, Musk’s tweet can be seen as an “authoritative bless- 

ing.”

This bullish sentiment on GameStop communicated via 

social networks was translated into actual trading activ- 

ity. Trading by inexperienced traders was facilitated by 

a competitive online brokerage industry offering zero- 

commission trading, led by the new broker, Robinhood, 

which uses a business model based on payment for order 

flow from market makers such as Citadel. Robinhood and 

other brokers sought to make trading more broadly avail- 

able to a wide range of investors in a fun way, which lead 

to the accusation that trading became “gamified.”

Price, volume, volatility, and social media interest. As 

seen in Fig. 4 .A, GameStop had been trading at less than 

$20 per share through 2020, but increased dramatically in 

the beginning of 2021. The stock started the year at $19 

per share and hit an intra-day high of $483 on January 28, 

a 25 fold increase with little news. The price dropped to 

$40 in February, but it increased significantly again in late 

February, and stayed above $100 for the rest of 2021. 

The extraordinary volatility visible in Fig. 4 .A is shown 

more explicitly in Fig. 4 .B, which plots the 20-day close- 

to-close realized volatility, annualized by multiplying by √ 

250 . Realized volatility peaked at over 700%, an excep- 

tionally large price volatility. The high volatility coincided 

with an enormous trading volume as GameStop temporar- 

ily became one of the most traded stocks in the world de- 

spite the modest size of the company. Fig. 4 .C shows the 

daily turnover computed as the daily trading volume in 
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Fig. 4. GameStop price, volatility, turnover, and interest, 5/1/2020-5/3/2022. Panel A shows the GameStop stock price over time (open-high-low-close), 

Panel B shows the realized volatility (20-day annualized volatility), Panel C shows the daily turnover, and Panel D shows the social media interest as 

proxied by Google search trends for GameStop, GME, and WallStreetBets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shares divided by the number of shares outstanding. The

daily trading volume peaked at over 200% on January 22,

meaning that all the company’s shares were traded more

than twice each day. The spikes in trading volume and

volatility also coincided with an increase in social media

interest in GameStop as proxied by Google searches for

GameStop, its ticker GME, and WallStreetBets as seen in

Fig. 4 .D. Interestingly, while prices remained elevated rela-

tive to 2020 through the end of the sample period, trading

volume and volatility came down to more normal levels

similar to those in 2020, consistent with the model as ex-

plained in the end of Section 3.2 . 

Other effects. The real world is almost always more

complex than any stylized theoretical model, and the case

of GameStop is no exception. The trading frenzy almost

surely started in social media similarly to the model,

but ultimately several effects played a role in the mete-

oric rise in the price. First of all, retail investors bet on

GameStop both by buying the stock and by buying call op-

tions. Call options have embedded leverage, allowing in-

vestors to multiply their gains or losses many times for

the same dollar investment ( Frazzini and Pedersen, 2022 ).

When end-investors buy call options, they are sold by mar-

ket makers who hedge their risk by buying the stock.

The hedge ratio (called the “delta”) increases when the

stock price increases (and this change in the delta is called

the “gamma”). Therefore, an increasing stock price leads

to buying from option market makers, leading to further

stock price increases, and so on (a “gamma squeeze”).

In other words, buying call options is similar to a pre-
1111 
programmed trading strategy, where the end-investor buys 

more and more shares if the price rises. In the model, this 

strategy corresponds to letting the demand-sensitivity of 

naive investors depend on the stock price (or their trading 

gains), an interesting extension of the model. 

As the stock price of GameStop rose in late January, 

some shortsellers were simultaneously forced to close their 

positions, buying shares that they earlier borrowed. This 

reduction in short positions further pushed the price up- 

ward (a “short squeeze”). This short squeeze likely played 

a role in the price spike in January, but it was not a ma- 

jor driver of the subsequent price rise that started in late 

February 2021, suggesting an importance of social network 

effects. 

Further, some newspapers reported possible buying by 

institutional investors, similar in spirit to the short-term 

investors in the model. As the short-term investors in the 

model, these investors may have chosen to ride the bub- 

ble, thus contributing to the increase in price. Other so- 

phisticated investors were focused on the long-term value, 

shorting the stock or simply selling their positions. 

In summary, GameStop started the year 2021 with a 

market capitalization of $1.2B and reached a high on Jan. 

28 of $34B. While certainly an economically meaningful 

rise in value, GameStop’s peak market capitalization was 

only 0.07% of US equities, still a small corner of the over- 

all equity market, even when including the other meme 

stocks that also rose in value at the time. GameStop raised 

“$1,672.8 million in gross equity capital through an at-the- 
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market offering”23 in 2021, more than their market value

at the beginning of the year. An at-the-market offering

means that GameStop sold shares directly into the market,

perhaps targeting naive investors rather than selling to in-

stitutional investors via a conventional bookbuilding. One

of the other meme stocks, AMC, also raised about $300m

in an at-the-market offering in January 2021, illustrating

how price displacements can have real effects as shares

sales affect the survival and operation of these businesses. 

Link to the model. The GameStop saga had many of

the elements included in the model: an investment thesis

spreads via a social network ( Proposition 1 ), fanatic views

gain prominence over time ( Proposition 2 ), the contagious

investment idea leads to network effects on prices (Propo-

sitions 4 ), which starts a bubble ( Propositions 5 ), prices

rise further as influencers link to the fanatics (Proposi-

tion 6 ), sophisticated momentum investors ride the bubble

while value investors bet against it ( Propositions 7 , 8 ), and

high trading volume and volatility ensue ( Propositions 9 ),

but die down faster than the price bubble. Further, this

episode illustrates both the general anatomy of bubbles

and a magnified version of more common asset pricing ef-

fects (as seen in Table 1 ), one that allows us to more easily

observe how social networks affect markets. 

5. Conclusions and further directions 

I present a simple model of a financial market in which

some investors are rational and others learn through a so-

cial network. The model can help explain a number of ob-

served phenomena such as social network effects in port-

folio holdings, excess volatility, momentum and reversal

effects, meme trading, the effects of repeated news, and

spillover of expectations and transaction prices across peo-

ple with social links. I study the events of GameStop in

2021 in light of the model, showing how extreme price

moves were related to extreme trading volume and so-

cial media attention. Hence, belief formation via social net-

works may both affect the normal day-to-day fluctuations

in asset prices and the extreme events connected to bub-

bles and crashes. 

Social networks have been prevalent throughout his-

tory, but modern social media are changing the nature of

these networks and making them more observable, which

opens up new research possibilities to test the model pre-

dictions using data on networks and market behavior. If

social network effects are a force behind pervasive dynam-

ics throughout global equity, bond, currency, commodity,

cryptocurrency, and housing markets such as value, mo-

mentum, and excess volatility, then the GameStop affair is

only the tip of the iceberg, a very extreme tip that is cur-

rently seen more clearly than the part hidden under the

surface. I end by discussing further implications and future

directions. 

Diamond hands. People who want to affect the opin-

ion of others try to get attention, but may also en-

force a fanatic stubbornness. In social media related
23 Annual Report on Form 10-K for the fiscal year ending January 29, 

2022. 
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to trading, such a stubborn willingness to keep buy- 

ing and holding a stock is called “diamond hands”

(often written with diamond and hand emojis). In 

the case of GameStop, Keith Gill – a trader who 

made an impact on social media – ended his tes- 

timony in the hearing of the U.S. House Committee 

on Financial Services by saying: “In short, I like the 

stock,” signaling his continued commitment to the 

position. The model shows that a stubborn view can 

come to have a significant effect on naive investors 

( Proposition 1 ), leading to bubbles ( Propositions 5 ). 

Rocket and YOLO trades. A stubborn view has a larger 

effect if it is more extreme (Propositions 4 ). Social- 

media investors sometimes signal such an extreme 

view of the potential rise in price via a rocket emoji 

and, the traders of GameStop on WallStreetBets had 

a special category for YOLO (you only live once) 

trades. 

Gamification of trading. Some investors are trading 

with broker apps with game-like features while 

chatting on social media with their social connec- 

tions. Hence, another interpretation of the model is 

that it may capture such a gamification of trading 

and future research may shed more light on the ef- 

fects of gamification. 

Meme trading frenzy. A “meme” is an idea that be- 

comes a fad and spreads by means of imitation in 

a social network, in the spirit of the model con- 

sidered in this paper. The meme can lead to dif- 

ferences of opinions across variations of the meme 

(i.e., across different fanatics in the model) and rela- 

tive to rational investors, leading to a trading frenzy 

( Proposition 9 ). This can happen even long after any 

news has arrived or a meme is originated, since 

the meme can take a long time to gather momen- 

tum in the social network. See Shiller (2017) for 

other economic effects of viral “narratives” and 

Hirshleifer (2020) for the related idea of “social 

transmission bias.”

Echo chambers. When people communicate in a closed 

system insulated from rebuttal, their opinions are 

amplified via confirmation bias, referred to as an 

“echo chamber.” This situation can be captured in 

the model by letting a subset of the naive agents 

listen only to each other and one of the fanatics. In 

this case, these naive agents end up having the same 

opinion as this particular fanatic. The other agents 

in the economy have a mixture of the rational view 

and all the other views, but they can also be influ- 

enced by the echo chamber if they listen to mem- 

bers of the chamber. Hence, such an echo chamber 

can amplify the size of a bubble, especially if the 

echo chamber includes – or influences – many peo- 

ple, wealthy people, or risk-tolerant ones. 

Size of wallet vs. number of followers. In traditional 

models of finance, people influence prices based 

on the size of their wealth. Interestingly, when in- 

vestors learn through their social network, even a 

non-investor (or a penniless investor) can wield a 

large influence on prices if the person is a thought 

leader or influencer, especially if the followers are 
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wealthy or consists of sufficiently many small in-

vestors. So an “important agent” has a completely

different meaning in traditional models and in this

model of a social network! 

Influencer values. Influencers are being used in the

marketing of financial securities as well other prod-

ucts. For example, Kim Kardashian has promoted the

cryptocurrency Ethereum Max, the American foot-

ball player Tom Brady has endorsed the cryptocur-

rency platform FTX, and other fulltime “finfluencers”

are paid to promote financial products. 24 My model

can be used to compute the value of paying an in-

fluencer for such promotion, which can be modeled

as creating new links in the adjacency matrix, A . 

Excess volatility. Since the evolution of the network

component of the price is largely divorced from fun-

damentals, asset prices vary for reasons unrelated to

news about their fundamentals ( Proposition 9 ), con-

sistent with Shiller (1981) , ( 1984 ). Volatility would

be even larger in an extension of the model in which

naive investors trade at random times, such that the

price at any time would depend on the mix of in-

vestors trading at that moment. 

Value and momentum. Social network effects can lead

to price momentum and subsequent reversal to-

ward fundamentals (also called a value effect) that

are seen across many asset classes and global mar-

kets ( Asness et al., 2013 ). Indeed, the build-up of

naive investor demand can lead to momentum ef-

fects, and the eventual price reversal as the funda-

mental value is revealed leads to a value premium,

and it would be interesting to empirically link these

patterns more directly to social networks. 

Repeat news. In the model, repeating old news can

move prices, especially if the repeat news is dis-

played prominently to many people, as naive in-

vestors keep reacting to the same information,

consistent with the evidence of Huberman and

Regev (2001) and Tetlock (2011) . 

Investor communication and fake news. In the model,

fanatics may be spreading fake news, but they are

assumed to do so because they truly hold this view.

More broadly, all agents’ report their true views,

consistent with the assumption that they are price-

takers — and consistent with the idea that most in-

vestors simply have an honest talk with their friends

in order to figure things out. Nevertheless, an inter-

esting extension would consider agents’ incentive to

communicate strategically. 

Pump and dump. An opportunistic investor could try

to profit by first buying an asset, and then pretend

to have a fanatic bullish view on the asset in order

to create a wave of buying by his followers, lead-

ing to a price increase. If the opportunistic investor

then sells despite talking up the asset, he is engag-

ing in “pump and dump,” an illegal form of market

manipulation. This behavior can be captured in the
24 Bloomberg 9/17/21, “Wall Street Influencers Are Making $50 0,0 0 0, 

Topping Even Bankers.”
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model as follows. An investor splits herself into two 

parts, say i and j: The fanatic part i “pumps” up the 

price via a strong attention-grabbing view ( A ki > 0 

for many k ), but does not trade (zero wealth to 

this part, w i = 0 ); The rational part is a short-term 

investor who trades ( w j > 0 ), but does not speak 

( A k j = 0 for all k 	 = j). The rational side initially rides 

the pump and eventually “dumps”—so viewed as a 

team, these agents pump and dump. 

Short squeeze. A bubble driven by social me- 

dia effects can be greatly exacerbated if short- 

sellers are forced to close their positions due 

to share recalls or risk controls. This paper ab- 

stracts from this effect here for simplicity—see 

Brunnermeier and Pedersen (2005) for a model of 

short squeezes and other forms of predatory trading, 

Duffie et al. (2002) for a model of securities lend- 

ing, and Gârleanu et al. (2021) for a model of how 

fears among short sellers can become self-fulfilling. 

Future research may explore how short-sale frictions 

interact with network effects. 

Social network effects and local bias. Social network 

effects mean that people are affected by those they 

are connected to, and, indirectly by the connec- 

tions of their connections, and so on. People of- 

ten interact with others in their local area and 

work place, which can be captured in the struc- 

ture of the adjacency matrix A . So if people hear 

about local stocks via their social network, this 

mechanism can contribute to investments having 

home bias ( French and Poterba, 1991 ), local bias 

( Coval and Moskowitz, 1999 ), and own-firm bias. 

Kuchler et al. (2020) provide evidence that social 

network effects contribute to local bias and affect 

firm values, and this effect could be studied further 

in an extension of the model with many stocks (see 

Appendix A.4 ). 

Who buys early or late into a bubble? In the model, 

the earliest big buyers are the most extreme fanat- 

ics (due to their bullish views) and the short-term 

investors (due to their realization that a bubble is 

forming) while naive investors initially hold small 

positions. Fanatics continue to be large owners until 

the crash, but they gradually reduce their positions 

as prices rise — so they sell into the crash, but still 

experience large losses. Naive investors who are in- 

fluenced by fanatics continue to buy the asset until 

the crash as these investors grow increasingly opti- 

mistic. The last buyers are naive investors influenced 

by fanatics, especially those who learn the fanatic 

view only slowly, e.g., via indirect connections to the 

fanatic due to a peripheral position in the social net- 

work. 

Attention-grabbing profits. Fanatic views may spread 

more quickly when their proponents are seen prof- 

iting from their views. Hence, an interesting exten- 

sion of the model would let the adjacency matrix A 

at each time depend on the past profits of the dif- 

ferent agents. Given that fanatics tend to profit early 

on as their views start affecting the price, this ex- 

tension could generate larger bubbles as the fanatic 
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Table A.1 ( continued ) 

Symbol Meaning 

π Probability that v is revealed at t

given no revelation yet 

A = (A i, j ) i, j=1 , ... ,N Adjacency (or weight) matrix (how 

people update their views) 

θi Agent i ’s thought leadership 

μi Agent i ’s influencer value 

p(t) Price before revelation 

p(t) = p r (t) + p n (t) Price split into its rational and 

network components 

s Supply of shares 

d i (t) Asset demand of agent i 

N Total number of agents 

N = N n + N f + N l + N s Naive, fanatic, long-term rational, and 

short-term rational 

x (t) = (x n (t) ; x h ) Views split into those of naive and 

hardheaded agents 

x h = (x f ; x l ; x s ) Hardheaded agents split by fanatic, 

long-term, short-term 

x r The rational view, 

x r = E(v | x 1 (0) , . . . , x N (0) = v 
x̄ (t) Average view of all agents at time t

x̄ n (t) Average naive view at time t

x̄ f Average fanatic view at any time 

w i Wealth of agent i 

w = (w n ; w h ) Wealth vector split into naive and 

hardheaded agents 

w = (w n ; w f ; w l ; w s ) Wealth vector split into naive, fanatic, 

long-term, short-term 

w · Total wealth of all agents 

w · = 

w n · + w f · + w l · + w s ·
Total wealth of naive, fanatic, 

long-term, short-term 

b(t) = x r + u (t) − p(t) Valuation metric similar to 

book-to-price 

1 N , e i , I Vector of ones, i ’th standard unit 

vector, identity matrix 

� Change over time, e.g., 

�p(t + 1) = p(t + 1) − p(t) 
profits would grab attention, the attention would in-

crease profits, and so on. 

Firm communication. Firms use their communication

and advertising to try to boost their stock prices

( Lou, 2014 ). Such behavior could be studied in an

extension of the model in which firms participate

in the social network or affect the revelation prob-

ability π. For example, a firm has a much stronger

incentive to reveal its value or help propagate the

rational view when its stock price is undervalued

vs. overvalued. Hence, a negative bubble may have a

higher revelation probability π and a larger thought

leadership of rationals aided by the firm, thus lead-

ing to shorter and smaller price distortions. In con-

trast, positive bubbles may be larger, more prevalent,

and initiated by the firm itself, especially when the

firm needs to raise capital or insiders need to sell

out. 

Central bank communication. Central banks use their

communication to ensure the transmission of their

monetary policy. They may also use communication

strategies to lean against bubbles and improve mar-

ket efficiency — in the language of the model, they

try to increase the thought leadership of the rational

view. Indeed, many central banks have social me-

dia accounts and they are very deliberate with their

communication. Central bank communication via a

social network is thus another interesting avenue of

future research. 

Many funds. While standard asset pricing theory pre-

dicts that investors just need a few investment funds

(e.g., two-fund separation), there exist more mutual

funds and ETFs than stocks in the real world. This

finding is consistent with my model if investors fol-

low a larger number of fanatics than there are stocks

(see Appendix A.4 ). 

Appendix A 

A1. Overview of notation 
Table A.1 

Overview of notation. 

Symbol Meaning 

v Part of the fundamental value that 

agents try to learn about 

u (t) Part of the fundamental value that 

agents observe 

σ 2 
u = 

Var (u (t) − u (t − 1)) 

Variance of the iid increments of the 

random walk u (t) 

x i (0) = v i Agent i ’s initial signal about the value 

v 
κi Importance of i ’s signal since 

v = 

∑ N 
i =1 κi v i and 

∑ N 
i =1 κi = 1 

x (t) = (x i (t)) i =1 , ... ,N Vector of agents’ views about the 

value v at time t

τ The random time when v is revealed 

to all agents 

( continued on next page ) 
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A2. Proofs 

Proof of Proposition 1 . Beliefs evolve as follows for t > 1 

x (t) = A 

t−1 x (1) = 

(
A 

t−1 
nn 

∑ t−2 
k =0 A 

k 
nn A nh 

0 I 

)
x (1) 

→ 

(
0 (I − A nn ) −1 A nh 

0 I 

)
x (1) (A.1) 

Here, the second equality can be seen via induction. The 

convergence result follows from summing the geometric 

series in the upper-right block matrix, and the upper-left 

block matrix converges to zero, A 

t−1 
nn → 0 , because all of its 

eigenvalues are strictly less than one. 

To see this property of the eigenvalues, let M = A nn , 

which is a non-negative matrix with 

∑ 

j M i, j ≤ 1 for all i , 

with strict inequality for at least one i since at least one 

naive agent listens to a hardheaded one. Suppose first that 

M is an irreducible matrix. Then the Perron-Frobenius The- 

orem shows that M has a strictly positive left eigenvector 

ξ corresponding to the largest eigenvalue λ, that is, ξ ′ M = 

λξ ′ with ξi > 0 for all i . Therefore, λ
∑ 

i ξi = 

∑ 

i (ξ
′ M) i = ∑ 

i 

∑ 

j ξ j M j,i = 

∑ 

j ξ j 

∑ 

i M j,i < 

∑ 

j ξ j , implying that λ < 1 . 
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If instead M is reducible, then it can be written on the

normal form 

K MK 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

M 1 ∗ . . . ∗
0 M 2 

. . . 
. . . 

. . . 
. . . 

. . . ∗
0 . . . 0 M h 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(A.2)

where K is a permutation matrix, each M k is a square ma-

trix that is either irreducible or zero, and the spectrum of

M is the union of the spectra of the M i . Further, each M i

is a matrix of non-negative numbers with rows that sum

to at most 1, and at least one row that sums to strictly

less than 1 (since otherwise no one in this group of agents

is influenced by a hardheaded agent, in violation of as-

sumption 1). Therefore, the argument above shows that all

eigenvalues are strictly less than 1. 

Finally, the naive views are convex combinations of the

hardheaded views in the limit for two reasons. First, the

naive views are clearly non-negative linear combinations

of hardheaded views as the weights are limits of non-

negative weights. Second, the weights sum to unity be-

cause lim A 

t 1 N = 1 N , implying that (I − A nn ) 
−1 A nh 1 N−N n =

1 N n using (A.1) . �

Proof of Proposition 2 . A. As t → ∞ , the average opinion,

x̄ (t) , converges to 

x ( t ) → 

1 

w ·
w 

’ 
n ( I − A nn ) 

−1 A nh x h + 

1 

w ·
w 

’ 
h x h 

= 

(
μ’ A nh + 

1 

w ·
w 

’ 
h 

)
x h (A.3)

using (A.1) , which shows that θ ′ 
h 

is given by the last paren-

thesis. 

Note that the sum of the thought leaderships is 1 (as

stated in Definition 1 ) since each row in A 

t sums to 1, a

property that is preserved in the limit as t goes to infinity,

and so θ ′ 1 = 

1 
w · w 

′ lim t→∞ 

A 

t 1 = 

1 
w · w 

′ 1 = 

w ·
w · = 1 . 

B. If a naive agent i increases his following of j at

the expense of other hardheaded agents, then A nn re-

mains unchanged and, therefore, influencers values μ re-

main unchanged. Hence, the result follows from differenti-

ating (23) using ∂ A i j /∂ ε = 1 and ∂ A k j /∂ ε = 0 for k 	 = i . �

Proof of Propositions 3 and 4 . The equilibrium price is de-

termined by equalized the supply s and the total demand:

s = 

∑ 

i naive 

d i (t) + 

∑ 

i fanatic 

d i (t) + 

∑ 

i long-term rational 

d i (t) 

+ 

∑ 

i short-term rational 

d i (t) (A.4)

To derive a convenient expression for this equilibrium con-

dition, recall the notation that w n = ( w i ) i =1 , ... ,N n 
is the col-

umn vector of wealth of the naive agents, and, similarly,

w f , w l , w s , and w are the vectors of wealth of, respec-

tively, fanatic, long-term, short-term, and all agents. Fur-

ther, w n · = 1 ′ w n is the total wealth of all naive agents, and

similarly for the other groups. With this notation, the equi-

librium condition can be written as 

sσ 2 /π = (w 

′ x n (t) + w n ·u (t) − w n · p(t)) 
u n 
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+ (w 

′ 
f x f + w f ·u (t) − w f · p(t)) 

+ w l ·(x r + u (t) − p(t)) 

+ w s ·

[
(1 − π) 

π
E t (p(t + 1) − p(t)) + (x r + u (t) − p(t)) 

]
(A.5) 

Isolating p(t) on the left-hand side gives 

p(t) = 

w n ·
w · + 

1 −π
π w s ·

x̄ n (t) 

+ 

w f ·
w · + 

1 −π
π w s ·

x̄ f + 

w l · + w s ·
w · + 

1 −π
π w s ·

x r (A.6) 

+ 

1 −π
π w s ·

w · + 

1 −π
π w s ·

E t (p(t + 1)) + 

w ·
w · + 

1 −π
π w s ·

u (t) 

− w ·
w · + 

1 −π
π w s ·

sσ 2 
u 

πw ·

= (1 − c) 

[
w n ·
w ·

x̄ n (t) + 

w f ·
w ·

x̄ f + 

w l · + w s ·
w ·

x r + u (t) − sσ 2 
u 

πw ·

]
+ cE t (p(t + 1)) 

= (1 − c) 

[
x̄ (t) + u (t) − sσ 2 

u 

πw ·

]
+ cE t (p(t + 1)) 

where the constant c is defined as c = 

1 −π
π w s ·

w · + 1 −π
π w s ·

, thus 

proving (25) . 

Iterating this equation forward yields the equilibrium 

price using standard difference equation methods and the 

sum of a geometric series. In particular, one can eliminate 

the future price by discounting the future versions of the 

rest of the right-hand side by c. Note the discounted fu- 

ture price converges to zero because of the premise that 

(the network part of) the expected price is bounded and 

because this bounded value is discounted by c ∈ (0 , 1) , 

thus yielding a unique solution (i.e., using the standard 

transversality condition). To see this, note that (25) has the 

following structure, where I collect several terms under the 

umbrella called b t = (1 − c)[ ̄x (t) + u (t) − sσ 2 
u / (πw ·)] : 

p t = b t + cE t (p t+1 ) = b t + cE t (b t+1 + cp t+2 ) 

= b t + E t (cb t+1 + c 2 [ b t+2 + p t+3 ]) 

= b t + E t (cb t+1 + c 2 b t+2 + c 3 b t+3 + . . . ) 

Using that 1 + c + c 2 + · · · = 1 / (1 − c) , the equilibrium 

price is calculated as: 

p(t) = 

w n ·(1 − c) 

w ·

∞ ∑ 

k =0 

c k x̄ n (t + k ) + 

w f ·
w ·

x̄ f 

+ 

w l · + w s ·
w ·

x r + u (t) − sσ 2 
u 

πw ·
(A.7) 

When w n · = w f · = 0 , the above expression yields the equa- 

tion for the rational price (since, in this case, w · = w l · + 

w s ·). To get the network part of the price, one subtracts 

the rational price from (A.7) , using that w n ·(1 −c) 
w ·

∑ ∞ 

k =0 c 
k + 

w f ·
w · + 

w l ·+ w s ·
w · = 1 . 

The convergence result as t → ∞ now follows from 

(19) using the notation x̄ ∞ for the limit of each variable: 

p(t) −
(

u (t) − sσ 2 
u 

πw ·

)
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→ 

w n ·
w ·

x̄ ∞ 

n + 

w f ·
w ·

x̄ f + 

w l · + w s ·
w ·

x r 

= x̄ ∞ = 

N ∑ 

j= N n +1 

θ j x j (A.8)

�

Proof of Proposition 5 . The price sensitivity to each fanatic

value is seen by differentiating (30) . �

Proof of Proposition 6 . If naive agent i with influencer value

μi increases his following A i j of fanatic agent j by ε at the

expense of a lower following of a rational agent, then the

effect on price is: 

∂ p ∞ 

n 

∂ε 
= 

∂ 

∂ε 

( 

N n + N f ∑ 

j= N n +1 

θ j (x j − x r ) 

) 

= μi (x j − x r ) 

where the last equality uses that the fanatic agent’s

thought leadership increases as follows: 

∂θ j 

∂ε 
= 

∂ 

∂ε 
μi (A i j + ε) = μi 

based on (21) , the thought leadership of other fanatics is

unchanged, and the thought leadership of rational agents

is decreased accordingly. �

Solving the symmetric naive case (used in

Propositions 7 , 8 ). In this case, it holds that 1 ′ N n A nn =
1 ′ 

N n 
(a 0 1 N n 1 

′ 
N n 

+ a 1 I) = λ1 ′ 
N n 

, where λ = a 0 N n + a 1 . Further,

λ ∈ (0 , 1) since symmetry implies that A nn 1 N n = λ1 N n and

the row sums of A nn must be less than one since agents

are hardheaded connected. Hence, the average view of

naive investors is: 

x n ( t ) = 

1 

N n 
1 

’ 
N n 

x n ( t ) = 

1 

N n 
1 

’ 
N n 

A 

t−1 
nn x n ( 1 ) 

+ 

1 

N n 
1 

’ 
N n 

t−2 ∑ 

k =0 

A 

k 
nn A nh x h = λt−1 x n ( 1 ) 

+ 

1 

N n 

t−2 ∑ 

k =0 

λk 1 

’ 
N n 

A nh x h = λt−1 x n ( 1 ) + 

(
1 − λt−1 

)
x 

∞ 

n 

(A.9)

where x ∞ 

n = 

1 
N n 

1 ’ N n A nh x h / (1 − λ) . Therefore, the first term

in the price Eq. (A.7) can be rewritten as follows, leaving

out the constant term 

w n ·(1 −c) 
w · , 

∞ ∑ 

k =0 

c k x̄ n (t + k ) = 

∞ ∑ 

k =0 

c k 
(
λt+ k −1 x̄ n (1) + (1 − λt+ k −1 ) ̄x ∞ 

n 

)
= 

λt−1 

1 − cλ
( ̄x n (1) − x̄ ∞ 

n ) + 

x̄ ∞ 

n 

1 − c 

so the price is 

p(t) = 

λt−1 (1 − c) 

1 − cλ

w n ·
w ·

( ̄x n (1) − x̄ ∞ 

n ) + 

w n ·
w ·

x̄ ∞ 

n + 

w f ·
w ·

x̄ f 

+ 

w l · + w s ·
w ·

x r + u (t) − sσ 2 
u 

πw ·
(A.10)

Therefore, the network component of the price is 

p n (t) = 

λt−1 (1 − c) 

1 − cλ

w n ·
w 

( ̄x n (1) − x̄ ∞ 

n ) 
·
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+ 

w n ·
w ·

( ̄x ∞ 

n − x r ) + 

w f ·
w ·

( ̄x f − x r ) (A.11) 

Proof of Proposition 7 . The momentum in the current and 

future network price are linked as, �p n (t + 1) = λ�p n (t) , 

as seen from (A.11) . Hence, expected returns (33) can be 

written as follows in the symmetric case 

E t (r t+1 ) = 1 (t<τ ) [ (1 − π) λ�p n (t) + πb(t) ] (A.12) 

Further, note that the past return, r(t) = �p(t) = �p n (t) + 

u (t) is a noisy, but unbiased, proxy for �p n (t) , and that 

the noise u (t) is independent of the future shock to re- 

turns, r t+1 − E t (r t+1 ) , and of the current valuation ratio, 

b(t) = x r + u (t) − p(t) = 

sσ 2 
u 

πw · − p n (t) . So this is a standard 

errors-in-variables problem, where a noisy regressor will 

bias downward its regression coefficient (and also affect 

the other regression coefficient, potentially increasing it). 

However, here the variables are not stationary in time so, 

to rely on standard statistics, we either need to repeat the 

model many times or consider a cross-section of many 

stocks. Rather than considering such extensions, we sim- 

ply compute the expected profit of the value-momentum 

strategy, d(t) = a �p(t) + b(t) , with a weight on momen- 

tum given by a = λ(1 − π) /π ∈ (0 , 1) using (A.12) : 

E [ d(t) r t+1 ] = E [ (a �p(t) + b(t)) E t (r t+1 ) ] 

= E[(a (�p n (t) + u (t)) + b(t))1 (t<τ ) 

× [ (1 − π) λ�p n (t) + πb(t) ] ] 

= πE 
[
1 (t<τ ) (a �p n (t) + b(t)) 2 

]
+ πE 

[
u (t)1 (t<τ ) (a �p n (t) + b(t)) 

]
= πE 

[
1 (t<τ ) (a �p n (t) + b(t)) 2 

]
> 0 (A.13) 

using that u (t) is independent of τ , p n (t) , and b(t) . �

Proof of Proposition 8 . The general statement before the 

proposition that short-term investors always end up being 

value investors follows from the fact that the price absent 

revelation converges to a limit as seen in Proposition 4 . 

This convergence means that momentum profits, captured 

in the first part of Eq. (34) , converge to zero over time 

while profits from trading on reversal, captured in the sec- 

ond part of Eq. (34) , are bounded away from zero. 

In the naive symmetric case, the price and its net- 

work component are given by (A .10) , (A .11) as shown above. 

Hence, if ( ̄x n (1) − x̄ ∞ 

n ) < 0 , then, before revelation, the net- 

work price is rising monotonically in time t and network 

price changes p n (t + 1) − p n (t) are monotonically falling 

over time, and vice versa if ( ̄x n (1) − x̄ ∞ 

n ) > 0 . Therefore, 

Eq. (34) shows that the position of short-term investors is 

falling in the first case and rising in the latter case. �

Proof of Proposition 9 . Regarding trading volume, when all 

agents are rational, then all agents establish their positions 

at time 1 and keep these positions throughout, so volume 

is minimal. With naive and fanatic agents, trading volume 

is generally positive as naive agents continue to update 

their views, but, as t → ∞ , their views converge so that 

view changes approach zero, leading to a diminishing vol- 

ume, except at the revelation time. 
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Regarding price variability, with only rational agents,

the price is p(t) = x r + u (t) − sγ σ 2 
u 

Nπ so the valuation metric

b(t) is constant over time until the revelation. With naive

and fanatic agents, the valuation metric varies over time

due to changes in the network part of the price. This net-

work effect creates another source of price variation in ad-

dition to the price variation arising from changes in u and

the realization of τ . �

A3. Alternative information structure 

Suppose that the signals are written as a sum of a com-

mon random variable y and independent noise terms ε i : 

x i (0) = y + ε i (A.14)

This specification is consistent with my model if we let the

true value be 

v = y + 

N ∑ 

i =1 

κi ε i . (A.15)

since, in this case, we have 

N ∑ 

i =1 

κi x i (0) = y + 

N ∑ 

i =1 

κi ε i = v . (A.16)

If instead signals continue to be given by (A.14) , but the

common component is the true value, v = y , then we

have the standard information-theoretic framework (e.g.,

Hellwig 1980 ). So we see that the difference is that, the av-

erage “noise” coming from the ε i ’s is part of the true value

in my model, but not in the standard framework. 

However, we can reinterpret my model as being con-

sistent with the standard information framework simply

by changing the definition of two parameters ( x r and σ 2 
u )

while leaving everything else in the paper the same! 

To analyze the standard framework, let the true value

be v and the signals be given by (A.14) with v = y such

that v ∼ N( ̄v , σ 2 
v ) and ε i ∼ N(0 , σ 2 

ε i 
) are independent. Then

the rational view x r is: 

x r = E(v | x 1 (0) , . . . , x N (0)) = v̄ + �v x �
−1 
xx (x (0) − v̄ 1 N ) 

= κ0 ̄v + κ ′ x (0) (A.17)

where κ0 = 1 − �v x �
−1 
xx 1 N and κ ′ = (κ1 , . . . , κN ) =

�v x �
−1 
xx , and I use the standard notation that

�v x = ( Cov (v , x 1 (0)) , . . . , Cov (v , x N (0))) and �xx is the

variance-covariance matrix of x (0) . We see that the ra-

tional view is an average of the prior v̄ and the signals,

where more precise signals (with less noise) receive more

weight. When all signals are equally precise, σ 2 
ε i 

= σ 2 
ε for

all i , the rational view has weights 

κ0 = 

σ 2 
ε 

σ 2 
ε + Nσ 2 

v 
and κi = 

σ 2 
v 

σ 2 
ε + Nσ 2 

v 
for i = 1 , . . . , N 

(A.18)

This rational update is very similar to my model, except

for two properties, both of which are easy to handle: (i)

First, κ0 + 

∑ N 
i =1 κi = 1 so the rational weights do not add

up to one when summed across the agents, 
∑ N 

i =1 κi < 1 ;

(ii) Second, agents cannot fully learn the true value, x r 	 = v .
1117 
Regarding (i), note that, after time 1, rational agents 

again use weights that add to one since any rational agent 

puts 100% weight on her own previous opinion. Hence, the 

weighting matrix continues to have the standard form in 

all time periods t > 1 , which is all that matters for the 

solution of the belief dynamics in my model. The ratio- 

nal update at time 1 can be anything, including of the 

form (A.17) , without affecting anything in the model ex- 

cept the definition of x r . While in the model considered in 

the body of the paper, it holds that x r = v , I use the nota- 

tion x r rather than v to ensure the generality of the frame- 

work. Hence, we can instead define x r by (A.17) or what- 

ever comes out of your favorite information framework. 

Regarding (ii) that agents cannot learn the true value, 

x r 	 = v , this property increases the variance when solv- 

ing each agent’s portfolio problem. For example, the risk 

penalty in (5) becomes 

1 

2 w i 

Var t [ d i (v + u (τ ) − p(t)) ] 

= 

d 2 
i 

2 w i 
[ Var (v | x (0)) + Var t (u τ ) ] 

= 

d 2 
i 

2 w i 

[
σ 2 

v − �v x �
−1 
xx �x v + 

σ 2 
u 

π

]

=: 
d 2 

i 
˜ σ 2 

u 

2 w i π
(A.19) 

where ˜ σ 2 
u is defined by the last equation. So we get back to 

the same solution by simply replacing σ 2 
u by ˜ σ 2 

u to reflect 

to additional risk coming from the unpredictable part of 

v . (Or, alternatively, one can change the definition of the 

wealth, w i .) For example, when signals are equally precise 

( σ 2 
ε i 

= σ 2 
ε ), then Var (v | x (0)) = κ0 σ

2 
v such that 

˜ σ 2 
u = σ 2 

u + κ0 σ
2 
v π (A.20) 

In summary, the model can be solved in exactly the 

same way using the standard information-theoretic frame- 

work — the only change is the definitions of x r and σ 2 
u . 

I end this section by noting that one might in fact pre- 

fer that the rational agents use weights that add to one 

even in the first time period, as in my model, for economic 

rather than mathematical reasons. Indeed, this is a prop- 

erty that underlies all updating in the literature that fol- 

lows DeGroot (1974) . More importantly, it might be slightly 

more compelling that the boundedly rational agents be- 

have “almost” like the rational ones. In other words, when 

the rational agents in my model use weights that sum to 

one, then it might seem more plausible that the bound- 

edly rational agents do the same. Said differently, if a ra- 

tional agent puts weight on the prior, then should not the 

boundedly rational agents be allowed to put weight on the 

prior too (along with putting weight on the subset of other 

agents that they listen to)? My model avoids this issue, but 

it can be addressed here too. 

Of course, the simplest solution is to say that the 

boundedly rational agents just ignore the prior. This be- 

havior is, in fact, almost like the rational behavior when 

the number of agents, N, is large. Indeed, as N → ∞ , the 

optimal weight on the prior vanishes, κ0 → 0 , and the to- 

tal weight across agents adds to one, 
∑ N 

i =1 κi → 1 , as seen 
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in (A.18) . Further, the residual risk also vanishes such that

˜ σ 2 
u → σ 2 

u as seen in (A.20) . Intuitively, with many agents,

then agents actually almost do learn the true v . So, when

N is large (the realistic case), there is essentially no differ-

ence between my framework and the standard information

framework. 

A more sophisticated answer is that we can have a un-

informative prior about v such that v̄ disappears and we

get closer to my model again. Alternatively, one can have

an (additional) agent who always has a belief equal to the

prior, v̄ . This agent can have a wealth of zero so that this

agent is just a device used in belief formation, but not rel-

evant for trading. Hence, when we add up the weights in-

cluding this agent, then the rational weights again add up

to 1, and naive agents are allowed to put some weight on

the prior as well. Again, this is a special case of the model

considered in the body of the paper. 

A4. Many assets: many-fund separation 

The model can be extended to an economy with many

assets in a straightforward way. This extension provides in-

sights on investors’ portfolios that cannot be meaningfully

discussed with just one asset. 

To extend the model in this way, suppose that the econ-

omy now has L > 1 assets. The time- t fundamental value of

all assets is given by v + u (t) as before, but now v , u (t) ∈
R 

1 ×L are row vectors. Any agent i starts with a time-0 view

about all assets given by x i (0) = v i ∈ R 

1 ×L , rational agents

learn v at time 1, and otherwise agents’ views evolve as

x (t) = Ax (t − 1) until revelation, where x (t) ∈ R 

N×L is now

a matrix of all agents’ views about all assets. 

The simplest case is that the shocks u (t) are indepen-

dent and identically distributed across assets, each with

a variance of σ 2 
u ∈ R as before. In this case, the demand

equations are unchanged, and, hence, so are the equilib-

rium prices. In particular, the portfolio of any naive agent i

is 

d i (t) = 

πw i 

σ 2 
u 

(x i (t) + u (t) − p(t)) (A.21)

where d i (t) , p(t) ∈ R 

1 ×L are now a vectors. Further, using

Proposition 1 , the view of naive agent i converges x i (t) →
b i x h as t → ∞ , where x h ∈ R 

N h ×L is matrix of hardheaded

views, b i = e ′ 
i 
(I − A nn ) −1 A nh ∈ R 

1 ×N h contains the weights

placed on the various hardheaded views, N h is the number

of hardheaded agents, and e i ∈ R 

1 ×N n is the i ’th unit vec-

tor. Hence, the portfolio of naive agent i becomes closer

and closer to 

πw i 

σ 2 
u 

( b i x h + u ( t ) − p ( t ) ) 

= 

πw i 

σ 2 
u 

N h ∑ 

j=1 

b i, j 

(
x N n + j + u ( t ) − p ( t ) 

)︸ ︷︷ ︸ 
portfolio of j ’th hardheaded agent 

(A.22)

that is, the difference between d i (t) and (A.22) converges

to zero. Here, the equality uses that 
∑ 

j b i, j = 1 because the

naive agent’s view is a convex combination of hardheaded

view as per Proposition 1 . So we see that, over time, the

portfolio of naive agent i becomes a combination of the
1118 
portfolios of the N h hardheaded agents (scaled by wealth 

and risk). 

In other words, in the long term, all agents’ portfolios 

satisfy N h + 1 fund separation, that is, all agents hold a 

combination of the risk-free asset and the various port- 

folios of the hardheaded agents. If there are more fanat- 

ics than stocks, there could be more relevant funds than 

stocks, just like there exist more mutual funds and ETFs 

than stocks. 
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