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Is There a Replication Crisis in Finance?

THEIS INGERSLEV JENSEN,* BRYAN KELLY, and LASSE HEJE PEDERSEN

ABSTRACT

Several papers argue that financial economics faces a replication crisis because the
majority of studies cannot be replicated or are the result of multiple testing of too
many factors. We develop and estimate a Bayesian model of factor replication that
leads to different conclusions. The majority of asset pricing factors (i) can be repli-
cated; (ii) can be clustered into 13 themes, the majority of which are significant parts
of the tangency portfolio; (iii) work out-of-sample in a new large data set covering 93
countries; and (iv) have evidence that is strengthened (not weakened) by the large
number of observed factors.

SEVERAL RESEARCH FIELDS FACE REPLICATION CRISES (or credibility crises),
including medicine (Ioannidis (2005)), psychology (Nosek, Spies, and Motyl
(2012)), management (Bettis (2012)), experimental economics (Maniadis, Tu-
fano, and List (2017)), and now also financial economics. Challenges to the
replicability of finance research take two basic forms:

1. No internal validity. Most studies cannot be replicated with the same
data (e.g., because of coding errors or faulty statistics) or are not robust
in the sense that the main results cannot be replicated using slightly
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2 The Journal of Finance®

different methodologies and/or slightly different data.1 For example, Hou,
Xue, and Zhang (2020) state that:
“Most anomalies fail to hold up to currently acceptable standards for em-
pirical finance.”

2. No external validity. Most studies may be robustly replicated, but are
spurious and driven by “p-hacking,” that is, find significant results by
testing multiple hypotheses without controlling the false discovery rate
(FDR). Such spurious results are not expected to replicate in other sam-
ples or time periods, in part because the sheer number of factors is simply
too large, and too fast growing, to be believable. For example, Cochrane
(2011) asks for a consolidation of the “factor zoo,” and Harvey, Liu, and
Zhu (2016) state that:
“most claimed research findings in financial economics are likely false.”2

In this paper, we examine these two challenges both theoretically and em-
pirically. We conclude that neither criticism is tenable. The majority of factors
do replicate, do survive joint modeling of all factors, do hold up out-of-sample,
are strengthened (not weakened) by the large number of observed factors, are
further strengthened by global evidence, and the number of factors can be un-
derstood as multiple versions of a smaller number of themes.

These conclusions rely on new theory and data. First, we show that factors
must be understood in light of economic theory, and we develop a Bayesian
model that offers a very different interpretation of the evidence on factor repli-
cation. Second, we construct a new global data set of 153 factors across 93
countries. To help advance replication in finance, we have made this data set
easily accessible to researchers by making our code and data publically avail-
able.3

Replication results. Figure 1 illustrates our main results and how they relate
to the literature in a sequence of steps. It presents the “replication rate,” that
is, the percent of factors with a statistically significant average excess return.

1 Hamermesh (2007) contrasts “pure replication” and “scientific replication.” Pure replication
is “checking on others’ published papers using their data,” also called “reproduction” by Welch
(2019), while scientific replication uses a “different sample, different population and perhaps simi-
lar, but not identical model.” We focus on scientific replication. We propose a new modeling frame-
work to jointly estimate factor alphas, we use robust factor construction methods that are applied
uniformly to all factors, and we test both internal and external validity of prior factor research
along several dimensions, including out-of-sample time-series replication and international sam-
ple replication. In complementary and contemporaneous work, Chen and Zimmermann (2022)
consider pure replication, attempting to use the same data and methods as the original papers
for a large number of factors. They are able to reproduce nearly 100% of factors, but Hou, Xue,
and Zhang (2020) challenge the scientific replication and Harvey, Liu, and Zhu (2016) challenge
validity due to multiple testing (MT).

2 Similarly, Linnainmaa and Roberts (2018) state that: “the majority of accounting-based return
anomalies, including investment, are most likely an artifact of data snooping.”

3 The data are available at https://jkpfactors.com. The data will be updated over time and will
also be available through Wharton Research Data Services (WRDS). The code is available at https:
//github.com/bkelly-lab/ReplicationCrisis.
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Is There a Replication Crisis in Finance? 3

Figure 1. Replication rates versus the literature. This figure summarizes analyses through-
out the paper. Refer to Section III for estimation details. (Color figure can be viewed at wileyon-
linelibrary.com)

The starting point of Figure 1—the first bar on the left—is the 35% replica-
tion rate reported in the expansive factor replication study of Hou, Xue, and
Zhang (2020). The second bar in Figure 1 shows a 55.6% baseline replication
rate in our main sample of U.S. factors. It is based on significant ordinary least
squares (OLS) t-statistics for average raw factor returns, in direct comparabil-
ity to the 35% calculation from Hou, Xue, and Zhang (2020). This difference
arises because our sample is longer, we add 15 factors to our sample that come
from prior literature but are not studied by Hou, Xue, and Zhang (2020), and,
we believe, minor conservative factor construction details that robustify factor
behavior.4 We discuss this decomposition further in Section II, where we detail
our factor construction choices and discuss why we prefer them.

The Hou, Xue, and Zhang (2020) sample includes a number of factors that
the original studies find to be insignificant.5 We exclude these when calculating
the replication rate. After making this adjustment, the replication rate rises to
61.3%, as shown in the third bar in Figure 1.

4 In particular, we use tercile spreads while they use deciles, we use tercile breakpoints from
all stocks above the NYSE 20th percentile (i.e., non-micro-caps) while they use straight NYSE
breakpoints, we always lag accounting data four months while they use a mixture of updating
schemes, we exclude factors based on IBES data due to its relatively short history, we use capped
value-weighting while they use straight value-weights, and we look at returns over a one-month
holding period while they use one, six, and 12 months. In Section I of the Internet Appendix, we
detail how each change affects the replication rate. The Internet Appendix may be found in the
online version of this article.

5 We identify 34 factors from Hou, Xue, and Zhang (2020) for which the original paper did not
find a significant alpha or did not study factor returns (see Table IA.II of the Internet Appendix).
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4 The Journal of Finance®

Alpha, not raw return. Hou, Xue, and Zhang (2020) analyze and test fac-
tors’ raw returns, but if we wish to learn about “anomalies,” economic theory
dictates the use of risk-adjusted returns. The raw return can lead to incor-
rect inferences for a factor if this return differs from the alpha. When the raw
return is significant but the alpha is not, this simply means that the factor
is taking risk exposure and the risk premium is significant, which does not
indicate anomalous factor returns. Likewise, when the raw return is insignif-
icant but the alpha is significant, the factor’s efficacy is masked by its risk
exposure. An example of this is the low-beta anomaly, whereby theory predicts
that the alpha of a dollar-neutral low-beta factor is positive but its raw re-
turn is negative or close to zero (Frazzini and Pedersen (2014)). In this case,
the “failure to replicate” of Hou, Xue, and Zhang (2020) actually supports the
betting-against-beta theory. We analyze the alpha to the capital asset pricing
model (CAPM), which is the clearest theoretical benchmark model that is not
mechanically linked to other so-called anomalies in the list of replicated fac-
tors. The fourth bar in Figure 1 shows that the replication rate rises to 82.4%
based on tests of factors’ CAPM alpha.

MT and our Bayesian model. The first four bars in Figure 1 are based on
individual OLS t-statistics for each factor. But Harvey, Liu, and Zhu (2016)
rightly point out that this type of analysis suffers from an MT problem. Harvey,
Liu, and Zhu (2016) recommend MT adjustments that raise the threshold for
a t-statistic to be considered statistically significant. We report one such MT
correction using a leading method proposed by Benjamini and Yekutieli (2001).
Accounting for MT in this manner, we find that the replication rate drops to
75.6% (the fifth bar of Figure 1). For comparison, Hou, Xue, and Zhang (2020)
consider a similar adjustment and find that their replication rate drops from
35% with OLS to 18% after MT correction.

However, common frequentist MT corrections can be unnecessarily crude.
Our handling of the MT problem is different. We propose a Bayesian frame-
work for the joint behavior of all factors, resulting in an MT correction that
sacrifices much less power than its frequentist counterpart, which we demon-
strate via simulation.6 To understand the benefits of our approach, note first
that we impose a prior that all alphas are expected to be zero. The role of the
Bayesian prior is conceptually similar to that of frequentist MT corrections—it
imposes conservatism on statistical inference and controls the FDR. Second,
our joint factor model allows us to conduct inference for all factor alphas si-
multaneously. The joint structure among factors leverages dependence in the
data to draw more informative statistical inferences (relative to conducting
independent individual tests). Our zero-alpha prior shrinks alpha estimates

6 A large statistics literature (see Gelman et al. (2013) and references therein) explains how
Bayesian estimation naturally addresses MT problems and Gelman, Hill, and Yajima (2012) con-
clude that “the problem of multiple comparisons can disappear entirely when viewed from a hi-
erarchical Bayesian perspective.” Chinco, Neuhierl, and Weber (2021) use a Bayesian estimation
framework similar to ours for a different (but conceptually related) problem. They infer the dis-
tribution of coefficients in a stock return prediction model to calculate what they refer to as the
“anomaly base rate.”
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Is There a Replication Crisis in Finance? 5

of all factors, leading to fewer discoveries (i.e., a lower replication rate), with
similar conservatism as a frequentist MT correction. At the same time, how-
ever, the model allows us to learn more about the alpha of any individual fac-
tor, borrowing estimation strength across all factors, and the improved pre-
cision of alpha estimates for all factors can increase the number of discover-
ies. Which effect dominates when we construct our final Bayesian model—the
conservative shrinkage to the prior or the improved precision of alphas—is an
empirical question.

In our sample, we find that the two effects exactly offset on average, which
is why the Bayesian MT view delivers a replication rate identical to the OLS-
based rate. Specifically, our estimated replication rate rises to 82.4% (the sixth
bar of Figure 1) using our Bayesian approach to the MT problem.7 The intu-
ition behind this surprising result is simply that having many factors (a “factor
zoo”) can be a strength rather than a weakness when assessing the replicabil-
ity of factor research. It is obvious that our posterior is tighter when a factor
has performed better and has a longer time series. But the posterior is further
tightened if similar factors have also performed well and if additional data
show that these factors have performed well in many other countries.8

Benefits of our model beyond the replication rate. One of the key benefits of
Bayesian statistics is that one recovers not just a point estimate but rather the
entire posterior distribution of parameters. The posterior allows us to make
any possible probability calculation about parameters. For example, in addi-
tion to the replication rate, we calculate the posterior probability of false dis-
coveries (FDR) and the posterior expected fraction of true factors. Moreover,
we calculate Bayesian confidence intervals (also called credibility intervals)
for each of these estimates. We find that our 82.4% replication rate has a tight
posterior standard error of 2.8%. The posterior Bayesian FDR is only 0.1%
with a 95% confidence interval of [0.0%, 1.0%], demonstrating the small risk of
false discoveries. The expected fraction of true factors is 94.0% with a posterior
standard error of 1.3%.

Global replication. Having found a high degree of internal validity of prior
research, we next consider external validity across countries and over time.
Regarding the former, we investigate how our conclusions are affected when
we extend the data to include all factors in a large global panel of 93 countries.
The last bar in Figure 1 shows that based on the global sample, the final repli-
cation rate is 82.4%. This estimate is based on the Bayesian model applied to
a sample of global factors that weights country-specific factors in proportion
to the country’s total market capitalization. The model continues to account
for MT. The global result shows that factor performance in the United States

7 Our Bayesian approach leads to an even larger increase in the replication rate when using
pure value-weighted returns (see Figure IA.1 of the Internet Appendix) and when considering
global evidence outside the United States (as we show later, in Figure 6).

8 Taking this intuition further, we can obtain additional information from studying whether
factors work in other asset classes, as has been done for value and momentum (Asness, Moskowitz,
and Pedersen (2013)), betting against beta (Frazzini and Pedersen (2014)), time-series momentum
(Moskowitz, Ooi, and Pedersen (2012)), and carry (Koijen et al. (2018)).
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6 The Journal of Finance®

replicates well in an extensive cross section of countries. Serving as our fi-
nal estimate, the global factor replication rate more than doubles that of Hou,
Xue, and Zhang (2020) by grounding our tests in economic theory and modern
Bayesian statistics. We conclude from the global analysis that factor research
demonstrates external validity in the cross section of countries.

Postpublication performance. McLean and Pontiff (2016) find that U.S. fac-
tor returns “are 26% lower out-of-sample and 58% lower post-publication.”9

Our Bayesian framework shows that, given a prior belief of zero alpha but an
OLS alpha (α̂) that is positive, our posterior belief about alpha lies somewhere
between zero and α̂. Hence, a positive but attenuated postpublication alpha is
the expected outcome based on Bayesian learning, rather than a sign of nonre-
producibility. Further, when comparing factors cross-sectionally, the prediction
of the Bayesian framework is that higher prepublication alphas, if real, should
be associated with higher postpublication alphas on average. This is what we
find. We present new and significant cross-sectional evidence that factors with
higher in-sample alpha generally have higher out-of-sample alpha. The atten-
uation in the data is somewhat stronger than predicted by our Bayesian model.
We conclude that factor research demonstrates external validity in the time se-
ries, but there appears to be some decay of the strongest factors that could be
due to arbitrage or data mining.10

Publication bias. We also address the issue that factors with strong in-
sample performance are more likely to be published while poorly performing
factors are more likely to be unobserved in the literature. Publication bias can
influence our full-sample Bayesian evidence through the empirical Bayes (EB)
estimation of prior hyperparameters. To account for this bias, we show how to
pick a prior distribution that is unaffected by publication bias by using only
out-of-sample data or estimates from Harvey, Liu, and Zhu (2016). Using such
priors, the full-sample alphas are shrunk more heavily toward zero. The re-
sult is a slight drop in the U.S. replication rate to 81.5%. If we add an extra
degree of conservatism to the prior, the replication rate drops to 79.8%. Fur-
ther, our out-of-sample evidence over time and across countries is not subject
to publication bias.

Multidimensional challenge: A Darwinian view of the factor zoo. Harvey, Liu,
and Zhu (2016) challenge the sheer number of factors, which Cochrane (2011)
refers to as “the multidimensional challenge.” We argue that the factor uni-
verse should not be viewed as hundreds of distinct factors. Instead, factors
cluster into a relatively small number of highly correlated themes. This prop-
erty features prominently in our Bayesian modeling approach. Specifically, we
propose a factor taxonomy that algorithmically classifies factors into 13 themes

9 Extending the evidence to global stock markets, Jacobs and Müller (2020) find that “the United
States is the only country with a reliable post-publication decline in long-short returns.” Chen and
Zimmermann (2020b) use Bayesian methods to estimate bias-corrected postpublication perfor-
mance and find that average returns drop by only 12% after publication in U.S. data.

10 Data prior to the sample used in original studies also constitute out-of-sample evidence (Lin-
nainmaa and Roberts (2018), Ilmanen et al. (2021)). Our external validity conclusions hold when
we also include pre–original-study out-of-sample evidence.
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Is There a Replication Crisis in Finance? 7

possessing a high degree of within-theme return correlation and economic con-
cept similarity, and low across-theme correlation. The emergence of themes in
which factors are minor variations on a related idea is intuitive. For example,
each value factor is defined by a specific valuation ratio, but there are many
plausible ratios. Considering their variations is not spurious alpha-hacking,
particularly when the “correct” value signal construction is debatable.

We estimate a replication rate greater than 50% in 11 of the 13 themes
(based on the Bayesian model including MT adjustment), the exceptions being
“low leverage” and “size” factor themes. We also analyze which themes matter
when simultaneously controlling for all other themes. To do so, we estimate
the ex post tangency portfolio of 13 theme-representative portfolios. We find
that 10 of the 13 themes enter into the tangency portfolio with significantly
positive weights, where the three displaced themes are “profitability,” “invest-
ment,” and “size.”

Why, the profession asks, have we arrived at a “factor zoo”?11 Evidently the
answer is because the risk-return trade-off is complex and difficult to mea-
sure. The complexity manifests in our inability to isolate a single silver-bullet
characteristic that pins down the risk-return trade-off. Classifying factors into
themes, we trace the economic culprits to roughly a dozen concepts. This is
already a multidimensional challenge, but it is compounded by the fact that
within a theme there are many detailed choices for how to configure the eco-
nomic concept, which results in highly correlated within-theme factors. To-
gether, the themes (and the factors in them) each make slightly different con-
tributions to our collective understanding of markets. A more positive take on
the factor zoo is not as a collective exercise in data mining and false discovery,
but rather as a natural outcome of a decentralized effort in which researchers
make contributions that are correlated with, but incrementally improve on,
the body of knowledge.

Economic implications. Our findings have broad implications for finance re-
searchers and practitioners. We confirm that the body of finance research con-
tains a multitude of replicable information about the determinants of expected
returns. Further, we show that investors would have profited from factors
deemed significant by our Bayesian method but insignificant by the frequen-
tist MT method proposed by Harvey, Liu, and Zhu (2016). Figure 2 plots the
out-of-sample returns of the subset of factors discovered by our method but
discarded by the frequentist method. As can be seen, these factors produce an
annualized information ratio (IR) of 0.93 in the Unites States and 1.10 globally
(ex-U.S.) over the full sample, with t-statistics above five. If we restrict anal-
ysis to the sample after that of Harvey, Liu, and Zhu (2016), the performance

11 See Bryzgalova, Huang, and Julliard (2023), Kelly, Pruitt, and Su (2019), Chordia, Goyal,
and Saretto (2020), Kozak, Nagel, and Santosh (2020), Green, Hand, and Zhang (2017), and Feng,
Giglio, and Xiu (2020) for other perspectives on high-dimensional asset pricing problems, and
Chen (2021) for an argument regarding why p-hacking cannot explain the existence of so many
significant factors.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 The Journal of Finance®

Figure 2. Out-of-sample performance of marginally significant factors. The figure shows
the cumulative CAPM alpha of an average of factors significant under our empirical Bayes frame-
work, but not with the Benjamini-Yekutieli adjustment suggested by Harvey, Liu, and Zhu (2016).
The significance cutoffs are reestimated each year with the available data. Factors are eligible for
inclusion after the sample period in the original paper, so all returns are out-of-sample. The table
shows the IR (alpha divided by residual volatility) for the full sample (1990 to 2020) and the post–
Harvey, Liu, and Zhu (2016) sample (2013 to 2020) with t-statistics in parentheses. The vertical
dotted line is at December 2012. (Color figure can be viewed at wileyonlinelibrary.com)

differential remains large and significant.12 These findings show strong ex-
ternal validity (postoriginal publications, post–Harvey, Liu, and Zhu (2016),
different countries) and significant economic benefits of exploiting the joint in-
formation in all factor returns rather than simply applying a high cutoff for
t-statistics. We also show that the optimal risk-return profile has improved
over time as factors have been discovered. In other words, the Sharpe ratio
of the tangency portfolio has meaningfully increased over time as truly novel
determinants of returns have been discovered. These findings can help inform
asset pricing theory.

The paper proceeds as follows. Section I describes our Bayesian model of
factor replication. Section II presents our new public data set of global fac-
tors. Section III contains our empirical assessment of factor replicability. Sec-
tion IV concludes.

I. A Bayesian Model of Factor Replication

This section presents our Bayesian model for assessing factor replicability.
We first draw out some basic implications of the Bayesian framework for inter-
preting evidence on individual factor alphas. We then present a hierarchical
structure for simultaneously modeling factors in a variety themes and across
many countries.

12 The out-of-sample performance across all significant factors under EB is also highly signifi-
cant as shown in Figure IA.2 of the Internet Appendix.
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Is There a Replication Crisis in Finance? 9

A. Learning about Alpha: The Bayes Case

A.1. Posterior Alpha

We begin by considering an excess return factor, ft . A study of “anomalous”
factor returns requires a risk benchmark, without which we cannot separate
distinctive factor behavior from run-of-the-mill risk compensation. We assume
a CAPM benchmark due to its history as a factor research benchmark for
decades, and because it is not mechanically related to any of the factors that
we attempt to replicate (in contrast to, say, the model of Fama and French
(1993), which by construction explains size and value factors). A factor’s net
performance versus the excess market factor (rm

t ) is its α,

ft = α + βrm
t + εt . (1)

Our Bayesian prior is that the alpha is normally distributed with mean zero
and variance τ 2, or α ∼ N(0, τ 2). The mean of zero implies that CAPM holds
on average, and τ governs potential deviations from CAPM. Intuitively, the
higher the confidence in the prior, the lower is τ . The error term, εt ∼ N(0, σ 2),
has volatility σ and is independent and identically distributed over time, and
σ and β are observable.13

The risk-adjusted return, α, is estimated as the average market-adjusted
factor return from T periods of data,

α̂ = 1
T

∑
t

(
ft − βrm

t

) = α + 1
T

∑
t

εt . (2)

This observed OLS estimate α̂ is distributed N(α, σ 2/T ) given the true alpha,
α. From Bayes’ rule, we can compute the posterior distribution of the true
alpha given the empirical evidence and prior. The posterior exhaustively de-
scribes the Bayesian’s beliefs about alpha at a future time t > T given past
experience, including the posterior expected factor performance,

E(α|α̂) = E
(

ft − βrm
t

∣∣∣∣α̂). (3)

We derive the posterior alpha distribution via Bayes’ rule (the derivation,
which is standard, is shown in Appendix A). The posterior alpha is normal
with mean

E(α|α̂) = κα̂, (4)

13 Here, we seek to derive some simple expressions that illustrate the economic implications
of Bayesian logic. In the empirical implementation, we use a slightly richer model, as discussed
further below. The empirical implementation normalizes factors so that σ is given at 10% for all
factors, while β must be estimated, but this does not affect the economic points that we make in
this section.
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10 The Journal of Finance®

where κ is a shrinkage factor given by

κ = τ 2

τ 2 + σ 2/T
= 1

1 + σ 2

τ 2T

∈ (0, 1) (5)

and the posterior variance is

Var(α|α̂) = κ
σ 2

T
= 1

1
σ 2/T + 1

τ 2

. (6)

The first insight from this posterior is that a Bayesian predicts that future
returns will have smaller alpha (in absolute value) than the OLS estimate α̂,
because the posterior mean (κα̂) must lie between α̂ and the prior mean of zero.
Put differently, a large observed alpha might be due to luck. Given the prior,
we expect that at least part of this performance is indeed luck. The more data
we have (higher T), the less shrinkage there is (i.e., κ closer to one), while the
stronger is the prior of zero alpha (i.e., lower τ ), the heavier is the shrinkage.
We can think of the prior τ in terms of the number of time periods of evidence
that it corresponds to. That is, the posterior mean, E(α|α̂), corresponds to first
observing σ 2/τ 2 time periods with an average alpha of zero, followed by T time
periods with a average alpha of α̂.

When evaluating out-of-sample evidence, a positive but lower alpha is some-
times interpreted as a sign of replication failure. But this is the expected out-
come from the Bayesian perspective (i.e., based on the latest posterior) and can
be fully consistent with a high degree of replicability. In fact, postpublication
results (as also studied by McLean and Pontiff (2016)) have tended to confirm
the Bayesian’s beliefs and as a result the Bayesian posterior alpha estimate
has been extraordinarily stable over time (see Section III.B.2).

A.2. Alpha-Hacking

Because out-of-sample alpha attenuation is not generally a sign of repli-
cation failure, we may want a more direct probe for nonreplicability. We can
build such a test into our Bayesian framework by embedding scope for “alpha-
hacking,” or selectively reporting or manipulating data to artificially make the
alpha seem larger. We represent this idea using the following distribution of
factor returns in the in-sample period t = 1, . . . , T :

ft = α + βrm
t + ε̃t + u︸ ︷︷ ︸

εt

. (7)

Here, ε̃t ∼ N(0, σ 2) captures usual return shocks and u ∼ N(ε̄, σ 2
u ) represents

return inflation due to alpha-hacking. The total in-sample return shock εt is
normally distributed, N(ε̄, σ̄ 2), where ε̄ ≥ 0 is the alpha-hacking bias, and the
variance σ̄ 2 = σ 2 + σ 2

u ≥ σ 2 is elevated due to the artificial noise created by
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Is There a Replication Crisis in Finance? 11

alpha-hacking.14 Naturally, the false benefits of alpha-hacking disappear in
out-of-sample data, or in other words, εt ∼ N(0, σ 2) for t > T . The Bayesian
accounts for alpha-hacking as follows.

PROPOSITION 1 (Alpha-Hacking): The posterior alpha with alpha-hacking is
given by

E(α|α̂) = −κ0 + κhackingα̂, (8)

where κhacking = 1
1+ σ̄2

τ2T

≤ κ and κ0 = κhackingε̄ ≥ 0. Further, κhacking → 0 in the

limit of “pure alpha-hacking,” τ → 0 or σ̄ → ∞.

The Bayesian posterior alpha accounts for alpha-hacking in two ways. First,
the estimated alpha is shrunk more heavily toward zero since the factor κhacking

is now smaller. Second, the alpha is further discounted by the intercept term
κ0 due to the bias in the error terms.

We examine alpha-hacking empirically in Section III.B in light of Propo-
sition 1. We consider a cross-sectional regression of factors’ out-of-sample
(e.g., postpublication) alphas on their in-sample alphas, looking for the sig-
natures of alpha-hacking in the form of a negative intercept term or a slope
coefficient that is too small. In addition, Section III.C.2 shows how to esti-
mate the Bayesian model in a way that is less susceptible to the effects of
alpha-hacking. Appendix A presents additional theoretical results character-
izing alpha-hacking.

B. Hierarchical Bayesian Model

B.1. Shared Alphas: The Case of Complete Pooling

We now embed a critical aspect of factor research into our Bayesian frame-
work: Factors are often correlated and conceptually related to each other. For
concreteness, we begin with a setting in which the researcher has access to
“domestic” evidence in (1) as well as “global” evidence from an international
factor, f g

t , with known exposure βg to the global market index rg
t :

f g
t = α + βgrg

t + ε
g
t . (9)

Here, we assume that the true alpha for this global factor is the same as the do-
mestic alpha. In other words, we have complete “pooling” of information about
alpha across the two samples. As an alternative interpretation, the researcher
could have access to two related factors, say, two different value factors in the
same country, and assume that they have the same alpha because they capture
the same investment principle.

14 We note that this elevated variance cannot be detected by looking at the in-sample variance
of residual returns since the alpha-hacking term u does not depend on time t.
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12 The Journal of Finance®

The global shock, ε
g
t , is normally distributed N(0, σ 2), and ε

g
t and εt are

jointly normal with correlation ρ.15 The estimated alpha based on the global
evidence is simply its market-adjusted return:

α̂g = 1
T

∑
t

(
f g
t − βgrg

t

)
. (10)

To see the power of global evidence (or, more generally, the power of ob-
serving related strategies), we consider the posterior when observing both the
domestic and global evidence.

PROPOSITION 2 (The Power of Shared Evidence): The posterior alpha given the
domestic estimate, α̂, and the global estimate, α̂g, is normally distributed with
mean

E(α|α̂, α̂g) = κg
(

1
2

α̂ + 1
2

α̂g
)

. (11)

The global shrinkage parameter is

κg = 1

1 + σ 2

τ 2T
1+ρ

2

∈ [κ, 1], (12)

which decreases with the correlation ρ, attaining the minimum value, κg = κ,
when ρ = 1. The posterior variance is lower when observing both domestic and
global evidence:

Var(α|α̂) ≥ Var(α|α̂, α̂g). (13)

Naturally, the posterior depends on the average alpha observed domestically
and globally. Furthermore, the combined alpha is shrunk toward the prior of
zero. The shrinkage factor κg is smaller (heavier shrinkage) if the markets are
more correlated because the global evidence provides less new information.
With low correlation, the global evidence adds a lot of independent informa-
tion, shrinkage is lighter, and the Bayesian becomes more confident in the
data and less reliant on the prior. The proposition shows that if a factor has
been found to work both domestically and globally, then the Bayesian expects
stronger out-of-sample performance than a factor that has only worked domes-
tically (or has only been analyzed domestically).

Two important effects are at play here, and both are important for under-
standing the empirical evidence presented below: The domestic and global al-
phas are shrunk both toward each other and toward zero. For example, suppose
that a factor worked domestically but not globally, say, α̂ = 10% > α̂g = 0%.

15 The framework can be generalized to a situation in which the global shocks have a different
volatility and sample length. In this case, the Bayesian posterior puts more weight on the sample
with lower volatility and longer length.
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Is There a Replication Crisis in Finance? 13

Then, the overall evidence points to an alpha of 1
2 α̂ + 1

2 α̂g = 5% but shrinkage
toward the prior results in a lower posterior, say, 2.5%. Hence, the Bayesian ex-
pects future factor returns in both regions of 2.5%. The fact that shared alphas
are shrunk together is a key feature of a joint model, and it generally leads to
different conclusions than when factors are evaluated independently. We next
consider a perhaps more realistic model in which factors are only partially
shrunk toward each other.

B.2. Hierarchical Alphas: The Case of Partial Pooling

We now consider several factors, numbered i = 1, . . . , N. Factor i has a true
alpha given by

αi = c + wi. (14)

Here, c is the common component of all alphas, which has a prior distribution
given by N(0, τ 2

c ). Likewise, wi is the idiosyncratic alpha component, which
has a prior distribution given by N(0, τ 2

w), independent of c and across i. Put
differently, we can imagine that nature first picks the overall c from N(0, τ 2

c )
and then picks the factor-specific αi from N(c, τ 2

w).
This hierarchical model is a realistic compromise between assuming that

all factor alphas are completely different (using equation (4) for each alpha
separately) and assuming that they are all the same (using Proposition 2).
Rather than assuming no pooling or complete pooling, the hierarchical model
allows factors to have a common component and an idiosyncratic component.

Suppose we observe factor returns of

f i
t = αi + βirm

t + εi
t, (15)

where εi
t are normally distributed with mean zero and variance σ 2, and

Cor(εi
t, ε

j
t ) = ρ ≥ 0 for all i, j.16 Computing the observed alpha estimates as

above, α̂i = 1
T

∑
t ( f i

t − βirm
t ), we derive the posterior in the following result.17

PROPOSITION 3 (Hierarchical Alphas): The posterior alpha of factor i given the
evidence on all factors is normally distributed with mean

E(αi|α̂1, . . . , α̂N ) = 1

1 + ρσ 2

τ 2
c T + τ 2

w+(1−ρ)σ 2/T
τ 2

c N

α̂· + 1

1 + (1−ρ)σ 2

τ 2
wT

⎛⎝α̂i − 1

1 + τ 2
w+(1−ρ)σ 2/T
(τ 2

c +ρσ 2/T )N

α̂·
⎞⎠,

(16)

16 Alternatively, we can write the error terms in a similar way as we write the alphas in (14),
namely, εi

t = √
ρ ε̃t + √

1 − ρ ε̃i
t , where ε̃i

t are idiosyncratic shocks that are independent across fac-
tors and of the common shock ε̃t , with Var(ε̃i

t ) = Var(ε̃t ) = σ 2. Note that we require (the empiri-
cally realistic case) that ρ ≥ 0 since we cannot have an arbitrarily large number of normal random
variables with equal negative correlation (because the corresponding variance-covariance matrix
would not be positive semidefinite for large enough N).

17 The general hierarchical model is used extensively in the statistics literature (see, e.g., Gel-
man et al. (2013)), but to our knowledge the results in Proposition 3 are not in the literature.
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14 The Journal of Finance®

where α̂· = 1
N

∑
j α̂

j is average alpha. When the number of factors N grows, the
limit is

lim
N→∞

E(αi|α̂1, . . . , α̂N ) = 1

1 + ρσ 2

τ 2
c T

α̂· + 1

1 + (1−ρ)σ 2

τ 2
wT

(
α̂i − α̂·). (17)

The posterior variance of factor i’s alpha using the information in all factor
returns is lower than the posterior variance when looking at this factor in iso-
lation,

Var(αi|α̂1, . . . , α̂N ) < Var(αi|α̂i). (18)

The posterior variance is decreasing in N and, as N → ∞, its limit is

Var(αi|α̂1, . . . , α̂N ) ↘ ρσ 2

T
1

1 + ρσ 2

τ 2
c T

+ (1 − ρ)σ 2

T
1

1 + (1−ρ)σ 2

τ 2
wT

. (19)

The main insight of this proposition is that having data on many factors is
helpful for estimating the alpha of any of them. Intuitively, the posterior for
any individual alpha depends on all of the other observed alphas because they
are all informative about the common alpha component. Put differently, the
other observed alphas tell us whether alpha exists in general, that is, whether
the CAPM appears to be violated in general. Further, the factor’s own observed
alpha tells us whether this specific factor appears to be especially good or bad.
Using all of the factors jointly reduces posterior variance for all alphas. In sum-
mary, the joint model with hierarchical alphas has the dual benefits of identi-
fying the common component in alphas and tightening confidence intervals by
sharing information among factors.

To understand the proposition in more detail, consider first the (unrealistic)
case in which all factor returns have independent shocks (ρ = 0). In this case,
we essentially know the overall alpha when we see many uncorrelated factors.
Indeed, the average observed alpha becomes a precise estimator of the overall
alpha with more and more observed factors, α̂· → c. Since we essentially know
the overall alpha in this limit, the first term in (17) becomes 1 × α̂· when ρ =
0, meaning that we do not need any shrinkage here. The second term is the
outperformance of factor i above the average alpha, and this outperformance
is shrunk toward our prior of zero. Indeed, the outperformance is multiplied by
a number less than one, and this multiplier naturally decreases in the return
volatility σ and in our conviction in the prior (increases in τw).

The posterior variance is also intuitive in the case ρ = 0. The posterior vari-
ance is clearly lower compared to only observing the performance of factor i
itself,

Var(αi|α̂1, α̂2 . . .) = σ 2

T
1

1 + σ 2

τ 2
wT

<
σ 2

T
1

1 + σ 2

(τ 2
c +τ 2

w )T

= Var(αi|α̂i), (20)
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Is There a Replication Crisis in Finance? 15

based on (19) and (6). With partial pooling, the posterior variance decreases be-
cause the denominator on the left does not have τ 2

c , reflecting that uncertainty
about the general alpha has been eliminated by observing many factors.

In the realistic case in which factor returns are correlated (ρ > 0), we see
that both the average alpha α̂· and factor i’s outperformance α̂i − α̂· are
shrunk toward the prior of zero. This is because we cannot precisely esti-
mate the overall alpha even with an infinite number of correlated factors—
the correlated part never vanishes. Nevertheless, we still shrink the con-
fidence interval, Var(αi|α̂1, . . . , α̂N ) ≤ Var(αi|α̂i), since more information is
always better than less.

B.3. Multilevel Hierarchical Model

The model development to this point is simplified to draw out its intuition.
Our empirical implementation is based on a more realistic (and slightly more
complex) model that accounts for the fact that factors naturally belong to dif-
ferent economic themes and to different regions.

In our global analysis, we have N different characteristic signals (e.g., book-
to-market) across K regions, for a total of NK factors (e.g., U.S., developed, and
emerging markets versions of book-to-market). Each of the N signals belongs
to a smaller number of J theme clusters, where one cluster consists of vari-
ous value factors, another consists of various momentum factors, and so on.
One level of our hierarchical model allows for partially shared alphas among
factors in the same theme cluster. Another level allows for commonality across
regions among factors associated with the same underlying characteristic, cap-
turing, for example, the connections between the book-to-market factors in dif-
ferent markets.

Mathematically, this means that an individual factor i has an alpha of

αi = αo + c j + sn + wi. (21)

To illustrate, suppose factor i ∈ {1, . . . , NK} is the book-to-market factor in the
U.S. region. Part of its alpha is driven by a component that is common to all
factors, αo, which we dogmatically fix at zero to be conservative. In addition,
this factor i belongs to the value cluster j ∈ {1, . . . , J}, which contributes a
cluster-specific alpha c j ∼ N(0, τ 2

c ). Next, since factor i is based on book-to-
market characteristic n ∈ {1, . . . , N}, it has an incremental signal-specific al-
pha of sn ∼ N(0, τ 2

s ) that is shared across regions—for example, it is the com-
mon behavior among book-to-market factors regardless of geography. Finally,
wi ∼ N(0, τ 2

w) is factor i’s idiosyncratic alpha, namely, the incremental alpha
that is unique to the U.S. version of book-to-market.

We write this model in vector form as18

α = αo 1NK + Mc + Zs + w, (22)

18 The notation 1N refers to an N × 1 vector of ones and IN is the N × N identity matrix.
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16 The Journal of Finance®

where α = (α1, . . . , αNK )′, c = (c1, . . . , cJ )′, s = (s1, . . . , sN )′, w = (w1, . . . , wNK )′,
M is the NK × J matrix of cluster memberships, and Z is the NK × N matrix
indicating the characteristic that factor i is based on. In particular, Mi, j = 1
if factor i is in cluster j and Mi, j = 0 otherwise. Likewise, Zi,n = 1 if factor i
is based on characteristic n and Zi,n = 0 otherwise. This hierarchical model
implies that the prior variance of alpha, denoted by 	, is19

	 = Var(α) = MM′τ 2
c + ZZ′τ 2

s + INKτ 2
w. (23)

In some cases, we analyze this model within a single region, K = 1 (e.g.,
in our U.S.-only analysis). In this case, there is no difference between signal-
specific alphas and idiosyncratic alphas, so we collapse one level of the model
by setting τ s = 0 and sn = 0 for n ∈ {1, . . . , N}. In any case, the following result
shows how to compute the posterior distribution of all alphas based on the prior
uncertainty, 	, and a general variance-covariance matrix of return shocks, 
 =
Var(ε). This result is at the heart of our empirical analysis.

PROPOSITION 4: In the multilevel hierarchical model, the posterior of the vector
of true alphas is normally distributed with posterior mean

E(α|α̂) = (	−1 + T
−1)−1(
	−11NKα0 + T
−1α̂

)
(24)

and posterior variance

Var(α|α̂) = (	−1 + T
−1)−1
. (25)

As noted above, we set the mean prior alpha to zero (α0 = 0) in our empirical
implementation. This prior is based on economic theory and leads to a conser-
vative shrinkage toward zero as seen in (24). We note that, in the data, the
observed alphas are mostly positive, not centered around zero. However, these
positive alphas are related to the way that factors are signed, that is, according
to the convention in the original paper, which almost always leads to a posi-
tive factor return in the original sample. If we view this signing convention as
somewhat arbitrary, then a symmetry argument implies that a prior of zero is
again natural. Put differently, factor means would be centered around zero if
we changed signs arbitrarily, so our prior is agnostic about these signs.

C. Bayesian Multiple Testing and Empirical Bayes Estimation

Frequentist MT corrections embody a principle of conservatism that seeks
to limit false discoveries by controlling the family-wise error rate (FWER) or

19 Stated differently, each diagonal element of 	 is τ2
c + τ2

s + τ2
w. Further, if i �= k, then the (i, k)th

element of 	 is τ2
c + τ2

s if i and k are constructed from the same signal in the same cluster in
different regions, it is τ2

c if i and k are constructed from different signals in the same cluster, and
it is zero if i and k are in different clusters.
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Is There a Replication Crisis in Finance? 17

the FDR. Leading frequentist methods do so by widening confidence intervals
and raising p-values, but do not alter the underlying point estimate.

C.1. Bayesian Multiple Testing

A large statistics literature shows that Bayesian modeling is effective for
making reliable inferences in the face of MT.20 Drawing on this literature, our
hierarchical model is a prime example of how Bayesian methods accomplish
their MT correction based on two key model features.

The first such feature is the model prior, which imposes statistical con-
servatism in analogy to frequentist MT methods. It anchors the researcher’s
beliefs to a sensible default (e.g., all alphas are zero) in case the data are
insufficiently informative about the parameters of interest. Reduction of false
discoveries is achieved first by shrinking estimates toward the prior. When
there is no information in the data, the alpha point estimate is the prior
mean and there are no false discoveries. As empirical evidence accumulates,
posterior beliefs migrate away from the prior toward the OLS alpha estimate.
In the process, discoveries begin to emerge, though they remain dampened
relative to OLS. In the large-data limit, Bayesian beliefs converge on OLS
with no MT correction, which is justified because in the limit there are no false
discoveries. In other words, the prior embodies a particularly flexible form of
conservatism—the Bayesian model decides how severe of an MT correction to
make based on the informativeness of the data.

The second key model feature is the hierarchical structure that captures fac-
tors’ joint behavior. Modeling factors jointly means that each alpha is shrunk
toward its cluster mean (i.e., toward related factors), in addition to being
shrunk toward the prior of zero. So, if we observe a cluster of factors in which
most perform poorly, then this evidence reduces the posterior alpha even for
the few factors with strong performance—another form of Bayesian MT cor-
rection. In addition to this Bayesian discovery control coming through shrink-
age of the posterior mean alpha, the Bayesian confidence interval also plays
an important role and changes as a function of the data. Indeed, having data
on related factors leads to a contraction of the confidence intervals in our joint
Bayesian model. So while alpha shrinkage often has the effect of reducing dis-
coveries, the increased precision from joint estimation has the opposite effect
of enhancing statistical power and thus increases discoveries.

In summary, a typical implementation of frequentist MT corrections esti-
mates parameters independently for each factor and leaves these parameters
unchanged, but inflates p-values to reduce the number of discoveries. In con-
trast, our hierarchical model leverages dependence in the data to efficiently
learn about all alphas simultaneously. All data therefore help to determine the

20 See Greenland and Robins (1991), Berry and Hochberg (1999), Efron and Tibshirani (2002),
Gelman, Hill, and Yajima (2012), among others. See Gelman (2016) for an intuitive, informal dis-
cussion of the topic.
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18 The Journal of Finance®

center and width of each alpha’s confidence interval (Propositions 3 and 4).
This leads to more precise estimates with “built-in” Bayesian MT correction.

C.2. Empirical Bayes Estimation

Given the central role of the prior, it might seem problematic that the sever-
ity of the Bayesian MT adjustment is at the discretion of the researcher. A
powerful (and somewhat surprising) aspect of a hierarchical model is that the
prior can be learned in part from the data. This idea is formalized in the idea
of “empirical Bayes (EB)” estimation, which has emerged as a major toolkit for
navigating MT in high-dimensional statistical settings (Efron (2012)).

The general approach to EB is to specify a multilevel hierarchical model and
then use the dispersion in estimated effects within each level to learn about
the prior parameters for that level. In our setting, the specific implementation
of EB is dictated by Proposition 4. We first compute each factor’s abnormal
return, α̂, as the intercept in a CAPM regression on the market excess return.
We then set the overall alpha prior mean, αo, to zero to enforce conservatism
in our inferences.

From here, the benefits of EB kick in. The realized dispersion in alphas
across factors helps determine the appropriate prior beliefs (i.e., the appropri-
ate values for τ 2

c , τ 2
s , and τ 2

w). For example, if we compute the average alpha for
each cluster, ĉ j (e.g., the average value alpha, the average momentum alpha),
the cross-sectional variation in ĉ j suggests that τ 2

c
∼= 1

J−1

∑J
j=1(ĉ j − ĉ·)2. The

same idea applies to τ 2
s . Likewise, variation in observed alphas after account-

ing for hierarchical connections is informative about τ 2
w

∼= 1
NK−N−J

∑N
i=1(ŵi)2,

where ŵ = α̂ − Mĉ − Zŝ.
The above variances illustrate that EB can help calibrate prior variances

using the data itself. But those calculations are too crude, because they ignore
sampling variation coming from the noise in returns, ε, which has covariance
matrix 
. EB estimates the prior variances by maximizing the prior likeli-
hood function of the observed alphas, α̂ ∼ N(0,	(τc, τs, τw) + 
̂/T ), where the
notation emphasizes that 	 depends on τc, τs, and τw according to (23). The
likelihood function accounts for sampling variation through a plug-in estimate
of the covariance matrix of factor return shocks, 
̂.21 We collect the resulting
hyperparameters in τ , that is, τc, τs, τw, 
̂, and βi.

C.3. Bayesian FDR and FWER

With the EB estimates (τ ) in hand, we can compute the posterior distribution
of the alphas from Proposition 4. From the posterior, we can in turn compute
Bayesian versions of the FDR and FWER. Suppose that we consider a factor to
be “discovered” if its z-score is greater than the critical value z̄ = 1.96,

E(αi|α̂1,· · · ,α̂N ,τ )√
Var(αi|α̂1,· · · ,α̂N ,τ )

≥ z̄. (26)

21 We provide details on our EB estimation procedure in Appendix B.
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Is There a Replication Crisis in Finance? 19

Equivalently, factor i is discovered if p-nulli ≤ 2.5%,22 where we use the poste-
rior to compute

p-nulli = Pr(αi ≤ 0|α̂1, · · · , α̂N, τ ). (27)

In words, p-nulli is the posterior probability that the null hypothesis is true,
which is the Bayesian version of a frequentist p-value. Put differently, it is the
posterior probability of a “false discovery,” that is, the probability that the true
alpha is actually nonpositive.

We can further compute the Bayesian FDR as

FDRBayes = E
(∑

i 1{i false discovery}∑
i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N, τ

)
, (28)

where we condition on the data including at least one discovery (so the denom-
inator is not zero); otherwise, FDR is set to zero (see Benjamini and Hochberg
(1995)).

The following proposition is a novel characterization of the Bayesian FDR,
and shows that it is the posterior probability of a false discovery, averaged
across all discoveries:

PROPOSITION 5 (Bayesian FDR): Conditional on the parameters of the prior
distribution τ and data with at least one discovery, the Bayesian FDR can be
computed as

FDRBayes = 1
#discoveries

∑
i discovery p-nulli (29)

and is bounded, FDRBayes ≤ 2.5%.

This result shows explicitly how the Bayesian framework controls the FDR
without the need for additional MT adjustments.23 The definition of a discovery
ensures that at most 2.5% of the discoveries are false according to the Bayesian
posterior, which is exactly the right distribution for assessing discoveries from
the perspective of the Bayesian. Further, if many of the discovered factors are
highly significant (as is the case in our data), then the Bayesian FDR is much
lower than 2.5%.24

We can also compute a Bayesian version of the FWER, which is the proba-
bility of making one or more false discoveries in total:

FWERBayes =Pr

(∑
i

1{i false discovery} ≥ 1
∣∣∣∣α̂1, . . . , α̂N, τ

)
. (30)

22 We use a critical value of 2.5% rather than 5% because the 1.96 cutoff corresponds to a two-
sided test, while false discoveries are only on one side in the Bayesian framework.

23 Efron (2007) includes related analysis but, to our knowledge, this particular result is new.
24 Proposition 5 formalizes the argument of Greenland and Robins (1991) that “from the

empirical-Bayes or Bayesian perspective, multiple comparisons are not really a ‘problem.’ Rather,
the multiplicity of comparisons provides an opportunity to improve our estimates through judi-
cious use of any prior information (in the form of model assumptions) about the ensemble of pa-
rameters being estimated.”
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20 The Journal of Finance®

If we define a discovery as in (26) using the standard critical value z̄ = 1.96,
then we do not necessarily control the FWERBayes, which is a harsh criterion
that is concerned with the risk of a single false discovery without regard for the
number of missed discoveries. Because FWERBayes is a probability that can be
computed from the posterior, it is straightforward to choose a critical value z̄ to
ensure FWERBayes ≤ 5% or any other level one prefers. The main point is that
the Bayesian approach to replication lends itself to any inferential calculation
the researcher desires because the posterior is a complete characterization of
Bayesian beliefs about model parameters.

C.4. A Comparison of Frequentist and Bayesian False Discovery Control

We illustrate the benefits of Bayesian inference for our replication analysis
via simulation. We assume a factor-generating process based on the hierarchi-
cal model above and, for simplicity, consider a single region (as in our empir-
ical U.S.-only analysis), removing sn and τ 2

s from equations (21) and (23). We
analyze discoveries as we vary the prior variances τc and τw. The remaining
parameters are calibrated to our estimates for the U.S. region in our empirical
analysis below.

We simulate an economy with 130 factors in 13 different clusters of 10 factors
each, observed monthly over 70 years. We assume that the mean alpha, αo,
is zero. We then draw a cluster alpha from c j ∼ N(0, τ 2

c ) and a factor-specific
alpha as wi ∼ N(0, τ 2

w). Based on these alphas, we generate realized returns by
adding Gaussian noise.25

We compute p-values separately using OLS with no adjustment or OLS ad-
justed using the Benjamini and Yekutieli (2001) (BY) method. We also use EB
to estimate the posterior alpha distribution, treating τc and τw as known to
simplify simulations and focus on the Bayesian updating. For OLS and BY, a
discovery occurs when the alpha estimate is positive and the two-sided p-value
is below 5%. For EB, we consider it a discovery when the posterior probability
that alpha is negative is less than 2.5%. For each τc and τw pair, we draw 10,000
simulated samples and report average discovery rates over all simulations.

Figure 3 reports alpha discoveries based on the OLS, BY, and EB approaches.
For each method, we report the true FDR in the top panels (we know the truth
since this is a simulation) and the “true discovery rate”26 in the bottom panels.

When idiosyncratic variation in true alphas is small (left panels with τw =
0.01%) and the variation in cluster alphas is also small (values of τc near zero

25 The noise covariance matrix has a block structure calibrated to our data, with a correlation
of 0.58 among factors in the same cluster and a correlation of 0.02 across clusters. The residual
volatility for each factor is 10% per annum.

26 We define the true discovery rate to be the number of significantly positive alphas according
to, respectively, OLS, BY, and EB divided by the number of truly positive alphas. Given our sim-
ulation structure, half of the alphas are expected to be positive in any simulation. Some of these
will be small (i.e., economically insignificant) positives, so a testing procedure would require a high
degree of statistical power to detect them. This is why the true discovery rate is below one even
for high values of τc.
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Is There a Replication Crisis in Finance? 21

Figure 3. Simulation comparison of false discovery rates. The upper panels show the real-
ized FDR computed as the proportion of discovered factors for which the true alpha is negative,
averaged over 10,000 simulations. The lower panels show the true discovery rate computed as the
number of discoveries for which the true alpha is positive divided by the total number of factors for
which the true alpha is positive. The left and right panels use low and high values of idiosyncratic
variation in alphas (τw), respectively. The x-axis varies cluster alpha dispersion, τc. (Color figure
can be viewed at wileyonlinelibrary.com)

on the horizontal axis), alphas are very small and true discoveries are unlikely.
In this case, the OLS FDR can be as high as 25% as seen in the upper left panel.
However, both BY and EB successfully correct this problem and lower the FDR.
The lower left panel shows that the BY correction pays a high price for its cor-
rection in terms of statistical power when τc is larger. In contrast, EB exhibits
much better power to detect true positives while maintaining a similar false
discovery control as BY. In fact, when there are more discoveries to be made
in the data (as τc increases), EB becomes even more likely to identify true pos-
itives than OLS. This is due to the joint nature of the Bayesian model, whose
estimates are especially precise compared to OLS due to EB’s ability to learn
more efficiently from dependent data. This result illustrates the observation
by Greenland and Robins (1991) that “Unlike conventional multiple compar-
isons, empirical-Bayes and Bayes approaches will alter and can improve point
estimates and can provide more powerful tests and more precise (narrower)
interval estimators.” When the idiosyncratic variation is larger (τw = 0.20%),
there are many more true discoveries to be made, so the FDR tends to be low
even for OLS with no correction. Yet, in the lower right panel, we continue to
see the costly loss of statistical power suffered by the BY correction.

In summary, EB accomplishes a flexible MT adjustment by adapting to the
data-generating process. When discoveries are rare so that there is a compar-
atively high likelihood of false discovery, EB imposes heavy shrinkage and be-
haves similarly to the conservative BY correction. In this case, the benefit of
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conservatism costs little in terms of power exactly because true discoveries are
rare. Yet, when discoveries are more likely, EB behaves more like uncorrected
OLS, giving it high power to detect discoveries and suffering little in terms of
false discoveries because true positives abound.

The limitations of frequentist MT corrections are well studied in the statis-
tics literature. Berry and Hochberg (1999) note that “these procedures are very
conservative (especially in large families) and have been subjected to criticism
for paying too much in terms of power for achieving (conservative) control of
selection effects.” The reason is that, while inflating confidence intervals and
p-values reduces the discovery of false positives, it also reduces power to detect
true positives.

Much of the discussion around MT adjustments in the finance literature
fails to consider the loss of power associated with frequentist corrections. But
as Greenland and Hofman (2019) point out, this trade-off should be a first-
order consideration for a researcher navigating MT, and frequentist MT cor-
rections tend to place an implicit cost on false positives that can be unrea-
sonably large. Unlike some medical contexts for example, there is no obvious
motivation for asymmetric treatment of false positives and missed positives in
factor research. The finance researcher may be willing to accept the risk of a
few false discoveries to avoid missing too many true discoveries. In statistics,
this is sometimes discussed in terms of an (abstract) cost of Type I versus Type
II errors,27 but in finance we can make this cost concrete: We can look at the
profit of trading on the discovered factors, where the cost of false discoveries is
then the resulting extra risk and money lost (Section III.C.1).

II. A New Public Data Set of Global Factors

We study a global data set with 153 factors in 93 countries. In this section,
we provide a brief overview of our data construction. We have posted the data
and code along with extensive documentation detailing each implementation
choice that we make for each factor.28

A. Factors

The set of factors that we study is based on the exhaustive list compiled by
Hou, Xue, and Zhang (2020). They study 202 different characteristic signals
from which they build 452 factor portfolios. The proliferation is due to treating
one-, six-, and 12-month holding periods for a given characteristic as differ-
ent factors, and due to their inclusion of both annual and quarterly updates of

27 As Greenland and Robins (1991) point out, “Decision analysis requires, in addition to the like-
lihood function, a loss function, which indicates the cost of each action under the various possible
values for the unknown parameter (benefits would be expressed as negative costs). Construction of
a loss function requires one to quantify costs in terms of dollars, lives lost, or some other common
scale.”

28 The data and code are available at https://jkpfactors.com/ and https://github.com/bkelly-lab/
ReplicationCrisis. The data will be updated over time and will also be available via WRDS.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://jkpfactors.com/
https://github.com/bkelly-lab/ReplicationCrisis
https://github.com/bkelly-lab/ReplicationCrisis


Is There a Replication Crisis in Finance? 23

some accounting-based factors. In contrast, we focus on a one-month holding
period for all factors, and we only include the version that updates with the
most recent accounting data—this could be either annual or quarterly. Finally,
we exclude a small number of factors for which data are not available globally.
This gives us a set of 180 feasible global factors. For this set, we exclude fac-
tors based on industry or analyst data because they have comparatively short
samples.29 This leaves us with 138 factors. Finally, we add 15 factors stud-
ied in the literature that were not included in Hou, Xue, and Zhang (2020).
For each characteristic, we build the one-month-holding-period factor return
within each country as follows. First, in each country and month, we sort stocks
into characteristic terciles (top/middle/bottom third) with breakpoints based
on non-micro stocks in that country.30 For each tercile, we compute its “capped
value weight” return, meaning that we weight stocks by their market equity
winsorized at the NYSE 80th percentile. This construction ensures that tiny
stocks have tiny weights and any one mega stock does not dominate a portfo-
lio in an effort to create tradable, yet balanced, portfolios.31 The factor is then
defined as the high-tercile return minus the low-tercile return, corresponding
to the excess return of a long-short zero-net-investment strategy. The factor
is long (short) the tercile identified by the original paper to have the highest
(lowest) expected return.

We scale all factors such that their monthly idiosyncratic volatility is
10%/

√
12 (i.e., 10% annualized), which ensures cross-sectional stationarity

and a prior that factors are similar in terms of their information ratio. Fi-
nally, we compute each factor’s α̂i via an OLS regression on a constant and the
corresponding region’s market portfolio.

For a factor return to be nonmissing, we require that it have at least five
stocks in each of the long and short legs. We also require a minimum of 60 non-
missing monthly observations for each country-specific factor for inclusion in
our sample. When grouping countries into regions (U.S., developed ex-U.S., and
emerging), we use the Morgan Stanley Capital International (MSCI) develop-
ment classification as of January 7, 2021. When aggregating factors across
countries, we use capitalization-weighted averages of the country-specific fac-
tors. For the developed and emerging market factors, we require that at least
three countries have nonmissing factor returns.

29 Global industry codes (GICS) are only available from 2000. I/B/E/S data are available from
the mid-1980s but coverage in early years is somewhat sparse.

30 Specifically, we start with all nonmicro stocks in a country (i.e., larger than NYSE 20th per-
centile) and sort them into three groups of equal numbers of stocks based on the characteristic, say
book-to-market. We then distribute the micro-cap stocks into the three groups based on the same
characteristic breakpoints. This process ensures that the nonmicro stocks are distributed equally
across portfolios, creating more tradable portfolios.

31 For robustness, Figure IA.1 of the Internet Appendix reports our replication results when
using standard, uncapped value weights to construct factors.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 The Journal of Finance®

B. Clusters

We group factors into clusters using hierarchical agglomerative clustering
(Murtagh and Legendre (2014)). We define the distance between factors as one
minus their pairwise correlation and use the linkage criterion of Ward (1963).
The correlation is computed based on CAPM-residual returns of U.S. factors
signed as in the original paper. Figure IA.15 of the Internet Appendix shows
the resulting dendrogram, which illustrates the hierarchical clusters identified
by the algorithm. Based on the dendrogram, we choose 13 clusters that demon-
strate a high degree of economic and statistical similarity. The cluster names
indicate the types of characteristics that dominate each group: Accruals∗, Debt
Issuance∗, Investment∗, Leverage∗, Low Risk, Momentum, Profit Growth, Prof-
itability, Quality, Seasonality, Size∗, Short-Term Reversal, and Value, where (∗)
indicates that these factors bet against the corresponding characteristic (e.g.,
accrual factors go long stocks with low accruals while shorting those with high
accruals). Figure IA.16 shows that the average within-cluster pairwise corre-
lation is above 0.5 for nine out of 13 clusters. Table IA.II provides details on
the cluster assignment, sign convention, and original publication source for
each factor.

C. Data and Characteristics

Return data are from CRSP for the United States (beginning in 1926) and
from Compustat for all other countries (beginning in 1986 for most developed
countries).32 All accounting data are from Compustat. For international data,
all variables are measured in U.S. dollars (based on exchange rates from Com-
pustat) and excess returns are relative to the U.S. Treasury bill rate. To allevi-
ate the influence of data errors in the international data, we winsorize returns
from Compustat at 0.1% and 99.9% each month.

We restrict our focus to common stocks that are identified by Compustat
as the primary security of the underlying firm and assign stocks to countries
based on the country of their exchange.33 In the United States, we include
delisting returns from CRSP. If a delisting return is missing and the delisting
is for a performance-based reason, we set the delisting return to −30% follow-
ing Shumway (1997). In the global data, delisting returns are not available, so
all performance-based delistings are assigned a return of −30%.

We build characteristics in a consistent way, that sometimes deviates from
the exact implementation used in the original reference. For example, for char-
acteristics that use book equity, we always follow the method in Fama and
French (1993). Furthermore, we always use the most recent accounting data,
whether annual or quarterly. Quarterly income and cash flow items are ag-
gregated over the previous four quarters to avoid distortions from seasonal

32 Table IA.IV shows start date and other information for all countries included in our data set.
33 Compustat identifies primary securities in the United States, Canada, and rest of the world.

This means that some firms can have up to three securities in our data set. In practice, the vast
majority of firms (97%) only have one security in our sample at a given point in time.
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effects. We assume that accounting data are available four months after the
fiscal period end. When creating valuation ratios, we always use the most re-
cent price data following Asness and Frazzini (2013). Section IX in the Internet
Appendix contains detailed documentation of our data set.

D. EB Estimation

We estimate the hyperparameters and the posterior alpha distributions of
our Bayesian model via EB. Appendix B provides details on the EB methodol-
ogy and the estimated parameters.

III. Empirical Assessment of Factor Replicability

We now report replication results for our global factor sample. We first
present an internal validity analysis by studying U.S. factors over the full
sample. We then analyze external validity in the global cross section and in
the time series (postpublication factor returns).

A. Internal Validity

We plot the full-sample performance of U.S. factors in Figure 4. Each panel
shows the CAPM alpha point estimate of each factor corresponding to the dot
at the center of the vertical bars. Vertical bars represent the 95% confidence
interval for each estimate. Bar colors and linetypes differentiate between three
types of factors. Solid blue indicates factors that are significant in the original
study and remain significant in our full sample. Dashed red indicates factors
that are significant in the original study but insignificant in our test. Dotted
green indicates factors that are not significant in the original study but are
included in the sample of Hou, Xue, and Zhang (2020).

The four panels in Figure 4 differ in how the alphas and their confidence
intervals are estimated. The upper left panel reports the simple OLS estimate
of each alpha, α̂ols, and the 95% confidence intervals based on unadjusted stan-
dard errors, α̂ols ± 1.96 × SEols.34 The factors are sorted by OLS α̂ estimate,
and we use this ordering for the other three panels as well. We find that the
OLS replication rate is 82.4%, computed as the number of solid blue factors
(98) divided by the sum of solid blue and dashed red factors (119). Based on
OLS tests, factors are highly replicable.

The upper right panel repeats this analysis using the MT adjustment of BY,
which is advocated by Harvey, Liu, and Zhu (2016) and implemented by Hou,
Xue, and Zhang (2020). This method leaves the OLS point estimate unchanged,
but inflates the p-value. We illustrate this visually by widening the alpha con-
fidence interval. Specifically, we find the BY-implied critical value35 in our

34 We define SEols as the diagonal of the alpha covariance matrix 
̂, which we estimate accord-
ing to Appendix B.

35 We compute the BY-implied critical value as the average of the t-statistic of the factor that is
just significant based on BY (the factor with the highest BY-adjusted p-value below 5%) and the
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Figure 4. Alpha distributions for U.S. factors. The figure shows point estimates and confi-
dence intervals for U.S. factors. The upper left panel depicts OLS estimates. The upper right panel
uses the OLS point estimate but adjusts the confidence interval following the BY procedure. The
lower left panel shows our EB posterior confidence intervals using only U.S. data. The lower right
panel continues to show EB results for U.S. factors, but estimates the U.S. factor posterior from
global data rather than U.S.-only data. Solid blue (dashed red) confidence intervals correspond to
factors that were significant in the original study and that we find to be significant (insignificant)
based on the method in each panel. Dotted green intervals correspond to factors that the original
study find to be insignificant or that the original study does not evaluate in terms of average re-
turn significance. The order of factors is the same in all panels and is arranged from lowest OLS
alpha to highest. Table IA.III lists the factor names arranged in the same order. (Color figure can
be viewed at wileyonlinelibrary.com)

sample to have a t-statistic of 2.7, and we compute the corresponding confi-
dence interval as α̂ols ± 2.7 × SEols. We deem a factor as significant according
to the BY method if this interval lies entirely above zero. Naturally, this widen-
ing of confidence intervals produces a lower replication rate of 75.6%. However,
the BY correction does not materially change the OLS-based conclusion that
factors appear to be highly replicable.

The lower left panel is based on our EB estimates using the full sample
of U.S. factors. For each factor, we use Proposition 4 to compute its posterior
mean, E(αi|(α̂ j ) j any US factor), shown as the dot at the center of the confidence
interval. These dots change relative to the OLS estimates, in contrast to BY
and other frequentist MT methods that only change the size of the confidence
intervals. We also compute the posterior volatility to produce Bayesian confi-
dence intervals, E(αi|(α̂ j ) j any US factor) ± 1.96 × σ (αi|(α̂ j ) j any US factor). The repli-
cation rate based on Bayesian model estimates is 82.4%, larger than BY and,
coincidentally, the same as the OLS replication rate. This replication rate has

t-statistic of the factor that is just insignificant (the factor with the lowest BY-adjusted p-value
above 5%).
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a built-in conservatism from the zero-alpha prior, and it further accounts for
the multiplicity of factors because each factor’s posterior depends on all of the
observed evidence in the United States (not just own-factor performance).

The lower right panel again reports EB estimates for U.S. factors, but now
we allow the posterior to depend on data from all over the world, not just on
U.S. data. That is, we compute the posterior mean and variance for each U.S.
factor conditional on the alpha estimates for all factors in all regions. The re-
sulting replication rate is 81.5%, which is slightly lower than the EB replica-
tion rate using only U.S. data. Some posterior means are reduced due to the
fact that some factors have not performed as well outside the United States,
which affects posterior means for the United States through the dependence
among global alphas. For example, when the Bayesian model seeks to learn
the true alpha of the “U.S. change in book equity” factor, the Bayesian’s con-
viction regarding positive alpha is reduced by accounting for the fact that the
international version of this factor has underperformed the U.S. version.36

To further assess internal validity, we investigate the replication rate for U.S.
factors when those factors are constructed from subsamples based on stock
size. One of the leading criticisms of factor research replicability is that re-
sults are driven by illiquid small stocks whose behavior largely reflects market
frictions and microstructure as opposed to just economic fundamentals or in-
vestor preferences. In particular, Hou, Xue, and Zhang (2020) argue that they
find a low replication rate because they limit the influence of micro-caps. We
find that factors demonstrate a high replication rate throughout the size dis-
tribution. Panel A of Figure 5 summarizes replication rates for U.S. size cat-
egories shown in the five bars: mega stocks (largest 20% of stocks based on
NYSE breakpoints), large stocks (market capitalization between the 80th and
50th percentile of NYSE stocks), small stocks (between the 50th and 20th per-
centile), micro stocks (between the 20th and 1st percentile), and nano stocks
(market capitalization below the 1st percentile).

We see that the EB replication rates in mega- and large-stock samples are
77.3% and 79.8%, respectively. This is only marginally lower than the overall
U.S. sample replication rate of 82.4%, indicating that criticisms of factor
replicability based on arguments around stock size or liquidity are largely
groundless. For comparison, small, micro, and nano stocks deliver replication
rates of 85.7%, 85.7%, and 68.1%, respectively.

In Panel B of Figure 5, we provide U.S. factor replication rates by theme
cluster. Eleven out of 13 themes are replicable with a rate of 50% or better,
with the exceptions being the low leverage and size themes. To understand
these exceptions, we note that size factors are stronger in emerging markets
(bottom panel of Figure IA.7) and among micro and nano stocks (bottom panels
of Figure IA.8). The theoretical foundation of the size effect is compensation

36 To provide a few more details on this example, the U.S. factor based on annual change in book
equity (be_gr1a) has a posterior volatility of 0.095% using U.S. data and 0.077% using global data,
leading to a tighter confidence interval with the global data. However, the posterior mean is 0.22%
using only U.S. data and 0.13% using global data.
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Figure 5. U.S. replication rates by size group and theme cluster. Panel A summarizes
replication rates for U.S. factors formed from subsamples defined by stocks’ market capitalization
using our EB method. Panel B shows replication rates for U.S. factors in each theme cluster. (Color
figure can be viewed at wileyonlinelibrary.com)

for market illiquidity (Amihud and Mendelson (1986)) and market liquidity
risk (Acharya and Pedersen (2005)). Theory predicts that the illiquidity (risk)
premium should be the same order of magnitude as the differences in trading
costs, and these differences are simply much larger in emerging markets and
among micro stocks.

Another reason some factors and themes appear insignificant is that we
do not account for other factors. Factors published after 1993 are routinely
benchmarked to the Fama-French three-factor model (and, more recently, to
the updated five-factor model). Some factors are insignificant in terms of raw
return or CAPM alpha, but their alpha becomes significant after controlling
for other factors. Indeed, this explanation accounts for the lack of replicability
for the low-leverage theme. While CAPM alphas of low-leverage factors are
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Figure 6. Replication rates in global data. We summarize replication rates for factors in three
regions (U.S., developed ex.-U.S., and emerging) and for the world as a whole. A factor in a given
region is the capitalization-weighted average factor for countries in that region. We report OLS
replication rates with no adjustment and with MT adjustment of BY. We also report replication
rates based on the EB posterior. We consider two EB methods. In both methods, the replication
rate corresponds only to factors within the region of interest, but the posterior is computed by
conditioning either on data from that region alone (“Empirical Bayes – Region”) or on the full global
sample (“Empirical Bayes – All”). We deem a factor successfully replicated if its 95% confidence
interval excludes zero for a given method. (Color figure can be viewed at wileyonlinelibrary.com)

insignificant, we find that it is one of the best-performing themes when we
account for multiple factors (see Section III.D.2 below).

B. External Validity

We find a high replication rate in our full-sample analysis, indicating that
the large majority of factors are reproducible at least in-sample. We next study
the external validity of these results in international data and in postpublica-
tion U.S. data.

B.1. Global Replication

Figure 6 shows corresponding replication rates around the world. We report
replication rates from four testing approaches: (i) OLS with no adjustment,
(ii) OLS with MT adjustment of BY, (iii) the EB posterior conditioning only on
factors within a region (“Empirical Bayes – Region”), and (iv) EB conditioning
on factors in all regions (“Empirical Bayes – All”). Even when using all global
data to update the posterior of all factors, the reported Bayesian replication
rate applies only to the factors within the stated region.
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The first set of bars establishes a baseline by showing replication rates for
the U.S. sample, summarizing the results from Figure 4. The next two sets of
bars correspond to the developed ex.-U.S. sample and the emerging markets
sample, respectively.37 Each region’s factor is a capitalization-weighted aver-
age of that factor among countries within a given region, and the replication
rate describes the fraction of significant CAPM alphas for these regional fac-
tors.

OLS replication rates in developed and emerging markets are generally
lower than in the United States, and the frequentist BY correction has an
especially large negative impact on replication rate. This is a case in which the
Bayesian approach to MT is especially powerful. Even though the alphas of all
regions are shrunk toward zero, the global information set helps EB achieve
a high degree of precision, narrowing the posterior distribution around the
shrunk point estimate. We can see this in increments. First, the EB replication
rate using region-specific data (“Empirical Bayes – Region” in the figure) is
just below the OLS replication rate but much higher than the BY rate. When
the posterior leverages global data (“Empirical Bayes – All” in the figure), the
replication rate is even higher, reflecting the benefits of sharing information
across regions, as recommended by the dependence among alphas in the hier-
archical model.

Finally, we use the global model to compute, for each factor, the
capitalization-weighted average alpha across all countries in our sample
(“World” in the figure). Using data from around the world, we find a Bayesian
replication rate of 82.4%.

In summary, our EB-All method yields a high replication rate in all regions.
That said, the OLS replication rates are lower outside the U.S. than in the
U.S., which is primarily due to the fact that foreign markets have shorter time
samples—the point estimates of alphas are similar in magnitude for the U.S.
and international data. Figure 7 shows the alpha of each U.S. factor against
the alpha of the corresponding factor for the world ex.-U.S. universe. The data
cloud aligns closely with the 45o line, demonstrating the close similarity of al-
pha magnitudes in the two samples. But shorter international samples widen
confidence intervals, and this is the primary reason for the drop in OLS repli-
cation rates outside the United States.

B.2. Time-Series Out-of-Sample Evidence

McLean and Pontiff (2016) document the intriguing fact that, following pub-
lication, factor performance tends to decay. They estimate an average postpub-
lication decline of 58% in factor returns. In our data, the average in-sample
alpha is 0.49% per month and the average out-of-sample alpha is 0.26% when
looking postoriginal sample, implying a decline of 47%.

37 The developed and emerging samples are defined by the MSCI development classification
and include 23 and 27 countries, respectively. The remaining 43 countries in our sample that are
classified as neither developed nor emerging by MSCI do not appear in our developed and emerging
region portfolios, but they are included in the “world” versions of our factor portfolios.
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Figure 7. U.S. factor alphas versus world ex.-U.S. The figure compares OLS alphas for
U.S. factors versus their international counterpart. Each world ex.-U.S. factor is a capitalization-
weighted average of the factor in all other countries of our sample. Blue circles correspond to
factors that were significant in the original study, while red triangles are those for which the orig-
inal paper did not find a significant effect (or did not study the factor in terms of average return
significance). The dotted line is the 45o line. The figure also shows a regression of world ex.-U.S.
alpha on U.S. alpha. (Color figure can be viewed at wileyonlinelibrary.com)

We gain further economic insight by looking at these findings cross-
sectionally. Figure 8 provides a cross-sectional comparison of the in-sample
and out-of-sample alphas of our U.S. factors. The in-sample period is the sam-
ple studied in the original reference. The out-of-sample period in Panel A is
the period before the start of in-sample period, while in Panel B it is the period
following the in-sample period. Panel C defines out-of-sample as the combined
data from the periods before and after the originally studied sample. We find
that 82.6% of the U.S. factors that were significant in the original publication
also have positive returns in the preoriginal sample, 83.3% are positive in the
postoriginal sample, and 87.4% are positive in the combined out-of-sample pe-
riod. When we regress out-of-sample alphas on in-sample alphas using gener-
alized least squares (GLS), we find a slope coefficient of 0.57, 0.26, and 0.35 in
Panels A, B, and C, respectively. The slopes are highly significant (ranging from
t = 3.5 to t = 5.3), indicating that in-sample alphas contain something “real”
rather than being the outcome of pure data mining, as factors that performed
better in-sample also tend to perform better out-of-sample.
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Figure 8. In-sample versus out-of-sample alphas for U.S. factors. The figure shows OLS
alphas for U.S. factors during the in-sample period (i.e., the period studied in the original publi-
cation) versus out-of-sample alphas. In Panel A, out-of-sample is the period before the in-sample
period. In Panel B, out-of-sample is the period after the in-sample period. In Panel C, out-of-sample
includes both the period before and the period after the in-sample period. We require at least five
years of out-of-sample data for a factor to be included, amounting to 102, 115, and 119 factors in
Panel A, B, and C. The figure also shows feasible GLS estimates of out-of-sample alphas on in-
sample alphas. To implement feasible GLS, we assume that the error variance-covariance matrix
is proportional to the full-sample CAPM residual variance-covariance matrix, 
̂/T , described in
Appendix B. The dotted line is the 45o line. (Color figure can be viewed at wileyonlinelibrary.com)

The significantly positive slope allows us to reject the hypothesis of “pure
alpha-hacking,” which would imply a slope of zero, as seen in Proposition 1.
Further, the regression intercept is positive, while alpha-hacking of the form
studied in Proposition 1 would imply a negative intercept. That the slope coef-
ficient is positive and less than one is consistent with the basic Bayesian logic
of equation (4). As we emphasize in Section I, a Bayesian would expect at least
some attenuation in out-of-sample performance. This is because the published
studies report the OLS estimate, while Bayesian beliefs shrink the OLS esti-
mate toward the zero-alpha prior. More specifically, with no alpha-hacking or
arbitrage, the Bayesian expects a slope of approximately 0.9 using equation (5)
and our EB hyperparameters (see Table I).38 Hence, the slope coefficients in
Figure 8 are too low relative to this Bayesian benchmark. In addition to the
moderate slope, there is evidence that the dots in Figure 8 have a concave
shape (as seen more clearly in Figure IA.3). These results indicate that, while
we can rule out pure alpha-hacking (or p-hacking), there is some evidence that
the highest in-sample alphas may be data-mined or arbitraged down.

From the Bayesian perspective, another interesting evaluation of time-series
external validity is to ask whether the new information contained in out-of-
sample data moves the posterior alpha toward zero. Imagine a Bayesian ob-
serving the arrival of factor data in real time. As new data arrive, she up-
dates her beliefs for all factors based on the information in the full cross sec-
tion of factor data. In the top panel of Figure 9, we show how the Bayesian’s

38 The slope is κ = 1/(1 + σ 2/(Tτ2)) = 0.9, where σ 2 = 10%2/12, the average in-sample period
length is T = 420 months, and τ2 = τ2

c + τ2
w = (0.35%)2 + (0.21%)2 = (0.41%)2.
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Table I
Hyperparameters of the Prior Distribution Estimated by Maximum

Likelihood
This table presents τc as the estimated dispersion in cluster alphas (e.g., the dispersion in the
alpha of the value cluster alpha, momentum cluster). When we estimate a single region, τw is the
idiosyncratic dispersion of alphas within each cluster. When we jointly estimate several regions,
then τs is the estimated dispersion in alphas across signals within each cluster, and τw is the
estimated idiosyncratic dispersion in alphas for factors identified by their signal and region.

Sample τc τw τs

USA 0.35% 0.21%
Developed 0.24% 0.18%
Emerging 0.32% 0.24%
USA, Developed & Emerging 0.30% 0.19% 0.10%
World 0.37% 0.23%
World ex.-US 0.29% 0.20%
USA—Mega 0.26% 0.16%
USA—Large 0.31% 0.18%
USA—Small 0.44% 0.26%
USA—Micro 0.48% 0.32%
USA—Nano 0.42% 0.28%

Figure 9. World factor alpha posterior distribution over time. The top panel depicts the
CAPM alpha and 95% posterior confidence interval for an equal-weighted portfolio of world fac-
tors based on EB posteriors reestimated in December each year. That is, each blue circle is
E( 1

N
∑

i αi| data until time t) and the vertical lines are ±2 times the posterior volatility. Red trian-
gles show average OLS alpha at each point in time, 1

N
∑

i α̂i
ti
0,t

, estimated using data through date

t. The bottom panel reports the average monthly alpha for all factors in a rolling five-year window.
The results are based on factors found to be significant in the original paper with data available
since 1955. (Color figure can be viewed at wileyonlinelibrary.com)
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posterior of the average alpha would have evolved in real time.39 We focus
on all the world factors that are available since at least 1955 and significant
in the original paper. Starting in 1960, we reestimate the hierarchical model
using the EB estimator in December of each year. The plot shows the CAPM
alpha and corresponding 95% confidence interval of an equal-weighted portfo-
lio of the available factors. The posterior mean alpha becomes relatively stable
from the mid-1980s, around 0.4% per month. Further, as empirical evidence
has accumulated over time, the confidence interval narrows by one-third, from
about 0.16% in 1960 to 0.10% in 2020.

To understand the posterior alpha, Figure 9 also shows the average OLS al-
pha (red triangles) and the bottom panel in Figure 9 shows the rolling five-year
average monthly alpha among all these factors. We see that the EB posterior is
below the OLS estimate, especially in the beginning, which occurs because the
Bayesian posterior is shrunk toward the zero prior. Naturally, periods of good
performance increase the posterior mean as well as the OLS estimate, and vice
versa for poor performance. Over time, the OLS estimate moves nearer to the
Bayesian posterior mean.

To further understand why the posterior alpha is relatively stable with a
tightening confidence interval, consider the following simple example. Suppose
a researcher has T = 10 years of data for factors with an OLS alpha estimate
of α̂ = 10% with standard error σ/

√
T . Further, assume that their zero-alpha

prior is equally as informative as their 10-year sample (i.e., τ = σ/
√

T). Then,
the shrinkage factor is κ = 1/2 using equation (5). So, after observing the first
10 years with α̂ = 10%, the Bayesian expects a future alpha of E(α|α̂) = 5%
(equation (4)). What happens if this Bayesian belief is confirmed by additional
data, that is, the factor realizes an alpha of 5% over the next 10 years? In this
case, the full-sample OLS alpha is α̂ = 7.5%, but now the shrinkage factor
becomes κ = 2/3 because the sample length doubles, T = 20. This results in
a posterior alpha of E(α|α̂) = 7.5% · 2/3 = 5%. Naturally, when beliefs are
confirmed by additional data, the posterior mean does not change. Neverthe-
less, we learn something from the additional data, because our conviction
increases as the posterior variance is reduced. If σ = 0.1, the posterior volatil-
ity

√
Var(α|α̂) = σ

√
κ
T goes from 2.2% with 10 years of data to 1.8% with 20

years of data, and the confidence interval, [E(α|α̂) ± 2
√

Var(α|α̂)], decreases
from [0.5%, 9.5%] to [1.3%, 8.7%].

C. Bayesian MT

A great advantage of Bayesian methods for tackling challenges in MT is that,
from the posterior distribution, we can make explicit probability calculations

39 Here, we keep τc and τw fixed at their full-sample values of 0.37% and 0.23% to mimic the idea
of a decision maker who starts with a given prior and updates this view based on new data, while
keeping the prior fixed. Figure IA.4 shows that the figure is almost the same with rolling estimates
of τc and τw, and Figure IA.5 shows that this consistency arises because the rolling estimates are
relatively stable.
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for essentially any inferential question. We simulate from our EB posterior to
investigate the FDRs and FWERs among the set of global factors that were
significant in the original study. We define a false discovery as a factor where
we claim that the alpha is positive, but the true alpha is negative.40

First, based on Proposition 5, we calculate the Bayesian FDR in our sample
as the average posterior probability of a false discovery, p-null, among all
discoveries. We find that FDRBayes = 0.1%, meaning that we expect roughly
one discovery in 1,000 to be a false positive given our Bayesian hierarchical
model estimates. The posterior standard error for FDRBayes is 0.3% with a
confidence interval of [0,1%]. In other words, the model generates a highly
conservative MT adjustment in the sense that once a factor is found to be
significant, we can be relatively confident that the effect is genuine.

We can also use the posterior to make other inference calculations. We com-
pute the FWER, which we define as the probability of at least one false discov-
ery. We simulate 1,000,000 draws of the vector of alphas that were deemed to
be discoveries from the EB posterior and compute

FWERBayes = 1
1,000,000

1,000,000∑
s=1

1{ns≥1} = 5.5%,

where ns is the number of false discoveries in simulation s. In other words, the
probability of at least one alpha having the wrong sign is 5.5%. The FWERBayes

is naturally much higher than the FDRBayes given the extreme conservatism
built into the FWER’s definition. Whether it is too high is subjective. A nice
aspect of our approach is that a researcher can control the FWERBayes as de-
sired. For example, using a t-statistic threshold of 2.78 rather than 1.96 leads
to FWERBayes = 0.8%.

From the posterior, we can also compute the expected fraction of dis-
covered factors that are “true,” which in general is different than the
replication rate. The replication rate is the fraction of factors having
E(αi|data)/σ (αi|data) > 1.96, while the expected fraction of true factors is
1
n

∑
i E(1αi>0|data) = 1

n

∑
i Pr(αi > 0|data). The replication rate gives a conser-

vative take on the number of true factors—the expected fraction of true factors
is typically higher than the replication rate. To understand this conservatism,
consider an example in which all factors have a 90% posterior probability of
being true. These would all individually be counted as “not replicated,” but
they would contribute to a high expected fraction of true factors. Indeed, we
estimate that the expected fraction of factors with truly positive alphas is 94%
(with a posterior standard error of 1.3%), which is notably higher than our
estimated replication rate.

40 In particular, we define a discovery as a factor for which the posterior probability of the true
alpha being negative is less than 2.5%. With this definition, we start with 153 world factors. We
then focus on the 119 factors that were significant in the original studies. Of these 119 factors, 98
are considered discoveries.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



36 The Journal of Finance®

C.1. Economic Benefits of More Powerful Tests

MT adjustments should ultimately be evaluated by whether they lead to
better decisions. It is important to balance the relative costs of false posi-
tives versus false negatives, and the appropriate trade-off depends on the
context of the problem (Greenland and Hofman (2019)). We apply this general
principle in our context by directly measuring costs in terms of investment
performance. Specifically, we can compute the difference in out-of-sample
investment performance from investing using factors chosen with different
methods. We compare two alternatives. One is the BY decision rule advocated
by Harvey, Liu, and Zhu (2016), which is a frequentist MT method that suc-
cessfully controls false discoveries relative to OLS, but in doing so sacrifices
power (the ability to detect true positives). The second alternative is our EB
method, whose false discovery control typically lies somewhere between BY
and unadjusted OLS. EB uses the data sample itself to decide whether its
discoveries should behave more similarly to BY or to unadjusted OLS.

For investors, the optimal decision rule is the one that leads to the best per-
formance out-of-sample. For the most part, the set of discovered factors for BY
and EB coincide. It is only in marginal cases where they disagree, which occurs
in our sample when EB makes a discovery that BY deems insignificant. There-
fore, to evaluate MT approaches in economic terms, we track the out-of-sample
performance of factors included by EB but excluded by BY. If the performance
of these is negative on average, then the BY correction is warranted and pre-
ferred by the investor.

We find that the out-of-sample performance of factors discovered by EB
but not BY is positive on average and highly significant. The alpha for these
marginal cases is 0.35% per month among U.S. factors (t = 5.1).41 This esti-
mate suggests that the BY decision rule is too conservative: An investor using
the rule would fail to invest in factors that subsequently have a high out-of-
sample return. Another way to see that the BY decision rule is too conser-
vative comes from the connection between the Sharpe ratio and t-statistics:
t = SR

√
T . If we have a factor with an annual Sharpe ratio of 0.5, an investor

using the 1.96 cutoff would in expectation invest in the factor after 15 years,
whereas an investor using the 2.78 cutoff would not start investing until ob-
serving the factor for 31 years.

C.2. Addressing Unobserved Factors, Publication Bias, and Other Biases

A potential concern with our replication rate is that the set of factors that
make it into the literature is a selected sample. In particular, researchers may
have tried many different factors, some of which are observed in the literature,
while others are unobserved because they never got published. Unobserved

41 For the developed ex.-U.S. sample, the monthly alpha for marginal cases is 0.24% per month
(t = 5.3), and for the emerging sample it is 0.27% (t = 3.7), in favor of the EB decision rule. Table
IA.I reports additional details for this analysis.
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Figure 10. Replication rate with prior estimated in light of unobserved factors. The
figure shows how the replication rate in the United States varies when changing the τc parameter.
The τw parameter is fixed at the estimate value of 0.21%. The dotted line shows our replication
rate of 82.4%. The green square highlights the value estimated in the data τc = 0.35%. The red
triangle and the blue circle highlight values that are found by estimating the EB model according
to assumptions about unobserved factors from Harvey, Liu, and Zhu (2016). The values are τc =
0.28% in the baseline scenario and τc = 0.20% in the conservative scenario. A description of this
approach can be found in Section IV of the Internet Appendix. (Color figure can be viewed at
wileyonlinelibrary.com)

factors may have worse average performance if poor performance makes pub-
lication more difficult or less desirable. Alternatively, unobserved factors could
have strong performance if people chose to trade on them in secret rather than
publish them. Either way, we next show how unobserved factors can be ad-
dressed in our framework.

The key insight is that the performance of factors across the universe of
observed and unobserved factors is captured in our prior parameters τc, τw.
Indeed, large values of these priors correspond to a large dispersion of alphas
(i.e., a lot of large alphas “out there”), while small values mean that most true
alphas are close to zero. Therefore, a smaller τ leads to stronger shrinkage
toward zero for our posterior alphas, leading to fewer factor “discoveries” and
a lower replication rate. Figure 10 shows how our estimated replication rate
depends on the most important prior parameter, τc, based on the τw that we
estimate from the data.42

In Figure 10, we show how the replication rate varies with τc in precise
quantitative terms. Note that while the replication rate does indeed rise with
τc, the differences are small in magnitude across a large range of τc values,
demonstrating robustness of our conclusions about replicability.

42 Figure IA.6 shows that the results are robust to alternative values of τw.
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The stable replication rate in Figure 10 also suggests that the replication
rate among the observed factors would be similar even if we had observed
the unobserved factors. The figure highlights several key values of τc: both
the value of τc that we estimated from the observed data (as explained in Ap-
pendix B) and values that adjust for unobserved data in different ways.

We adjust τc for unobserved factors as follows. We simulate a data set that
proxies for the full set of factors in the population (including those that are
unobserved), and then estimate the τ ’s that match this sample. One set of
simulations is constructed to match the baseline scenario of Harvey, Liu, and
Zhu (2016, table 5.A, row 1), which estimates that researchers have tried
M = 1, 297 factors, of which 39.6% have zero alpha and the rest have a Sharpe
ratio of 0.44. We also consider the more conservative scenario of Harvey, Liu,
and Zhu (2016, table 5.B, row 1), which implies that researchers have tried
M = 2, 458 factors, of which 68.3% have zero alpha. Section IV of the Internet
Appendix provides more details on these simulations. The result, as seen in
Figure 10, is that values of τc that correspond to these scenarios from Harvey,
Liu, and Zhu (2016) still lead to a conclusion of a high replication rate in our
factor universe. The replication rate is 81.5%, and 79.8% for the prior hyper-
parameters implied by the baseline and conservative scenario, respectively.

A closely related bias is that factors may suffer from alpha-hacking as dis-
cussed in Section I.A (Proposition 1), which makes realized in-sample factor
returns too high. To account for this bias, we estimate the prior hyperparam-
eters using only out-of-sample data. The estimated values are τc = 0.27% and
τw = 0.22%. These hyperparameters are similar to those implied by the base-
line scenario of Harvey, Liu, and Zhu (2016) as seen in Figure 10. With these
hyperparameters, the replication rate is 81.5%.

D. Economic Significance of Factors

Which factors (and which themes) are the most impactful anomalies in eco-
nomic terms? We shed light on this question by identifying which factors mat-
ter most from an investment performance standpoint.

Figure 11 shows the alpha confidence intervals for all world factors, sorted by
the median posterior alpha within clusters. This figure is similar to Figure 4,
but now we focus on the world instead of the U.S. factors, and here we sort
factors into clusters. We also focus on factors that the original studies conclude
are significant. We see that world factor alphas tend to be economically large,
often above 0.3% per month, and highly significant in most clusters. The ex-
ception is the low-leverage cluster, where we also see a low replication rate in
preceding analyses.

D.1. By Region and By Size

We next consider which factors are most economically important across
global regions and across stock size groups. In Panel A of Figure 12, we con-
struct factors using only stocks in the five size subsamples presented earlier
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Figure 11. World alpha posterior by factor and cluster. The figure reports the EB posterior
95% confidence interval for the true alpha of a world factor create as a capitalization-weighted
average of all country-specific factors in our data set. We only include factors that the original
paper finds significant. (Color figure can be viewed at wileyonlinelibrary.com)

in Figure 5, namely, mega, large, small, micro, and nano stock samples. For
each sample, we calculate cluster-level alphas as the equal-weighted average
alpha of rank-weighted factors within the cluster.43 We see, perhaps surpris-
ingly, that the ordering and magnitude of alphas is broadly similar across size
groups. The Spearman rank correlation of alphas for mega caps versus mi-
cro caps is 73%. Only the nano stock sample, defined as stocks below the 1st

percentile of the NYSE size distribution (which amounted to 458 out of 4,356
stocks in the United States at the end of 2020), exhibits notable deviation from
the other groups. The Spearman rank correlation between alphas of mega caps
and nano caps is 36%.

Panel B of Figure 12 shows cluster-level alphas across regions. Again, we
find consistency in alphas across the globe, with the obvious standout being
the size theme, which is much more important in emerging markets than in
developed markets. U.S. factor alphas share a 62% Spearman correlation with
the developed ex.-U.S. sample, and a 43% correlation with the emerging mar-
kets sample.

D.2. Controlling for Other Themes

We have focused so far on whether factors (or clusters) possess significant
positive alpha relative to the market. The limitation of studying factors in

43 Rank-weighting is similar to equal-weighting and used here to illustrate the performance of
typical stocks in each size group. See equation (1) in Asness, Moskowitz, and Pedersen (2013).
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Figure 12. Alphas by stock size group and geographic region. The figure presents aver-
age cluster-level alphas for factors formed from subsamples defined by different stock market
capitalization groups (Panel A) and regions (Panel B). (Color figure can be viewed at wileyonlineli-
brary.com)

terms of CAPM alpha is that it does not control for duplicate behavior other
than through the market factor. Economically important factors are those that
have large impact on an investor’s overall portfolio, and this requires under-
standing which clusters contribute alpha while controlling for all others.

To this end, we estimate cluster weights in a tangency portfolio that in-
vests jointly in all cluster-level portfolios. We test the significance of the
estimated weights using the method of Britten-Jones (1999). In addition to
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Figure 13. Tangency portfolio weights. The returns are from U.S. portfolios. We compute the
cluster return as the equal-weighted return of all factors with data available at a given point
in time. We further add the U.S. market return. We estimate the tangency weights following the
method of Britten-Jones (1999) with a nonnegativity constraint. The error bars are 90% confidence
intervals based on 10,000 bootstrap samples and the percentile method. The data start in 1952 to
ensure that all clusters have nonmissing observations. (Color figure can be viewed at wileyon-
linelibrary.com)

our 13 cluster-level factors, we also include the market portfolio as a way to
benchmark factors to the CAPM null. Lastly, we constrain all weights to be
nonnegative (because we have signed the factors to have positive expected
returns according to the findings of the original studies).

Figure 13 reports the estimated tangency portfolio weights and their 90%
bootstrap confidence intervals. When a factor has a significant weight in the
tangency portfolio, it means that it matters for an investor, even controlling
for all the other factors. We see that all but three clusters are significant in
this sense. We also see that conclusions about cluster importance change when
clusters are studied jointly. For example, value factors become stronger when
controlling for other effects because of their hedging benefits relative to mo-
mentum, quality, and low leverage. More surprisingly, the low-leverage cluster
becomes one of the most heavily weighted clusters, in large part due to its
ability to hedge value and low-risk factors. The hedging performance of value
and low-leverage clusters is clearly discernible in Table IA.16, which shows
the average pairwise correlations among factors within and across clusters.44

Section VI of the Internet Appendix provides further performance attribution
of the tangency portfolio at the factor level.45

44 Tables IA.9 and IA.10 show how tangency portfolio weights vary by region and by size group.
45 Figure IA.11 shows the performance of each cluster together with the market portfo-

lio, Figure IA.12 shows how the optimal portfolio changes when one cluster is excluded, and
Figure IA.14 shows the importance of each factor for the optimal portfolio.
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Figure 14. The evolution of the tangency Sharpe ratio. The top panel shows the Sharpe
ratio on the ex post tangency portfolio. A factor is included in the tangency portfolio only after
the end of the sample in which the factor was studied in the original publication (we only include
factors that were found to be significant in the original paper). We highlight selected factors that
significantly improve the optimal portfolio, starting with the market portfolio. We use the longest
available balanced U.S. sample, 1972 to 2020 (i.e., when all factors are available).

D.3. Evolution of Finance Factor Research

The number of published factors has increased over time as seen in the bot-
tom panel of Figure 14. To what extent have these new factors continued to
add new insights versus simply repackage existing information?

To address this question, we consider how the optimal risk-return tradeoff
has evolved over time as factors have been discovered. Specifically, Figure 14
computes the monthly Sharpe ratio of the ex post tangency portfolio that only
invests in factors discovered by a certain point in time.46 The starting point (on
the left) of the analysis is the 0.13 Sharpe ratio of the market portfolio in the
U.S. sample over 1972 to 2020 when all factors are available. The ending point
(on the right) is the 0.80 Sharpe ratio of the tangency portfolio that invests
the optimal weights across all factors over the same U.S. sample period.47 In
between, we see how the Sharpe ratio of the tangency portfolio has evolved as
factors have been discovered. The improvement is gradual over time, but we
also see occasional large increases when researchers have discovered especially
impactful factors (usually corresponding to new themes in our classification
scheme). An example is the operating accruals factor proposed by Sloan (1996),

46 We estimate tangency portfolio weights following the method of Pedersen, Babu, and Levine
(2021), which offers a sensible approach to mean-variance optimization for high-dimensional data.
Estimation details are provided in Section VI of the Internet Appendix.

47 The high Sharpe ratio partly reflects the fact that we are conducting in-sample optimization.
If we instead run a pseudo out-of-sample analysis via cross-validation, we find a monthly Sharpe
ratio of 0.56.
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which increased the tangency Sharpe ratio from 0.43 to 0.56. More recently,
the seasonality factors of Heston and Sadka (2008) have increased the Sharpe
ratio from 0.65 to 0.74.

IV. Conclusion: Finance Research Posterior

We introduce a hierarchical Bayesian model of alphas that emphasizes the
joint behavior of factors and provides a more powerful MT adjustment than
common frequentist methods. Based on this framework, we revisit the evi-
dence on replicability in factor research and come to substantially different
conclusions than prior literature. We find that U.S. equity factors have a high
degree of internal validity in the sense that over 80% of factors remain signifi-
cant after modifications in factor construction that make all factors consistent
and more implementable while still capturing the original signal (Hamermesh
(2007)) and after accounting for MT concerns (Harvey, Liu, and Zhu (2016),
Harvey (2017)).

We also provide new evidence demonstrating a high degree of external va-
lidity in factor research. In particular, we find highly similar qualitative and
quantitative behavior in a large sample of 153 factors across 93 countries as we
find in the United States. We also show that, within the United States, factors
exhibit a high degree of consistency between their published in-sample results
and out-of-sample data not considered in the original studies. We show that
some out-of-sample factor decay is to be expected in light of Bayesian posteri-
ors based on publication evidence. Therefore, the new evidence from postpubli-
cation data largely confirms the Bayesian’s beliefs, which has led to relatively
stable Bayesian alpha estimates over time.

In addition to providing a powerful tool for replication, our Bayesian frame-
work has several additional applications. For example, the model can be
used to correctly interpret out-of-sample evidence, look for evidence of alpha-
hacking, compute the expected number of false discoveries and other relevant
statistics based on the posterior, analyze portfolio choice taking into account
both estimation uncertainty and return volatility, and evaluate asset pric-
ing models.

Finally, the code, data, and meticulous documentation for our analysis are
available online. Our large global factor data set and the underlying stock-level
characteristics are easily accessible to researchers by using our publicly avail-
able code and its direct link to WRDS. Our database will be updated regularly
with new data releases and code improvements. We hope that our methodology
and data will help promote credible finance research.

Initial submission: February 1, 2021; Accepted: July 16, 2021
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong
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Appendix A: Additional Results and Proofs

A.1. Additional Results on Alpha-Hacking

We consider the situation where the researcher has in-sample data from
time 1 to time T and an out-of-sample (oos) period from time T + 1 to T + Toos.
The researcher may have used alpha-hacking during the in-sample period, but
this does not affect the out-of-sample period. The researcher is interested in
the posterior alpha based on the total evidence, in-sample and out-of-sample,
which is useful for predicting factor performance in a future time period (i.e., a
time period that is out-of-sample relative to the existing out-of-sample period).

PROPOSITION A.1 (Out-of-sample alpha): The posterior alpha based on in-
sample data from time 1 to T with alpha-hacking, and an out-of-sample period
from T + 1 to T + Toos is given by

E(α|α̂, α̂oos) = κoos(w(α̂ − ε̄) + (1 − w)αoos), (A1)

where w = σ 2/Toos

σ̄ 2/T+σ 2/Toos ∈ (0, 1) is the relative weight on the in-sample period rel-

ative to the out-of-sample period and κoos = 1
1+1/(τ 2([σ̄ 2/T]−1+[σ 2/Toos]−1 )) is a shrink-

age parameter.

We see that the more alpha-hacking the researcher has done (higher σ̄ ),
the less weight we put on the in-sample period relative to the out-of-sample
period. Further, the in-sample period has the nonproportional discounting due
to alpha-hacking (ε̄), which we do not have for out-of-sample evidence.

This result formalizes the idea that an in-sample backtest plus live perfor-
mance is not the same as a longer backtest. For example, 10 years of backtest
plus 10 years of live performance is more meaningful that 20 years of backtest
with no live performance. The difference is that the out-of-sample performance
is free from alpha-hacking.

A.2. Proofs and Lemmas

The proofs make repeated use of the following well-known property of mul-
tivariate Normally distributed random variable. If x and y are multivariate
Normal: [

x
y

]
∼ N

([
μx
μy

]
,

[

xx 
yx

xy 
yy

])
, (A2)

then the conditional distribution of x given y has the following Normal distri-
bution:

x|y ∼ N
(
μx + 
xy


−1
yy (y − μy) , 
xx − 
xy


−1
yy 
yx

)
. (A3)

The proofs also make use of the following two lemmas.
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LEMMA A.1: For random variables x, y, and z, it holds that E(Var(x|y, z)) ≤
E(Var(x|y)) and, if the random variables are jointly normal, then Var(x|y, z) ≤
Var(x|y).

LEMMA A.2: Let A be an N × N matrix for which all diagonal elements equal a
and all off-diagonal elements equal b, where a �= b and a + b(N − 1) �= 0. Then
the inverse A−1 exists and is of the same form:

A =

⎡⎢⎣a b
. . .

b a

⎤⎥⎦ A−1 =

⎡⎢⎣ c d
. . .

d c

⎤⎥⎦ , (A4)

where c = a+b(N−2)
(a−b)(a+b(N−1)) and d = −b

(a−b)(a+b(N−1)) .

PROOF OF LEMMA A.1: Using the definition of conditional variance, we have

E(Var(x|y, z)) = E(E(x2|y, z)) − E(
[
E(x|y, z)

]2) = E(x2) − E(
[
E(x|y, z)

]2).

Hence, using Jensen’s inequality, we have

E(Var(x|y)) − E(Var(x|y, z)) =E(
[
E(x|y, z)

]2) − E(
[
E(x|y)

]2)

=E(
[
E(x|y, z)

]2) − E(
[
E(E(x|y, z)|y)

]2)

≥E(
[
E(x|y, z)

]2) − E(E(
[
E(x|y, z)

]2|y)) = 0.

The result for normal distributions follows from the fact that normal condi-
tional variances are nonstochastic, that is, Var(x|y) = E(Var(x|y)). In this case,
we can also characterize the extra drop in variance due to conditioning on
z using its orthogonal component ε from the regression z = a + by + ε, using
similar notation as (A2):

Var(x|y, z) = Var(x|y, ε) =
x,x − 
x,(y,ε)

−1
(y,ε),(y,ε)
(y,ε),x

=
x,x − 
x,y

−1
y,y 
y,x − 
x,ε


−1
ε,ε 
ε,x = Var(x|y) − 
x,ε


−1
ε,ε 
ε,x.

�

PROOF OF LEMMA A.2: The proof follows from inspection: The product of A and
its proposed inverse clearly has the same form as A with diagonal elements

ac + bd(I − 1) = a(a + b(N − 2)) − b2(N − 1)
(a − b)(a + b(N − 1))

= a2 + ab(N − 1) − ab − b2(N − 1)
(a − b)(a + b(N − 1))

= 1

and off-diagonal elements

ad + bc + bd(N − 2) = −ab + b(a + b(N − 2)) − b2(N − 2)
(a − b)2(a + b(N − 1))2 = 0.

In other words, AA−1 equals the identity, proving the result. �
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PROOF OF EQUATIONS (4) to (6): The posterior distribution of the true alpha
given the observed factor return is computed using (A3). The conditional mean
is

E(α|α̂) = 0 + Cov(α, α̂)
Var(α̂)

(α̂ − 0) = τ 2

τ 2 + σ 2/T
α̂ = κα̂,

where κ is given by (5) and the posterior variance is

Var(α|α̂) = Var(α) − (Cov(α, α̂))2

Var(α̂)
= τ 2 − τ 2 τ 2

τ 2 + σ 2/T
= τ 2σ 2/T

τ 2 + σ 2/T
= κ

σ 2

T
.

�

PROOF OF PROPOSITION 1: The posterior alpha with alpha-hacking is given
via (A3) as

E(α|α̂) = 0 + Cov(α, α̂)
Var(α̂)

(α̂ − E(α̂)) = τ 2

τ 2 + σ̄ 2/T
(α̂ − ε̄) = −κ0 + κhackingα̂,

where κhacking = 1
1+ σ̄2

τ2T

, κ0 = κhackingε̄ ≥ 0, and κhacking ≤ κ because σ̄ ≥ σ . �

PROOF OF PROPOSITION 2: The posterior mean given α̂ and α̂g is computed
via (A3) as

E(α|α̂, α̂g) = [τ 2 τ 2
] [ τ 2 + σ 2

T τ 2 + ρσ 2
T

τ 2 + ρσ 2
T τ 2 + σ 2

T

]−1 [
α̂

α̂g

]
= 1

det
[
τ 2 τ 2

] [ τ 2 + σ 2
T −(τ 2 + ρσ 2

T )
−(τ 2 + ρσ 2

T ) τ 2 + σ 2
T

] [
α̂

α̂g

]

= τ 2(1 − ρ)σ 2
T

det
(
α̂ + α̂g)

= τ 2(1 − ρ)
σ 2

T (1 − ρ)(1 + ρ) + 2τ 2(1 − ρ)

(
α̂ + α̂g)

= κg
(

1
2

α̂ + 1
2

α̂g
)

using the notation σ 2
T = σ 2/T and

det = (τ 2 + σ 2
T )2 − (τ 2 + ρσ 2

T )2 = σ 2
T [σ 2

T (1 − ρ2) + 2τ 2(1 − ρ)].

The global shrinkage parameter κg is in [κ, 1] and decreases with the corre-
lation ρ, attaining the minimum value, κg = κ, when ρ = 1 as is clearly seen
from (12).

The result about the posterior variance follows from Lemma A.1. �

PROOF OF PROPOSITION 3: The prior joint distribution of the true and esti-
mated alphas is given by the following expression, where we focus on factor 1
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without loss of generality:

⎡⎢⎢⎢⎣
α1

α̂1

...
α̂N

⎤⎥⎥⎥⎦ ∼ N

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0
0
...
0

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
τ 2

c + τ 2
w τ 2

c + τ 2
w τ 2

c · · · τ 2
c

τ 2
c + τ 2

w τ 2
c + τ 2

w + σ 2/T τ 2
c + ρσ 2/T

τ 2
c

...
. . .

τ 2
c τ 2

c + ρσ 2/T τ 2
c + τ 2

w + σ 2/T

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠.

(A5)

The posterior alpha of factor 1 is therefore normally distributed with a mean
derived using the standard formula for conditional normal distributions (A3):

E(α1|α̂1, . . . , α̂N ) =

⎡⎢⎢⎢⎢⎣
τ2

c + τ2
w

τ2
c
...

τ2
c

⎤⎥⎥⎥⎥⎦
 ⎡⎢⎢⎣

τ2
c + τ2

w + σ 2/T τ2
c + ρσ 2/T

. . .
τ2

c + ρσ 2/T τ2
c + τ2

w + σ 2/T

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

α̂1

...
α̂N

⎤⎥⎥⎦ .

We next use Lemma A.2 and its notation, that is, a = τ 2
c + τ 2

w + σ 2/T , b = τ 2
c +

ρσ 2/T , and c′, d are defined accordingly, where we use the notation c′ to avoid
confusion with the c in equation (14). This application of Lemma A.2 yields

E(α1|α̂1, . . . , α̂N ) =

⎡⎢⎢⎢⎣
τ 2

c + τ 2
w

τ 2
c
...

τ 2
c

⎤⎥⎥⎥⎦
⎡⎢⎣c′ d

. . .
d c′

⎤⎥⎦
⎡⎢⎣ α̂1

...
α̂N

⎤⎥⎦

=

⎡⎢⎢⎢⎣
τ 2

c (c′ + d(N − 1)) + τ 2
wc′

τ 2
c (c′ + d(N − 1)) + τ 2

wd
...

τ 2
c (c′ + d(N − 1)) + τ 2

wd

⎤⎥⎥⎥⎦
⎡⎢⎣ α̂1

...
α̂N

⎤⎥⎦
= (τ 2

c (c′ + d(N − 1)) + τ 2
wd)Nα̂· + τ 2

w(c′ − d)α̂1

= (τ 2
c

N
a + b(N − 1)

− τ 2
w

bN
(a − b)(a + b(N − 1))

)α̂· + τ 2
w

1
a − b

α̂1

= τ 2
c

b + a−b
N

α̂· + τ 2
w

a − b

(
α̂1 − 1

1 + a−b
bN

α̂·
)

= τ 2
c

τ 2
c + ρσ 2/T + τ 2

w+(1−ρ)σ 2/T
N

α̂· + τ 2
w

τ 2
w + (1 − ρ)σ 2/T

⎛⎝α̂1 − 1

1 + τ 2
w+(1−ρ)σ 2/T
(τ 2

c +ρσ 2/T )N

α̂·
⎞⎠

= 1

1 + ρσ 2

τ 2
c T + τ 2

w+(1−ρ)σ 2/T
τ 2

c N

α̂· + 1

1 + (1−ρ)σ 2

τ 2
wT

⎛⎝α̂1 − 1

1 + τ 2
w+(1−ρ)σ 2/T
(τ 2

c +ρσ 2/T )N

α̂·
⎞⎠.
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The posterior has conditional variance

Var(α1|α̂1, . . . , α̂N ) = τ 2
c + τ 2

w −

⎡⎢⎢⎢⎣
τ 2

c + τ 2
w

τ 2
c
...

τ 2
c

⎤⎥⎥⎥⎦
⎡⎢⎣c′ d

. . .
d c′

⎤⎥⎦
⎡⎢⎢⎢⎣

τ 2
c + τ 2

w
τ 2

c
...

τ 2
c

⎤⎥⎥⎥⎦

= τ 2
c + τ 2

w −

⎡⎢⎢⎢⎣
τ 2

c (c′ + d(N − 1)) + τ 2
wc′

τ 2
c (c′ + d(N − 1)) + τ 2

wd
...

τ 2
c (c′ + d(N − 1)) + τ 2

wd

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

τ 2
c + τ 2

w
τ 2

c
...

τ 2
c

⎤⎥⎥⎥⎦
= τ 2

c + τ 2
w − (τ 2

c (c′ + d(N − 1)) + τ 2
wc′)(τ 2

c + τ 2
w)

−(τ 2
c (c′ + d(N − 1)) + τ 2

wd)τ 2
c (N − 1)

→ τ 2
c + τ 2

w − (τ 2
c (

1
a − b

− 1
a − b

) + τ 2
w

1
a − b

)(τ 2
c + τ 2

w)

−(τ 2
c

1
b

− τ 2
w

1
a − b

)τ 2
c

= τ 2
c + τ 2

w −
(

τ 4
w

1
a − b

+ τ 4
c

1
b

)
= τ 2

c + τ 2
w −

(
τ 4

w

τ 2
w + (1 − ρ)σ 2/T

+ τ 4
c

τ 2
c + ρσ 2/T

)
.

The last results follow from Lemma A.1. �

PROOF OF PROPOSITION 4: We write the joint prior distribution of true and
observed alphas in the multilevel hierarchical model as(

α

α̂

)
∼ N

(
α0 12NK ,

(
	 	

	 	 + 
/T

))
. (A6)

The posterior mean vector of true alphas is computed via (A3):

E(α|α̂) = 1NKα0 + 	(	 + 
/T )−1(α̂ − 1NKα0)

= (	−1 + T
−1)−1(
	−11NKα0 + T
−1α̂

)
,

using the fact that (	 + 
/T )−1 = 	−1 − 	−1(	−1 + T
−1)−1	−1 by the Wood-
bury matrix identity. The posterior variance is computed similarly via (A3) and
the same application of the Woodbury matrix identity as

Var(α|α̂) = 	 − 	(	 + 
/T )−1	 = (	−1 + T
−1)−1
.

�
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PROOF OF PROPOSITION 5: Based on the definition of the Bayesian FDR, we
have:

FDRBayes = E
(∑

i 1{i false discovery}∑
i 1{i discovery}

∣∣∣∣α̂1, . . . , α̂N, τ

)

= 1∑
i 1{i discovery}

E

(∑
i

1{i false discovery}

∣∣∣∣α̂1, . . . , α̂N, τ

)

= 1∑
i 1{i discovery}

∑
i

Pr(i false discovery|α̂1, . . . , α̂N, τ )

= 1
#discoveries

∑
i discovery

p-nulli

≤ 2.5%.

�

PROOF OF PROPOSITION A.1: The posterior mean alpha is

E(α|α̂, α̂oos) = [τ 2 τ 2
] [τ 2 + σ̄ 2

T τ 2

τ 2 τ 2 + σ 2
oos

]−1 [
α̂ − ε̄

α̂oos

]
= 1

det
[
τ 2 τ 2

] [τ 2 + σ 2
oos −τ 2

−τ 2 τ 2 + σ̄ 2
T

] [
α̂ − ε̄

α̂oos

]
= τ 2

det
(
σ 2

oos(α̂ − ε̄) + σ̄ 2
T α̂g)

= τ 2(σ̄ 2
T + σ 2

oos)
τ 2(σ̄ 2

T + σ 2
oos) + σ̄ 2

Tσ 2
oos

(
w(α̂ − ε̄) + (1 − w)αoos)

= τ 2

τ 2 + σ̄ 2
Tσ 2

oos/(σ̄ 2
T + σ 2

oos)

(
w(α̂ − ε̄) + (1 − w)αoos)

= 1
1 + 1

τ 2(σ̄−2
T +σ−2

oos )

(
w(α̂ − ε̄) + (1 − w)αoos),

using the notation σ̄ 2
T = σ̄ 2/T , σ 2

oos = σ 2/Toos, and

det = (τ 2 + σ̄ 2
T )(τ 2 + σ 2

oos) − τ 4 = τ 2(σ̄ 2
T + σ 2

oos) + σ̄ 2
Tσ 2

oos.

�
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Appendix B: EB Estimation

For convenient reference, we restate the multilevel hierarchical model of Sec-
tion I. For factor i in cluster j corresponding to signal n, the factor is

f i
t = αi + βirm

t + εi
t

with

αi = αo + c j + sn + wi,

where the alpha components are αo = 0, c j ∼ N(0, τ 2
c ), sn ∼ N(0, τ 2

s ), and wi ∼
N(0, τ 2

w). We write alpha in vector form as

α = αo 1NK + Mc + Zs + w, (B1)

where α = (α1, . . . , αNK )′, c = (c1, . . . , cJ )′, s = (s1, . . . , sN )′, w = (w1, . . . , wNK )′,
M is the NK × J matrix of cluster memberships, and Z is the NK × N matrix
indicating the characteristic that factor i is based on. Given the hyperparame-
ters (α0, τc, τs, τw), the prior mean and covariance matrix of alphas are

E[α] = 0, 	 ≡ Var(α) = MM′τ 2
c + ZZ′τ 2

s + INKτ 2
w. (B2)

The vector of return shocks is εt = (ε1
t , . . . , εNK

t )′, which is distributed εt ∼
N(0, 
).

Given this structure, we estimate the model as follows. The vector of factor
returns ft = ( f 1

t , . . . , f NK
t )′ has marginal likelihood—that is, after integrating

out the uncertain alpha components—that is distributed as

ft ∼ N(0, [	 + 
]),

or, equivalently (treating CAPM betas as known), the estimated alphas are
distributed48

α̂ ∼ N(0, [	 + 
/T]).

The matrices Z and M are given by the factor definition and cluster assign-
ment (Table IA.III), respectively. We use a plug-in estimate of the factor CAPM-
residual return covariance matrix, denoted 
̂ (discussed below). Finally, given

̂, Z, and M, we estimate the hyperparameters of the prior distribution,
(τc, τs, τw), via MLE based on the marginal likelihood.

This estimation approach is an example of the EB method. It approximates
the fully Bayesian posterior calculation (which requires integrating over a hy-
perprior distribution of hyperparameters, usually an onerous calculation) by
setting the hyperparameters to their most likely values based on the marginal
likelihood. It is particularly well suited to hierarchical Bayesian models in
which parameters for individual observations share some common structure,

48 We abstract from uncertainty in CAPM betas to emphasize the Bayesian updating of alphas.
Our conclusions are qualitatively insensitive to accounting for beta uncertainty.
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so that the realized heterogeneity across individual observations is informative
about sensible values for the hyperparameters of the prior. Our model and esti-
mation approach implementation is a minor variation on Bayesian hierarchical
normal mean models that are common in Bayesian statistics (textbook treat-
ments include Efron (2012), Gelman et al. (2013), and Maritz (2018)). We con-
duct sensitivity analysis to ensure that our results are robust to a wide range
of hyperparameters (see Figure IA.6). Also, we note that our EB methodology
is more easily replicable than a full-Bayesian setting with additional hyper-
priors as EB relies on closed-form Bayesian updating rather than numerical
integration.

To ensure cross-sectional stationarity, we scale each factor such that their
monthly idiosyncratic volatility is 10%/

√
12 (i.e., 10% annualized). To con-

struct a plug-in estimate of the factor residual return covariance matrix,
denoted 
̂, we face two main empirical challenges. First, the sample covari-
ance is poorly behaved due the relatively large number of factors compared
to the number of time-series observations. Second, we have an unbalanced
panel because different factors come online at different points in time. To
address the first challenge, we impose a block equicorrelation structure on

 based on factors’ cluster membership.49 The correlation between factors
in clusters i and j is estimated as the average correlation among all pairs
such that one factor is in cluster i and the other is in j. In our global anal-
yses, blocks correspond to region-cluster pairs. To address unbalancedness,
we use the bootstrap. In particular, we generate 10,000 bootstrap samples
that resample rows of the unbalanced factor return data set. Each boot-
strap sample is, therefore, also unbalanced, and we use this to produce a
distribution of alpha estimates. From this we calculate 
̂/T as the covari-
ance of alphas across bootstrap samples (imposing the block equicorrelation
structure).

Table I shows the estimated hyperparameters across different samples.
While most of our analysis is based on these full-sample estimates, we also
consider rolling estimates of the hyperparameters when considering out-of-
sample evidence as seen in Figure IA.5.

REFERENCES

Acharya, Viral, and Lasse Heje Pedersen, 2005, Asset pricing with liquidity risk, Journal of Fi-
nancial Economics 77, 375–410.

Amihud, Yakov, and Haim Mendelson, 1986, Asset pricing and the bid-ask spread, Journal of
Financial Economics 17, 223–249.

Asness, Cliff, Tobias Moskowitz, and Lasse Heje Pedersen, 2013, Value and momentum every-
where, Journal of Finance 68, 929–985.

49 As advocated by Engle and Kelly (2012) and Elton, Gruber, and Spitzer (2006), block equicor-
relation constrains all pairs of factors in the same block to share a single correlation parameter,
and likewise for cross-block correlations. This stabilizes covariance matrix estimates by dramat-
ically reducing the parameterization of the correlation matrix, while leaving the individual vari-
ance estimates unchanged.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1016/j.jfineco.2004.06.007
http://dx.doi.org/10.1016/j.jfineco.2004.06.007
http://dx.doi.org/10.1016/0304-405X(86)90065-6
http://dx.doi.org/10.1016/0304-405X(86)90065-6
http://dx.doi.org/10.1111/jofi.12021


52 The Journal of Finance®

Asness, Clifford, and Andrea Frazzini, 2013, The devil in HML’s details, Journal of Portfolio Man-
agement 39, 49–68.

Benjamini, Yoav, and Yosef Hochberg, 1995, Controlling the false discovery rate: A practical
and powerful approach to multiple testing, Journal of the Royal Statistical Society: Series
B (Methodological) 57, 289–300.

Benjamini, Yoav, and Daniel Yekutieli, 2001, The control of the false discovery rate in multiple
testing under dependency, Annals of Statistics 29, 1165–1188.

Berry, Donald A., and Yosef Hochberg, 1999, Bayesian perspectives on multiple comparisons,
Journal of Statistical Planning and Inference 82, 215–227.

Bettis, Richard A, 2012, The search for asterisks: Compromised statistical tests and flawed theo-
ries, Strategic Management Journal 33, 108–113.

Britten-Jones, Mark, 1999, The sampling error in estimates of mean-variance efficient portfolio
weights, Journal of Finance 54, 655–671.

Bryzgalova, Svetlana, Jiantao Huang, and Christian Julliard, 2023, Bayesian solutions for the
factor zoo: We just ran two quadrillion models, Journal of Finance, 78, 487–557.

Chen, Andrew Y., 2021, The limits of p-hacking: Some thought experiments, Journal of Finance,
76, 2447–2480.

Chen, Andrew Y., and Tom Zimmermann, 2022, Open source cross-sectional asset pricing, Critical
Finance Review, 11, 207–264.

Chen, Andrew Y., and Tom Zimmermann, 2020b, Publication bias and the cross-section of stock
returns, Review of Asset Pricing Studies 10, 249–289.

Chinco, Alex, Andreas Neuhierl, and Michael Weber, 2021, Estimating the anomaly base rate,
Journal of Financial Economics 140, 101–126.

Chordia, Tarun, Amit Goyal, and Alessio Saretto, 2020, Anomalies and false rejections, Review of
Financial Studies 33, 2134–2179.

Cochrane, John H., 2011, Presidential address: Discount rates, Journal of Finance 66, 1047–1108.
Efron, Bradley, 2007, Size, power and false discovery rates, Annals of Statistics 35, 1351–1377.
Efron, Bradley, 2012, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and

Prediction, volume 1 (Cambridge University Press, Cambridge).
Efron, Bradley, and Robert Tibshirani, 2002, Empirical Bayes methods and false discovery rates

for microarrays, Genetic Epidemiology 23, 70–86.
Elton, Edwin J., Martin J. Gruber, and Jonathan Spitzer, 2006, Improved estimates of correla-

tion coefficients and their impact on optimum portfolios, European Financial Management 12,
303–318.

Engle, Robert, and Bryan Kelly, 2012, Dynamic equicorrelation, Journal of Business & Economic
Statistics 30, 212–228.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics 33, 3–56.

Feng, Guanhao, Stefano Giglio, and Dacheng Xiu, 2020, Taming the factor zoo: A test of new
factors, Journal of Finance 75, 1327–1370.

Frazzini, Andrea, and Lasse Heje Pedersen, 2014, Betting against beta, Journal of Financial Eco-
nomics 111, 1–25.

Gelman, Andrew, 2016, Bayesian inference completely solves the multiple comparisons
problem, Statistical Modeling, Causal Inference, and Social Science. Available at
https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-solves-
the-multiple-comparisons-problem/.

Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.
Rubin, 2013, Bayesian Data Analysis:, third edition (CRC Press, New York).

Gelman, Andrew, Jennifer Hill, and Masanao Yajima, 2012, Why we (usually) don’t have to worry
about multiple comparisons, Journal of Research on Educational Effectiveness 5, 189–211.

Green, Jeremiah, John R.M. Hand, and X. Frank Zhang, 2017, The characteristics that provide
independent information about average us monthly stock returns, Review of Financial Studies
30, 4389–4436.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.3905/jpm.2013.39.4.049
http://dx.doi.org/10.3905/jpm.2013.39.4.049
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1016/S0378-3758(99)00044-0
http://dx.doi.org/10.1002/smj.975
http://dx.doi.org/10.1111/0022-1082.00120
http://dx.doi.org/10.1111/jofi.13197
http://dx.doi.org/10.1111/jofi.13036
http://dx.doi.org/10.1561/104.00000112
http://dx.doi.org/10.1561/104.00000112
http://dx.doi.org/10.1093/rapstu/raz011
http://dx.doi.org/10.1016/j.jfineco.2020.12.003
http://dx.doi.org/10.1093/rfs/hhaa018
http://dx.doi.org/10.1093/rfs/hhaa018
http://dx.doi.org/10.1111/j.1540-6261.2011.01671.x
http://dx.doi.org/10.1002/gepi.1124
http://dx.doi.org/10.1111/j.1354-7798.2006.00322.x
http://dx.doi.org/10.1080/07350015.2011.652048
http://dx.doi.org/10.1080/07350015.2011.652048
http://dx.doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/10.1111/jofi.12883
http://dx.doi.org/10.1016/j.jfineco.2013.10.005
http://dx.doi.org/10.1016/j.jfineco.2013.10.005
https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-solves-the-multiple-comparisons-problem/
https://statmodeling.stat.columbia.edu/2016/08/22/bayesian-inference-completely-solves-the-multiple-comparisons-problem/
http://dx.doi.org/10.1080/19345747.2011.618213
http://dx.doi.org/10.1093/rfs/hhx019


Is There a Replication Crisis in Finance? 53

Greenland, Sander, and Albert Hofman, 2019, Multiple comparisons controversies are about con-
text and costs, not frequentism versus Bayesianism, European Journal of Epidemiology 34,
801–808.

Greenland, Sander, and James M. Robins, 1991, Empirical-Bayes adjustments for multiple com-
parisons are sometimes useful, Epidemiology, 2, 244–251.

Hamermesh, Daniel S., 2007, Replication in economics, Canadian Journal of Economics/Revue
canadienne d’économique 40, 715–733.

Harvey, Campbell R., 2017, Presidential address: The scientific outlook in financial economics,
Journal of Finance 72, 1399–1440.

Harvey, Campbell R., Yan Liu, and Heqing Zhu, 2016, …and the cross-section of expected returns,
Review of Financial Studies 29, 5–68.

Heston, Steven L., and Ronnie Sadka, 2008, Seasonality in the cross-section of stock returns,
Journal of Financial Economics 87, 418–445.

Hou, Kewei, Chen Xue, and Lu Zhang, 2020, Replicating anomalies, Review of Financial Studies
33, 2019–2133.

Ilmanen, Antti, Ronen Israel, Tobias J Moskowitz, Rachel Lee, and Ashwin K. Thapar, 2021, How
do factor premia vary over time? A century of evidence, Journal of Investment Management,
19, 15–57.

Ioannidis, John PA., 2005, Why most published research findings are false, PLoS Medicine 2, e124.
Jacobs, Heiko, and Sebastian Müller, 2020, Anomalies across the globe: Once public, no longer

existent?, Journal of Financial Economics 135, 213–230.
Kelly, Bryan T., Seth Pruitt, and Yinan Su, 2019, Characteristics are covariances: A unified model

of risk and return, Journal of Financial Economics 134, 501–524.
Koijen, Ralph S.J., Tobias J. Moskowitz, Lasse Heje Pedersen, and Evert B. Vrugt, 2018, Carry,

Journal of Financial Economics 127, 197–225.
Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2020, Shrinking the cross-section, Journal of

Financial Economics 135, 271–292.
Linnainmaa, Juhani T., and Michael R. Roberts, 2018, The history of the cross-section of stock

returns, Review of Financial Studies 31, 2606–2649.
Maniadis, Zacharias, Fabio Tufano, and John A. List, 2017, To replicate or not to replicate? Explor-

ing reproducibility in economics through the lens of a model and a pilot study, The Economic
Journal 127, F209–F235.

Maritz, Johannes S., 2018, Empirical Bayes Methods with Applications, second edition (CRC Press,
New York).

McLean, R. David, and Jeffrey Pontiff, 2016, Does academic research destroy stock return pre-
dictability? Journal of Finance 71, 5–32.

Moskowitz, Tobias J., Yao Hua Ooi, and Lasse Heje Pedersen, 2012, Time series momentum,
Journal of Financial Economics 104, 228–250.

Murtagh, Fionn, and Pierre Legendre, 2014, Ward’s hierarchical agglomerative clustering method:
Which algorithms implement Ward’s criterion? Journal of Classification 31, 274–295.

Nosek, Brian A., Jeffrey R. Spies, and Matt Motyl, 2012, Scientific utopia: II. Restructuring incen-
tives and practices to promote truth over publishability, Perspectives on Psychological Science
7, 615–631.

Pedersen, Lasse Heje, Abhilash Babu, and Ari Levine, 2021, Enhanced portfolio optimization,
Financial Analysts Journal 77, 124–151.

Shumway, Tyler, 1997, The delisting bias in CRSP data, Journal of Finance 52, 327–340.
Sloan, Richard G., 1996, Do stock prices fully reflect information in accruals and cash flows about

future earnings? Accounting Review 71, 289–315.
Ward, Joe H., 1963, Hierarchical grouping to optimize an objective function, Journal of the Ameri-

can Statistical Association 58, 236–244.
Welch, Ivoi, 2019, Reproducing, extending, updating, replicating, reexamining, and reconciling,

Critical Finance Review 8, 301–304.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1007/s10654-019-00552-z
http://dx.doi.org/10.1097/00001648-199107000-00002
http://dx.doi.org/10.1111/j.1365-2966.2007.00428.x
http://dx.doi.org/10.1111/j.1365-2966.2007.00428.x
http://dx.doi.org/10.1111/jofi.12530
http://dx.doi.org/10.1093/rfs/hhv059
http://dx.doi.org/10.1016/j.jfineco.2007.02.003
http://dx.doi.org/10.1093/rfs/hhy131
http://dx.doi.org/10.1016/j.jfineco.2019.06.004
http://dx.doi.org/10.1016/j.jfineco.2019.05.001
http://dx.doi.org/10.1016/j.jfineco.2017.11.002
http://dx.doi.org/10.1016/j.jfineco.2019.06.008
http://dx.doi.org/10.1016/j.jfineco.2019.06.008
http://dx.doi.org/10.1093/rfs/hhy030
http://dx.doi.org/10.1111/ecoj.12527
http://dx.doi.org/10.1111/ecoj.12527
http://dx.doi.org/10.1111/jofi.12365
http://dx.doi.org/10.1016/j.jfineco.2011.11.003
http://dx.doi.org/10.1007/s00357-014-9161-z
http://dx.doi.org/10.1177/1745691612459058
http://dx.doi.org/10.1080/0015198X.2020.1854543
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03818.x
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1561/104.00000082


54 The Journal of Finance®

Supporting Information

Additional Supporting Information may be found in the online version of this
article at the publisher’s website:

Appendix S1: Internet Appendix.
Replication Code.
Disclosure Statement.

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13249 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [02/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


