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Abstract 

Despite growing interest in the impacts of both forest certification and networks in effective 

natural resource management, there is little literature that brings these two lines of inquiry 

together. Combining longitudinal remote sensing and village-level forest governance network 

data, we estimate Cox proportional hazard models predicting the risk of forest loss within 100-

square meter forest plots in areas that eventually came under Forest Stewardship Council 

certification. Our models indicate Forest Stewardship Council certification substantially reduces 

deforestation, despite that the system is not explicitly designed to do so. While villages with ties 

to civil society organizations also tend to experience reduced deforestation, those with ties to 

private sector organizations experience more forest loss. Further, we find that forest loss declines 

as the share of closed triangles in villages’ governance networks increases. Our results indicate 

network structure may complement Forest Stewardship Council certification’s impact on forest 

cover and account for some reduction in deforestation previously attributed to certification itself. 

 

Introduction 

 

Spurred by political contestation about the environmental and social impacts of global timber 

extraction in supply chains ending in Europe and North America (Bartley, 2007; Cashore, et al., 

2004), there has been a significant expansion of third-party sustainable forestry certification 

https://doi.org/10.1016/j.socnet.2022.03.002
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programs. The Forest Stewardship Council (FSC) has become the most prominent global 

sustainable forestry certification standard (van der Loos, et al. 2018), and Forest Stewardship 

Council-certified forests now make up approximately 10% of total global forest cover.  

 

Sustainable forest management is important for both global and local ecosystem service 

provision. A bit over a tenth of global greenhouse gas emissions are estimated to come from 

land-use and land-cover change (UNEP, 2020). Forest loss accounts for a substantial proportion 

of global land-use emissions (Pendrill, et al., 2019), but forest management planning, of the type 

required by Forest Stewardship Council certification, has been found to substantially reduce 

deforestation rates (Tritsch, et al., 2020). There is also evidence that Forest Stewardship Council-

certified forests support higher carbon stocks than comparable forests (Charmakar, et al., 2021). 

 

Scrutinizing how and under what conditions large-scale certification schemes can deliver on the 

promise of ecologically sustainable management is of high importance. Assessing the degree to 

which certification can protect forests, however, has proven exceedingly difficult. Not only are 

the potential direct and indirect impacts vast, but certification’s effects are likely contextual, 

requiring complex research designs and extensive data collection to assess (Romero, et al., 2017; 

van der Ven & Cashore, 2018).  

 

Combining longitudinal land-cover and governance network data, this study takes a novel 

approach to assessing the impact of Forest Stewardship Council certification on deforestation 

rates, disentangling certification’s role as both an institution and a nexus of complex 

interorganizational relationships. Following a conventional definition, we think of institutions as 

the “rules of the game” (North, 1990) defining and regulating social activities. For our purposes, 

the fundamental rules of Forest Stewardship Council certification are the primary institution of 

interest. We define networks, by contrast, as reciprocal patterns of exchange and communication 

between actors (Powell 1990). Put briefly, institutions are rules, while networks are relations. 

Taking forest loss as a dependent variable, we use Cox proportional hazards models to assess the 

degree to which certification and network characteristics modify the risk of deforestation.  
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Embeddedness, which we define as how social actors are positioned within social networks, is 

one potentially critical but understudied correlate of certification’s impacts. Research on 

embeddedness has offered a powerful framework for considering how individuals’ and 

organizations’ positions in networks of relationships can affect economic activities. Polanyi 

(1957) originally used the term to refer to the macro- and micro-level institutions shaping 

economic activities that transformed as translocal market connections emerged in early modern 

Europe. Granovetter’s (1985) more recent usage of the term refers to how micro-level network 

configurations shape individuals’ economic opportunities, prospects, and choices. Among many 

ways the concept of network embeddedness has influenced economic sociology and geography, 

it has stimulated a wave of research on how interfirm networks shape industrial districts, 

entrepreneurship, lending relationships, acquisitions, and performance (see Uzzi 1996 for a 

review). A key insight from this tradition is that firms’ capabilities can improve as they build 

reciprocal ties with customers, clients, competitors, partners and regulators (Uzzi 1997; Powell 

1990). Granovetter (1973), Burt (1992), and later Uzzi (1997), however, also point to a 

potentially risky aspect of network embedding: when organizations become too tightly 

embedded in networks, information and coordination tend to happen within closed social circles 

where group-think and a too-strong dependence on in-group resources can stymie innovation.  

 

Researchers examining network governance of environmental concerns suggest effective 

network structures promise more efficient and equitable natural resource management and 

potentially support local buy-in to and social learning about conservation (Rudnick et al. 2019, 

Schnegg 2018, Bodin and Crona 2009, Bodin et al. 2017, Barnes et al. 2017, Pittman and 

Armitage 2019, Lauber, et al. 2008, Österblom and Bodin 2012, Zao and Wen 2012, Pretty and 

Smith 2004, Folke et al.. 2005, Schneider et al. 2003, Jones, Hesterly and Borgatti 1997, 

Gallemore et al., 2013, Henriksen et al., 2018, Ponte et al., 2017, Ponte, et al., 2020). These 

benefits, in turn, might be expected to help stem forest loss and other forms of environmental 

degradation.   

 

Previous studies address two primary ways different aspects of network embeddedness might 

matter for areas undertaking sustainability certification to protect forests. On the one hand, 

dense, overlapping connections between actors, a pattern often called bonding, can support 
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coordination and social trust. On the other, connecting actors in different sectors or communities, 

a pattern known as bridging, may provide access to new resources or ideas (Lauber, et al. 2008). 

Our understanding of bridging, to be clear, departs slightly from Granovetter’s formulation, 

where bridges are defined in network structural terms (ties connecting dense cohesive clusters; 

Granovetter 1973). In the socioecological systems literature, by contrast, the term bridging often 

refers to crossing boundaries between sectors or communities of practice, as, for example, 

between governmental and civil society sectors, or natural, social, and traditional knowledge 

communities (Bodin & Crona, 2009; Cash, et al. 2006; Crona & Parker 2011, 2012). While these 

pools of knowledge might also be reflected in network structures, there is no guarantee that this 

is the case, so it is important to look for such instances of boundary-bridging explicitly. 

 

There is considerable scope to investigate if and how bonding and bridging in environmental 

governance networks shape environmental outcomes like forest protection. While the first 

iteration of scholarship on networked environmental governance largely focused on overall 

network connectivity, more recent work differentiates particular network patterns, such as 

bridging and bonding, and relates those structures to governance performance, innovation, and 

learning (Barnes, et al., 2019; Bodin, et al., 2017). Network governance researchers expect 

networks to affect the capacity of both individual actors and the network as a whole to bring 

about sustainable outcomes (Bodin & Crona, 2009), but the bulk of the literature has focused on 

the latter relationship, usually using cross-sectional data (Bodin, et al., 2017; Enqvist, et al., 

2020; Hamilton, et al., 2019; Kininmonth, et al., 2015; Sayles & Baggio, 2017; Sayles, et al., 

2019). As Sayles, et al. (2019) argue, there is considerable room for research on environmental 

governance networks that relates network structures to outcomes. Two recent studies, for 

example, indicate bonding may support management quality and environmental outcomes 

(Barnes, et al., 2019; Bodin, et al., 2017). Bodin and Crona (2009) suggest that bridging between 

different groups may be important for effective information flows. 

 

The different roles of bonding and bridging are also found, though often in different terms, in 

existing literature on Forest Stewardship Council certification. Not only is the Forest 

Stewardship Council itself a standard-setting process embedded in transnational networks mixing 

public and private organizations (Henriksen et al., 2016; Henriksen, 2015; Bartley & Smith 
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2010), local certification processes at production sites are embedded in networks linking local 

and transnational players. Local networks can foster trust and provide access to resources that 

support successful Community-Based Forest Management (Lauber, et al., 2008; Humphries, et 

al., 2020), while translocal networks may help forest managers access resources, skills, and 

knowledge (Baynes, et al., 2015; Humphries, et al., 2020). 

 

While both the literature on Forest Stewardship Council and on network governance indicates 

the potential importance of both Forest Stewardship Council certification and social networks, 

disentangling this relationship is challenging. Strong bonding ties, for example, could facilitate 

trust and monitoring, helping improve Forest Stewardship Council performance, but this 

outcome could result simply from implementing certification rules themselves. Bridging ties, 

similarly, might provide access to resources and skills that facilitate certification, but 

certification itself connects actors to international markets and across the science-policy interface 

(da Silva, et al., 2019; Eden, 2009), facilitating bridging ties. Furthermore, communities 

themselves are increasingly “delocalized” (Ojha, et al., 2016), connected to transnational markets 

and politics that embed them in complex, translocal networks, and community members often 

also try to broker relationships with different external actors to influence local power struggles 

(Bartholdson & Porro, 2018; Górriz-Mifsud, et al., 2016). Finally, assessing the impacts of 

Forest Stewardship Council certification is challenging on its own. Certification is not randomly 

distributed, and selection effects, contextual interactions, and unobserved heterogeneity make 

assessments of the degree to which certification affects environmental outcomes difficult 

(Romero, et al., 2017; van der Ven & Cashore, 2018). 

 

We address these methodological problems and contribute to the literature on Forest Stewardship 

Council certification and network governance by taking a temporal perspective. Combining 

longitudinal land-cover and governance network data documenting the co-evolution of forest 

cover and forest governance networks in Kilwa District in southeastern Tanzania, we estimate a 

series of Cox proportional hazard models that allow us to compare deforestation rates before and 

after four community forest areas achieved Forest Stewardship Council certification while 

controlling for unobserved sources of heterogeneity at the village level using frailty terms. We 

compare the estimated impact of Forest Stewardship Council certification and of bonding and 
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bridging in our four study villages’ governance ego networks, defined by all the organizations to 

which each village is connected and all the ties between these organizations. This approach 

allows us to assess the relative impact of Forest Stewardship Council certification and bonding 

and bridging. 

 

We provide a brief background on community forest management and certification in the 

following section. After familiarizing the reader with this empirical context, we outline the 

methods used to assemble our longitudinal land-cover and governance network data and explain 

the logic behind our choice to analyze these data using Cox proportional hazards regression. 

Following a visual presentation of our primary statistical results, we argue that studying 

institutions’ and networks’ relative importance should be of interest to a variety of literatures on 

both social networks and natural resource management. 

 

Empirical setting 

 

Community-Based Forest Governance  

 

Forest management in most countries in the Global South was characterized by top-down, state-

centric governance for most of the 20th century. Starting in the 1980s, however, there was 

growing interest in more participatory approaches bridging corporate, civil society, and public 

actors with local decision making (Agrawal, 2005; Scheba & Muhtalahati, 2015). Like network 

governance, participatory management is generally thought to be more likely to support 

sustainable livelihoods and environmental outcomes (Gilmour 2016; Oldekop et al. 2019; Porter-

Bolland, et al., 2012), but research assessing its impacts remains uncertain (Meijaard, et al., 

2020). 

 

Previous research suggests certified community-managed forests tend to provide more social and 

environmental benefits than non-certified forests, including improved governance and 

coordination, mild income increases, increased species diversity and richness, and more rapid 

reforestation (Burivalova, et al., 2016; Takahashi & Todo, 2012). Community forestry in general, 

however, should not be considered a panacea. There is considerable diversity across and within 
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communities that affects the degree to which community forestry might be attractive, beneficial, 

or even applicable to any given group (Muttaqin, et al., 2019; Tole, 2010). Furthermore, 

effectively implementing community forest management requires skills and resources that often 

do not accompany the formal right to manage forests (De Royer, et al., 2018; Tole 2010). Arts 

and de Koning (2017) analyze ten community-based forest management cases across three 

continents using qualitative comparative analysis, finding evidence that community engagement, 

on its own, is insufficient to generate positive outcomes but that strong, high-trust relationships 

between external and internal actors are often associated with success. In the absence of trust, 

Kahsay and Bulte (2019) argue, rules can pick up the slack. Studying community forest 

management in Ethiopia, they find a negative correlation between trust and formalized 

governance rules. 

 

Forest Stewardship Council Certification 

 

The Forest Stewardship Council was an early entry in a wave of multi-stakeholder sustainability 

initiatives, born out of disappointment that the 1992 Earth Summit did not adequately address 

deforestation (Moog, et al., 2015). As a market-based initiative, Forest Stewardship Council 

certification is only effective to the extent that market actors are motivated to seek out 

sustainable timber sources and the certification is understood as legitimately rigorous (Eden, 

2009). Organizations like the Forest Stewardship Council, therefore, must carefully balance 

demands for stringency with desires for expansion. More stringent standards generally will 

impose higher costs and be harder to articulate with existing legal frameworks, and the Forest 

Stewardship Council has struggled to expand certification outside more affluent countries with 

well functioning institutions (Bartley, 2010; Marx & Cuypers, 2010). 

 

To receive Forest Stewardship Council certification, forest managers must adhere to a set of ten 

Principles and Criteria established by the organization, as interpreted through national or 

regional standard development groups consisting of Forest Stewardship Council members. Small 

operators may collaborate to receive group certification (Forest Stewardship Council 

International, nd). To provide credibility that certified forest managers are in fact adhering to the 

Principles and Criteria, third-party Certification Bodies are approved by the organization to 



8 

conduct on-site audits. These audits include sampling of forest area, interviews, document 

collection, stakeholder engagement, and other procedures, ultimately resulting in a report 

detailing patterns of compliance and non-compliance with the Forest Stewardship Council’s 

basic rules. 

 

 

Forest management in Tanzania 

 

As Bartley (2011) notes, private governance systems like the Forest Stewardship Council can be 

thought of as a “layering of rules” atop existing national regulations. Understanding their effects, 

therefore, also requires considering the historical context into which they are inserted. Before the 

colonial period, Tanzanian forests were regulated primarily by customary law (Barrow et al., 

2002; Kajembe et al., 2005). Managed forests were spiritually important and governed as 

commons, supporting local livelihoods with resources like food and medicine (Zahabu et al., 

2009). When colonial powers expropriated indigenous lands, however, they imposed new legal 

and tenurial arrangements (Malimbwi and Munyanziza, 2009). Under first Germany and then 

Britain, colonial administrations supported timber extraction, and, later, plantations. The colonial 

powers also brought Western forest management practices, new production methods and 

assumptions about “conservation” that restricted locals’ forest access and use. In 1904, the 

German colonial power issued an ordinance establishing forest conservation reserves 

(Kostiainen, 2012), which the British Mandate further expanded (Kajembe et al., 2005). In 1953, 

the Mandate introduced the first Forest Policy and in 1957 the first Forest Ordinance, further 

restricting protected forest areas and consolidating government control of forest resources (URT, 

1998). Even following independence in 1961, the National Forest Policy of 1963 retained several 

colonial policies. Forest management remained centralized, with no ownership or management 

authority allocated to the local communities (Kalumanga et al. 2018). 

 

Eventually the National Forest Policy of 1998 and the Forest Act of 2002 acknowledged private 

actors’ and local communities’ key roles in forest management (URT, 1998; URT, 2002). The 

move to Community-Based Forest Management (also often referred to as Participatory Forest 

Management), allowed villages to take over ownership of Village Land Forest Reserves 
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(VLFRs) and co-manage part of National Forest Reserves under Joint Forest Management 

programs (Blomley and Iddi, 2009: 6). As of 2015, 55% of the Tanzanian mainland was 

classified as forest. Production forest, in turn accounted for 40% of total forest area 

(NAFORMA, 2015). Today, more than 60 districts are involved in Joint Forest Management, 

and there are about 50 Village Land Forest Reserves (Kalumanga et al. 2018).  

 

Because of its widespread implementation via Joint Forest Management and Community-Based 

Forest Management, there has been considerable scholarly interest in Participatory Forest 

Management in Tanzania. The vast literature on decentralized forest management in the country 

suggests community management performs comparably to or better than state-managed areas in 

terms of net forest cover and overall forest quality (Mbwambo, et al., 2012; Uisso, et al., 2019). 

Impacts on livelihoods, however, appear small or negligible in comparison to changes in 

agricultural market prices and other economic opportunities (Corbera, et al., 2017; Gross-Camp, 

2017; Vyamana, 2009). As with many integrated conservation and development approaches, 

several studies of Tanzanian Community-Based Forest Management raise concerns about how 

local power structures and corruption can undermine these initiatives, leading to elite capture, 

poor benefit sharing, increased costs for the least affluent, and even outright violence (Bluwstein 

& Lund 2018; Brockington, 2007; Gross-Camp, et al., 2019; Lund & Saito-Jensen, 2013; 

Magessa, et al., 2020; Meshack, et al., 2006; Ngaga, et al., 2013; Rantala, et al., 2012).1 

 

Contemporary forest management in Kilwa  

 

Villages in Kilwa District in southeastern Tanzania started developing Community-Based Forest 

Management in the 1990s (Treue et al. 2014). In the early 2000s, the Mpingo Conservation 

Program, now the Mpingo Conservation and Development Initiative (MCDI) began work to 

facilitate certified sustainable blackwood (Dalbergia melanoxylon; mpingo in Kiswahili) 

harvesting. MCDI has since been a key supporter of and broker for Kilwa’s Community-Based 

Forest Management efforts, working alongside governmental, private sector, and civil society 

organizations. The organization continues to focus on Forest Stewardship Council certification as 

 
1 For a more expansive background on forest management in Tanzania, see Kalumanga et al. 2018. 
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a way for communities to benefit from forest conservation (Ponte et al. 2017). The Kilwa District 

Council has for some time received financial support for Community-Based Forest Management 

directly from the Ministry of Natural Resources’s National Forest Programme and indirectly 

through NGOs like MCDI and World Wildlife Fund (WWF) to support these efforts. Mirroring 

findings on Community-Based Forest Management in Tanzania more generally, Treue et al. 

(2014) studied 12 forests in Kilwa and found that Village Land Forest Reserve areas tend to be 

better managed than open-access areas but that extraction rates depended largely on location and 

types of local use.  

 

While there have been notably fewer studies of Forest Stewardship Council-certified 

Community-Based Forest Management in Tanzania than of Community-Based Forest 

Management more broadly, several of those that do exist focus on MCDI-supported villages in 

Kilwa District. Here, there are indications that certification has positive environmental benefits 

and may also help address some of Community-Based Forest Management’s institutional 

shortcomings, helping avoid elite capture and improve equity (Khatun, et al., 2015). Kalonga, et 

al. (2015, 2016) find that Forest Stewardship Council-certified forests in Kilwa District have 

higher adult tree species density, diversity, and richness than open-access or state forests. 

Corbera, et al. (2017) find substantially improved forest governance (e.g. better coordination, 

forest management and social cohesion) in Forest Stewardship Council-certified villages 

working with MCDI in Kilwa. These improvements, however, have not translated into 

statistically detectable impacts on livelihoods or assets. Also in Kilwa, Kalonga and Kulindwa’s 

(2017) comparative economic valuation study shows households receive significantly higher 

income from certified than non-certified Community-Based Forest Management operations. 

Further, they find much better implementation of forest bylaws in certified forests. Kalonga, et 

al. (2014) also find slightly lower income inequality in certified versus non-certified operations 

in Kilwa. 

 

Case selection  

 

Today, 14 Village Land Forest Reserves have been formed in Kilwa, representing an estimated 

43.6 % of the total land managed as Village Land Forest Reserves across the country (Bwagalilo 
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et al., 2019). Between 2010 and 2014, the MCDI in collaboration with the Kilwa District Council 

and other actors helped villages implement Community-Based Forest Management in their 

Village Land Forest Reserves as part of a pilot program under Reducing Emissions from 

Deforestation and Forest Degradation (REDD+). Kilwa’s REDD+ pilot provided various types 

of support (e.g. financial, technical, etc.) for Community-Based Forest Management and forest 

certification, attracting a new layer of state and non-state actors with a stake in sustainable forest 

management. In general, Village Land Forest Reserve management stimulated interest in multi-

stakeholder, collaborative governance. At the same time, the MCDI secured a Forest 

Stewardship Council Group Certification Scheme for the villages that implemented REDD+ in 

their Village Land Forest Reserves. Of Kilwa’s 14 Village Land Forest Reserves, 11 are 

currently under MCDI’s Group Certification (Bwagalilo et al., 2019; see Table 1). 

 

Given the extensive data collection required to map village resource governance networks from 

prior to Village Land Forest Reserve establishment to after Forest Stewardship Council 

certification, we decided to focus on a sample of four villages: two early movers (Kikole and 

Nainokwe) and two late movers (Likawage and Mchakama). These four villages also encompass 

a range of very small, small, medium-sized, and large Village Land Forest Reserve areas. We 

present a map of Kilwa with the boundaries of our study villages and their Village Land Forest 

Reserves in Figure 1.  
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Figure 1. Study areas that become Village Land Forest Reserves (VLFRs) in Kilwa District, 
Tanzania, with forest cover.Starting in 2009, all depicted VLFRs are also Forest Stewardship 
Council (FSC) certified. Projection: UTM Zone 37S. Data from the Government of Tanzania, 
land cover classification data described in the Appendix, and the Mpingo Conservation and 
Development Initiative. Basemap: OpenStreetMap. 
 

 

Village VLFR start year Forest area (Ha) FSC cert. year Sample village 

Kikole 2004 454 2009 Yes 

Kisangi 2005 1,966 2009 No 

Nainokwe 2009 8,047 2010 Yes 

Liwiti 2009 6,229 2010 No 
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Likawage 2013 19,624 2013 Yes 

Ngea 2013 1,893 2014 No 

Nanjirinji A 2013 61,505 2013 No 

Nanjirinji B 2013 18,963 2016 No 

Mandawa 2013 1,994 2014 No 

Mchakama 2013 1,525 2014 Yes 

Namatewa 2016 6,748 2017 No 
 
Table 1. Overview of VLFR / FSC certified villages in Kilwa (source: Kalumanga et al. 2018). 
 
 

Data and methods 

We combine remotely sensed land-cover and other geographic data for four time periods with 

ego network data identifying study villages’ embeddedness in forest governance networks. Using 

Cox (1972, 1975) proportional hazards regression models, we estimate the association between 

10-meter by 10-meter forested areas’ risk of deforestation during an observation period, our 

dependent variable, and our independent variables of interest, measures of villages’ network 

embeddedness and the onset of Forest Stewardship Council certification. We use the Cox model 

to control for geographic factors that may contribute to deforestation, as well as village-scale 

heterogeneity. Because our data come from diverse sources and have been processed using 

techniques that may not be fully familiar to a network analysis audience, we provide an overview 

of our data processing and analysis methods in Figure 2 and unpack each of these components in 

the following subsections.  
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Figure 2. Flowchart of data processing operations. 
 

Land-cover variables 

To identify deforestation in our study villages, it was necessary first to develop a dataset showing 

changes in land cover across Kilwa district. For this purpose, we turned to openly available 

remote sensing data from Sentinel and Landsat satellites, which often are used to detect changes 

in land cover (Chander, et al., 2009; Haeusler, et al., 2017; Rüetschi, et al., 2019). As this is a 

quite technical process, we summarize the research implications of our methodological choices 

here and present a more technical description in the Appendix. 

 

Because satellite images only measure how much radiation the satellite sensors detected at 

various bands in the electromagnetic spectrum, it is necessary to classify combinations of these 

values into discrete groups indicating different types of land cover. We used supervised 

classification to translate our remotely-sensed imagery into 10 meter by 10 meter resolution 

raster datasets showing discrete land-cover types (barren, cropland, human settlement, grassland, 

woodland, coastal forest, and water). While the two forest types (woodland and coastal) are 

ecologically distinct, we combined them into a single forest class for the purpose of analysis. 
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Supervised classification requires generating a set of training data, locations of known land-

cover type that can then be used to train machine-learning algorithms that are able automatically 

classify the millions of pixels in the remotely-sensed imagery. We conducted fieldwork to collect 

training points, augmenting these with existing maps of known land cover at different times, as 

well as image interpretation using very high resolution Google Earth imagery. While it might 

have been ideal to collect all training points in the field, supplementing field-collected points 

with these other sources allowed us to generate training points across a larger spatial extent than 

would have been feasible with fieldwork alone. It also permitted us to work iteratively with the 

classification algorithms, collecting further training points for land-cover types that were more 

frequently confused to increase classification accuracy. We provide details on the most accurate 

classification achieved, which we use for the models reported in this paper, in the Appendix. 

 

Because geographic context has a strong effect on the likelihood that a pixel is deforested, 

controlling for forest plots’ surroundings is critical (Panlasiqui, et al., 2018). Using ArcMap, we 

computed for each forested pixel in 2000 the Euclidean distance to the nearest settlement, 

cropland, and forest edge pixel, in kilometers, for each year it remained forest. Because the 

landscape in the area is changing over time, these values are often different for the same pixel 

across time periods. As a further control, we computed the Euclidean distance to the nearest 

major road passing through Kilwa. Finally, using a 30-meter resolution digital elevation model 

from the Shuttle Radar Topography Mission (Farr, et al., 2007), we computed the Terrain 

Ruggedness Index (Riley, et al., 1999) around each pixel that was forested in 2000. These latter 

two variables remain constant over time, as there were no major construction projects or 

topographic changes during the observation period. 

 

Forest Stewardship Council onset variable 

We obtained shapefiles of villages’ Village Land Forest Reserve boundaries as of early 2020 

from MCDI and by creating polygons for some boundaries using coordinates reported in 

MCDI’s publicly available Forest Stewardship Council management reports (MCDI, 2020). Due 

to ongoing boundary confusion in the region, some Village Land Forest Reserve boundaries 

extended outside the village claiming management authority. Because of the ambiguity of these 

situations, we excluded these areas from analysis. Consulting the village management plans 
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required for Forest Stewardship Council certification posted on MCDI’s (2020) website, we 

identified the year each Village Land Forest Reserve achieved Forest Stewardship Council 

certification. Using this information, we constructed variables identifying, for each study area, 

whether or not it was Forest Stewardship Council certified during the observation time period. 

 

Network variables 

We follow our study villages’ embeddedness in forest governance networks across four time 

intervals covering years up to, during and following Village Land Forest Reserve and Forest 

Stewardship Council implementation (2000-2004, 2005-2009, 2010-2014, and 2015-2018). 

Using several event- and document-based sampling strategies and respondent-driven link-tracing 

approaches well-known to network research (Heckathorn and Cameron 2017), we collected 

social network data characterizing the network of organizations engaging in business, technical, 

and governance collaborations on forest-related issues in our study villages, as well as the 

connections between village governance organizations and these other actors. We coded all 

identified partners into three mutually exclusive organisational types: government, private sector 

and NGOs.  

 

Our network data is intended to capture formal, interorganizational collaboration, such as 

common participation in a development or capacity-building project, partnership in a community 

forest enterprise, or business development activities. Because these kinds of activities leave 

historical records, we triangulated information from village guestbooks, documents, and oral 

histories to reconstruct these networks as completely as possible.  First, all village visitors are 

obliged to sign the village guestbook, which records visits from corporations, NGOs, donors, and 

government officials. Consulting guestbooks as far back as those records were available in each 

village provided an initial organization-to-village network. Second, to fill in potential omissions 

due to missing guestbooks, recording lapses, or collaboration that did not involve direct village 

visits, we consulted policy and conservation project documents obtained from national archives, 

expert interviews, and online research. We used these materials to code time-stamped 

collaborative relationships, adding new organizations encountered to the list of village partners 

constructed from the guestbooks. Third, the team interviewed representatives from Village 

Councils and Natural Resource Committees about the organizational partners with whom they 
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had collaborated on sustainable forest management, as well as the villages’ external partners, in 

order to document relationships from both sides of the dyad. The existing list of partners from 

the guest books and documents informed these interview questions, and we asked respondents to 

elaborate on the nature of specific collaborations and identify further partnerships not yet on the 

list. Informants, further, provided information on the timing of collaborations according to the 

periodization outlined above. While this approach is unlikely to capture every relationship in the 

governance network, it is likely to capture the most important ones. Any bias in the data 

collection is likely to fall on the side of omission, rather than overinclusion. 

 

To construct our network-based independent variables, we focused on our study villages’ ego 

networks, an approach consistent with other studies examining network effects on environmental 

management (Barnes, et al., 2019; Bodin, et al., 2017). Keeping our measures simple, we 

computed, for each time interval, the number of civil society and private sector organizations 

with which each village collaborated, a measure known as degree in social network terms. For 

estimation purposes, we added one to each degree measure and then took the natural logarithm, 

anticipating declining marginal effects with additional partners from the different sectors. We 

interpret villages’ private sector and civil society degrees to indicate the extent to which village 

actors bridge across distinct interest spheres. While we documented village ties to government 

organizations, as our village actors are themselves governmental, we do not consider village ties 

to other government entities as bridging in the sense defined at the outset. They are, however, 

relevant to bonding, so we include ties with all organization types in computing our bonding 

indicator. For this, we use the percentage of closed triads, or sets of three nodes in which all 

nodes are connected to each other. 

 

Estimation technique 

Our goal was to model the risk of deforestation as a function of whether a forest plot is Forest 

Stewardship Council-certified and it, along with network embeddedness, affect forest loss. 

Because we were interested in how deforestation risk changes over time under various 

conditions, we estimate Cox proportional hazard models, commonly used to model time-to-

deforestation data (Busch & Vance, 2011; Reid, et al., 2019; Vance & Geoghegan, 2002). This 
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technique is more attractive than similar techniques, like logistic regression, for three primary 

reasons.  

Cox models are an attractive method, first, because our units of analysis are 100-square-

meter plots identified as forest in 2000 which at some later period become Forest Stewardship 

Council certified. While this before-and-after treatment comparison allows us to focus on the 

impact that changes in institutional and social network characteristics have on forest-cover 

change, unobserved heterogeneity at the village level could still make identification challenging. 

Conventional regression models including Cox regressions assume that the units of analysis in a 

sample are independent of one another. Yet, units that are nested within the same higher level 

cluster (in our case villages) are likely to be affected by unobserved village-scale differences, 

violating the independence assumption. To mitigate this problem, we include village-level frailty 

terms in our Cox regression models. Frailty terms can be thought of analogously to random-

effect terms in panel regression models - in our case, they capture unexplained village-level 

heterogeneity in deforestation risk. While it might be possible to estimate a series of other 

village-level control variables instead of frailty terms, frailty terms have the advantage of 

capturing all unexplained village-level heterogeneity, making them more likely to address 

omitted variable bias than even multiple control variables. 

Second, this modelling approach helps us address the risk of selection bias - that is, the 

possibility that there might be something systematically different about areas that are eventually 

Forest Stewardship Council certified that also affects their deforestation rates. Using Cox models 

with frailty terms with the specific dataset we employ helps address this problem in a few ways. 

First, observing only areas that ultimately become Forest Stewardship Council-certified 

community forests avoids selection biases from geographic factors that might make one area 

more likely to become certified than another. Second, because the frailty terms capture 

unexplained village-level heterogeneity in deforestation risk, they also should capture any non-

time-varying omitted variables that could simultaneously affect both deforestation and the 

propensity to become certified. Finally, because we observe forest change in these areas before 

and after Forest Stewardship Council-certification, we can have reasonably high confidence that 

the coefficients we estimated are unlikely to be due to selection effects or omitted variable bias. 

Third, Cox models permit time-varying covariates, which is particularly important not 

only because our Forest Stewardship Council and network terms vary, but also because Kilwa is 
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a dynamic landscape characterized by swidden cultivation, so most of our geographic control 

variables change over time, as well. This is important because we would naturally expect 

deforestation risks to be higher closer to the forest edge. To the extent that forest edges will shift 

with cycles of crop clearance, fallowing, and regrowth, it is necessary to use a model that allows 

us to incorporate information about these dynamics into the estimation process. Using the frailty 

terms to keep non-time-varying village-level characteristics fixed, time-varying geographic 

controls (in this case, all the control variables except terrain ruggedness and distance to a main 

road) then help us to control for relevant time-varying factors driving forest loss. 

This modeling approach does have a few drawbacks, though these are quite common in 

land-cover-change research. Because there are so many factors that impinge on land-cover 

change, isolating the relationships between any given set of variables requires us to try to hold 

many other sources of variation constant. Hence, using the village-level frailty terms and time-

varying geographic controls means that we are using network and institutional variables to 

explain primarily temporal - rather than geographic - differences in deforestation rates. However, 

we see this as a way to design a quite conservative estimate of these key independent variables’ 

relationship with deforestation. That is, the research design could lead us to underestimate the 

true effects of these factors on deforestation, but it is unlikely to overestimate them. 

 

Biomass Estimation 

 While forests have many positive benefits, they are also an important component of 

climate change policy, both as a site of carbon sequestration and, when deforested, of emissions. 

To make the implications of our findings for climate change clearer, we draw on a nation-wide 

dataset constructed by researchers based at the University of Edinburgh that estimates above-

ground woody biomass at a 25-meter resolution for the entire country in 2007 and 2017 

(McNicol, et al., 2018). Because these years overlap, but do not correspond with, the years of our 

remote-sensing data, we developed a strategy to use them to estimate the biomass in forested 

patches in our study area. First, we identified pixels from our remote-sensing data that were 

forested before and remained forested after each of the available biomass years. We then 

intersected these pixels with the biomass layer for the year to which they were closest. Next, we 

combined the biomass estimates for both layers of pixels to compute the expected mean biomass, 

in tons of carbon per hectare, for forested pixels in our study area. Finally, we used this value to 
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estimate the predicted change in total landscape woody biomass resulting from forest change in 

our model simulations. 

 

Results 

 

Descriptive statistics  

 

Table 2 presents basic descriptive statistics for variables used to estimate our Cox models. By the 

end of our observation time period in 2018, 9.6% of the 1,753,578 10-meter by 10-meter forested 

areas in our study areas were deforested, amounting to a total of 5,912 hectares. This aggregate 

measure hides considerable heterogeneity across villages, clearly visible in the village forest loss 

curves shown in Figure 3. By the end of the observation period, the forest loss rate for 

Mchakama, the most successful study area, is roughly 20 percentage points lower than Kikole, 

our least successful village.  

 

 

Continuous Variables 

Variable Mean Std. 
Dev. 

Min. Max. Role in Models Source 

Village Civil Society 
Degree (ln) 

1.50 0.765 0 2.57 Network 
variable 

Field 
network 
data 

Village Private Sector 
Degree (ln) 

0.991 0.938 0 2.56 Network 
variable 

Field 
network 
data 

Triangle Percent 28.5 35.9 0 100 Network 
variable 

Field 
network 
data 

Distance to Cropland, M 
(ln) 

5.09 1.08 0 7.63 Control variable Remote 
sensing data 

Distance to Built Up, M 
(ln) 

7.28 0.749 0 8.59 Control variable Remote 
sensing data 
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Distance to Forest Edge, M 
(ln) 

4.30 1.01 0 7.19 Control variable Remote 
sensing data 

Distance to Road, M (ln) 8.73 0.878 0 9.76 Control variable Remote 
sensing data 

Terrain Ruggedness Index 1.63 1.40 0 16.5 Control variable Shuttle 
Radar 
Topography 
Mission 

Binary Variables 

Variable 0 Value 1 Value Percentage 
of 1s 

Role in Models Source 

Deforested Forested Deforested 10% Dependent 
variable 

Remote 
sensing data 

FSC Active Inactive Active 50% Institutions 
variable 

MCDI 

Forest Type Coastal Woodland 46% Control variable Remote 
sensing data 

 
Table 2. Descriptive statistics for dataset used to estimate Cox models. N = 1,753,578 plots and 
6,171,114 plot-period observations. Variables marked with ln are expressed in terms of 
logarithms to base e. 
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Figure 3. Cumulative forest loss percentage, by village, for ten meter by ten meter pixels that 
were forested in 2000. This measure does not reflect any forest regrowth in the study areas. The 
figure shows 99% confidence intervals, but these are generally more narrow than the width of the 
line selected for visibility. 
 

 

The divergence across villages is not readily explained by the timing of Forest Stewardship 

Council certification alone. Certification was active for slightly over half (51.4%) of our pixel-

year observations, but certifications become active at different times across villages. Kikole 

achieved certification in 2009, the first of the study villages to do so. Mchakama achieved 

certification last, in 2014. 

 

The villages’ ego networks also vary considerably in composition and structure across both 

space and time (Figure 4). While ego networks generally expand over time, there are several 

instances in which network size declines in the final time period, leading to fewer partners with 

more triadic closure (that is, more sets of three nodes in which each node is connected to the 

others). This pattern is consistent with our field observations and contextual knowledge about the 

process of enrolling the villages in the Forest Stewardship Council certification process. As 

villages were enrolled in the certification process, they started forming partnerships with 

government, private and civil society organisations. Generally, village ego networks were most 

expansive and diverse around the time they achieved certification. Some of the villages’ external 
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partnerships involved funding schemes, some had to do with training and technical assistance, 

and some were concrete governance collaborations. As time passed, some of these partnerships 

became obsolete.  The villages also vary in terms of network composition. Likawage, for 

example, had a dense private sector network in and around the time of certification, whereas 

Kikole and Mchakama had a dense civil society network. Mchakama was the only village to 

witness a dense government network, and in this case the growth of government organizations 

largely covaried with the growth of civil society organizations. For this reason, and because ties 

to governments conceptually do not constitute bridging ties in the sense outlined in the 

introduction, we ignore the role of government ties in our analysis of bridging. 
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Figure 4. Observed village governance ego networks, projected using Fruchterman-Reingold 
algorithm, which locates organizations connected to more common partners closer together. V = 
Village; G = Government; C = Civil Society; P = Private Sector. 
 

 

In addition to these sources of heterogeneity, our study areas differ geographically, resulting in 

differential exposure to deforestation drivers (Figure 5). Because Kilwa is a dynamic landscape 

characterized by swidden cultivation and infrastructure development (McNicol, 2015) all 

geographic variables other than the Terrain Ruggedness Index and the distance to main roads 

vary across time, and all of these variables differ across study villages. Forest pixels in 

Mchakama, our best-performing village, for example, tend to be on more rugged terrain, in larger 

forest patches, and further from built-up areas than the village study areas taken as a whole. 

Pixels in Kikole are notably closer to cropland than in other villages but are also in more rugged 

terrain and further from an improved road. 
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Figure 5. Boxplots showing differences in geographic control variables across villages. “All 
villages” category shows the distribution for the entire sample. 
 

 

Cox proportional hazards model analysis  

 

To better understand the relationship between Forest Stewardship Council management and our 

network measures, we estimated a series of Cox models including different combinations of 

independent variables with and without frailty terms, recording the concordance of each model to 

compare fit (Figure 6). Concordance compares a random sample of pairs of observations, one in 



26 

which deforestation occurred and one in which it did not, computing the proportion of the times 

the model estimated the deforested pixel to have the higher risk of deforestation. This allows us 

to compare changes in model fit resulting from the addition of different groups of variables, with 

values closer to one indicating better fit.  

 

To allow for comparison, we estimate models including only variables identified as controls in 

Table 2; models with these variables and all variables identified as network variables in Table 2; 

control variables and whether or not Forest Stewardship Council is active; models with controls, 

Forest Stewardship Council activity, and each of the network variables separately; and models 

with Forest Stewardship Council activity and all the network and control variables in Table 2. 

For each configuration of variables we estimate models with and without frailty terms, which 

control for unexplained heterogeneity at the village scale, as well as a model with only the frailty 

term. Decomposing the models this way allows us to compare the relative contribution of 

different sets of variables both to overall model fit and to predicting cross-village heterogeneity.  

 

As expected, models with frailty terms consistently have better model fit than corresponding 

models without these terms, suggesting it is very important to adjust for village heterogeneity, 

likely for the numerous reasons noted above. Figure 6 indicates that the combination of all of our 

network variables tends to better explain variation in forest loss at the village level than the 

Forest Stewardship Council term alone, as can be seen from the higher concordance for the 

model with all the network variables as compared to the model with only Forest Stewardship 

Council activity. While this difference is most pronounced in non-frailty models, it remains, 

though is slight, when the frailty term is included. As expected, however, the model with all our 

independent variables and a frailty term has the highest concordance (and lowest Bayesian 

Information Criterion, another measure of relative model fit) of our estimated models, so we 

focus on it in our interpretation. 
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Figure 6. Concordance measures for all estimated models. Concordance measures the share of 
pairs of observations in which deforested observations were estimated to have a higher 
probability of deforestation than non-deforested observations. CS = Civil Society; PS = Private 
Sector. 
 

 

To make our interpretations more concrete, we present our results in terms of predicted changes 

in forest biomass under different scenarios, based on the coefficients from our best-fitting model. 

We present a coefficient plot for this model in Figure A1 in the Appendix. Figure 7 provides 

evidence that collinearity with network embeddedness measures accounts for a small but 

discernible portion of Forest Stewardship Council certification’s estimated impact on forest loss. 

As Figure 7 demonstrates, the predicted difference in forest loss between certified and 

uncertified areas declines when the model includes network measures (that is, the points for 

simulations where observations are Forest Stewardship Council certified are closer to the points 

where the observations are not), particularly when controlling for the number of private sector 

actors in a village’s ego network, suggesting collinearity with network embeddedness measures 

may account for some of Forest Stewardship Council certification’s estimated effects. While 

noticeable, however, the decline is very small as a proportion of Forest Stewardship Council’s 

total estimated effect. Improvements in network structure appear to supplement Forest 

Stewardship Council’s role in slowing forest biomass loss in Kilwa, rather than explaining it. 
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Figure 7. Predicted biomass loss if FSC certification were active in all study areas for all time 
periods, compared to if no FSC certification were active in any study area or time period, by 
model. All other independent variables are set to zero. Dotted line shows observed biomass loss 
estimate. Values calculated using the coxsimLinear function in the simPH package (Gandrud, 
2015) to compute 1,000 simulated survival rates from each model. Points show the mean 
predicted biomass loss in each condition. 
 

 

Even controlling for network effects, Forest Stewardship Council certification’s estimated 

impact on forest loss remains quite substantial. To give a sense of this effect, the histogram in 

Figure 8 shows the predicted increase in forest survival for certified versus non-certified forest 

pixels, calculated from the model with all independent variables for each observation. The 

distribution indicates a substantial impact, which varies with both network and control variable 

values. Across all observations, we estimate Forest Stewardship Council certification to lead to a 

median 14- and a mean 17-percentage-point increase in the probability that a forest plot escapes 

deforestation. For 50% of our observations, in other words, Forest Stewardship Council 

certification increased their predicted survival probability by more than 14%.  
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Figure 8. Predicted increase in forest survival probability, on a percentage scale, if a 10 meter by 
10 meter pixel is under FSC certification compared to the same pixel without certification. 
Computed for every pixel-year observation using the model with FSC certification, all network 
variables, and controls. Vertical lines show the median and mean predicted differences in 
survival probability. 

 

 

Turning to the network embeddedness measures, we find, as anticipated, that both bridging and 

bonding are associated with differences in deforestation rates. However, we also find that the 

impact of bridging depends on the partner’s sector. While increases in Village Civil Society 

Degree are associated with lower predicted forest loss, the opposite is true for Private Sector 

Degree. To put these differences in context, Figure 9 shows changes in the predicted total 

biomass loss in a variety of scenarios constructed by setting all observations to values across the 

range of each of our network variables, with all other variables held at zero. For these 

simulations, we use coefficient estimates and standard errors from the model including all our 

independent variables. Based on these simulations, if we moved every forested pixel from a Civil 

Society Degree of zero to the maximum observed value, we would predict a decrease in total 

biomass loss of about 17%. By contrast, if we did the same for Private Sector Degree, we would 

expect an increase in biomass loss of about 11%.  

 

Bonding, measured as the percentage of closed triangles, or the percentage of all groups of three 

nodes in each ego network that are all connected, given that two of the nodes are connected to 

the third, appears to be associated with decreased deforestation in a manner similar to Civil 



30 

Society Degree. A move from a village ego network with no closed triangles to one composed 

entirely of closed triangles, for example, results in a predicted reduction in biomass loss similar 

in magnitude to that observed for a move from the minimum to maximum Civil Society Degree. 

More realistically, a move from a network with no closed triangles to a relatively common value 

of 25% closure is associated with an estimated reduction in total biomass loss of approximately 

7%.  

 

 

 
Figure 9. 99% confidence intervals for predicted biomass loss if all observations were set to the 
value of the independent network variable on the x-axis, calculated using the model with FSC, 
all network variables, and controls. All other variables we set to zero. Survival rates and 
confidence intervals calculated using the coxsimLinear function in the simPH package (Gandrud, 
2015).  
 

 

Summary of findings 
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Despite growing interest in both the impacts of forest certification and the role of networks in 

effective natural resource management, there is little literature that brings these two lines of 

inquiry together. Combining longitudinal remote sensing and governance network data, we 

estimated Cox proportional hazard models predicting the hazard of forest loss within 100-square 

meter forest plots in areas that eventually came under Forest Stewardship Council certification. 

We find substantial reductions in forest loss following Forest Stewardship Council-certification 

onset, with increases in village connections to civil society organizations, decreases in village 

connections with private sector organizations, and increases in bonding measured as the percent 

of closed triangles in the villages’ ego networks. While a tentative initial intervention in a 

potentially expansive field of research, we believe our analysis highlights the benefits of this 

type of study for supporting efforts to sustainably manage forests. 

 

The kind of analysis we undertook was only possible as a result of combining data on the 

evolution of governance networks with detailed evidence on land-cover change and resource use. 

In this paper, we sat out to investigate how bonding and bridging affect deforestation rates in 

Forest Stewardship Council-certified, community-managed forests. Our Cox proportional hazard 

models revealed Forest Stewardship Council certification contributed to substantial reduction in 

deforestation hazards, despite the fact that Forest Stewardship Council is not explicitly designed 

simply to reduce deforestation rates. This is consistent with other studies from the area using 

different data referenced in our above discussion of the empirical context.  

 

Moving beyond previous Forest Stewardship Council impact assessments, however, we also 

found that improved network structure, in the form of increased bridging to civil society actors 

and bonding within the network, can supplement Forest Stewardship Council certification’s 

impacts. Network structures appear to account for some of the variation in forest loss that might 

be attributed to Forest Stewardship Council certification if network variables were not explicitly 

modelled, but, more importantly, we also find that network structures’ relationship with forest 

loss is substantial and distinct from certification effects. Bridging and bonding both mattered for 

forest loss, but, importantly, we find that bridging may either dampen or amplify deforestation, 

depending on the type of organizational partner to which bridges connect. While ties to civil 

society organizations tend to reduce hazards, ties to private sector organizations increase them. 
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Discussion 

The evidence we present that cross-sectoral network connections may have heterogeneous 

effects is consistent with some previous literature. Lund, et al. (2015), for example, study two 

villages in Tanzania that took divergent forest management paths after their Village Land Forest 

Reserves were established, allowing divergent local priorities to more directly affect their forests. 

Rasolofson, et al. (2015), examining community-based forest management in Madagascar, find 

no difference between matched managed and unmanaged areas a whole, but substantial 

differences between areas that do and do not allow commercial exploitation. 

 

These previous empirical findings are also consistent with literature addressing the politics of 

brokerage. Bixler, et al. (2016), for example, suggest it can be a double-edged sword, sometimes 

permitting powerful actors to “capture” the governance mechanism, undermining knowledge 

claims and turning policy toward their interests. Bartholdson and Porro (2018) argue community 

members may try to enlist different brokers to gain leverage in resource struggles. External 

actors’ divergent interests might affect forest managers’ calculus about the costs and benefits of 

different forest extraction strategies. Our finding also suggests that while some village ties to 

private sector organizations take place in the context of conservation projects, villages with many 

such connections may also be more strongly linked to external markets and face stronger 

incentives for forest extraction.   

 

Conversely, bridging to civil society actors may indicate stronger coupling among social 

movement organizations interested in conservation, exerting normative pressure on villages to 

harvest more slowly or carefully. As seen in Figure 4, the vast majority of triangles in villages’ 

ego networks include civil society organizations. Thus, increased triangle percentages might be 

measuring not only trust and social cohesion in general, but coordination among civil society 

actors in particular. When a higher percentage of village ties are embedded in closed triangles 

this could, if the triangles include diverse actors, also indicate that actors with diversified 

organizational interests are more likely to engage in practices that increase compliance, such as 

mutual monitoring.  

 



33 

Finding that both Forest Stewardship Council certification and the improved governance 

networks that often go along with its facilitation both have discernable impacts on forest loss is 

also important from a policy perspective. On the one hand, it suggests that investments to lower 

the transaction costs of governance network construction, perhaps through supporting network 

orchestrators like MCDI (Henriksen et al., 2018) or providing workshops and other opportunities 

for actors from different sectors to engage with one another (Henriksen et al., 2018), could be a 

relatively inexpensive complement to Forest Stewardship Council certification’s role in climate 

change mitigation. Furthermore, because governance network improvement can take place 

without the formalization and start-up costs required by mechanisms like sustainability 

certification, this tool might be more feasible to apply across a wider spatial extent. 

 

An important contribution of our study has been to link remote-sensing data on landscape 

geography and forest dynamics to village-level ego network structure before and after the onset 

of certification. While our study found a strong association between institutions and patterns of 

network embeddedness on the one hand and deforestation on the other, these results should be 

read against several important limitations which future research should aim to address.  

 

First, our data set contained just four villages observed over a twenty-year period. While we had 

sufficient variation across villages and observation periods to estimate simpler bridging and 

bonding dynamics, more observations would be required to consider additional network 

complexity, such as assortativity, the tendency of similar types of organizations to form ties, or 

to estimate interactions between institutions and networks to better understand if and how 

institutional effects change conditional on network structure or vice-versa.  

 

Second, we have focused exclusively on village ego networks, and we lack sufficient 

observations to estimate effects of network structure as a whole on environmental outcomes. 

Focal conservation actors such as the MCDI, for instance, orchestrate network formation at the 

district level with effects that might impact even non-Village Land Forest Reserve villages in 

different ways, depending on their embeddedness in the overall governance network. Conducting 

a multi-level network analysis (e.g. Wang et al. 2013) where local village ego networks are 

embedded in broader governance networks might provide a way of considering the broader 
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resource bases that enable sustainable forest management. How local village elites interact with 

district level elite, for instance, could be an important factor in driving who benefits from 

institutions - and knowing where villages are located in such networks could be a way to address 

questions of power and inequality.     

 

Third, our study has exclusively analyzed networks for villages and forest areas that have gone 

through a certification process, comparing landscape change before and after changes in 

institutions and networks. We did not include other forms of forest management institutions such 

as Tanzania’s National Forest Reserves, which, because they are managed under state mandates, 

are likely to display fundamentally different ego network structures. Also, as it would potentially 

involve problematic selection biases, undermining our model identification strategy, we did not 

compare deforestation in our study areas to open-access areas that were never subjected to forest 

management regimes. More complex comparisons between different kinds of forest governance 

institutions and open-access areas that could serve as control sites might allow future researchers 

to disentangle selection dynamics from treatment in a more rigorous manner than we have 

achieved with our panel data. An idea would be to apply matching techniques based on 

landscape characteristics, allowing for more rigorous comparisons to mitigate selection bias 

resulting from non-random distribution of different governance systems. Accounting for such 

dynamics would also provide a better estimation strategy to identify the direct impact of 

networks on how communities modify their forest landscapes.  

 

Fourth, our study follows the standard conservation approach to understanding deforestation, in 

that we focus on plots that were initially forest to track what drives the risks of forest resource 

extraction. If our only concern were maintaining as much standing forest as possible this 

approach might be sufficient. From a carbon storage perspective, however, it would be important 

to consider not only deforestation but also forest growth and regrowth, particularly in mosaic 

swidden landscapes like the one we study. Further, considering forest plots as individual 

observations fails to include broader landscape dynamics and the fact that treecover is not 

intrinsically environmentally beneficial independent of context (Henriksen, 2015). A more 

deeply relational perspective on landscape ecology would consider not only individuals and 

institutions to be embedded in networks but also particular natural objects as embedded in 
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broader networked landscapes where flora and fauna coexist (Sayles, et al., 2019). 

Understanding the connectivity of forest plots in the broader landscape, for instance, could help 

identify forest plots more critical to landscape connectivity, keystone species habitat, and so on. 

 

Conclusion 

 

The voluminous literature on forest certification and network governance investigates two 

potentially complementary methods to simultaneously support forest conservation and 

livelihoods. Our analysis here indicates that bringing these discussions together may be quite 

fruitful. Our analyses indicate that embeddedness in both Forest Stewardship Council institutions 

and network structures is mutually supportive in protecting forests. In the previous section, we 

noted numerous ways in which this kind of research might be extended, for example by 

improving methods and data sources or by addressing these questions in other domains of natural 

resource management. Studies like these will likely be very beneficial in pushing the current 

literature on network governance of natural resource management to test hypotheses about how 

institutions and network structures affect on-the-ground environmental and livelihoods 

performance. 
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Appendix 

 

Land-Cover Classification 

 

As explained in the methods section, we used supervised random forest classification, trained 

using Google Earth Engine, to generate our land-cover data. Following a standard classification 

system (Food and Agriculture Organization of the United Nations, 2012), we used our 

algorithms to classify seven distinct forms of land cover (barren, cropland, human settlement, 

grassland, woodland, coastal forest, and water). While the two forest types (woodland and 

coastal) are ecologically distinct, we combined them into a single forest class for the purpose of 

analysis.  

 

To train and assess the accuracy of our land-cover rasters, we collected ground-truthing points 

using Etrex, a Garmin 64s GPS, and a Samsung tablet with Locus Map. To augment these points, 

we also used georeferenced Topo sheets and very high resolution Google Earth imagery covering 

the study area (Klinkenberg, 2019). From these data, we generated training and validation 

samples of 4500 points, 2000 of which were forest cover. We randomly assigned 60% of our 

4500 human-coded points for training and validation, reserving the remaining 40% as a test 

dataset. To be clear, the validation and test datasets were kept separate and consistent for all runs 

of the machine-learning algorithms described below.  

 

We used our training points to classify land cover for the study area in 2000, 2004, 2009, 2014 

and 2018 at a 10-meter resolution based on annual composite imagery from Sentinel-2, Sentinel-

1, Landsat-8, Landsat-7 and Landsat-5, collected with Google Earth Engine 

(https://code.earthengine.google.com/). These images have been found to be quite useful in 

detecting forest and various forms of non-forest land cover over time (Chander, et al., 2009; 

Haeusler, et al., 2017; Rüetschi, et al., 2019). Once collected, we applied standard radiometric 

and atmospheric error corrections to the images (Japan Association of Remote Sensing, 1999; 

Turks, 1990). To improve classification accuracy, we used Google Earth Engine to compute 

natural digital vegetation index, enhanced vegetation index, normalized difference water index, 

https://code.earthengine.google.com/
https://code.earthengine.google.com/
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normalized difference built-up index, a digital elevation model (Farr, et al., 2007), ratio (3:5-

4:6), ratio (5:4-6:5), ratio (2:11), Sentinel-1 values (Green, et al., 1998; Xue & Su, 2017). 

 

Again in Google Earth Engine, we deployed a random forest classifier due to its ability to 

produce accurate classification results for multiple research objectives, manage thousands of 

input variables without variable deletion, and produce internally unbiased estimates (Pal, 2005). 

As no classification is error-free  (UTSA, 2017), it is important to assess classification accuracy 

prior to using remotely sensed data by comparing classifications to ground-truthed data. 

Following Gallego (2004), we used a confusion matrix, which compares the agreement between 

pixel classifications and ground-truthed land cover. Using our validation sample, we found that 

overall accuracy for all classified images averaged 89.7%, with a Kappa coefficient above 0.94. 

We present the confusion matrices for each year in Tables A1 through A3. 
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 Bare Land  Built Up Area Cropland Coastal 
Forest 

Grassland Water  Other 
Forest 

Total  User 
accuracy 

Bare Land  136 7 7 0 6 2 2 160 0.85 

Built Up 
Area 

11 169 7 0 13 0 0 200 0.85 

Cropland 9 6 293 1 8 2 1 320 0.92 

Forest 0 1 3 373 4 0 19 400 0.93 

Grassland 12 3 6 0 132 7 0 160 0.83 

Water  3 0 6 0 7 143 1 160 0.89 

Woodland 0 1 5 12 4 1 377 400 0.94 

Total 171 187 327 386 174 155 400 1800  

Producer 
accuracy 

0.80 0.90 0.90 0.97 0.76 0.92 0.94   

Table A1. Confusion matrix for 2000 land-cover raster, computed on 40% of the sample point reserved for validation. Kappa = 0.95; 

Overall Accuracy = 90% 
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 Bare 
Land  

Built Up 
Area 

Cropland Coastal 
Forest 

Grassland Water  Other 
Forest 

Total  User 
accuracy 

Bare Land  127 12 9 0 10 2 0 160 0.79 

Built Up 
Area 

14 164 11 0 11 0 0 200 0.82 

Cropland 12 8 286 2 7 2 3 320 0.89 

Forest 0 3 7 366 9 0 15 400 0.92 

Grassland 10 8 11 0 125 4 2 160 0.78 

Water  3 0 2 0 17 136 2 160 0.85 

Woodland 2 1 5 12 6 4 370 400 0.93 

Total 168 196 331 380 185 148 392 1800  

Producer 
accuracy 

0.76 -0.84 0.86 0.96 0.68 0.92 0.94   

 

Table A2. Confusion matrix for 2009 satellite images, computed on 40% of the sample point reserved for validation. Kappa = 0.95; 

Overall Accuracy = 87%  



40 

 

 Bare 
Land  

Built Up 
Area 

Cropland Coastal 
Forest 

Grassland Water  Other 
Forest 

Total  User 
accuracy 

Bare Land  143 6 5 0 6 0 0 143 6 

Built Up 
Area 

16 166 8 0 10 0 0 16 166 

Cropland 7 4 301 1 5 0 2 7 4 

Forest 0 0 3 381 3 0 13 0 0 

Grassland 7 5 8 0 139 1 0 7 5 

Water  0 0 2 0 9 149 0 0 0 

Woodland 0 0 4 9 2 0 385 0 0 

Total 173 181 331 391 174 150 400 173 181 

Producer 
accuracy 

0.83 0.92 0.91 0.97 0.80 0.99 0.96 0.83 0.92 

 

Table A3. Confusion matrix for 2018 satellite images, computed on 40% of the sample point reserved for validation. Kappa = 0.94; 

Overall Accuracy = 92%
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We created both dependent and independent variables from our classified land-cover datasets. To 

create our dependent variable, we used the raster (Hijmans, 2020) package in R 3.6.2 (R Core 

Team, 2019) to identify all pixels that were forested in 2000, tracking these forest plots through 

subsequent observation years to identify if and when their land cover changed to something other 

than forest. 

 

Inferential analysis 

 

 

 
Figure A1. Estimated coefficients for all variables for models presented in Figure 7. The figure 
includes 99% credible intervals, but the points used to designate the median coefficient estimate 
are in all cases larger than the credible intervals. 
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