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Abstract
The Cavalieri estimator allows one to infer the volume of an object from area
measurements in equidistant planar sections. It is known that applying this
estimator in the non-equidistant case may inflate the coefficient of error con-
siderably. We therefore consider a newly introduced variant, the trapezoidal
estimator, andmake it available to practitioners. Its typical variance behaviour for
natural objects is comparable to the equidistant case. We state this unbiased esti-
mator, describe variance estimates and explain how the latter can be simplified
under rather general but realistic models for the gaps between sections. Simula-
tions and an application to a synthetic area function based on parietal lobes of 18
monkeys illustrate the new methods.

KEYWORDS
asymptotic variance, Cavalieri estimator, dropouts, Newton–Cotes estimation, perturbed
systematic sampling, stereology, trapezoidal estimator

1 INTRODUCTION

The purpose of this paper is to summarize state-of-the-
art results concerning volume estimation of spatial objects
using Cavalieri-type estimates and make them available to
applications in microscopy. In contrast to the classical set-
ting, slices of exactly the same thickness are not always
realistic in applications – especially when estimating from
thick tissue slabs, and we explain why the new, unbi-
ased trapezoidal estimator has better variance behaviour in
this setting than the existing alternatives. We also describe
how the variance of the trapezoidal estimator can be esti-
mated in different realistic scenarios and that it even can
be used if dropouts occur. Part of this paper serves as a
more practitioner-oriented description of the mathemati-
cally rigorous results of papers 1–3, whereas in particular
the formulas for variance estimation are novel.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

The quantity of interest is the volume 𝑄 of some non-
random and bounded object 𝑌 ⊆ ℝ3. Traditionally, this
quantity is estimated from parallel planar sections placed
systematically with a fixed distance 𝑇 apart: With {𝑆𝑘}

𝑁
𝑘=0

denoting the cross sections of 𝑌 and {Area(𝑆𝑘)}
𝑁
𝑘=0

their
associated known areas, the Cavalieri volume estimator of
𝑄 is

�̂� = 𝑇

𝑁∑
𝑘=0

Area(𝑆𝑘). (1)

The (starting) position of the stack of parallel planar sec-
tions is randomly chosen along some convenient sampling
axis, turning �̂� into a random variable. If the starting posi-
tion is uniform in an interval of length 𝑇, the estimator
�̂� is in fact unbiased, that is 𝔼�̂� = 𝑄, and its variance,
given as a function of the slice thickness 𝑇, is described
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in great detail in, for instance, Ref. 4. As the terminology
is not standardized across different research communities,
we explain the following conventions that will be followed
throughout the paper: A mathematical plane of thickness
zero will be referred to as section plane, or simply a section.
A slice between two consecutive sections can refer to either
a slab (with a typical thickness in mm) or a histological
section (typical thickness in 𝜇m).
The formulation of the estimator in (1) relies on a num-

ber of idealizing and simplifying assumptions. One of them
is that the profile areas are known exactly, although they
are often determined by systematic subsampling in the sec-
tion. This additional source of errors contributes to the
total variance of (1), as was outlined and quantified in
[Ref. 5, Section 6] and Refs. 6, 7; see also the references
given therein. Following the lines of arguments described
in these papers, one could – based on the law of total
variance – easily extend the methods to area measure-
ments with errors. This is, however, not the purpose of the
present work. Another underlying assumption is that the
sections are equidistant, or, in other words, that the slices
all have exactly the same thickness. In particular in the
case of physical sections, deviations from exact equidistant
section positions might occur. Traditionally, this impreci-
sion has been considered as inconsequential and thus been
ignored, and the estimator (1) was applied with 𝑇 now
being the average distance between two consecutive sec-
tion planes. Such an estimator, usually called generalized
Cavalieri estimator, is again unbiased [Ref. 8, Theorem 1],
however, as suggested by Baddeley et al.8 and quantified by
Ziegel et al.,9,10 the variance of the estimator may explode
compared to the equidistant case; the exact behaviour is
explained in the following section.
Figure 1 illustrates this problem in the case of volume

estimation for the three-dimensional ball of radius 1. On
a log–log scale the figures show, as a function of the
mean number of hitting section planes (that is, 2∕𝑇), the
variance of (1) under equidistant and two examples of non-
equidistant sampling. Not only is the variance from either
type of non-equidistant sampling always larger than in the
classical case, the aggravation is also serious, and the vari-
ance in Figure 1 (left) is already doubled when a mean
number of 2∕𝑇 = 5.3 sections are taken. In the cumula-
tive model, to be defined later in this section and depicted
in Figure 1 (right), the variance of the Cavalieri estimator
behaves even worse, as it decreases at a much slower rate
than the other variances. Figure 1 also indicates that the
variance still decreases to zero as themean number of non-
equidistant section planes grows, but at a rate that is clearly
slower than in the equidistant case.
To ameliorate this situation, we suggest to use a new

estimator, the so-called trapezoidal estimator, first defined
in Ref. 1. This estimator requires slightly more input data

than the classical Cavalieri estimator, but it is again unbi-
ased and its variance, also depicted in Figure 1, behaves
essentially like the variance of the Cavalieri estimator with
equidistant sections and thus eliminates the problem of
unequal spacing.
Besides the section areas {Area(𝑆𝑘)} the new estimator

also requires the distances of all (randomly located) sec-
tion planes from their neighbours. More precisely, for 𝑘 =

1,… ,𝑁 let ℎ𝑘 denote the thickness of the 𝑘th slice, that is,
the distance of the section planes containing the profiles
𝑆𝑘−1 and 𝑆𝑘, respectively (see Figure 2). The trapezoidal
estimator takes the form

�̂�1 =

𝑁∑
𝑘=1

ℎ𝑘 + ℎ𝑘+1
2

Area(𝑆𝑘). (2)

The results in the present paper merely require that
the random thicknesses ℎ𝑘 arise as increments from a
translation-invariant random set of sampling points,
meaning intuitively that the locations of the sec-
tions 𝑆0, … , 𝑆𝑁 do not oversample or undersample
any position. This is in particular satisfied, if the sec-
tions are equidistant with a uniform starting position
as described after (1), but it also allows for correlated
gap lengths. As indicated in Figure 2, this estimator
(and in fact also the Cavalieri estimator (1)) uses the fact
that the object 𝑌 is strictly contained between the two
section planes 𝑆0 and 𝑆𝑁 , respectively, and consequently
Area(𝑆0) = Area(𝑆𝑁) = 0. It also requires that all indi-
vidual thicknesses of slices between these two planes
are known. This is certainly true in the equidistant case,
wherewe have ℎ𝑘 = 𝑇 for all 𝑘. In this case, the trapezoidal
estimator coincides with the Cavalieri estimator.
Non-equidistant sections can occur due to a number of

reasons depending upon how the cuts are made. Tradi-
tionally, stereological studies were based upon exhaustive
sectioning of the tissue into histological sections, a sys-
tematic subsample of which was used for the volume
estimation using the Cavalieri estimator. The standard
devices for generating 𝜇m-thin histological serial sec-
tions (microtome, cryostat or vibratome) typically cut
sections with very small errors. The exact errors of these
individual sections and their exact positions within the tis-
sue are not obtainable in any practical way in a standard
lab setting. These errors are expected to fit the perturbed
model (see later), and are likely small and insignificant.
However, many newer stereological designs use a two-step
sampling procedure where the tissue is cut into mm to
cm thick slabs, from the faces of which, a few 𝜇m-thick
histological sections may subsequently be cut. This saves
sectioning time and allows for improved storage of tissue
as slabs for future use (see, e.g. Refs. 12, 13). Also, some
designs use the tissue between the sampled sections for
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42 STEHR et al.

F IGURE 1 Variances for volume estimation of the three-dimensional ball with radius 1. Both figures show the variance of (1) based on
equidistant sections, the variance of (1) based on non-equidistant sections and the variance of the trapezoidal estimator based on
non-equidistant sections. In the figure on the left, the positions of the non-equidistant section planes are generated by independent
perturbations of equidistant section positions, with the magnitude of the perturbations being such that the average relative deviation of the
distance from 𝑇 is 5%. In the figure on the right, the positions of the non-equidistant section planes are generated by accumulating
independent increments, with the magnitude of the increments chosen such that the average relative deviation is 5%

F IGURE 2 Sampling of a three-dimensional object 𝑌 with
parallel section planes (appearing as lines) that all are orthogonal to
the sampling axis 𝑔. The plane at position 𝑥 has section profile 𝑆(𝑥),
and 𝑆𝑘 = 𝑆(𝑥𝑘)

further subsampling (see, e.g. Refs. 14, 15). The initial slabs
are typically cut with visible errors in position. This may
be due to unavoidable human error when cutting by hand
using a guide, due to compression/elasticity of the sec-
tioned object (organ/lump of tissue) or due to drift of the
thin blade(s) while sectioning in various cutting devices.
The positions (and errors in these) of the individual cuts
are easily observable in high-quality photos of the edge
of the stack of the cut slabs (see Figure 3). This is simple
to implement in a standard laboratory setting. Including
a ruler in the picture as in Figure 3 allows for measure-
ments in the picture. The precision can be improved by
measuring the total thickness of the stack of slabs using

a digital caliper. This is typically done anyway to calculate
the mean slab thickness.
Although no model assumptions are needed, estimat-

ing the variance of �̂�1 becomes more robust when one of
the two common samplingmodels hold.We describe them
informally and refer to Definitions 1 and 2 in Ref. 3 for a
mathematically rigorous exposition.We emphasize that no
model assumptions are needed to compute the trapezoidal
estimator �̂�1, and similarly its variance can be estimated
without such assumptions (see Definition 1). If the correct
model is known, this can be exploited using amore specific
variance estimator; cf. Definitions 2 and 3.

Perturbed model
We sample from the perturbedmodel if the positions of the
section planes are found by independent perturbations of
equidistant section positions. This means that the actual
location of each cut deviates from its intended position by a
small randomdisplacement. Examples of this are the use of
various devises for cutting agar embedded tissue into uni-
form slabs, for example: (1) Macrotome [Ref. 16, fig. 24],
where a knife mounded to a tread cuts the agar embedded
tissue at systematic positions; (2) Array of razorblades [Ref.
17, fig. 7]; (3) ‘Shoebox cutter’, where a brick of agar with
tissue and amm paper is cut using a cutting guide, see Ref.
18 and [Ref. 15, fig. 3E–F]. Thesemethods generate equidis-
tant intended positions for cutting. However, the knifemay
drift for each cut, independent of the previous cut.
If the perturbations are degenerate and constant 0, the

resulting positions are equidistant.
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STEHR et al. 43

F IGURE 3 Agar embedded monkey parietal lobe cut into
2.5-mm slabs perpendicular to the intra-parietal sulcus. The
position of the individual cuts are easily visible in the image. Ruler
included for reference. The original image was approximately 2000
pixels wide. The total thickness of the stack of slabs was measured
precisely using a digital caliper. Notice the variation in slab
thickness. The small gap between slabs 7 and 8 in the picture was
taken into account when assessing the cut positions. Photograph by
Glenn Konopaske and Ruth Henteleff, preparation as described in
Ref. 11

Cumulative model
We sample from the cumulative model if the distances
between consecutive section planes are independent and
have the same distribution. An example of this is when
the specimen is repeatedly pushed against a firm plate
before cutting, where the position of the knife is fixed rel-
ative to the plate. This is the case in a standard kitchen
bread ormeat slicer. Also, this is the intuitive way a human
cuts unguided when aiming by free hand at a certain slab
thickness – for example, when cutting 1 cm bread slices in
the kitchen.
The Cavalieri estimator (1) behaves much worse under

cumulative sampling than under perturbed sampling.9 It
turns out, however, that (1) is inferior to the trapezoidal
estimator in both cases. In fact, as shown in the next sec-
tion, theCavalieri estimator cannot exploit the smoothness
of the area function 𝑓(𝑥) = Area(𝑆(𝑥)) (cf. Figure 2) under
cumulative sampling, and only to some degree under
perturbed sampling, whereas the trapezoidal estimator is
designed to do so to a much larger degree.
Non-equidistant sections cannot only occur due to an

initial non-equidistant sampling mechanism but also due

to dropouts. These are sections that got lost in the prepa-
ration process or for which the profile area cannot be
determined, for example, when the staining is failing or
when a histological section is lost due to tears and folds
during the processing. Typically, a new histological sec-
tion will be generated. However, this is not always possible
– especially in archival material.
Since the trapezoidal estimator takes the observed slice

thicknesses into account, its order of variance is inde-
pendent of whether or not dropouts have occurred. This
property is in strong contrast to the Cavalieri estimator. If
dropouts have happened and the initial section distances
are known (that is, also for the section planeswithoutmea-
surable area), Ref. 10 suggest an alternative estimator to
(1) in whichmissing area measurements are approximated
by an average of known neighbouring section-areas. The
variance of this method is smaller than that of (1), but it is
generally significantly higher than in the case of equidis-
tant sections; see [Ref. 9, Propositions 3 & 4] and [Ref. 10,
Propositions 3–5]. Moreover, this method is also inferior
to the trapezoidal estimator, which can be applied with-
out any additional approximation procedure. In this and
the above-mentioned papers, dropouts are modelled by
independent thinningwhere each section is independently
dropped with a given probability.

2 VOLUME ESTIMATORS AND THEIR
VARIANCE BEHAVIOUR

In this section, we give a formal description of the vari-
ance behaviour of the trapezoidal estimator. Recall that
the trapezoidal estimator actually coincides with the Cava-
lieri estimator when the sections are equidistant, and thus
the results presented here also hold for the classical case
of Cavalieri estimation based on equidistant sampling. To
give a proper variance representation, we need a slightly
more mathematical approach.
Recall that 𝑌 ⊆ ℝ3 denotes the object of interest,

and that we observe a stack of parallel cross sec-
tions 𝑆0, 𝑆1, …, 𝑆𝑁 of 𝑌 with associated known areas
Area(𝑆0), Area(𝑆1), … , Area(𝑆𝑁), where the first and last of
them are zero. For the trapezoidal estimator, we need the
locations of the sections relative to each other, that is, the
slice thicknesses ℎ1, ℎ2, … , ℎ𝑁 . However, for the descrip-
tions in this and the following section, it will be convenient
to also consider the actual locations 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 of
the sections along the sampling axis. By this we mean that
at a position 𝑥𝑘 ∈ ℝ (𝑘 = 0,… ,𝑁) the plane orthogonal to
the sampling axis has intersection 𝑆𝑘 with 𝑌; see Figure 2.
As indicated in Figure 2, we assume that the object 𝑌 is
strictly contained in the strip between the two planes at 𝑥0
and at 𝑥𝑁 , so these two planes do not hit 𝑌.
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44 STEHR et al.

The area 𝑓(𝑥) = Area(𝑆(𝑥)) of the intersection profile of
𝑌 with a plane at position 𝑥, as visualized in Figure 2, gives
rise to the so-called area function 𝑓. This function is zero to
the left of𝑥0 and to the right of𝑥𝑁 . By aCavalieri-type argu-
ment, the volume 𝑄 of 𝑌 is nothing else than ∫

ℝ
𝑓(𝑥)𝑑𝑥.

Cavalieri estimation is thus solving the problem of estimat-
ing the integral 𝑄 = ∫

ℝ
𝑓(𝑥)𝑑𝑥 from finitely many values

of 𝑓 at random sampling points. Thismathematical formu-
lation of the problem is used in the papers 1–3, which we
will repeatedly refer to.
Considering the estimation as a numerical integration

problem, the fact that the trapezoidal estimator (2) out-
performs the Cavalieri estimator (1) under non-equidistant
sampling is not that surprising. The Cavalieri estimator
simply approximates the integral of 𝑓 by a naive weighted
sum, which coincides with a Riemann sum in the equidis-
tant case. This approximation is too crude when points
are not equidistant. In contrast, the trapezoidal estima-
tor utilizes the actual sampling locations to construct a
better approximation of the function 𝑓: On the interval
[𝑥𝑘, 𝑥𝑘+1] between two consecutive sampling points, the
trapezoidal rule approximates the area function 𝑓 by a
linear function, which leads to an approximation of the
integral ∫ 𝑥𝑘+1

𝑥𝑘
𝑓(𝑥)𝑑𝑥 by

∫
𝑥𝑘+1

𝑥𝑘

𝑓(𝑥)𝑑𝑥 ≈
𝑓(𝑥𝑘+1) + 𝑓(𝑥𝑘)

2
(𝑥𝑘+1 − 𝑥𝑘)

=
Area(𝑆𝑘+1) + Area(𝑆𝑘)

2
ℎ𝑘+1, (3)

where it has been used that 𝑥𝑘+1 − 𝑥𝑘 = ℎ𝑘+1 is the (ran-
dom) distance between the sections at positions 𝑥𝑘 and
𝑥𝑘+1. Summing over all these integral approximations
yields the trapezoidal estimator (2). Figure 4 gives a com-
plete illustration of the estimators in the case of volume
estimation for the three-dimensional ball of radius 1. In
this case, the area function is 𝑓(𝑥) = 𝜋(1 − 𝑥2) for 𝑥 ∈

[−1, 1].
The precision of all the above-mentioned estimators is

determined by the smoothness of the area function 𝑓 asso-
ciated to 𝑌: For an integer 𝑚, we say that 𝑓 is weakly
(𝑚, 1)-piecewise smooth if it has continuous derivatives up
to order𝑚 − 1, if the derivative of order𝑚 has a finite num-
ber of finite jumps, and if the derivative of order𝑚 + 1 has
a finite number of possibly infinite jumps. This assumption
is slightly less restrictive than the traditional smoothness
concept considered in, for example, Refs. 4, 9, 10 and
Ref. 2 of (𝑚, 1)-piecewise smoothness, which additionally
requires that the derivative of order𝑚 + 1must in fact have
finite jumps. However, in Ref. 3 it is argued that the results
in all of the above-mentioned literature also holds true for
weakly (𝑚, 1)-piecewise smooth functions.

The order of smoothness𝑚 determines the decrease rate
of the variance of the estimators, and for this reason it is
desirable to maximize 𝑚. For instance, if a convex three-
dimensional object has a smooth boundary, the values𝑚 =

0 and 𝑚 = 1 are very common, and we will restrict con-
siderations to these smoothness cases in the present paper,
see also the discussion in the paragraph directly after Theo-
rem 1. As the smoothness properties of the object𝑌 cannot
be changed, the smoothness 𝑚 of the area function can
only be influenced by a careful choice of the sampling
axis. To simplify notation, we say that 𝑌 is 𝑚-oriented
(with respect to the sampling axis) if the area function 𝑓,
based on this axis, is weakly (𝑚, 1)-piecewise smooth. In
Ref. 6, such a set 𝑌 is called ‘object-𝑚’ (though requiring
the slightly stronger (𝑚, 1)-piecewise smoothness), but our
diction emphasizes that this property depends on both, 𝑌
and the sampling axis. We give some examples to illustrate
this in practical terms. Assume that 𝑌 contains a ‘flat’ part
in its boundary, for instance if 𝑌 is a cylinder or a hemi-
sphere. If the sampling planes are parallel to this flat part
of 𝑌, then 𝑌 is always 0-oriented (see Figure 5). Although
atypical in biological applications, consider for illustration
the particular case where 𝑌 is a polytope, meaning that all
its sides are ‘flat’ like for a cube, a pyramid or an ideal
crystal. If the sampling axis is orthogonal to one side of
𝑌 – and thus the sampling planes are all parallel to this
side – the object 𝑌 is 0-oriented with respect to the sam-
pling axis. If the sampling axis is orthogonal to one of the
edges of 𝑌 (i.e. sampling planes are parallel to this edge)
then 𝑌 is 1-oriented. All other axes turn the polytope into
a 2-oriented object.
On the other hand, a convex object 𝑌 that has a smooth

boundary (with positive curvature everywhere) is typi-
cally 1-oriented. To consider an even more specialized
case: an ellipsoid 𝑌 is a 1-oriented object with respect to
any axis.
Summarizing, when choosing the sampling axis, orien-

tations that lead to section planes parallel to a flat side of
the boundary of 𝑌 must be avoided in order to get the best
variance behaviour. If this is not possible, one has to apply
the theory belowwith𝑚 = 0. Otherwise,𝑚 = 1 is often an
appropriate choice.
The following result provides a basic characterization

of the variance of the trapezoidal estimator based on slices
with an average thickness 𝑇; see [Ref. 2, Proposition 6.1]
for details. In principle, the statement about the remainder
is only valid for certain models of section positions [Ref.
2, Definition 2.1], however, the models considered in this
paper fulfill this requirement. In particular, the result
also covers the case of the Cavalieri estimator (1) if the
sections are equidistant with a distance 𝑇 apart. This is
treated in full in Ref. 4.
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(A) (B) (C)

F IGURE 4 Illustration of the approximation schemes used to construct the Cavalieri estimators (under equidistant and perturbed
sampling, respectively) and the trapezoidal estimator. The depicted area function relating to the ball of radius 1 is given by 𝑓(𝑥) = 𝜋(1 − 𝑥2)

for 𝑥 ∈ [−1, 1]. The green area is 𝑄 and the combined areas of the blue polygons are the estimates of 𝑄

F IGURE 5 The smoothness of the area function depends on
the orientation of the sampling axis with respect to the object. The
hemisphere on the left is 1-oriented if the sampling axis is
orthogononal to the 𝑧-axis, but it is 0-oriented if the sampling axis is
parallel to the 𝑧-axis. The ellipsoid in the middle is 1-oriented for all
sampling axes. The box to the right is 0-oriented if the sampling axis
is parallel to one of the coordinate axes, it is 1-oriented if the
sampling axis is orthogonal to an edge (excluding the cases where it
is parallel to a coordinate axis), and in all other cases it is 2-oriented

Theorem 1 (Variance of the trapezoidal estimator). Let
𝑌 be an 𝑚-oriented three-dimensional object, where 𝑚 ∈

{0, 1}. The variance of the trapezoidal estimator based on
slices with average thickness 𝑇 decomposes as

var(�̂�1) = 𝑐𝑇2𝑚+2 + 𝑍(𝑇) + 𝑟(𝑇), (4)

where 𝑐 is a 𝑇-independent constant given in terms of
derivatives of the area function.
The leading term 𝑐𝑇2𝑚+2 is also called extension term, the

Zitterbewegung𝑍(𝑇) has an oscillating behaviour around 0
and is at most of size 𝑇2𝑚+2, and the remainder 𝑟(𝑇) can be
neglected as it decreases faster than𝑇2𝑚+2 with decreasing𝑇.
If we sample from the perturbedmodel (thus including the

case of equidistant sections), theZitterbewegung is oscillating
around 0 and it is of size 𝑇2𝑚+2.
If we sample from the cumulative model, the Zitterbe-

wegung decreases faster than 𝑇2𝑚+2 and can therefore be
omitted in (4) and considered to be part of 𝑟(𝑇).

In the equidistant case, the above smoothness consid-
erations can be extended to fractional smoothness indices
𝑚 leading to different orders of variance decrease than 𝑇2

and 𝑇4 obtained from 𝑚 = 0, 1, respectively. For instance,
a circular cylinder 𝑍 that is sampled with planes parallel
to its axis, has an area function with smoothness𝑚 = 1∕2

leading to a variance decrease of order 𝑇3. This is made
precise and analysed more generally in Ref. 19 leading to a
powerful extension of (4) for objects with fractional𝑚. On
the other hand, all convex objects with a smooth boundary
and positive Gaussian curvature (satisfying some techni-
cal condition) are 1-oriented due to [Ref. 3, Proposition 11].
These conditions exclude the cylinder 𝑍 and the so-called
‘super egg’, as their boundaries have points with vanishing
Gaussian curvature. It has been remarked by Cruz-Orive
and García-Fiñana19,20 (and in Ref. 7 for area functions
derived from thick sections) that the empirical order of
variance decrease in a practical application appears to be
different from 2 or 4 and may even depend locally on the
gap length range. The authors therefore suggest an estima-
tion procedure for fractional 𝑚 in the equidistant case. To
extend this theory to non-equidistant sampling is an open
problem,which is in particular challenging as different gap
length ranges may intermingle.
Before relating the variance behaviour presented above

to the one of the Cavalieri estimator, a remark on the Zit-
terbewegung 𝑍(𝑇) is in place. The Zitterbewegung turns
out to depend on the𝑚th derivative of the area function. If
this derivative has only one discontinuity, then the Zitter-
bewegung vanishes. Hence, 𝑍(𝑇) can only oscillate if the
𝑚th derivative has at least two discontinuities. However,
even if the 𝑚th derivative has one discontinuity only, the
remainder 𝑟(𝑇) can in fact show an oscillating behaviour,
though of size decreasing faster than the leading term and
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46 STEHR et al.

thus negligible for decreasing 𝑇; see Figure 7(left) for an
example of an asymptotically vanishing Zitterbewegung.
In contrast to the behaviour given in Theorem 1 in

which the variance of the trapezoidal estimator decreases
as 𝑇2𝑚+2, the variance of the Cavalieri estimator (1) based
on non-equidistant sections most often decreases slower.
In particular, if we sample from the perturbed model now
excluding equidistant sections, the variance decrease is of
order𝑇2 if𝑌 is 0-oriented, and of order𝑇3 if𝑌 is 1-oriented.
The latter case is illustrated in Figure 1(left) for the volume
estimation of the ball of radius 1. If instead we sample from
the cumulative model, the variance inflation is even more
pronounced. In this case, the variance decrease is of order
𝑇 independently of𝑚, which is also illustrated in Figure 1
(right) in the case𝑚 = 1.
As mentioned in the Introduction, the trapezoidal esti-

mator is constructed such that it adapts to the smoothness
of the area function – just as it is the case for the Cavalieri
estimator under equidistant sections. For the trapezoidal
estimator, this is unfortunately only the case for weakly
(𝑚, 1)-piecewise smooth functions with𝑚 ≤ 1. If𝑚 ≥ 2, it
has a variance decreasing at a slower rate than that of the
Cavalieri estimator based on equidistant sections. How-
ever, the theory of applying higher-order quadrature rules
described in Ref. 2 holds for arbitrary 𝑚. They consider
the so-called𝑚th Newton–Cotes estimator which approx-
imates 𝑓 by a piecewise polynomial of order 𝑚 (with the
first Newton–Cotes estimator being the trapezoidal esti-
mator), and in fact the variance of the𝑚th Newton–Cotes
estimator decreases as the variance of the Cavalieri estima-
tor based on equidistant sections. These variance results
and the unbiasedness of the estimator now require some
weak technical assumptions on the process of sampling
points. Since 𝑚 = 0 and 𝑚 = 1 are most relevant in prac-
tice, considering those higher-order estimators is beyond
the scope of the present paper.

3 ESTIMATING THE VARIANCE OF
THE TRAPEZOIDAL ESTIMATOR

Concerning the estimation of the variance of the Cavalieri
estimator (1) based on equidistant sections, the traditional
approach is to neglect the Zitterbewegung and remainder
in the decomposition (4) and thus approximate it by the
extension term. There are drawbacks with this approach,
as the Zitterbewegung may in fact be rather large and one
risks actually underestimating the variance in particular
if the number of sections is low. However, the Zitterbe-
wegung for the trapezoidal estimator of a large class of
1-oriented objects can never exceed the extension term
by [Ref. 3, Theorem 13]. This bound holds a fortiori for

the Cavalieri estimator under equidistant sections, and it
is sharp without additional information as it cannot be
improved if the object is a ball. The question in [Ref. 19,
Section 9(4)], if an optimal data-driven bound for the Zit-
terbewegung can be found, is still open. In Ref. 20, the
variance (based on equidistant points only) is estimated
by incorporating elements from the Zitterbewegung thus
creating a more flexible estimation valid for an arbitrary
number of sections. However, their estimation approach
requires knowledge of the exact form of the underlying
area function not always accessible in practice. Thus, in
the present paper we follow the named convention and
approximate the variance of the trapezoidal estimator by
its (estimated) extension term. As a consequence of the
above-mentioned result [Ref. 3, Theorem 13], multiplying
the estimated extension term for a 1-oriented object by two
can serve as a conservative variance estimate taking the
Zitterbewegung into account.
In this section, we give estimates for the variance of

the trapezoidal estimator �̂�1 in three different situations.
The variance estimators in Definition 1 do not require any
model for the sampling positions and apply also when
dropouts are present. The variance estimators in Defini-
tions 2 and 3 are based on the perturbed and cumulative
model, respectively, and do not allow for dropouts. At
the end of this section and in the Appendix, we will
comment on model-based variance estimators in the pres-
ence of dropouts. The following generalizations of classical
variance estimators for the Cavalieri estimator have been
formally derived in Ref. 3.
First, we estimate the so-called covariogram 𝑔(𝑥) =

∫ ∞

−∞
𝑓(𝑥 + 𝑦)𝑓(𝑦)𝑑𝑦 of the area function 𝑓 as follows:

�̂�(𝑘) =

𝑁−𝑘∑
𝑗=0

Area(𝑆𝑗)Area(𝑆𝑘+𝑗) (5)

for 𝑘 = 0,… ,𝑁. Intuitively, this term describes the cor-
relation of the cross-sectional areas. Secondly, with the
notation used in Ref. 3, we need estimates of certain
moments denoted 𝛾𝑖,𝑗 . The quantity 𝑇𝛾𝑖,𝑗 represents the
expected 𝑗th power of the typical distance between an
observed section and its 𝑖th neighbour. The way 𝛾𝑖,𝑗 is
estimated depends on whether or not additional model
assumptions are imposed on the distributions of the slice
thicknesses. Without extra assumptions, one can use the
estimates

�̂�𝑖,𝑗 =
𝑁

𝑁 − 𝑖 + 1

𝑁−𝑖∑
𝑘=0

(ℎ𝑘+1 +⋯+ ℎ𝑘+𝑖)
𝑗

ℎ1 +⋯+ ℎ𝑁
(6)

for 𝑖 = 1, … ,𝑁.
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STEHR et al. 47

The estimates in (5) and (6) are sufficient to com-
pute variance estimates of �̂�1 based on the observed
sections only.

Definition 1 (Model-free variance estimation). If 𝑌 is a
0-oriented object we estimate the variance of �̂�1 by

v̂ar(�̂�1) =
(
3�̂�(0) − 4�̂�(1) + �̂�(2)

)
×

1

12
�̂�1,3. (7)

If𝑌 is a 1-oriented object we estimate the variance of �̂�1 by

v̂ar(�̂�1) =
�̂�(0)(�̂�2,2 − �̂�1,2) − �̂�(1)�̂�2,2 + �̂�(2)�̂�1,2

�̂�1,2�̂�2,3 − �̂�2,2�̂�1,3

×
1

120

(
12 �̂�1,5 − 10 (�̂�1,3)

2
)
. (8)

The estimators (7) and (8) are motivated by the fact
that these expressions would be asymptotically unbiased
for the variance if all the occurring estimates �̂�𝑖,𝑗 were
replaced by the exact values 𝛾𝑖,𝑗 . As the coefficients 𝛾𝑖,𝑗
are not known, we estimate them with the (slightly
biased) quantity (6), which is sufficient in typical appli-
cations, but could be refined; see [Ref. 3, Corollary 10] for
details.
Note that Definition 1 contains the equidistant setting

as a special case. When all slices have the same thickness
𝑇, we have �̂�𝑖𝑗 = (𝑖𝑇)𝑗∕𝑇 = 𝑖𝑗𝑇𝑗−1. Hence, considering the
degree of smoothness 𝑚 = 0, we see that the right side of
(7) reduces to

𝑇2

12
(3�̂�(0) − 4�̂�(1) + �̂�(2)) (9)

corresponding to the standard variance estimate of the
Cavalieri estimator, and, if 𝑚 = 1, the right side of (8)
simplifies to

𝑇2

240
(3�̂�(0) − 4�̂�(1) + �̂�(2)), (10)

which is again the standard variance estimate of the Cava-
lieri estimator; see, for example, [Ref. 21, Paragraph 13.2.5]
for the formulas (9) and (10).
If the sampling model for the positions of the sections is

known, this distributional information can be used to
compute model-specific estimates for the moments 𝛾𝑖,𝑗
yielding alternatives to the estimators in Definition 1. We
will now present such estimates based on the perturbed
and cumulative model, and refer to Ref. 3 for their justifi-
cation. Note that the formulas are only valid for sampling
without dropouts.

To name the key idea: When the perturbed model is an
appropriate description, the coefficients 𝛾𝑖,𝑗 can be esti-
mated from three rather straightforward quantities: The
average, the variance and the fourth centred moment of
the thickness ℎ1 of a typical slice, estimated by

�̂� =
1

𝑁

𝑁∑
𝑘=1

ℎ𝑘, (11)

and

�̂�2 =
1

𝑁

𝑁∑
𝑘=1

(ℎ𝑘 − �̂�)2, �̂�4 =
1

𝑁

𝑁∑
𝑘=1

(ℎ𝑘 − �̂�)4, (12)

respectively.

Definition 2 (Variance estimation under the perturbed
model without dropouts). If 𝑌 is a 0-oriented object we
estimate the variance of �̂�1 by

v̂ar(�̂�1) =
(
3�̂�(0) − 4�̂�(1) + �̂�(2)

)
×

1

12
(�̂�2 + 3�̂�2). (13)

If 𝑌 is a 1-oriented object, we estimate the variance of �̂�1
by

v̂ar(�̂�1) =
3�̂�(0)�̂�2 − �̂�(1)

(
4�̂�2 + �̂�2

)
+ �̂�(2)

(
�̂�2 + �̂�2

)

3�̂�22 + �̂�2�̂�2 + 4�̂�4

×
1

60

(
�̂�4 + 30�̂�2�̂�

2 + 30�̂�4 − 45�̂�22

)
. (14)

Here, the estimates (5), (11) and (12) were used.

If all slices have the same thickness 𝑇, we get �̂� = 𝑇

and �̂�2 = �̂�4 = 0, so (13) and (14) reduce to the standard
estimates (9) and (10) presented above.
When the cumulative model is an appropriate descrip-

tion, the estimates of the coefficients 𝛾𝑖𝑗 are easiest stated
in terms of the average (11) and the quantities

�̂�𝑗 =
1

𝑁

𝑁∑
𝑘=1

ℎ
𝑗

𝑘
, (15)

where 𝑗 = 1,… , 5.

Definition 3 (Variance estimation under the cumulative
model without dropouts). If 𝑌 is a 0-oriented object, we
estimate the variance of �̂�1 by

v̂ar(�̂�1) =
(
3�̂�(0) − 4�̂�(1) + �̂�(2)

)
×

1

12

�̂�3

�̂�
. (16)
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48 STEHR et al.

If 𝑌 is a 1-oriented object, we estimate the variance of �̂�1

by

v̂ar(�̂�1) =
�̂�(0)

(
2�̂�2 + �̂�2

)
− �̂�(1)

(
2�̂�2 + 2�̂�2

)
+ �̂�(2)�̂�2

6�̂�22�̂�
2 − 2�̂�3�̂�3

×
1

120

(
12 �̂�5�̂� − 10 �̂�23

)
. (17)

Here, the estimates (5), (11) and (15) were used.

If the area function cannot be observed in all sec-
tion planes (dropouts), the estimators in Definition 1 can
still be used just disregarding all the positions of planes
where the area function is unknown. However, when a
model for the sampling positions is assumed, dropouts
typically destroy the model assumptions; for instance,
dropouts after equidistant sampling result in sampling
positions that are no longer equidistant. Hence, the esti-
mates in Definitions 2 and 3, which depend on specific
models, should no longer be used. However, adapted esti-
mators for sampling with dropouts that exploit model
assumptions can still be stated. We describe them in detail
in the Appendix.
It may also be noted that the estimation of certain quan-

tities in Definitions 2 and 3 are in fact slightly biased.
Exploiting the underlying model assumptions it is not
difficult to obtain refined and unbiased estimators. For
instance, the quantities estimated by �̂�2 and �̂�2 in (13) can
be estimated slightly better by �̂�2𝑁

2∕(𝑁2 − 1) and �̂�2 −

�̂�2∕(𝑁
2 − 1), respectively. However, this appears to be of

minor importance for applications, in particular when no
dropouts have occurred. In fact, in the case of no dropouts
the variance estimators using the refined estimators are
indistinguishable from those presented in Definitions 2
and 3. As the refined estimators come with the cost of
rather complicated formulas, we have not included them
here and instead recommend the estimators of the present
section in microscopy applications.

4 SIMULATION STUDY

We conclude the paper by illustrating our results with a
simulation study based on data from 18 monkey parietal
lobes. The details of the original study have been reported
in Refs. 11, 22, 23, and further details of importance for the
simulation study have been covered in Johanna Ziegel’s
PhD thesis.24 In brief: 18 parietal lobes frommacaquemon-
keys were embedded in low-melt agarose and cut into
2.5-mm thick slabs perpendicular to the intra-parietal sul-
cus. The slabs were generated using the ‘shoebox cutter’
where the tissue is embedded together with a paper strip

with 2.5-mm marks and cut, aiming at these marks using
a box-shaped transparent cutting guide fitting the block
[Ref. 18, fig. 2D–E]. This resulted in 12–15 slabs per pari-
etal lobe. The total thickness of each resulting stack of
slabs were measured using an electronic caliper. In addi-
tion, a photo (appx. 2000 pixels wide) of each stack of
slabs were recorded (Figure 3). From the photos and the
caliper measurements, the exact positions of each cut were
easily obtained for each specimen. Subsequently, the area
of the cut surface of each slab, observed under a stere-
omicroscope at 9×magnification, were estimated by point
counts, using a uniformly randomly superimposed trans-
parent point grid with an area per point 𝑎 = 2.29 mm2.
An average of 645 points were counted in total across all
slabs per specimen. Thus, data sets of estimated area and
corresponding position of each cut surface were generated
for each of the 18 specimens. Using these data points, we
created 18 area functions using cubic spline interpolations.
We then constructed a typical area function of a 1-oriented
object by averaging all 18 spline functions. As an exam-
ple of the area function of a 0-oriented object, we simply
restricted the above area function to a smaller interval thus
obtaining a single discontinuity (see Figure 6). We empha-
size that spline smoothing is not meant as a tool to be
used in real applications. It is applied here to construct
fictional area functions based on real biological data to
illustrate our methods, as the randomized sampling loca-
tions require that the area function can be evaluated at any
point. Although created with a slightly different interpola-
tion scheme, the area functions are very similar to the ones
used in the simulation study of Ref. 10, which were based
on the same underlying biological data.
As stated previously, sections resulting in 0-oriented

objects should be avoided if possible. However, sometimes
– especially in archivalmaterial – histological sectionsmay
be generated from an anatomical subregionwith a human-
made flat surface, due to the way the tissue block was cut
from the patient, and unwisely sectioned parallel to the
flat surface (the intuitive default, which we dissuade from
using).
In the following analysis, we restrict our attention to the

case of sections sampled from the perturbed model without
dropouts. We refer to the Appendix for a short description
in the case of dropouts.
First, we illustrate the claims of Theorem 1 and the

comments following it. On a log–log scale, Figure 7 shows
the empirical variance of the Cavalieri estimator (1) and
the trapezoidal estimator for volume estimation of objects
with the constructed area functions against the mean
number 1∕𝑇 of section planes hitting the objects. We
included approximate decrease rates of all estimators as
�̂� (found by a least squares procedure). The empirical
variances are based on 5000 Monte Carlo simulations of
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STEHR et al. 49

F IGURE 6 Area functions based on cubic spline interpolation of data from 18 monkey parietal lobes (right). On the left, this function is
truncated to obtain an area function example of a 0-oriented object. In the simulations, the area function on the left is rescaled in 𝑥-direction
in order to make the mean numbers of hitting intersections comparable

F IGURE 7 Empirical variances of the Cavalieri estimator and the trapezoidal estimator for the 0-oriented object (left) and the 1-oriented
object (right) displayed in Figure 6. The leading term of the variance expansion in (4), that is, the extension term, is included. Note that the
orange and blue curves essentially coincide in the left plot. We sample from the perturbed model using truncated normal distributions with
standard deviation chosen such that the average relative deviation of the slice thickness to the intended thickness 𝑇 is 5%. In addition, we
sample without dropouts

sections sampled from the perturbedmodelwith truncated
normal perturbations and without dropouts. As expected,
we see that the variance of the Cavalieri estimator and the
trapezoidal estimator both decrease as 𝑇2 with decreasing
𝑇 for the 0-oriented object. Moreover, due to the fact that
the area function in Figure 6 (left) for the 0-oriented object
has exactly one jump, there is no Zitterbewegung for
either estimator in this case. In contrast, the trapezoidal
estimator clearly shows a Zitterbewegung in the variance
plot for the 1-oriented object, since the first derivative of
this area function has two discontinuities (at the bound-
ary of the support of the area function). Moreover and
most importantly, we see that the trapezoidal estimator
decreases as 𝑇4 with decreasing 𝑇, whereas the Cavalieri
estimator decreases approximately as 𝑇3.

In the case of sections sampled from the cumulative
model, the trapezoidal estimator has a behaviour very
similar to the one depicted in Figure 7 although there is
no Zitterbewegung in the plot for the 1-oriented object.
That is, in this case the oscillating behaviour decreases
in magnitude with decreasing 𝑇; for an illustration of
this (although with a different area function), we refer to
[Ref. 2, fig. 1b]. Moreover, the Cavalieri estimator behaves
substantially worse when based on sections from the
cumulative model, as it decreases as 𝑇 for both, the 0- and
the 1-oriented objects.
We now apply the results of the previous section on vari-

ance estimation to our constructed area functions and the
newly simulated data. More precisely, based on the 5000
Monte Carlo simulations described above, Figure 8 shows
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50 STEHR et al.

F IGURE 8 Empirical means and coefficients of error of the variance estimators presented in Definitions 1 and 2. The left plots illustrate
the 0-oriented object, and the right plots depict the 1-oriented object. In the upper plots, the empirical variances of the trapezoidal estimators
are included. Note that the grey and green curves essentially coincide in both plots to the left and in the upper right plot. The sampled
sections are identical to those used in Figure 7. We emphasize again that the coefficient of error in this figure describes the variability of the
variance estimates and not of the volume estimates

(on a log–log scale) the empiricalmeans and coefficients of
error of the trapezoidal variance estimators given in Def-
initions 1 and 2 for the 0-oriented object (left) and the
1-oriented object (right). The coefficient of error is here
defined as the empirical standard deviation of the variance
estimator divided by the extension term (and describes the
variability of the variance estimates and not of the volume
estimates).
We see that the variance estimators inDefinitions 1 and 2

both overestimate the actual variance for either area func-
tion.However, in accordancewith the comments following
Definition 1, these biases are insignificant when the mean
number of section planes hitting the object is large – that
is, when the average thickness𝑇 of a slice is small. Further-
more, the estimators in Definitions 1 and 2 are essentially
identical for 0-oriented objects, both in terms of mean
and coefficient of error (equivalently standard deviation),
whereas for the 1-oriented object the model-specific esti-
mator fromDefinition 2 appears to outperform the general

estimator from Definition 1 in the sense that it has a lower
coefficient of error.
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APPENDIX A: ALLOWING FOR DROPOUTS
The purpose of this Appendix is to introduce variance esti-
mators in the spirit of Definitions 2 and 3 which allow for
dropouts in the sampling model. In the scenario where
the area of certain section profiles cannot be determined,
the variance estimators of Definition 1 can still be applied
whereas those of Definitions 2 and 3 cannot. However,
it is possible to exploit the underlying model to con-
struct new variance estimators taking the dropouts into
account. There are two major advantages of using the
model-specific variance estimators presented below: One
is the fact that the general estimator for 1-oriented objects
given in (8) can in fact be negative if dropouts are present,
and this has not been observed in simulations for the
model-based estimators given in Definitions A.1 and A.2.
The second reason is that the estimators based on the
underlyingmodel appear to bemuchmore robust than the
general estimators (see Figure A.1).
To construct the new range of estimators, we have

to make additional assumptions: First, we assume that
section planes (or at least their areas) are dropped indepen-
dently of each other with the same probability 𝑝 ∈ [0, 1).
Secondly, we assume that the thickness of all initial slices
can be measured, that is, also the ones which contain a
section profile with unobserved area.
We formalize this now. There are a number of ini-

tial cross sections 𝑆0, 𝑆1, … , 𝑆𝑀 of the object 𝑌, and we
assume that we observe all the associated slice thick-
nesses ℎ̃1, ℎ̃2, … , ℎ̃𝑀 . For some of these cross sections,
the area cannot be measured, resulting in the sections
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𝑆0, 𝑆1, … , 𝑆𝑁 (where 𝑁 ≤ 𝑀) with observable areas
Area(𝑆0), Area(𝑆1), … , Area(𝑆𝑁), where the first and last
of them are zero (see Figure 2). Furthermore, we have
the corresponding distances ℎ1, … , ℎ𝑁 between these
sections. Thus, any ℎ𝑖 is in fact a sum of one or more
of the known initial slice thicknesses ℎ̃𝑗 . The distances
ℎ1, ℎ2, … , ℎ𝑁 , combined with the known areas are used
to estimate the volume of 𝑌 via the trapezoidal estimator
(2). To compute the model-specific variance estimators,
we additionally use ℎ̃1, ℎ̃2, … , ℎ̃𝑀 , that is, the thicknesses
of all slices, no matter if the areas are observed or not. In
particular,𝑀 −𝑁 measures the number of dropped slices,
and consequently𝑀 = 𝑁 and ℎ̃𝑖 = ℎ𝑖 if no dropouts occur.
In the latter case, the variance estimators given below
simplify to those of Definitions 2 and 3, respectively.
A typical example of this scenario would be serial

sections of a tissue, where one canmeasure at least approx-
imately the distances of neighbouring section planes - -
for example, from a photo of the original tissue slabs edge
with a superimposed ruler – but where not all areas in
sections can be determined for instance due to staining
problems, distortion or loss of one or more histologi-
cal sections due to sectioning artefacts, or similar. These
assumptions allow us to use ℎ̃𝑖 in the following estimates.
With the notation above at hand,

�̃� =
𝑀 −𝑁

𝑀 + 1
(A.1)

is an estimate of the probability 𝑝 of not observing the area
of a given section (we refer to it as the thinning probability).
Similarly

𝑠𝑝 =
𝑁 + 1

𝑀 + 1
(A.2)

is an estimate of (1 − 𝑝) (𝑠𝑝 is short for survival prob-
ability). Clearly, 𝑠𝑝 can be computed from �̃� and vice
versa, but for notational convenience, we have introduced
both estimators.
To compute the model-specific estimators, we need the

estimators (11), (12) and (15) but based on all slices, includ-
ing the ones with unobserved area, that is, based on the
slices before thinning. With the new notation,

�̃� =
1

𝑀

𝑀∑
𝑘=1

ℎ̃𝑘 (A.3)

estimates the average slice thickness,

�̃�2 =
1

𝑀

𝑀∑
𝑘=1

(ℎ̃𝑘 − �̃�)2 and �̃�4 =
1

𝑀

𝑀∑
𝑘=1

(ℎ̃𝑘 − �̃�)4

(A.4)

estimate the variance and the fourth centred moment of
the typical slice thickness under the perturbed model, and

�̃�𝑗 =
1

𝑀

𝑀∑
𝑘=1

(ℎ̃𝑘)
𝑗 (A.5)

for 𝑗 = 1,… , 5 estimate moments of the typical slice thick-
ness under the cumulative model.

Definition A.1 (Variance estimation under the perturbed
model with dropouts). Using the notations (5), (A.1), (A.2),
(A.3) and (A.4) let

�̃�
𝑝
1,3 = �̃�2 + 3�̃�2 + �̃�26

�̃�

𝑠𝑝
2
, (A.6)

�̃�
𝑝

0 = �̃�2
3 + �̃�

𝑠𝑝
, �̃�

𝑝

1 = 𝑠𝑝�̃�2 + �̃�2
4 + 2�̃�

𝑠𝑝
,

�̃�
𝑝

2 = 𝑠𝑝�̃�2 + �̃�2
1 + �̃�

𝑠𝑝
, (A.7)

d̃enom
𝑝
= 3𝑠𝑝�̃�22 + �̃�2�̃�2

1 + 10�̃� + �̃�2

𝑠𝑝
+ 4�̃�4 1 + �̃� + �̃�2

𝑠𝑝
3

,

(A.8)

d̃if f
𝑝
=

�̃�4

60
+

�̃�4
2

−
3�̃�22
4

+ �̃�2�̃�2
1 + 4�̃� + �̃�2

2𝑠𝑝
2

+ �̃�4 2�̃� + 5�̃�2 + 2�̃�3

𝑠𝑝
4

. (A.9)

If 𝑌 is a 0-oriented object, we estimate the variance of �̂�1

by

ṽar(�̂�1) =
(
3�̂�(0) − 4�̂�(1) + �̂�(2)

)
×

1

12
�̃�
𝑝
1,3. (A.10)

If 𝑌 is a 1-oriented object, we estimate the variance of �̂�1

by

ṽar(�̂�1) =
�̂�(0)�̃�

𝑝
0 − �̂�(1)�̃�

𝑝
1 + �̂�(2)�̃�

𝑝
2

d̃enom
𝑝 × d̃if f

𝑝
. (A.11)

Definition A.2 (Variance estimation under the cumula-
tive model with dropouts). Using the notations (5), (A.1),
(A.2), (A.3) and (A.5) let

�̃�𝑐1,3 =
�̃�3
�̃�

+ 6�̃�2
�̃�

𝑠𝑝
+ �̃�26

�̃�2

𝑠𝑝
2
, (A.12)
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�̃�𝑐
0 = �̃�2 + �̃�2 2 + 2�̃�

𝑠𝑝
, �̃�𝑐

1 = 2�̃�2 + �̃�2 2 + 4�̃�

𝑠𝑝
,

�̃�𝑐
2 = �̃�2 + �̃�2 2�̃�

𝑠𝑝
, (A.13)

d̃enom
𝑐
=

6�̃�22�̃�
2

𝑠𝑝
−

2�̃�3�̃�
3

𝑠𝑝
+ 12�̃�2�̃�

4 �̃�

𝑠𝑝
2
+ 12�̃�6 �̃�2

𝑠𝑝
3
,

(A.14)

d̃if f
𝑐
=

�̃��̃�5
10

−
�̃�23
12

+
(�̃�2�̃�4 + �̃��̃�3�̃�2)�̃�

𝑠𝑝
+

(5�̃�3�̃�3 + 6�̃�2�̃�22)�̃�
2

𝑠𝑝
2

+ 18�̃�4�̃�2
�̃�3

𝑠𝑝
3
+ 9�̃�6

�̃�4

𝑠𝑝
4
. (A.15)

If 𝑌 is a 0-oriented object, we estimate the variance of �̂�1

by

ṽar(�̂�1) =
(
3�̂�(0) − 4�̂�(1) + �̂�(2)

)
×

1

12
�̃�𝑐1,3. (A.16)

If 𝑌 is a 1-oriented object, we estimate the variance of �̂�1

by

ṽar(�̂�1) =
�̂�(0)�̃�𝑐

0 − �̂�(1)�̃�𝑐
1 + �̂�(2)�̃�𝑐

2

d̃enom
𝑐 × d̃if f

𝑐
. (A.17)

Based on 5000Monte Carlo simulations of sections sam-
pled from the perturbed model with a thinning probability
of 2.5%, we applied the variance estimators of Defini-
tions 1 and A.1 to the area functions of the previous
section. The result, depicted in log–log scales in Figure A.1,
shows that the model-based estimators have a tendency
to overestimate the variance slightly and thus produce
a conservative variance estimate when compared to the
general estimators of Definition 1. However, the estimates
of Definition 4 clearly behave more robust (in partic-
ular for 1-oriented objects) with a lower coefficient of
error when using a mean number of sections greater than
approximately 10.

F IGURE A . 1 Empirical means and coefficients of error of the variance estimators presented in Definitions 1 and A.1 based on
perturbed sampling with a dropout probability of 2.5%. The left plots illustrate the 0-oriented object, and the right plots depict the 1-oriented
object. In the upper plots, the empirical variances of the trapezoidal estimators are included. Note that the grey and green curves essentially
coincide in the upper left plot
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