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Bootstrapping Laplace transforms of volatility
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Zhi Liu
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This paper studies inference for the realized Laplace transform (RLT) of volatility
in a fixed-span setting using bootstrap methods. Specifically, since standard wild
bootstrap procedures deliver inconsistent inference, we propose a local Gaussian
(LG) bootstrap, establish its first-order asymptotic validity, and use Edgeworth ex-
pansions to show that the LG bootstrap inference achieves second-order asymp-
totic refinements. Moreover, we provide new Laplace transform-based estimators
of the spot variance as well as the covariance, correlation, and beta between two
semimartingales, and adapt our bootstrap procedure to the requisite scenario. We
establish central limit theory for our estimators and first-order asymptotic valid-
ity of their associated bootstrap methods. Simulations demonstrate that the LG
bootstrap outperforms existing feasible inference theory and wild bootstrap pro-
cedures in finite samples. Finally, we illustrate the use of the new methods by ex-
amining the coherence between stocks and bonds during the global financial cri-
sis of 2008 as well as the COVID-19 pandemic stock sell-off during 2020, and by a
forecasting exercise.

Keywords. Bootstrap, Edgeworth expansions, high-frequency data, higher-order
refinements, Itô semimartingales, realized Laplace transform, spot measure infer-
ence.

JEL classification. C14, C15, G1.

1. Introduction

Stochastic volatility is a distinct feature of many economic and financial time series, and
has significant implications for asset and derivatives pricing, risk management, portfo-
lio selection, among others. In fact, the importance of accounting for such dependencies
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in economic decision-making has been firmly recognized for, at least, two decades, for
example, Engle (2004). While inference for models of stochastic volatility is inherently
difficult since the underlying volatility process is latent, the recent availability of high-
frequency financial data has allowed researchers to aggregate observations into specific
measures of volatility, aiding in the recovery of information about its underlying dynam-
ics.

The realized variance, defined as the sum of squared intraday returns, is a promi-
nent example of a volatility measure, representing a nonparametric estimate of the
unobserved quadratic variation over a fixed time period; see, for example, Andersen,
Bollerslev, Diebold, and Labys (2001, 2003) and Barndorff-Nielsen and Shephard (2002).
Since its introduction, the scope and use of high-frequency data have been significantly
broadened, leading to jump-robust measures of integrated variance and jump tests,
for example, Barndorff-Nielsen and Shephard (2004b), Aït-Sahalia and Jacod (2009),
Mancini (2009); multivariate measures of the quadratic covariation between assets, for
example, Barndorff-Nielsen and Shephard (2004a) and Hayashi and Yoshida (2005);
measures that are robust to market microstructure frictions, for example, Zhang, Myk-
land, and Aït-Sahalia (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008),
and Jacod, Li, Mykland, Podolskij, and Vetter (2009); and measures that tackle all three
features and leverage them to study various problems in economics and finance, see, for
example, Andersen, Bollerslev, Christoffersen, and Diebold (2013), Aït-Sahalia and Jacod
(2014), Varneskov (2017), and many references therein.

The realized Laplace transform (RLT), defined as the simple average of cosine trans-
forms for (appropriately rescaled) high-frequency increments, represents an important
alternative volatility measure. It captures the empirical Laplace transform of the spot
variance process over a fixed interval of time, thus preserving information about the
characteristics of volatility. Since its introduction by Todorov and Tauchen (2012b), the
RLT has been utilized, among others, to design estimation procedures for stochastic
volatility models, for example, Todorov, Tauchen, and Grynkiv (2011); volatility density
estimation, Todorov and Tauchen (2012a); inference procedures and tests for the jump
activity index, Todorov (2015); estimation of option pricing models, Andersen, Fusari,
Todorov, and Varneskov (2019). These methods, however, generally use fixed-span es-
timates of the RLT as ingredients in long-span inference procedures (Andersen et al.
(2019) use a large option cross-section), imposing stationarity and mixing-type condi-
tions on the volatility. Such conditions may be reasonable for analyzing data over very
long sample periods, but are unlikely to describe the volatility process well for shorter
samples where the latter may be highly persistent and exhibit outright nonstationari-
ties, for example, Comte and Renault (1998). Similarly, Casini and Perron (2019) design
Laplace-based inference for structural change models using continuous record asymp-
totics in a setting with joint infill and long-span asymptotics.

At present, little is known about the quality of inference using RLT measures over
fixed time spans. This paper fills this gap. Specifically, in an infill asymptotic setting,
we study bootstrap inference procedures for the RLT, allowing the volatility to be very
persistent and nonstationary. Interestingly, despite the RLT having features suggesting
that a wild bootstrap may be appropriate, such as its summands being uncorrelated and
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heteroskedastic, we show that the variants provided by Wu (1986) and Liu (1988) as well
as Gonçalves and Meddahi (2009), in different contexts deliver inconsistent inference
in the present setting. As a solution, we propose a local Gaussian (LG) bootstrap proce-
dure and establish its first-order asymptotic validity in a general semimartingale frame-
work. Moreover, motivated by its excellent finite sample performance in our numerical
analysis, we further study the higher-order properties of the LG bootstrap procedure us-
ing Edgeworth expansions in a simplified dynamic setting, ruling out drift, jumps, and
leverage effects (as for the equivalent analyses in Gonçalves and Meddahi (2009) and
Dovonon, Gonçalves, Hounyo, and Meddahi (2019)), and show that it is capable of de-
livering second-order refinements over the standard Gaussian approximation. Impor-
tantly, we maintain a general semimartingale assumption for volatility when deriving
the higher-order results, unlike existing references who impose additional smoothness,
for example, Hölder continuity.

We broaden the scope, and thus applications, of the RLT and our LG bootstrap ap-
proach by providing inference procedures for the spot Laplace transform (SLT). These
are then used to design new Laplace-based estimators and associated bootstrap infer-
ence procedures for the spot variance as well as the spot covariance, correlation, and
beta between two semimartingale processes. The estimators achieve the optimal rate
of convergence �

−1/4
n , with �n being the mesh between observations. Moreover, first-

order asymptotic validity of the LG bootstrap methods is established at a near-optimal
rate, and our higher-order Edgeworth expansion analysis suggests that the LG bootstrap
offers very accurate inference. The theoretical findings are confirmed in a simulation
study where the latter provide substantial improvements in coverage rates for the RLT
as well as the spot variance, covariance, correlation, and beta between two assets com-
pared with alternative inference procedures based on feasible limit theory, existing (in-
consistent) wild bootstrap methods, and a modified wild bootstrap, which is analyzed
theoretically in a companion note to this paper (Hounyo, Liu, and Varneskov (2022)).

The attractive properties of the new LG bootstrap procedure for the RLT and our
SLT-based estimators of the spot variance, covariance, correlation, and beta may read-
ily be leveraged to design fixed span inference for stochastic volatility models, volatility
densities, jump activity indices, option-pricing models, and structural break tests, as
referenced above. Furthermore, they may provide equally useful ingredients for infer-
ence procedures that depend on the spot volatility matrix such as volatility functionals
and functional dependencies, Jacod and Rosenbaum (2013), Li, Todorov, and Tauchen
(2016), and Li, Liu, and Xiu (2019); GMM estimation involving moments that depend on
volatility, Li and Xiu (2016); and for carrying out tests for jumps and jump arrival times,
Lee and Mykland (2008).

We illustrate the usefulness of our spot measures and bootstrap inference proce-
dures for risk management by providing estimates and confidence intervals for the spot
volatilities of the S&P 500 and 10-year US Treasury bonds as well as their spot correla-
tion and (market) beta from January 2005 through December 2020. Specifically, we show
that bonds have provided an effective equity hedge during the global financial crisis in
2008, but lacked protective ability during the COVID-19 pandemic stock sell-off in 2020,
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thus revealing an anatomy of two different crisis. Hence, by leveraging our precise fixed-
span bootstrap inference procedures, our results show that static stock-bond portfolios
have enjoyed substantial diversification benefits during 2008 and have suffered from a
lack of fixed income protection during 2020, thereby calling for a dynamic approach to
balanced portfolio construction. Finally, our (bootstrap) methods provide useful infor-
mation for risk measure forecasting.

This paper adds to a growing literature on bootstrap inference for statistics based on
realized measures using high-frequency data; see, for example, Gonçalves and Meddahi
(2009), Hounyo, Gonçalves, and Meddahi (2017), Hounyo (2017, 2019), Hounyo and Var-
neskov (2017), and Dovonon et al. (2019). In those studies, the bootstrap procedures are
developed for realized volatility-style measures, whereas in this paper we consider boot-
strap inference for the RLT and for statistics based on smooth transformations of the spot
covariance between two semi-martingale processes. As carefully explained on Todorov
and Tauchen (2012b, p. 1106), the main difference between realized volatility measures
and the RLT is that the latter is a mapping from the data to a random process, while real-
ized volatility measures are simple mappings from the data to random variables. Hence,
our bootstrap inference procedure has to accommodate the nonlinear cosine transform
of high-frequency increments in the design, and we need to provide both pointwise and
uniform limit theory for the bootstrap to remain valid over the entire space of the ran-
dom (Laplace) function. Not only does this add substantial complexity to the first-order
asymptotic analysis, it makes the higher-order analysis particularly novel. In fact, this
paper is the first to even provide first-order uniform functional limit theory for bootstrap
inference on a continuous and bounded function in the high-frequency econometrics
literature. The uniform results are necessary for the design of, and inference for, our spot
(co)variance estimators, which are constructed by transforming the SLT and evaluating
it over a compact support.

The paper also adds to the literature on spot (co)variance estimation, which dates
back to Foster and Nelson (1996) and Comte and Renault (1998), and has recently seen
a surge in interest with new nonparametric estimators being introduced in semimartin-
gale settings by, among others, Lee and Mykland (2008), Aït-Sahalia and Jacod (2009),
Kristensen (2010), Bandi and Reno (2016, 2018); and when the observations are con-
taminated with market microstructure noise by, for example, Zu and Boswijk (2014) and
Bibinger, Hautsch, Malec, and Reiss (2019). Specifically, we provide new jump-robust
spot (co)variance estimators and associated bootstrap inference based on a kernel-
weighted Laplace transform. Importantly, we show that our estimators enjoy smaller
finite sample bias and lower mean squared errors than the popular truncated local real-
ized volatility estimator in our simulation study.

The rest of the paper is organized as follows. In Section 2, we provide the framework,
state assumptions, and introduce the statistics of interest. Section 3 studies first-order
validity of LG bootstrap inference for the RLT. Moreover, Section 4 has results on second-
order expansions for the cumulants of the original t-statistic as well as their bootstrap
analogs and shows that the LG bootstrap achieves asymptotic refinements. Section 5
provides the SLT as well as estimators of the spot (co)variance and associated bootstrap
inference. While Section 6 has Monte Carlo simulations, Section 7 illustrates the use of
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the new estimators and inference procedures in an empirical exercise. Finally, Section 8
concludes. The Appendix provides additional assumptions and study the properties of
existing wild bootstrap methods. The Online Supplementary Appendix (Hounyo, Liu,
and Varneskov (2023)) contains all proofs.

2. Setup, assumptions, and first-order asymptotic theory

This section introduces the setup and states the formal assumptions. Moreover, we de-
fine the statistics of interest for the bootstrap analysis in the remainder of the paper.

2.1 Setup and assumptions

Suppose the process X is defined on a filtered probability space, (�, F , (Ft ), P), where
the information filtration (Ft ) ⊆ F is an increasing family of σ-fields satisfying P-
completeness and right continuity. Specifically, assume that X obeys an Itô semimartin-
gale with stochastic differential equation of the form,

dXt = αt dt + σt dWt +
∫
R

δ(t−, x)μ(dt, dx), (1)

where the drift αt and volatility σt are (Ft )-adapted processes with càdlàg paths, Wt is
a standard Brownian motion, μ is a homogeneous Poisson measure with compensator
dt ⊗ ν(dx), ν is the Lévy measure, and δ(t, x) : R+ × R → R is càdlàg in t, where we let
R+ = {x ∈R : x≥ 0}. For the theoretical analysis, we follow Todorov and Tauchen (2012b)
and impose the following (mild) structure for the Lévy and stochastic volatility compo-
nents of the process.

Assumption A. The Lévy measure ν satisfies

E

(∫ t

0

∫
R

(∣∣δ(s, x)
∣∣p ∨ ∣∣δ(s, x)

∣∣)dsν(dx)

)
<∞,

for every t > 0 and every p ∈ (β, 1), where 0 ≤ β< 1 is some constant.

Assumption B. The volatility, σt , is an Itô semimartingale, defined by

σt = σ0 +
∫ t

0
ãs ds +

∫ t

0
vs dWs +

∫ t

0
v′
s dW

′
s +

∫ t

0

∫
R

δ′(s−, x)μ̃′(ds, dx),

where W ′
t is a Brownian motion, independent of Wt , μ̃′ is a compensated homogeneous

Poisson measure with Lévy measure dt ⊗ ν′(dx), having arbitrary dependence with μ,
and δ′(t, x) : R+ ×R→ R is càdlàg in t. In addition, for every t, s > 0 and some ι > 0, it is
required that

E

(
|as|3+ι + |ãs|2 + |σt |3+ι + |vt |3+ι + ∣∣v′

t

∣∣3+ι +
∫
R

∣∣δ′(t, x)
∣∣3+ι

ν′(dx)

)
< C,

E

(
|at − as|2 + |vt − vs|2 + ∣∣v′

t − v′
s

∣∣2 +
∫
R

(
δ′(t, x) − δ′(s, x)

)2
ν′(dx)

)
< C|t − s|,

where C > 0 is some constant that is free of t and s.
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Assumption A restricts the jump component of the model (1) to be of finite varia-
tion. However, since the activity index may vary in the range 0 ≤ β < 1, its dynamics
retain substantial flexibility, accommodating, for example, tempered stable processes
as well as compound Poisson processes, which have activity index β = 0. Assumption B
allows the stochastic volatility to be comprised of multiple factors and accommodates
leverage effects between dXt and dσt , working either through continuous or discontin-
uous, that is, jump, channels, whose magnitude and dynamics may differ substantially,
for example, Aït-Sahalia, Fan, Laeven, Wang, and Yang (2017). Taken together, the set-
ting covers most parametric jump-diffusion models in financial econometrics; see, for
example, Andersen and Benzoni (2012).

Finally, we assume that T is fixed and, within the interval [0, T ], we observe the pro-
cess X at the equidistant time points {0, �n, 2�n, 
 
 
 , i�n, 
 
 
 , n�n ≡ T }.

2.2 The realized Laplace transform and its asymptotic theory revisited

First, define �n
i X ≡ Xi�n −X(i−1)�n and ξ(X , T , u)ni ≡ cos(

√
2u�−1/2

n �n
i X ), for some u ≥

0, then Todorov and Tauchen (2012b) introduces the realized Laplace transform (RLT)
of volatility,

RLTn(X , T , u) = �n

n∑
i=1

ξ(X , T , u)ni , (2)

for which RLTn(u) ≡ RLTn(X , T , u) and ξ(u)ni ≡ ξ(X , T , u)ni will be used as shorthand
notation henceforth, despite being defined with respect to X and T . Moreover, on the
space of continuous functions, C(R+ ), indexed by u and equipped with the local uni-
form topology, Todorov and Tauchen (2012b, Theorem 1) provide stable central limit
theory under Assumptions A and B,

Sn(u) ≡ �
−1/2
n

(
RLTn(u) −

∫ T

0
e−ucs ds

)
ds−→ �T (u), as �n → 0, (3)

where ct ≡ σ2
t is the spot variance. The limiting process �T (u) is defined on an extension

of the original probability space, is F-conditionally Gaussian, and is defined with a zero
mean function and a covariance function given by

∫ T
0 F(

√
ucs ,

√
vcs )ds for every u, v ∈

R+, where

F(x, y ) = e−(x+y )2 − 2e−x2−y2 + e−(x−y )2

2
, for x, y ∈R+. (4)

In addition to the asymptotic central limit theory, Todorov and Tauchen (2012b) provide
a consistent estimator of

∫ T
0 F(

√
ucs ,

√
vcs )ds, defined as C̄n(u, v) ≡ �n

∑T/�n�
i=1 (ξ(u)ni ×

ξ(v)ni −ξ(u+v)ni ), thus facilitating feasible inference on the RLT. This estimator, however,
is not guaranteed to be nonnegative when u = v and we thus propose to replace it with
an alternative nonnegative one,

Ĉn(u, v) ≡ �n

2

n−1∑
i=1

(
ξ(u)ni − ξ(u)ni+1

)(
ξ(v)ni − ξ(v)ni+1

)
, u, v > 0, (5)

where we, as above, have suppressed dependence on T and X from the notation.
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Proposition 1. Suppose Assumptions A and B hold. Then, for any fixed u, v > 0, as
�n → 0,

Ĉn(u, v)
P→

∫ T

0
F(

√
ucs ,

√
vcs )ds.

Hence, by combining the asymptotic results in (3) and Proposition 1, we obtain an
alternative feasible inference limit theory for the RLT. Specifically, under Assumptions A
and B, as �n → 0,

Tn(u) ≡
�

−1/2
n

(
RLTn(u) −

∫ T

0
e−ucs ds

)
√
Ĉn(u, u)

d→N(0, 1), (6)

which may be used to generate standard two-sided confidence intervals.

3. Bootstrap inference for the realized Laplace transform

It is important to stress that the volatility of (1) is stochastic under Assumption B. This
implies that, conditional on the paths of the drift, volatility, and jump components of
(1), the sequence (ξ(u)ni )ni=1 is uncorrelated and heteroskedastic, which, traditionally,
motivate the use of a wild bootstrap procedures for drawing inference. However, in Ap-
pendix C, we demonstrate that the adaptations of two existing wild bootstrap proce-
dures to the present setting; namely, those introduced by Gonçalves and Meddahi (2009)
as well as Wu (1986) and Liu (1988) in different contexts, result in inconsistent inference
for the RLT. Hence, this section proposes a new bootstrap inference procedure based on
local Gaussian resampling and establish its first-order asymptotic validity. In particular,
we demonstrate how it may be used to consistently estimate the distributions of Sn(u)
in (3) and Tn(u) in (6).

3.1 Bootstrap notation

As usual in the bootstrap inference literature, P∗, E∗, and V
∗ denote the probability

measure, expected value and variance, respectively, induced by the resampling and is
thus conditional on a realization of the original time series. For any bootstrap statis-
tic Z∗

n ≡ Z∗
n(·, ω) and any (measurable) set A, we write P

∗(Z∗
n ∈ A) = P

∗(Z∗
n(·, ω) ∈ A) =

Pr(Z∗
n(·, ω) ∈A|Xn ), where Xn denotes the observed sample. Moreover, we say Z∗

n
P

∗→ 0 in
probability-P (or Z∗

n = o∗
p(1) in probability-P) if for any ε > 0, δ > 0, limn→∞ P[P∗(|Z∗

n| >
δ) > ε] = 0. Similarly, Z∗

n = O∗
p(1) in probability-P if for all ε > 0 there exists an Mε < ∞

such that limn→∞ P[P∗(|Z∗
n| >Mε ) > ε] = 0. Finally, for a sequence of random variables

(or vectors) Z∗
n, a definition of convergence in distribution in probability-P is needed.

Definition 1. The statement Z∗
n

d∗→ Z in probability-P, as n → ∞, signifies that
E

∗(f (Z∗
n )) → E(f (Z )) in probability-P for every continuous and bounded function f .



1066 Hounyo, Liu, and Varneskov Quantitative Economics 14 (2023)

Let l∞(K) denote the space of bounded real-valued functions on a compact subset
K ⊂ R+, equipped with the supremum norm supu∈K |z(u)|, for some z(u). Then, as for
random variables, we need a definition of weak convergence for a sequence of random
processes Z∗

n(u) on l∞(K) in probability-P.

Definition 2. Z∗
n(u)

d∗=⇒ Z(u) on l∞(K) in probability-P as n → ∞ signifies that the

sequence has suph∈BL1(l∞(K)) |E∗(h(Z∗
n )) −E(h(Z ))| P→ 0 where BL1(l∞(K)) is the space

of functions h: l∞(K) → R with Lipschitz norm bounded by 1, that is, for any h ∈
BL1(l∞(K)), supz∈l∞(K) |h(z)| ≤ 1, and |h(z1 ) − h(z2 )| ≤ d(z1, z2 ) for all z1, z2 in l∞(K),
where d(z1, z2 ) = supu∈K |z1(u) − z2(u)|.

Remark 1. The definition of weak convergence of a random process Z∗
n(u) on l∞(K)

in probability-P is equivalent to saying that E∗(h(Z∗
n )) → E(h(Z )) in probability-P for

any h : l∞(K) → R and which is continuous and bounded with respect to the supremum
norm.

In addition to bootstrap convergence modes and expectation operators, let
(ξ(u)n∗

i )ni=1 be a bootstrap sample constructed or obtained from (ξ(u)ni )ni=1. Moreover,
let η∗

1, 
 
 
 , η∗
n be i.i.d. random variables, whose distribution is independent of the orig-

inal sample and denote by μ∗
q ≡ E

∗((η∗
i )q ) its qth moment. Finally, we define the corre-

sponding bootstrap RLT statistic as

RLT∗
n(u) ≡ �n

n∑
i=1

ξ(u)n∗
i , S∗

n(u) ≡ �
−1/2
n

(
RLT∗

n(u) −E
∗(RLT∗

n(u)
))

, (7)

along with its bootstrap covariance matrix as

C∗
n(u, v) ≡ Cov∗(�−1/2

n RLT∗
n(u), �−1/2

n RLT∗
n(v)

)
. (8)

3.2 The local Gaussian bootstrap for the RLT

In this section, we propose a new bootstrap inference procedure for the RLT of volatility.
Specifically, motivated by Dovonon et al. (2019) and Hounyo (2019), who show that lo-
cal Gaussian resampling leads to favorable inference properties for the realized volatility
measure, realized beta, and for jump tests, we generate bootstrap high-frequency incre-
ments �n

i X
∗ as follows:

�n
i X

∗ =
√
�nĉ

n
i ·η∗

i , i = 1, 
 
 
 , n, (9)

for some (local) variance measure ĉni that is based on {�n
i X : i = 1, 
 
 
 , n} and is defined

below, and where η∗
i is generated independently of the data as η∗

i ∼ i.i.d. N(0, 1). Con-
sequently, we have

ξ(u)n∗
i = cos

(√
2uĉni η

∗
i

)
, i = 1, 
 
 
 , n. (10)
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That is, rather than resample the sequence (ξ(u)ni )ni=1, as for the wild bootstrap, we
mimic the local dependence properties of the original increments, �n

i X , as �n → 0 when
constructing the bootstrap observations in (9), and subsequently apply the cosine trans-
formation. Hence, relative to the analyses in Dovonon et al. (2019) and Hounyo (2019),
we consider a nonlinear transformation of the local Gaussian bootstrap observations
and study both pointwise as well as uniform (in u) central limit theory since the RLT
constitutes a random process rather than a random variable.

Next, recall that E
∗(eiuη∗

) = e−u2/2 for i = √−1, u ∈ R, and η∗ ∼ N(0, 1). Hence,
E

∗(ξ(u)n∗
i ) = e−uĉni for observations i = 1, 
 
 
 , n, and, as a result, we may write

E
∗(RLT∗

n(u)
) = �n

n∑
i=1

e−uĉni , and

C∗
n(u, v) = �n

n∑
i=1

E
∗[ξ(u)n∗

i − e−uĉni
][
ξ(v)n∗

i − e−vĉni
]

= �n

n∑
i=1

F
(√

uĉni ,
√
vĉni

)
.

(11)

Throughout the paper, we define the preliminary local spot variance estimator as

ĉnj+(i−1)kn
= n

kn

kn∑
m=1

∣∣�n
m+(i−1)kn

X
∣∣21{|�n

m+(i−1)kn
X|≤un,i}, (12)

where i = 1, 
 
 
 , n/kn and j = 1, 
 
 
 , kn, with kn being an arbitrary sequence of integers
such that kn → ∞ and kn/n → 0, that is, localizing the spot variance estimate in time.
Moreover, un,i is a block-specific threshold sequence defined as un,i = αi�

�
n for some

αi > 0 and 0 <�< 1/2, which asymptotically eliminates the impact of the (finite varia-
tion) jump component.

Proposition 2. Suppose Assumptions A and B hold. Moreover, let C∗
n(u, v) be defined by

(11) and the spot variance estimator by (12). Then, as �n → 0, it follows that

C∗
n(u, v)

P→
∫ T

0
F(

√
ucs ,

√
vcs )ds.

Remark 2. The proof of Proposition 2, which is provided in the Supplement Appendix
S3, follows by applying Jacod and Protter (2012, Theorem 9.4.1); see also the correspond-
ing result in Jacod and Rosenbaum (2013) and the recent extensions in Li and Xiu (2016)
and Li, Tauchen, and Todorov (2017) to a more general class of volatility functionals that
do not have polynomial growth.

Next, we show that the local Gaussian (LG) bootstrap is first-order valid for the RLT.

Theorem 1. Assume that ξ(u)n∗
i are generated as in (10). Moreover, suppose Assumptions

A and B hold. Then, for every u ∈ K, where K is a compact subset of R+, and as �n → 0, it
follows that
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(a) S∗
n(u)

d∗=⇒�T (u) on l∞(K) in probability-P, for any compact subset K of R+;

(b) supx∈R |P∗(S∗
n(u) ≤ x) − P(Sn(u) ≤ x)| P−→ 0.

Theorem 1 justifies using the LG bootstrap (generated as in (9)) to estimate the distri-
bution of Sn(u), and thus, to construct bootstrap unstudentized (percentile) intervals for
the RLT. These percentile intervals are easy to implement in practice, with the advantage
of avoiding explicit reliance on an estimator of the (conditional) asymptotic variance of
the RLT. Specifically, for any u > 0, we may define a 100(1 − α)% symmetric LG-based
bootstrap percentile interval for the RLT as

IC∗
α(u) = (

RLTn(u) −�
1/2
n p∗

1−α(u), RLTn(u) +�
1/2
n p∗

1−α(u)
)
, (13)

where p∗
1−α(u) is the 1 − α quantile of the bootstrap distribution of |S∗

n(u)|.

Remark 3. The functional pointwise and uniform bootstrap limit theory for the RLT
significantly generalizes the pointwise results for realized volatility and beta measures
in Hounyo (2019) as well as power-variation-based jump tests in Dovonon et al. (2019),
in addition to applying to a nonlinear transformation of the bootstrapped local Gaussian
increments. Moreover, relative to Hounyo and Varneskov (2020), who provide a depen-
dent wild bootstrap for empirical CDF statistics at high sampling frequencies, we pro-
vide uniform limit theory for functions that are continuous and bounded with respect to
the sup-norm, whereas they provide equivalent uniform results for discontinuous func-
tions.

3.3 Bootstrapping studentized statistics

Although the bootstrap percentile intervals for the RLT are easy to compute in practice,
they may not necessarily be very accurate unless the sample size is large; see, for ex-
ample, Shao and Tu (1995, Section 4.1.2). In contrast to bootstrap percentile intervals
(which rely on asymptotically nonpivotal statistics), we may utilize equivalent bootstrap
statistics that are asymptotically pivotal. To this end, this section outlines how the LG
bootstrap procedures may be adapted to cover studentized (percentile-t) intervals for
the RLT. First, we propose a consistent bootstrap covariance estimator,

Ĉ∗
n(u, v) = �n

n−1∑
i=1

(
ξ(u)n∗

i − e−uĉni
)(
ξ(v)n∗

i − e−vĉni
)
,

for u, v > 0, and form bootstrap studentized (percentile-t) intervals for the RLT as

T ∗
n (u) =

�
−1/2
n

(
RLT∗

n(u) −�n

n∑
i=1

e−uĉni

)
√
Ĉ∗
n(u, u)

. (14)
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Theorem 2. Suppose the conditions for Theorem 1 hold. Then, for every u ∈ K, where K

is a compact subset of R+, and as �n → 0, it follows for T ∗
n (u) in (14) that

sup
x∈R

∣∣P∗(T ∗
n (u) ≤ x

)− P
(
Tn(u) ≤ x

)∣∣ P−→ 0.

Remark 4. As for the unstudentized bootstrap confidence intervals in equation (13), the
corresponding studentized statistics using the LG bootstrap may be utilized to construct
percentile-t intervals for the RLT. To this end, let Ĉn(u, v) be defined as in (5) and q∗

1−α(u)
be the 1 −α quantile of the bootstrap distribution of |T ∗

n (u)|, constructed as in equation
(14). Then, for any u > 0, a 100(1 − α)% symmetric bootstrap percentile-t confidence
interval for RLT may be formed as

IC∗
α(u)

= (
RLTn(u) −�

1/2
n q∗

1−α(u)
√
Ĉn(u, u), RLTn(u) +�

1/2
n q∗

1−α(u)
√
Ĉn(u, u)

)
. (15)

4. Second-order accuracy of the LG bootstrap

The higher-order properties of local Gaussian resampling schemes have been thor-
oughly studied in different contexts; Hounyo (2019) shows that it achieves third-order
asymptotic refinements for realized volatility and realized beta inference, and Dovonon
et al. (2019) find the scheme to generate second-order improvements in accuracy for
jump tests. Motivated, in part, by their results and the excellent finite sample proper-
ties of our LG bootstrap, as demonstrated in Section 6 below, we study its higher-order
properties in the present setting, where the bootstrap observations have been nonlin-
early transformed when computing the RLT and its associated functional limit theory is
uniform.

4.1 A simplified setting for second-order asymptotics

This section examines whether our LG bootstrap in Section 3.2 can achieve asymptotic
refinements through order Op(

√
�n ) over the standard Gaussian approximation from

Theorems 1 and 2 when estimating the distribution function P(Tn(u) ≤ x). To this end,
we follow the higher-order bootstrap analyses in Gonçalves and Meddahi (2009) and
Dovonon et al. (2019) by adopting a simplified model for X , namely

Xt =
∫ t

0
σs dWs, (16)

where σt is independent of Wt and Ft-adapted. That is, we not only impose continuous
semimartingale dynamics on the process X , we also assume that there is no drift nor
leverage effects. Throughout this section, we further let

c̄ni ≡ �−1
n

∫ i�n

(i−1)�n

σ2
t dt, (17)
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and recall that n = T/�n� = T/�n. In this setting, conditionally on the path of volatility,
that is, on F , we have �n

i X ∼ N(0, �nc̄
n
i ), independently across observations i = 1, 
 
 
 , n.

Hence, for cosine transforms ξ(u)ni = cos(
√

2u�−1/2
n �n

i X ), it follows that E[ξ(u)ni |F ] =
e−uc̄ni .

Despite the more restrictive nature of the setting in (16), a higher-order analysis re-
mains useful for identifying and understanding potential inference improvements from
the LG bootstrap. Specifically, we will study the second-order accuracy of the bootstrap
by relying on Edgeworth expansions for the distribution of our studentized test statistics
Tn(u) and T ∗

n (u), which, as is well known from the bootstrap literature (cf., Hall (1992)),
is equivalent to studying their first three (conditional) cumulants. For this purpose, let
us decompose the studentized RLT-based t-statistic, Tn(u), as

Tn(u) = �
−1/2
n

(
RLTn(u) −E

(
RLTn(u)|F

))√
Ĉn(u, u)︸ ︷︷ ︸
ds−→N(0,1)

+An(u)

(
Ĉn(u, u)
Cn(u, u)

)−1/2

︸ ︷︷ ︸
P−→0

, (18)

where Ĉn(u, u) is given by (5), Cn(u, u) ≡ V(�−1/2
n RLTn(u)|F ), and define

An(u) ≡
�

−1/2
n

(
E
(
RLTn(u)|F

)−
∫ T

0
e−ucs ds

)
√
Cn(u, u)

= �
−1/2
n√

Cn(u, u)

(
�n

n∑
i=1

e−uc̄ni −
∫ T

0
e−ucs ds

)
.

Furthermore, let C(u, v) ≡ plim
n→∞

Cn(u, v) = ∫ T
0 F(

√
ucs ,

√
vcs )ds. Then, in this simplified

setting (16), where X is continuous semimartingale with neither drift nor leverage ef-
fects, and with Assumption B holding for the volatility process, the effect of An(u) as
�n → 0 is also negligible at second order. In particular, Lemma S3 in the Supplementary
Appendix formally shows that

�
−1/2
n An(u)

P→ 0, (19)

uniformly in u over a compact subset of R+, simplifying the analysis of (18).

4.2 Second-order expansions for the cumulants of Tn(u) and T ∗
n (u)

First, we provide asymptotic expansions for the cumulants of Tn(u). To this end, let
κi(Tn(u)) denote the ith cumulant of Tn(u) for some positive integer i, conditionally
on F . Specifically, recall that

κ1
(
Tn(u)

) = E
(
Tn(u)|F

)
, κ2

(
Tn(u)

) =V
(
Tn(u)|F

)
,

κ3
(
Tn(u)

) = E
(
Tn(u) −E

(
Tn(u)|F

)
|F

)3
.
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In addition, define the random variables:

ϒ1 ≡ 1

4
(
C(u, u)

)3/2

∫ T

0

(
e−9ucs − 3e−ucs − 6e−5ucs + 8e−3ucs

)
ds,

ϒ2 = 3
2C(u, u)

∫ T

0

(
e−2ucs − 1

)2
ds, and (κ1, κ2, κ3 ) ≡ (−ϒ1/2, 1, ϒ1(5 − 3ϒ2 )/2

)
.

Theorem 3. Suppose that (16) and Assumption B hold. Then it follows that

κ1
(
Tn(u)

) =
√
�nκ1 +Op(�n ), κ2

(
Tn(u)

) = 1 +Op(�n ),

κ3
(
Tn(u)

) =
√
�nκ3 +Op(�n ),

for every u ∈K, where K is a compact subset of R+.

Theorem 3 demonstrates that the first- and third-order cumulants of Tn(u) are sub-
ject to a higher-order bias of order Op(

√
�n ), thus providing the magnitude of the errors

for the asymptotic standard Gaussian approximation utilized in the stable limit theory
for the RLT. Hence, the LG bootstrap is asymptotically second-order accurate if the cor-
responding bootstrap cumulants mimic κ1 and κ3.

To facilitate a comparison of higher-order errors, write

κ∗
1

(
T ∗
n (u)

) =
√
�nκ

∗
1n + op(

√
�n ) and κ∗

3

(
T ∗
n (u)

) =
√
�nκ

∗
3n + op(

√
�n ),

where κ∗
1n and κ∗

3n are the leading terms of the first- and third-order cumulants of T ∗
n (u).

Importantly, these are functions of the original observations, and thus, depend on the
sample size n. Their probability limits, denoted by κ∗

1 and κ∗
3, respectively, are derived in

the following theorem.

Theorem 4. Suppose that (16) and Assumption B hold. Then it follows that κ∗
1 = κ1 and

κ∗
3 = κ3, where κ1 and κ3 are the limiting cumulant bias terms in Theorem 3.

Theorem 4 shows that the bootstrap studentized t-statistic T ∗
n (u) is able to replicate

the first- and third-order cumulants through order Op(
√
�n ) and, consequently, pro-

vides a second-order asymptotic refinement to the (feasible) central limit theory. Inter-
estingly, our second-order result is stronger than the corresponding for jump tests in
Dovonon et al. (2019), where a bias-corrected version of the bootstrap studentized t-
statistic is needed to obtain refinements through Op(

√
�n ).

To understand how this bias impacts the first-order cumulant of Tn(u), note that we
may write

Tn(u) = (
Zn(u) +An(u)

)(
1 +�

1/2
n

(
Un(u) +Bn(u)

))−1/2
, (20)

where Zn(u) ≡ �
−1/2
n (RLTn(u) −E(RLTn(u)|F ))/

√
Cn(u, u), and

Un(u) = �
−1/2
n

(
Ĉn(u, u) −E

(
Ĉn(u, u)|F

))
Cn(u, u)

,
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Bn(u) = �
−1/2
n

(
E
(
Ĉn(u, u)|F

)−Cn(u, u)
)

Cn(u, u)
.

Now, conditionally on σ , we readily have E(Zn(u)|F ) = 0 and V(Zn(u)|F ) = 1; con-
sequently, the random variable Zn(u) drives the usual standard Gaussian limiting ap-
proximation. On the other hand, the term An(u) is known (again, conditionally on
σ) and reflects a Jensen’s inequality bias for the cosine transformation in the RLT,
E(RLTn(u)|F ) − ∫ T

0 e−ucs ds �= 0 for finite n. However, in the proof (cf., Lemma S3), we

demonstrate that the probability limit of �
−1/2
n An(u) is zero and that the bias term

An(u) = Op(�n ), implying that to order Op(�n ), the first-order cumulant of Tn(u) is

κ1
(
Tn(u)

) =
√
�n

(
�

−1/2
n An(u)︸ ︷︷ ︸

P−→0

− 1
2
E
(
Sn(u)Un(u)|F

))
︸ ︷︷ ︸

P−→κ1

+Op(�n ).

The corresponding bias in Dovonon et al. (2019) is driven by bipower variation (in the
jump test) being a biased estimator of integrated variance in finite samples, in particular,
having a bias that persists at rate Op(

√
�n ), implying that it impacts the second-order

limit theory. In our setting, this suggests that estimation biases will play a smaller finite
sample role for our bootstrap inference.

Importantly, and in contrast to Dovonon et al. (2019) (cf., their Assumption V), the
second-order Edgeworth expansions for the cumulants of the t-statistics Tn(u) and
T ∗
n (u) are derived under the general assumption that the spot volatility obeys a semi-

martingale process. Specifically, we avoid imposing tight restrictions on the volatility
dynamics (like Hölder-continuity of order δ > 1/2), thus speaking more directly to the
semimartingle setting behind Theorems 1 and 2.

5. Spot Laplace transform and (co)variance inference

Having examined the first- and second-order properties of the LG bootstrap, this sec-
tion extends its scope by applying it to new high-frequency estimators of spot mea-
sures. Specifically, we introduce kernel-weighted Laplace transform-based estimators
of the spot variance as well as the spot covariance, beta, and correlation between two
semimartingales. Furthermore, we adapt the LG bootstrap to the requisite estimator for
drawing inference. The main motivation behind the use of Laplace transforms to de-
sign such estimators and inference procedures instead of relying on estimators based
on localized power variation (e.g., Jacod and Protter (2012, Chapter 13)) is their (higher-
order) robustness toward jumps, which generates improved finite sample performance;
see, for example, Jacod and Todorov (2014). However, existing spot variance estimators
based on the Laplace transform are very sensitive to the selection of the tuning parame-
ter u, implying a lack of robustness in finite samples. We resolve this issue by integrating
across a compact range of u using a prespecified kernel function.
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5.1 Inference for the spot Laplace transform

We first study inference for the time-varying spot Laplace transform (SLT), defined as
e−uσ2

τ for some local time τ ∈ [0, T ], which is used by Jacod and Todorov (2014, Sec-
tion 3), among others, to design efficient integrated variance estimators in the presence
of infinite variation jumps. To this end, and for each i ∈ {kn + 1, 
 
 
 , n}, we define a local-
ized version of the RLT as

SLTn,τ(u) = 1
kn

kn∑
m=1

ξ(u)ni+(m−kn−1), τ ∈ ((i− 1)�n, i�n], (21)

setting SLTn,τ(u) = SLTn,(kn+1)�n(u) for 0 ≤ τ ≤ kn + 1.

Theorem 5. Suppose Assumptions A and B hold. Moreover, let the sequence kn → ∞ as
�n → 0 such that kn

√
�n →ϑ, for some 0 ≤ϑ<∞, it follows that

Sn,τ(u) ≡
√
kn

(
SLTn,τ(u) − e−uσ2

τ
) ds−→�τ(u), τ ∈ [0, T ],

where convergence is on the space C(R+ ) of continuous functions indexed by u and
equipped with the local uniform topology (i.e., uniformly over compact sets of u ∈ R+).
The limiting process �τ(u) is an F-conditionally Gaussian process, defined on an exten-
sion of the original probability space, and it has zero mean-function and asymptotic vari-
ance function on the form,

Fτ(u, v) ≡ F
(√

uσ2
τ ,

√
vσ2

τ

)
+ ϑ2K1(στ , u)K1(στ , v)

(
v2
τ + (

v′
τ

)2)
3

, (22)

with F(x, y ) defined in (4) for x, y ∈R+, and similarly, K1(x, u) = −2uxe−ux2
.

Theorem 5 demonstrates that the functional stable limit theory for the RLT carries
over to the localized SLT statistic, with appropriate changes to the asymptotic variance
function. Specifically, its two components reflect sampling errors in the formation of the
SLT and discretization of the local variance process, respectively. Importantly, by allow-
ing 0 ≤ ϑ< ∞, the SLT can achieve a convergence rate �

−1/4
n when setting kn � 1/

√
�n,

which is known to be optimal in the context of high-frequency spot variance estimation;
see, for example, Alvarez, Panloup, Pontier, and Savy (2012), Jacod and Protter (2012,
Theorem 13.3.3), and Jacod and Rosenbaum (2015). Furthermore, consistent with the
limit theory for a threshold-based spot variance estimator in Jacod and Protter (2012,
Theorem 13.3.3), the asymptotic variance simplifies as Fτ(u, v) ≡ F(

√
uσ2

τ ,
√
vσ2

τ ) if re-
stricting kn

√
�n → 0, since the volatility discretization errors become asymptotically

negligible. Although their focus is on integrated variance estimation, Jacod and Todorov
(2014) require kn

√
�n → 0 for their Laplace-based ingredient. Hence, the limit result

in Theorem 5 is new to the literature, providing a uniform characterization of the SLT
across the two distinct convergence regimes, ϑ = 0 and 0 < ϑ < ∞. The suboptimal
convergence rate case (ϑ = 0) is included since it becomes useful for developing our
bootstrap inference.
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The composition of Fτ(u, v), in particular, its dependence on the term v2
τ + (v′

τ )2,
renders inference for the SLT statistic highly nontrivial since it is tedious to accurately es-
timate the local “variance of variance”; see, for example, Jacod and Protter (2012, p. 393),
who deem the case ϑ = 0 the only practically relevant for inference. Similar comments
apply to our LG bootstrap method, at least in its current design, meaning that it is unable
to replicate the second term of Fτ(u, v) in the regime 0 <ϑ< ∞. Hence, to solve this is-
sue, and provide feasible inference for the SLT, we choose a smaller localization window,
kn

√
�n → 0, and adapt our bootstrap procedures for the RLT by defining an equivalent

bootstrap SLT estimator as well as an unstudentized test statistic as

SLT∗
n,τ(u) ≡ 1

kn

kn∑
m=1

ξ(u)n∗
i+(m−kn−1),

S∗
n,τ(u) ≡

√
kn

(
SLT∗

n,τ(u) −E
∗(SLT∗

n,τ(u)
))

.

(23)

Theorem 6. Let S∗
n,τ(u) denote the bootstrap statistic (23), where the sequence

(ξ(u)n∗
i )ni=1 is generated using the LG resampling in (10). Moreover, let the sequence

kn → ∞ as �n → 0 such that kn
√
�n → 0, then for every u ∈ K, where K is a compact

subset of R+, it follows that

(a) S∗
n,τ(u)

d∗=⇒�τ(u) on l∞(K) in probability-P, for any compact subset K of R+.

(b) supx∈R |P∗(S∗
n,τ(u) ≤ x) − P(Sn,τ(u) ≤ x)| P−→ 0.

Theorem 6 shows that our bootstrap inference procedures extend to spot Laplace
transforms by formally establishing their first-order asymptotic validity. While the SLT
estimator can achieve the optimal rate of convergence, our bootstrap inference can get
arbitrarily close to �

−1/4
n , but is likely to perform better when the second term in Fτ(u, v)

is small relative to the first term.

5.2 Spot volatility estimation and inference

The uniform properties of the SLT (in u) and its associated bootstrap(s) are utilized in
designing a new class of spot variance estimators and inference procedures. Specifically,
we introduce the class

Vn,τ ≡ −
∫ umax

umin

log
(

SLTn,τ(u) ∨ 1√
kn

)
u

×W(du), (24)

where W(du) = W (u)du is a weight measure with the property
∫ umax
umin

W(du) = 1. These
estimators are related to the spot variance “ingredient” in Jacod and Todorov (2014).
Specifically, they apply a similar nonlinear transformation of the SLT, which, however,
is evaluated at a single u rather than integrated over a range, u ∈ [umin, umax]. Our de-
sign is motivated by the GMM inference procedure for stochastic volatility models in
Todorov, Tauchen, and Grynkiv (2011), who integrate the realized Laplace transform
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over a range to harness most of its information. In particular, we leverage a similar idea
in the context of the SLT to achieve robust estimation of the spot variance. Naturally, the
estimators (24) nest the corresponding in Jacod and Todorov (2014) for Dirac weights at
a point u ∈ [umin, umax]. However, it also includes alternative weight functions such as
Gaussian and uniform kernels, thus bearing resemblance to the kernel-weighted empir-
ical characteristic function-based estimation procedures in Jiang and Knight (2002) and
Carrasco, Chernov, Florens, and Ghysels (2007) for continuous time processes. Interest-
ingly, the simulation study below, indeed, demonstrates that the use of more general
weight functions results in substantially less sensitive estimates of spot measures than
when relying on a single u.

First, we leverage the uniform limit theory for the SLT (again, as a function of u)
to establish corresponding central limit theory for the class of spot variance estimators
(24).

Theorem 7. Suppose the conditions of Theorem 5 hold. Then it follows that

SVn,τ ≡
√
kn

(
Vn,τ − σ2

τ

) ds−→ϒτ , (25)

where ϒτ is an F-conditionally Gaussian random variable, defined on an extension of the
original probability space, which has a zero mean and, with Fτ(u, v) defined as in (22),
asymptotic variance,

�τ =
∫ umax

umin

∫ umax

umin

Fτ(u, v)W (u)W (v)

uve−(u+v)σ2
τ

dudv.

The new class of spot variance estimators (24) inherits the properties of the SLT, im-
plying that they can achieve the optimal rate of convergence, �−1/4

n . Moreover, to draw
inference on the spot variance, we define the bootstrap analogs of Vn,τ and SVn,τ as

V∗
n,τ ≡ −

∫ umax

umin

log
(

SLT∗
n,τ(u) ∨ 1√

kn

)
u

×W(du), and

SV∗
n,τ ≡

√
kn

(
V∗
n,τ +

∫ umax

umin

log
(
E

∗(SLT∗
n,τ(u)

)∨ 1√
kn

)
u

×W(du)

)
,

(26)

respectively, thus mimicking the transformation of the spot variance estimator.

Theorem 8. Suppose the conditions of Theorem 6 hold. Then it follows that

sup
x∈R

∣∣P∗(SV∗
n,τ ≤ x

)− P(SVn,τ ≤ x)
∣∣ P−→ 0.

Remark 5. As in Jacod and Protter (2012, Chapter 13), who advocate selecting kn
√
�n →

0 as the only empirically interesting case for spot variance estimators because their
asymptotic variance can be estimated, our bootstrap procedures facilitate near-efficient
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inference. However, when only the point estimates are of interest, and not their confi-
dence intervals, our class of spot variance estimators can achieve the optimal rate of
convergence, �−1/4

n . The same comments apply to all subsequent estimators of mul-
tivariate spot measures. Furthermore, our LG bootstrap resampling scheme can be
adapted to other spot variance estimators in the literature, for example, the threshold
local realized variance estimator studied by Jacod and Protter (2012, Theorem 13.3.3),
under similar assumptions on kn.

Remark 6. It is instructive to compare the asymptotic variance of our spot variance
estimator (24) to the asymptotically efficient threshold local realized volatility (TLRV)
estimator, defined via (12), for τ ∈ ((i− 1)�n, i�n] as

TLRVn,τ = n

kn

kn∑
m=1

∣∣�n
i+(m−kn−1)X

∣∣21{|�n
i+(m−kn−1)X|≤un,i }, (27)

where, again, un,i = αi�
�
n for some αi > 0 and 0 <� < 1/2. The main advantage of the

SLT-based estimator is its higher-order robustness toward jumps (Jacod and Todorov,
2014). To examine the trade-off in terms of efficiency, recall the asymptotic variance for
TLRV is 2σ4

τ , implying that the asymptotic relative efficiency (ARE) of our estimator to
the TLRV may be expressed as

ARE(Vn,τ , TLRVn,τ ) = �τ

2σ4
τ

=
∫ umax

umin

∫ umax

umin

(
e
√
uvσ2

τ − e−√
uvσ2

τ
)2

4uvσ4
τ

W (u)W (v)dudv, (28)

where, for simplicity, we have let kn
√
�n → 0 such that Fτ(u, v) = F(

√
uσ2

τ ,
√
vσ2

τ ). The
double integral is hard to evaluate. Hence, we study an approximation and visualize the
ARE for fixed choices of umin, umax and στ . Specifically, when

√
uvσ2

τ is small, a Maclaurin
expansion delivers

ARE(Vn,τ , TLRVn,τ ) �
∫ umax

umin

∫ umax

umin

O

((√
uvσ2

τ

)2

6

)
W (u)W (v)dudv

≤ 1 +O
((
umaxσ

2
τ

)2
/6

)
.

That is, the loss of relative estimation efficiency is approximately of order O((umaxσ
2
τ )2/

6), which is small if either the tuning parameter umax or the spot variance, στ , is close
to zero. We implement two simple experiments to visualize this feature. First, we let
umin = 0.01, umax = 1 and consider στ ∈ [0.01, 1]. Second, we fix umin = 0.01, στ = 0.5
and examine umax ∈ [0.01, 2]. Figure 1 displays these experiments for uniform and expo-
nential weight functions, W (·).

The results in Figure 1 are striking, showing that Vn,τ exhibits no significant loss of
asymptotic efficiency relative to TLRVn,τ as long as the spot volatility is less than 50% or
if we select umax ≤ 1/2. Importantly, within these ranges, the choice between equal and
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Figure 1. Asymptotic relative efficiency. In the left panel, ARE is depicted with umin = 0.01 and
umax = 1 fixed. In the right panel, ARE is depicted with umin = 0.01 and σ = 0.5 fixed.

exponential weight functions is also immaterial. Fortunately, in most financial applica-
tions, the spot volatility will be substantially smaller than 50%, suggesting there is essen-
tially no efficiency loss from using Vn,τ instead of TLRVn,τ . Finally, from the right-hand
side panel, our results suggest to choose umax ≤ 1/2 to avoid efficiency losses, which will
guide our tuning parameters selections in the simulation study below.

Remark 7. Since the estimators (24) involve a nonlinear transformation of the SLT, we
have considered a class of second-order bias-corrected estimators, via a Taylor expan-
sion. However, unreported simulations document only small numerical differences be-
tween this and (24).

Remark 8. We conjecture that results similar to Theorems 7 and 8 will continue to hold
when the semimartingale process Xt in equation (1) contains a jump component that is
of infinite variation, using the techniques and asymptotic analyses in Jacod and Todorov
(2014), Liu, Liu, and Liu (2018), and Liu and Liu (2020) for the (nonbootstrap, non-u-
kernel weighted) inference on spot variance, covariance, and beta. A formal treatment
of infinite variation jumps is beyond the scope of the paper.

5.3 Spot covariance, correlation, and beta inference

We further broaden the scope of our bootstrap procedures by adapting them to draw
inference on statistics, which are constructed as smooth transformations of the spot co-
variance between two semimartingales. To this end, we first introduce a new Laplace-
based estimator of the spot covariance that utilizes the polarization identity. Moreover,
we extend the univariate dynamic setting in (1) by stipulating that the two processes X

and Y obey the bivariate system of differential equations,

dXt = a1t dt + σ1t dW1t +
∫
R

δ1(t−, x)μ1(dt, dx), (29)

dYt = a2t dt + σ2t

(
ρt dW1t +

√
1 − ρ2

t dW2t

)
+

∫
R

δ2(t−, x)μ2(dt, dx), (30)
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where the drifts αj , volatilities σj , and the correlation ρ are (Ft )-adapted processes with
càdlàg paths for j = 1, 2, W = (W1, W2 )′ is a 2-dimensional standard Brownian motion, μj

(again, j = 1, 2) is a homogeneous Poisson measure with compensator dt⊗νj(dx), νj is a
Lévy measure and δj(t, x) : R+ ×R→R are càdlàg in t. This bivariate system represents
a natural extension of (1) and we require formal (yet, mild) regularity conditions on the
components of the model that mimic those in Assumptions A and B. Hence, they are
deferred to Appendix A for ease of exposition.

We are interested in drawing inference on the following spot measures:

Cτ(X , Y ) = ρτσ1τσ2τ ,

ρτ(X , Y ) = Cτ(X , Y )√
Cτ(X , X )Cτ(Y , Y )

, (31)

βτ(X , Y ) = Cτ(X , Y )
Cτ(X , X )

,

for some τ ∈ [0, T ], thus capturing the spot covariance, correlation, and beta, respec-
tively. Hence, let us write SLTn,τ(u, Z ) and Vn,τ(Z ) to emphasize that the SLT and spot
variance estimators in equations (21) and (24), respectively, are computed using variable
Z. We, then, use the polarization identity to introduce a jump-robust Laplace-based es-
timator of the spot covariance between X and Y ,

Cn,τ(X , Y ) = 1
4

(
Vn,τ(X +Y ) − Vn,τ(X −Y )

)
, (32)

as well as to design corresponding jump-robust estimators of spot correlation and spot
beta,

ρn,τ(X , Y ) = Cn,τ(X , Y )√
Cn,τ(X , X )Cn,τ(Y , Y )

and βn,τ(X , Y ) = Cn,τ(X , Y )
Cn,τ(X , X )

, (33)

respectively, whose asymptotic properties are provided by the following theorem.

Theorem 9. Suppose the conditions of Theorem 5 and Assumption B′ hold. Then it fol-
lows that

(a) SVn,Cτ ≡ √
kn(Cn,τ(X , Y ) −Cτ(X , Y ))

ds−→ �Cτ .

(b) SVn,ρτ ≡ √
kn(ρn,τ(X , Y ) − ρτ(X , Y ))

ds−→ �ρτ .

(c) SVn,βτ ≡ √
kn(βn,τ(X , Y ) −βτ(X , Y ))

ds−→ �βτ ,

where �Cτ , �ρτ and �βτ are F-conditionally Gaussian random variables, defined on an
extension of the original probability space, have zero means and have variances that are
given in the Online Appendix.

The analytical expressions for the asymptotic variances of �Cτ , �ρτ , and �βτ are cum-
bersome, even when selecting kn

√
�n → 0. This makes our proposed bootstrap proce-

dures particularly attractive for drawing inference on the spot measures in (31) since the
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construction of confidence intervals using unstudentized (percentile) methods circum-
vent explicit estimation of the asymptotic variances. We need to modify the LG bootstrap
to capture cross-dependence between X and Y in the resampling. Specifically, inspired
by Hounyo (2019, equation (18)), we generate bivariate increments as

(
�n
i X

∗
�n
i Y

∗

)
=

√
�n

⎛⎜⎜⎜⎝
√
ĉni (X , X ) 0

ĉni (X , Y )√
ĉni (X , X )

√
ĉni (Y , Y ) − ĉni (X , Y )2

ĉni (X , X )

⎞⎟⎟⎟⎠
(
η∗

1i
η∗

2i

)
, (34)

i = 1, 
 
 
 , n, where (η∗
1i, η

∗
2i )

′ ∼ i.i.d. N(0, I2 ), with I2 being a two-dimensional identity
matrix, and (

ĉni (X , X ) ĉni (Y , X )
ĉni (X , Y ) ĉni (Y , Y )

)

≡ n

kn

jkn∑
m=1

(
�n
m+(i−1)kn

X

�n
m+(i−1)kn

Y

)(
�n
m+(i−1)kn

X

�n
m+(i−1)kn

Y

)′
1n(X , Y ), (35)

for i = 1, 
 
 
 , n/kn� and j = 1, 
 
 
 , kn, where we have defined

1n(X , Y ) ≡ 1
{∣∣�n

m+(i−1)kn
X
∣∣ ≤ un,i(X ),

∣∣�n
m+(i−1)kn

Y
∣∣ ≤ un,i(Y )

}
,

for local jump-truncation sequences un,i(X ) and un,i(Y ) satisfying the properties in
(12).

We apply this modified LG resampling scheme to construct Laplace transform-based
bootstrap estimators of the spot covariance, correlation, and beta, respectively, as

C∗
n,τ(X , Y ) = 1

4

(
V∗
n,τ(X +Y ) − V∗

n,τ(X −Y )
)
,

ρ∗
n,τ(X , Y ) = C∗

n,τ(X , Y )√
C∗
n,τ(X , X )C∗

n,τ(Y , Y )
, and

β∗
n,τ(X , Y ) = C∗

n,τ(X , Y )

C∗
n,τ(X , X )

,

with SLT∗
n,τ(u, Z ) and V∗

n,τ(Z ), similarly, being the bootstrap SLT and spot variance esti-
mator, respectively, using variable Z∗. Moreover, we define the corresponding bootstrap
(unstudentized) test statistics as SV∗

n,Cτ
≡ √

kn(C∗
n,τ(X , Y ) − E

∗
Cn
τ (X ,Y ) ) for spot covari-

ance, along with

SV∗
n,ρτ ≡

√
kn

(
ρ∗
n,τ(X , Y ) −

E
∗
Cn
τ (X ,Y )√

E
∗
Cn
τ (X ,X )E

∗
Cn
τ (Y ,Y )

)
,

SV∗
n,βτ

≡
√
kn

(
β∗
n,τ(X , Y ) −

E
∗
Cn
τ (X ,Y )

E
∗
Cn
τ (X ,X )

)
,
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for spot correlation and beta, respectively, where

E
∗
Cn
τ (X ,Y ) ≡ −

∫ umax

umin

log
(
E

∗(SLT∗
n,τ(u, X +Y )

)∨ 1√
kn

)
4u

×W(du)

+
∫ umax

umin

log
(
E

∗(SLT∗
n,τ(u, X −Y )

)∨ 1√
kn

)
4u

×W(du),

and E
∗
Cn
τ (Z,Z ) is defined analogously for Z = (X , Y )′. We are now ready to establish first-

order asymptotic validity of our bootstrap inference procedures for the spot measures
(31).

Theorem 10. Suppose the conditions of Theorem 6 and Assumption B′ hold. Moreover,
let the LG bootstrap follow the modified resampling scheme in (34) and (35). Then it fol-
lows that

(a) supx∈R |P∗(SV∗
n,Cτ

≤ x) − P(SVn,Cτ ≤ x)| P−→ 0.

(b) supx∈R |P∗(SV∗
n,ρτ ≤ x) − P(SVn,ρτ ≤ x)| P−→ 0.

(c) supx∈R |P∗(SV∗
n,βτ

≤ x) − P(SVn,βτ ≤ x)| P−→ 0.

This result shows that our bootstrap procedures may not only be used to draw fixed-
span inference on the RLT statistic; they can be adapted to (multivariate) spot measures
that are critical for risk management and portfolio selection in financial economics,
among others.

6. Simulation study

In this section, we assess the finite sample properties of our LG bootstrap for the RLT,
drawing comparisons to the feasible limit theory in Section 2 and wild bootstrap alterna-
tives. Moreover, we examine the accuracy of our jump-robust Laplace transform-based
spot variance, covariance, correlation, and beta estimators as well as their associated
bootstrap inference, provided in Section 5.

6.1 Confidence intervals for the RLT

The LG bootstrap procedure yield coverage of the RLT, which is first-order valid and
even offer second-order asymptotic refinements. Nonetheless, we expand on the the-
oretical results by studying its finite sample properties via simulations. To this end, the
latent process {Xt , t ≥ 0} is assumed to be observed in the time interval [0, 1] at a dis-
crete and equidistant time grid {i/n, i = 1, 2, 
 
 
 , n}, with initial value X0 = 0. Specifi-
cally, we consider three data generating processes (DGPs). The first two are inspired by
Monte Carlo designs from the high-frequency financial econometrics literature; namely,
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those in Gonçalves and Meddahi (2009) and Wang, Liu, and Xia (2019). The last DGP is
adapted from a recent macro-finance model with stochastic volatility. This allows us to
assess how our LG resampling procedure performs in different and empirically relevant
settings.

Model 1. A one-factor stochastic volatility model with jumps:

dXt = 0.03dt + σt dWt +
Nt∑
i=1

Yi, σt = exp(0.3125 − 0.125τt ),

where dτt = −0.025τt dt+dBt and (Bt , Wt ) are two mutually independent Brownian mo-
tions, Nt is a Poisson process with intensity λ = 4, and jump sizes Yi ∼ i.i.d. N(0, 0.01).

Model 2. A two-factor stochastic volatility model with jumps:

dXt = 0.0314dt + σt

[
ρ1 dW1t + ρ2 dW2t +

√
1 − ρ2

1 − ρ2
2 dW3t

]
+

Nt∑
i=1

Yi,

where (W1, W2, W3 ) are three independent Brownian processes, ρ1 = ρ2 = −0.3, and the
stochastic volatility process decomposes σt = exp(−1.2 + 0.04σ2

1t + 1.5σ2
2t ), with

dσ2
1t = −0.00137σ2

1t dt + dW1t ,

dσ2
2t = −1.386σ2

2t dt + (
1 + 0.25σ2

2t

)
dW2t .

Finally, Nt is a Poisson process with intensity λ = 4, and jump sizes Yi ∼ i.i.d. N(0, 0.01).

Model 3. A macro-finance model with stochastic volatility.1 Specifically, we adapt the
multivariate asset pricing system from Campbell, Giglio, Polk, and Turley (2018) to the
present setting, that is, we consider

�Xt = (μ+AXt−1 )�n + σt−1U t ,

where Xt is a 6-dimensional vector, having asset returns as the first element, σt as the
second and the last four elements are made up of persistent state variables (price-
earnings ratio, 3-month T-bill yield, small-stock value spread, and the default spread).
Moreover, μ is a 6-dimensional constant vector, A is a 6 × 6 square parameter matrix,
Ut ∼ i.i.d. N(0, �n�). We adopt the parameter values from Campbell et al. (2018, Ta-
ble 1). These are given in Appendix B for completeness.

We consider the LG bootstrap and four alternative inference procedures for the RLT:
one based on the feasible central limit theory (CLT) in Section 2.2; one based on the

1Besides giving the simulation study a broader appeal, this macro-finance model is motivated by the
results in, for example, Sims and Zha (1999), who showed that Edgeworth expansions may not be very ac-
curate for multivariate models when some series are very persistent, yet still stationary. Hence, we examine
the properties of our LG bootstrap for a multivariate asset pricing system with stochastic volatility, where
some of the state variables are indeed persistent.
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modified wild (MW) bootstrap procedure from our companion note, Hounyo, Liu, and
Varneskov (2022); one based on the adaptation of the Wu (1986) and Liu (1988) to the
present setting; and, finally, one based on the wild bootstrap from Gonçalves and Med-
dahi (2009). The last two, dubbed the WL and GM bootstrap procedures, respectively,
are discussed in Appendix C.2 To implement the LG bootstrap, we apply (9) and (12),
where the latter is designed with the jump-truncation sequence un,i = 7

√
BVn,i�

0.4
n , with

BVn,i = nπ

2kn

kn−1∑
m=1

∣∣�n
m+(i−1)kn

X
∣∣∣∣�n

m+1+(i−1)kn
X
∣∣

being a preliminary local bipower variation estimate of the spot variance process. This
tuning parameter selection is motivated by the corresponding choices in Podolskij and
Ziggel (2010), Jacod and Todorov (2014), and Dovonon et al. (2019). The MW, GM, and
WL bootstrap procedures are implemented with external random variables of the form
η∗
i ∼ i.i.d. N(0, 1/

√
2), which satisfies the conditions of Hounyo, Liu, and Varneskov

(2022, Theorem 1).3 Consequently, the three alternative methods differ only with respect
to their (lack of) centering for the bootstrap pseudo observations, (ξ(u)n∗

i )ni=1.
We consider four different sample sizes: 1/�n = {12, 48, 78, 288}, corresponding to

2-hour, half-hour, 18.5-minute, and 5-minute returns for observations on financial as-
sets that are traded round-the-clock, such as currencies and various futures contracts.
Moreover, we apply block sizes kn = {4, 6, 13, 18} for n = {12, 48, 78, 288}, respectively,
when constructing preliminary spot variance estimates. Bootstrap confidence intervals
are generated using 999 draws, and we consider both studentized and unstudentized
intervals for all methods. Finally, we implement the RLT and its associated fixed-span
inference procedures for Laplace tuning parameters u = {1/20, 1/10, 1/5}, in line with
the magnitudes considered by Jacod and Todorov (2014) and Todorov (2015) in different
contexts.

Table 1 provides the actual 95% coverage rates for all confidence intervals across
10,000 replications. There are several interesting observations. First, the intervals based
on feasible CLT undercover for all DGPs, especially for small sample sizes n. Second, the
MW bootstrap performs similar to the feasible CLT, and so does the studentized inter-
vals for the GM and WL bootstrap procedures. Third, the unstudentized intervals for GM
overcovers, always containing the (true) Laplace transform of volatility, while the WL
bootstrap dramatically undercovers. These results clearly illustrate the failure of both
wild bootstrap procedures to replicate the mean heterogeneity for the sequence of co-
sine transforms, (ξ(u)ni )ni=1. Fourth, the LG bootstrap provides excellent coverage, uni-
formly improving upon the CLT for all sample sizes. Although derived in a simpler set-

2Whereas the WL and GM bootstrap procedures deliver inconsistent inference, the MW bootstrap is first-
order asymptotically valid. The main difference arises from the centering of the resampling; see Hounyo,
Liu, and Varneskov (2022) for details.

3We have also examined the wild bootstrap procedures with external random variables based on the
Rademacher distribution and a different two-point distribution. However, since the results for these re-
sampling schemes are very similar to those obtained from the normal distribution, they have been omitted
for ease of exposition.
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Table 1. RLT coverage.

Nominal 95% coverage rates for the RLT

MW GM WL LG

Model u = n= CLT Perc Perc-t Perc Perc-t Perc Perc-t Perc Perc-t

1 1/20 12 84.09 84.69 80.72 100 84.05 73.99 84.14 88.79 90.27
1 1/20 48 91.98 92.48 91.64 100 91.98 81.00 91.93 94.03 95.39
1 1/20 78 93.45 93.55 92.91 100 93.42 82.26 93.42 94.16 95.22
1 1/20 288 95.18 94.10 93.80 100 95.17 82.77 95.11 94.53 94.91

1 1/10 12 85.70 85.11 81.41 99.88 85.47 75.86 85.57 89.24 89.84
1 1/10 48 92.13 92.56 91.62 100 92.27 80.93 92.19 93.78 94.43
1 1/10 78 93.72 93.84 93.23 99.98 93.66 82.14 93.63 94.12 95.02
1 1/10 288 94.35 94.81 94.66 99.99 94.40 82.70 94.38 94.85 95.42

1 1/5 12 86.18 86.02 82.56 98.11 86.32 76.28 86.26 89.45 89.44
1 1/5 48 93.24 92.99 92.21 98.79 93.22 82.43 93.16 93.35 93.83
1 1/5 78 93.81 93.81 93.37 98.96 94.09 82.99 94.19 93.92 94.14
1 1/5 288 94.60 94.62 94.55 99.16 94.77 83.14 94.81 94.52 94.67
2 1/20 12 77.14 77.15 72.75 100 77.06 70.91 77.20 82.12 81.04
2 1/20 48 87.34 87.45 85.78 100 86.70 80.18 86.82 90.86 91.37
2 1/20 78 89.64 89.61 88.66 100 90.35 84.08 90.38 92.53 92.52
2 1/20 288 93.19 93.25 92.72 99.99 93.57 86.78 93.58 94.15 94.72

2 1/10 12 76.97 76.91 72.66 99.99 78.35 72.03 78.43 82.16 81.98
2 1/10 48 88.02 88.03 86.47 99.99 88.23 81.91 88.16 90.91 91.46
2 1/10 78 89.99 89.89 88.94 99.98 90.27 83.40 90.21 92.42 92.77
2 1/10 288 93.62 93.54 93.18 100 93.38 86.33 93.59 94.54 94.75

2 1/5 12 77.98 77.82 73.51 99.95 78.07 72.01 77.98 82.94 81.91
2 1/5 48 88.81 88.72 87.15 99.95 88.32 81.83 88.32 91.67 92.31
2 1/5 78 89.74 89.67 88.63 100 89.45 82.97 89.53 92.46 93.41
2 1/5 288 94.10 94.07 93.70 99.97 93.20 86.64 93.20 94.67 95.07
3 1/20 12 79.68 79.30 73.10 100 79.70 66.22 79.53 82.32 81.11
3 1/20 48 88.61 87.86 86.23 100 88.71 75.10 88.56 91.04 91.36
3 1/20 78 90.57 89.32 88.25 100 90.40 77.26 90.60 92.32 92.41
3 1/20 288 93.35 93.06 92.64 100 93.43 81.87 93.49 94.44 94.62

3 1/10 12 79.75 78.97 73.88 100 79.72 67.30 79.78 82.67 81.76
3 1/10 48 88.28 88.03 86.42 100 88.13 74.54 88.27 90.78 91.88
3 1/10 78 90.27 90.13 88.99 100 90.22 76.96 90.26 93.12 93.29
3 1/10 288 93.12 93.36 93.12 100 93.06 81.38 93.08 94.77 94.43

3 1/5 12 79.92 79.22 73.24 100 80.07 67.34 79.87 83.66 81.68
3 1/5 48 88.30 88.73 87.24 100 88.24 75.17 88.31 90.88 92.35
3 1/5 78 90.02 90.29 89.19 100 89.93 77.50 89.92 93.01 93.65
3 1/5 288 92.91 93.68 93.35 100 92.99 81.17 92.87 94.48 94.74

Note: This table displays empirical coverage rates for the RLT using different inference procedures. Specifically, these are
actual 95% coverage intervals based on the feasible CLT in (6); LG denotes the local Gaussian bootstrap; MW, GM, and WL are
different wild bootstrap procedures based on external variables, ηi , that are drawn from a Gaussian distribution. The simula-
tions are implemented with 10,000 replications, each of which uses 999 bootstrap draws. Models 1 and 2 indicate stochastic
volatility models with one, respectively, two volatility factors. Model 3 is a macro-finance model inspired by empirical estimates
in Campbell et al. (2018).
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ting without drift, leverage effects, and jumps, this illustrates the second-order asymp-
totic refinement result in Theorem 4. Moreover, all procedures have lower coverage for
Models 2 and 3 than for Model 1, especially in smaller samples, speaking directly to
the finite sample impact of the Jensen’s inequality-induced bias term An(u) in equation
(18), which becomes more pronounced for “more variable” stochastic volatility models
such as the two-factor volatility process as well as the macro-finance volatility specifi-
cation. The results for Models 2 and 3 are similar. Finally, the numerical results show
that the inference procedures perform similarly across the tuning parameter selections
u = {1/20, 1/10, 1/5}.

6.2 Bootstrap confidence intervals for spot measures

We proceed by examining the properties of our new Laplace transform-based estimators
and their associated bootstrap inference for the spot variance, covariance, correlation,
and beta. To this end, we generate two processes {Xt , t ≥ 0} and {Yt , t ≥ 0} in a setting
reminiscent of the one in Reiss, Todorov, and Tauchen (2015). Specifically, the series are
simulated according to the bivariate dynamics,

dXt = √
Vt dWt + dLt , dYt = βt dXt +

√
Ṽt dW̃t + dL̃t , (36)

dVt = 0.03(1 − Vt )dt + 0.18
√
Vt dBt , dṼt = 0.03(1 − Ṽt )dt + 0.18

√
Ṽt dB̃t , (37)

where (W , W̃ , B, B̃)′ is a vector of independent standard Brownian motions; L and L̃

are two pure-jump compound Poisson processes with intensity λ = 4 and jump sizes
drawn from N(0, 0.01), independent of each other, and of the Brownian motions. The
spot variances V and Ṽ in (36) are captured by square-root diffusion processes, which
are used extensively in financial applications. Finally, for the process β, we let

dβt = 0.03(1 −βt )dt + 0.18
√
βt dB

β
t , (38)

with Bβ being a Brownian motion, independent from the remaining Brownian motions
in (36).

Since we examine the properties of spot measure estimators, which have a slower
optimal rate of convergence than corresponding realized estimators, �−1/4

n versus �−1/2
n ,

we consider slightly larger sample sizes n = {78, 288, 720, 1440}, which amounts to sam-
pling every 20, 5, 2, and 1 minutes, respectively, for assets that are traded round-the-
clock. Moreover, we fix kn = √n� for the SLT estimator in (21), that is, its localizing
window is set just below a selection implied by its optimal rate.4 In addition, we con-
sider a uniform kernel measure W (du) in (24) and draw comparisons to spot esti-
mators based on a single selection u. Specifically, we consider partitions of the range
[umin, umax] = [1/100, 1/5] with step length fixed at 1/100; namely, uj = 1/100 + j/100,

4Strictly speaking, our bootstrap procedures are only valid when kn/
√
n → 0. Hence, we consider kn =

√n� to be a simple rule-of-thumb selection. Furthermore, we assess the robustness of the bootstrap cov-
erage to kn in Figure 2.
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j = 0, 1, 
 
 
 , 19.5 Finally, we assess the finite sample properties of our new SLT-based es-
timators against the TSRV, which as discussed in Remark 6, is an asymptotically efficient
benchmark from the literature. As above, the simulations are based on 10,000 replica-
tions and 999 bootstrap draws for inference.

We focus on results for spot measure estimation and LG bootstrap inference. Table 2
reports the relative biases and RMSEs (from the relative bias) for different spot mea-
sure estimators. From these results, we first observe that all estimators converge as n

increases, in line with the asymptotic results. Second, if implemented using large single
index weights, u ≥ 1/10, the spot estimators may perform poorly, having biases in excess
of 10% for smaller samples and large RMSEs (see, e.g., the covariance and beta results).
However, the results are accurate and much less sensitive if relying on a uniform weight-
ing scheme, regardless of the implemented boundaries. Third, despite being asymptot-
ically efficient, we observe that our SLT-based spot measure estimators perform better
than the TLRV for most combinations of measures and sample size, especially for the
recovery of spot variances and covariance. This illustrates a desirable combination of
higher-order jump robustness and approximate asymptotic efficiency for our spot mea-
sure estimators.

When turning to the 95% coverage rates for the LG bootstrap in Table 3, we observe a
slight tendency for the estimators to undercover when n = 78. However, for larger sam-
ples n = {288, 720, 1440}, the LG bootstrap provides accurate inference, especially for
the correlation and beta estimates.

Finally, we examine the robustness of the coverage for the LG bootstrap to the selec-
tion of the localization window, kn, in Figure 2. Interestingly, consistent with the require-
ment kn

√
�n → 0 for validity of the LG bootstrap in Theorems 8 and 10, the coverage is

close to 95% for all sample sizes as long as kn is not being selected too large. Naturally,
the range of valid localization window selections depends on the sample size. When kn

is chosen too large, the local “variance of varianc” drives a wedge between the nominal
95% and empirical coverage rates (cf. Theorem 5). All-in-all, however, Figure 2 demon-
strates that the LG bootstrap procedure is robust against window selection.

7. Empirical analysis

To illustrate the usefulness of our new spot measure estimators and their associated
LG bootstrap inference procedures, we examine the volatility of, as well as the coher-
ence between, futures contracts written on the S&P 500 (ES1) and 10-year US Treasuries
(TY1) over the time span from January 2005 through December 2020. Specifically, using
2-minute log-returns from 8.00–22.00 CET, we estimate the end-of-day spot volatilities,
correlation, and market beta to gauge the uncertainty of the two investments as well
as the effectiveness of a fixed income hedge.6 For each (full) trading day, the sampling

5The selections of umin and umax are inspired by Figure 1, which shows that the choices umin = 1/100 and
umax ≤ 1/2 generate approximately the same asymptotic efficiency as the TLRV estimator; see Remark 6.

6The data is obtained from datastream. Specifically, on each day, we truncate observations to the req-
uisite interval and rely on last-tick interpolation to construct an equidistant 2-minute sampling grid from
1-minute observations.
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Table 2. Relative bias and RMSE.

Relative bias and RMSE of spot measure estimators

bias, u = 1/100 RMSE, u = 1/100

ū = n= V (X ) V (Y ) C(X , Y ) β(X , Y ) ρ(X , Y ) V (X ) V (Y ) C(X , Y ) ρ(X , Y ) β(X , Y )

1/50 78 0.0417 0.0427 0.0467 −0.0285 0.0026 0.5168 0.5090 0.6369 0.2912 0.3929
1/50 288 0.0461 0.0445 0.0464 −0.0161 0.0014 0.4092 0.3978 0.4922 0.2145 0.2905
1/50 720 0.0464 0.0454 0.0458 −0.0076 0.0033 0.3395 0.3088 0.3764 0.1549 0.2086
1/50 1440 0.0346 0.0335 0.0263 −0.0123 −0.0047 0.2932 0.2701 0.3177 0.1361 0.1803

1/10 78 0.0557 0.0586 0.0894 −0.0042 0.0293 0.5062 0.5190 0.6706 0.3062 0.4227
1/10 288 0.0446 0.0481 0.0544 −0.0078 0.0111 0.3871 0.3782 0.4733 0.2103 0.2837
1/10 720 0.0404 0.0398 0.0393 −0.0084 0.0030 0.3240 0.3076 0.3741 0.1649 0.2202
1/10 1440 0.0252 0.0269 0.0176 −0.0115 −0.0024 0.2648 0.2490 0.2976 0.1387 0.1823

1/5 78 0.0647 0.0800 0.0599 0.0079 0.0466 0.5239 0.5470 0.6311 0.3390 0.4560
1/5 288 0.0430 0.0539 0.0625 0.0076 0.0307 0.3812 0.3820 0.4874 0.2356 0.3143
1/5 720 0.0342 0.0393 0.0425 −0.0009 0.0130 0.3069 0.3018 0.3848 0.1852 0.2419
1/5 1440 0.0263 0.0261 0.0309 −0.0002 0.0082 0.2536 0.2472 0.3145 0.1532 0.1999

bias RMSE

u = n= V (X ) V (Y ) C(X , Y ) β(X , Y ) ρ(X , Y ) V (X ) V (Y ) C(X , Y ) ρ(X , Y ) β(X , Y )
1/100 78 0.0472 0.0489 0.0577 −0.0217 0.0111 0.5156 0.5037 0.6310 0.2905 0.3981
1/100 288 0.0407 0.0421 0.0395 −0.0175 −0.0003 0.3863 0.3772 0.4628 0.2014 0.2720
1/100 720 0.0439 0.0415 0.0412 −0.0106 −0.0009 0.3418 0.3118 0.3823 0.1557 0.2075
1/100 1440 0.0379 0.0375 0.0322 −0.0097 −0.0024 0.3091 0.2752 0.3246 0.1313 0.1729

1/50 78 0.0482 0.0544 0.0623 −0.0218 0.0131 0.5228 0.5058 0.6430 0.2926 0.4016
1/50 288 0.0399 0.0421 0.0442 −0.0133 0.0038 0.3850 0.3756 0.4674 0.2031 0.2735
1/50 720 0.0443 0.0382 0.0382 −0.0100 −0.0015 0.3366 0.3104 0.3726 0.1553 0.2110
1/50 1440 0.0345 0.0315 0.0243 −0.0113 −0.0047 0.2935 0.2661 0.3087 0.1336 0.1747

1/10 78 0.0496 0.0678 0.1370 0.0240 0.0678 0.5207 0.5300 0.8211 0.3549 0.4733
1/10 288 0.0413 0.0535 0.0724 0.0061 0.0312 0.3790 0.3842 0.5179 0.2349 0.3160
1/10 720 0.0297 0.0351 0.0375 −0.0027 0.0116 0.3036 0.2994 0.3804 0.1823 0.2391
1/10 1440 0.0273 0.0269 0.0238 −0.0072 0.0013 0.2547 0.2456 0.3077 0.1518 0.1978

1/5 78 0.0572 0.0925 0.1334 0.0689 0.1203 0.5212 0.5914 0.8794 0.5194 0.6678
1/5 288 0.0488 0.0607 0.1381 0.0585 0.0867 0.3805 0.3955 0.6902 0.3768 0.4631
1/5 720 0.0266 0.0400 0.0815 0.0307 0.0510 0.2903 0.3070 0.5196 0.2883 0.3524
1/5 1440 0.0183 0.0246 0.0572 0.0229 0.0348 0.2400 0.2500 0.4067 0.2286 0.2776

bias RMSE

n= V (X ) V (Y ) C(X , Y ) β(X , Y ) ρ(X , Y ) V (X ) V (Y ) C(X , Y ) ρ(X , Y ) β(X , Y )
TLRV 78 0.1738 0.1780 0.1769 −0.0308 0.0024 0.6132 0.5967 0.7333 0.2910 0.3928
TLRV 288 0.0967 0.1014 0.0991 −0.0158 0.0021 0.4152 0.4045 0.4992 0.1969 0.2644
TLRV 720 0.0785 0.0797 0.0776 −0.0127 −0.0017 0.3690 0.3432 0.4303 0.1579 0.2087
TLRV 1440 0.0768 0.0767 0.0809 −0.0036 0.0012 0.3488 0.2996 0.3878 0.1308 0.1724

Note: This table displays the relative bias and RMSE for various implementations of the new Laplace transform-based
spot measure estimators in Section 5. Specifically, the upper panel provides results for different combinations of u = umin and
ū= umax using step length 1/100 and uniform kernel weights. The middle panel provides corresponding results for single index
weights and different choices of u. The lower panel provides benchmark results using the TLRV estimator. The spot measures
are localized around τ = 1/2 in all cases. The simulations are implemented with 10,000 replications.
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Table 3. Spot measure coverage.

Local Gaussian bootstrap coverage rates for spot measures

n= V (X ) V (Y ) C(X , Y ) β(X , Y ) ρ(X , Y ) V (X ) V (Y ) C(X , Y ) β(X , Y ) ρ(X , Y )

(u, ū) = (1/100, 1/10) (u, ū) = (1/100, 1/5)

78 91.89 91.69 92.48 94.46 94.96 92.43 92.22 92.99 95.80 95.56
288 92.26 92.19 92.67 93.82 94.68 92.43 92.65 93.01 95.15 95.25
720 93.39 93.32 93.45 94.34 94.45 93.88 93.52 93.63 95.44 94.96
1440 93.79 93.91 94.04 94.53 94.96 93.96 94.05 93.97 95.17 95.25

u = 1/100 u= 1/50

78 91.64 91.77 91.92 93.51 94.77 91.85 91.59 92.45 93.64 94.79
288 92.43 92.30 92.70 93.49 95.03 92.69 92.64 92.85 93.28 94.81
720 93.51 93.26 93.44 93.69 94.61 93.63 93.32 93.35 93.47 94.89
1440 93.87 94.06 93.86 93.60 94.36 93.72 93.86 93.67 93.59 94.77

u= 1/10 u = 1/5

78 92.07 92.13 92.89 95.80 95.73 91.87 92.51 91.55 95.06 94.53
288 92.25 92.57 92.73 95.22 95.03 92.09 92.67 93.01 96.09 95.56
720 93.46 93.58 93.84 95.15 95.23 93.14 93.27 93.88 95.73 95.43
1440 93.84 93.94 93.77 94.91 95.05 94.04 94.03 94.62 95.57 95.78

Note: Spot measure coverage. This table displays the local Gaussian bootstrap coverage rates for the new Laplace
transform-based spot measure estimators in Section 5. The nominal level is 95%. Specifically, the upper panel provides cover-
age results for different combinations of u = umin and ū = umax using step length 1/100 and uniform kernel weights. The two
lower panels provide corresponding results for single index weights and different choices of u. The spot measures are localized
around τ = 1/2 in all cases. The simulations are implemented with 10,000 replications, each of which uses 999 bootstrap draws.

scheme implies that we have n = 420 observations and subsequently fix a local window
of size kn = 6n0.45� = 90. The estimators are implemented as in equations (24), (32), and
(33) with tuning parameters umin = 1/100, umax = 1/5, step length 1/100, and a uniform
kernel. In addition to the daily spot measure estimates, we use the LG bootstrap statistics
SV∗

n,τ , SV∗
n,Cτ

, SV∗
n,ρτ , and SV∗

n,βτ
, defined in Section 5, along with 999 bootstrap draws

to compute corresponding 2.5% and 97.5% quantiles along with the bootstrap standard
deviation, which will be useful for our unconditional analysis of hedging efficacy and
our forecasting exercise, respectively. Before proceeding to the latter, however, Table 4
provides summary statistics of the estimated spot measures, their bootstrap quantiles,
and standard deviations as well as daily log-returns on the futures contracts themselves.

There are several noteworthy observations in Table 4. First, we find, not surprisingly,
that the average spot volatility on ES1 is 3–4 times larger than for TY1. More interest-
ingly, however, the persistence for ES1, which is measured by its first-order autoregres-
sive coefficient (AR(1)), is almost double that for TY1, hinting that stock market volatility
is more predictable than 10-year Treasury bond volatility. Second, the average correla-
tion between the two assets is negative, consistent with fixed income being viewed as
an important hedge for equity investments. This feature is corroborated by the average
95% bootstrap confidence interval, which suggests that the spot correlation is signifi-
cantly negative. However, the bootstrap standard deviation for these estimates indicate
that there is high degree of uncertainty surrounding the exact magnitude of the coher-
ence. In fact, the time-series average bootstrap standard deviation for the spot correla-
tion measure is higher than the corresponding uncertainty measures for the two spot
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Figure 2. Coverage probability and the bandwidth. This picture examines the robustness of
the coverage for the new Laplace transform-based spot measure estimators to the bandwidth
parameter, kn, using local Gaussian bootstrap inference. Specifically, the upper left depict a sce-
nario where n = 78 and kn ∈ [10, 39); upper right where n = 288 and kn ∈ [10, 144); lower left
where n = 720 and kn ∈ [10, 360); and lower right where n = 1440 and kn ∈ [10, 720). The spot
measures are estimated using parameters umin = 1/100, umax = 1/5 with step length 1/100 and a
uniform kernel. Moreover, they are localized around τ = 1/2 in all cases. The nominal level of the
coverage is 95%. The simulations are implemented with 10,000 replications, each of which uses
999 bootstrap draws.

volatilities and the spot market beta. Finally, while the average spot market beta is nega-
tive, the average 95% bootstrap confidence interval suggests that it is insignificantly dif-
ferent from zero, indicating that balanced portfolios with a constant exposure to a fixed
income hedge may not necessarily perform well in all stock market environments.7

7.1 Assessing hedging performance

We assess the efficiency of having adopted a fixed income futures (TY1) hedge for S&P
500 futures investments (ES1) on the 20 worst equity trading days from 2005 through
2020 in Figure 3. Specifically, we condition on the 20 days with the lowest daily ES1 re-
turn and depict our spot estimates of volatility, correlation, and beta along with their LG

7An example of a constant exposure portfolio is the (in)famous 60–40% portfolio of stocks and bonds,
which has been popularized by the mutual fund Vanguard and remains an important benchmark for many
passive investors.
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Table 4. Summary statistics.

Summary statistics for risk measures

Mean StDev Skewness Kurtosis AR(1) Q(2.5) Q(97.5) BV∗

ES1 0.0296 1.2460 −0.3413 18.7692 −0.1140 −2.6064 2.1926 –
TY1 0.0130 0.3497 0.1264 8.1748 −0.0306 −0.6979 0.6980 –
V (ES1) 1.0227 0.8936 4.1386 29.3498 0.8135 0.8827 1.1627 0.6809
V (TY1) 0.3030 0.1775 7.4642 156.9589 0.4275 0.2556 0.3504 0.2272
corr −0.2420 0.2228 0.0170 3.0637 0.5786 −0.4267 −0.0574 0.8996
beta −0.0720 0.0793 0.9724 11.5279 0.3721 −0.1540 0.0100 0.3968

Note: This table displays summary statistics for log-returns on S&P 500 and 10-year Treasury bond futures contracts (ES1
and TY1), end-of-day spot volatility estimates as well as the estimates of the corresponding spot correlation and spot market
beta. Using 2-minute intraday observations, the spot measures are estimated as described in Sections 5 and 6.2, that is, with
tuning parameters umin = 1/100, umax = 1/5, step length 1/100, and a uniform kernel. Moreover, a bandwidth kn = 6�0.45

n � is
applied. Standard unconditional summary statistics are provided along with first-order autoregressive coefficients, AR(1), 2.5%
and 97% quantiles of the variables, and the average bootstrap standard deviation from daily estimates of the (local Gaussian)
bootstrap distributions, BV∗ . Whereas the quantiles for ES1 and TY1 are standard, the quantiles for the spot measures are
captured by the average over daily 2.5% and 97% bootstrap quantiles. The sample period spans from January 2005 through
December 2020. Finally, the returns and spot volatility measures are quoted in daily percentages.

Figure 3. Risk measures during market distress. This picture displays end-of-day spot volatility,
correlation, and market beta estimates together with associated 95% confidence intervals based
on the local Gaussian bootstrap for the 20 days with the worst daily return on S&P 500 futures
contracts (ES1). Moreover, the dashed orange line provide the average spot measure estimate
over the full sample from January 2005 through December 2020. The estimates of the spot mea-
sures are implemented as described in Table 4.
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bootstrap confidence intervals. This allows not only to quantify risk on those days, but
also the uncertainty surrounding popular risk measures.

Interestingly, we observe that 12/20 of the worst stock market days occur during
the last 4 months of 2008, reflecting the global financial crisis, and 4/20 during March
and June 2020, reflecting the COVID-19 pandemic-induced stock market sell-off.8 More
specifically, if we consider the spot correlation and market beta results during these
episodes, they reveal anatomies of two different crises. In particular, while the corre-
lation between ES1 and TY1 during the global financial crisis was significantly below its
unconditional mean, it was insignificantly different from it during the COVID-19 pan-
demic sell-off. Moreover, the spot betas was significantly below its mean on key days
during the financial crisis, for example, during the decline on September 15, 2008, with
Lehman Brothers filing for bankruptcy. In contrast, after March 9, 2020, the spot market
beta is significantly above its unconditional mean. This asymmetry suggests that static
balanced portfolios have enjoyed substantial diversification benefits during 2008 and
suffered from a lack of fixed-income protection during 2020.

This pattern is corroborated in Figure 4, where we plot the ES1 and TY1 indices dur-
ing 2008 and 2020 in the top panels, and we depict the frequency (of trading days) at
which the spot correlation and beta is significantly above, respectively, below their full
sample averages in the bottom panels.9

Interestingly, we observe that the correlation (beta) is below its sample average on
more than 80% (60%) of the days during 2008, with TY1 increasing steadily during the
last 4 months of the year. In contrast, TY1 is essentially flat after March 9, 2020, and the
beta is significantly above its unconditional average on more than 30% of the trading
days, including days with massive equity sell-offs, as seen in Figure 3. Hence, these pat-
terns, which are only revealed by our spot measure estimators and associated LG boot-
strap inference procedures, thus call for a dynamic and disciplined approach to stock-
bond allocation in balanced portfolios. Specifically, they illustrate that in order to have
achieved a 2008 level of fixed income protection for equity investments during 2020, the
relative exposure to fixed income products must have been substantially larger.

7.2 Forecasting risk measures

In addition to providing useful information about the magnitudes and significance of
key risk measures in an unconditional, in-sample exercise, we continue assessing the
quality of our spot measure estimators and associated LG bootstrap procedures in an
out-of-sample setting. To this end, we adopt the HAR-Q framework from Bollerslev, Pat-
ton, and Quaedvlieg (2016). While the latter apply their methodology to standard real-
ized variance (and realized kernel) estimates, one may directly adapt their framework to

8The remaining 4 days similarly have intuitive explanations; 2009-01-20 was the inauguration day for
Barack Obama, which exhibited a stock sell-off that was widely credited to a continued lack of confidence
in the failing economy; 2011-08-08 had fearful investors reacting strongly to Standard & Poor’s downgrade
of United States’ credit rating from AAA; 2015-08-24 saw the occurrence—the now famous—“flash crash”
episode; and 2018-02-05 simultaneously exhibited a large stock sell-off and a massive spike in VIX, which
were associated with an inflation scare among investors.

9We have utilized the LG bootstrap confidence intervals to determine significance as in Figure 3.
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Figure 4. Hedging efficacy. This picture provides perspectives on the cross-hedging perfor-
mance for a portfolio consisting of S&P 500 and 10-year Treasury bond futures contracts (ES1
and TY1). Specifically, the upper left and right quadrants show the performance of the two as-
sets during 2008 and 2020, respectively. The lower left quadrant shows the frequency at which
the estimated end-of-day spot correlation is significantly above (red, left), respectively, below
(green, right) the average (over the full sample) spot correlation in a given year using the local
Gaussian bootstrap to determine the significance level (i.e., quantiles). The lower right quadrant
provides corresponding results for the spot market beta. The sample period spans from January
2005 through December 2020.

spot measure forecasting as long as we have a daily estimate of their requisite asymp-
totic variance. In our case, we obtain these by the LG bootstrap.

Specifically, let Rt denote some spot risk measure (either volatility, correlation, or
beta) and BV∗

t be its LG bootstrap standard deviation. Then we will examine forecasting
models of the form:

Rt+1,−h = β0 +β1Rt,1 +β2Rt,5 +β3Rt,21

+BV∗
t (γ1Rt,1 + γ2Rt,5 + γ3Rt,21 ) + εt+1,−h, (39)

where Rt,h = h−1 ∑h−1
i=0 Rt−i for h ≥ 1 and Rt,h = |h|−1 ∑|h|−1

i=0 Rt+i for h< 0 are averages
of the spot measure estimates over |h| days. This framework nests several interesting dy-
namic forecasting models. For example, if we set h = 1 and fix β2 = β3 = γ1 = γ2 = γ3 =
0, the model reduces to an AR(1) process. By subsequently relaxing the restriction γ1 = 0,
the model facilitates an adjustment of attenuation bias due to potential measurement
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errors in Rt . Similarly, by imposing the restrictions γ1 = γ2 = γ3 = 0, we recover the pop-
ular HAR model of Corsi (2009), thereby accommodating long memory-style variation in
Rt . Finally, the HAR-Q models with an attenuation adjustment for either the first term
or all three are recovered by relaxing restrictions on γ1, γ2, and γ3.

The HAR-Q framework provides a simple, yet powerful setting to assess the quality
of our risk measure estimates by explicitly accounting for attenuation bias due to mea-
surement errors. That is, the relative forecasting prowess of dynamics models with and
without the bias correction speaks to the quality of both our risk measure and its asymp-
totic variance estimate. Hence, we leverage our new SLT-based spot measure estima-
tors and LG bootstrap procedures to compute their asymptotic variances to evaluate: (i)
whether the spot measures require corrections for attenuation bias; (ii) whether the at-
tentuation bias correction contains significant predictive information. Collectively, this
exercise provides an out-of-sample perspective on the quality of our procedures.

Table 5 provides in-sample estimates of these five nested model specifications for
the spot volatility, correlation, and market beta measures. There are several interest-
ing results. First, consistent with the AR(1) coefficients in Table 4, the ES1 spot volatil-
ity series is by far the most predictable, judging by the adjusted R2. Second, the at-
tenuation bias adjustment using the bootstrap standard deviation is very effective for
the AR(1) model, but provides smaller gains in R2 for the baseline HAR structure. The
HAR improvements, however, are still nontrivial for the spot correlation and beta series.
Third, the HAR models, with and without attenuation bias adjustments, perform sub-
stantially better than the corresponding AR(1) models, indicating that long memory is
prevalent in the risk measures. Once the latter is controlled for, this partially corrects the
time-varying attenuation bias, whose adjustment only generates smaller gains. Taken
together, the results suggests that estimation errors are present in the risk measures, but
the long memory signal is dominating their time variation.

To elaborate on these results, Table 6 displays root mean squared forecast errors
(RMSFEs) from an out-of-sample exercise. Specifically, we consider forecast horizons
h = 1 and h = 21 (monthly), initialize the models using the first 250 trading days, and
apply an expanding window of observations. Moreover, we use the 10% model confi-
dence set (MCS) from Hansen, Lunde, and Nason (2011) to determine which models
provide the best forecasts. The results are clear; the HAR models are significantly bet-
ter than the AR(1) models for all spot measure series. The HAR-Q models, using the LG
bootstrap standard deviation, seem to add value over the standard HAR model for the
spot volatility on TY1 as well as the spot correlation and market beta, indicating use-
ful predictive information. However, the differences are only significant for the monthly
spot correlation forecasts.

8. Conclusion

In this paper, we study fixed-span inference for the RLT using bootstrap procedures in
a general semimartingale setting. Despite the RLT having features suggesting that wild
bootstrap methods may be appropriate, such as its summands being conditionally un-
correlated and heteroskedastic, we show that existing bootstrap procedures provide in-
consistent inference. Hence, as a solution, we propose a local Gaussian (LG) bootstrap,
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Table 6. HAR-Q model forecasting.

Out-of-sample bootstrap HAR-Q model analysis

Daily Monthly

AR AR-Q HAR HAR-Q HAR-QF AR AR-Q HAR HAR-Q HAR-QF

V (ES1) 0.5423 0.5409 0.5011� 0.5080� 0.5195� 0.5163 0.5154 0.4731� 0.4798� 0.4896�

V (TY1) 0.1675 0.1624 0.1514� 0.1506� 0.1510� 0.1003 0.0925 0.0713� 0.0701� 0.0700�

corr 18.347 17.937 16.684� 16.585� 16.631� 12.590 12.172 10.331 10.238� 10.268�

beta 7.4925 7.3930 6.8644� 6.8420� 6.8845� 4.1630 4.0492 3.2340� 3.2168� 3.2286�

Note: This table provides forecasting results for different nested HAR-Q model specifications. Specifically, from the repre-
sentation in (39), an AR(1) model with and without an attenuation bias adjustment are considered (labeled AR, respectively,
AR-Q) together with a HAR model and HAR-Q models with attenuation bias adjustments for either the first or all three terms,
with the latter being denoted by HAR-QF. The table reports RMSFE (multiplied by 100) for both 1 day volatility forecasts and
forecasts of the average volatility over a month (21 days). The model estimates and forecasts are initialized using 250 obser-
vations and reestimated using an expanding window. While we report RMSFE in the table, the star (�) indicate that the MSFE
belongs to the 10% model confidence set (MCS) from Hansen, Lunde, and Nason (2011). The MCS is implement using the
T-max statistic. The sample period spans from January 2005 through December 2020.

establish its first-order asymptotic validity, and use Edgeworth expansions to show that
the LG bootstrap inference achieves second-order asymptotic refinements.

We broaden the scope of our LG bootstrap by introducing new estimators for the
spot variance as well as the spot covariance, correlation, and beta between two semi-
martingales that are based on the Laplace transform, and we adapt the inference proce-
dures to the requisite scenarios. We establish the central limit theory for the estimators,
demonstrating that these can achieve the optimal rate of convergence, �−1/4

n . Moreover,
first-order asymptotic validity of the LG bootstrap is established at a near-optimal rate.
Unlike previous studies of bootstrap inference in the high-frequency econometrics lit-
erature, we provide both pointwise and uniform (bootstrap) limit theory for the RLT and
the spot Laplace transform (SLT), which represent random processes. Not only does this
add substantial complexity to the first-order asymptotic analysis, it makes the higher-
order analysis particularly novel. The uniform results are necessary for the design of, and
inference for, our spot (co)variance estimators, which are constructed by transforming
the SLT function and evaluating it over a compact support.

A simulation study shows that the LG bootstrap outperforms existing feasible infer-
ence theory and alternative wild bootstrap methods, and it demonstrates that our new
spot measure estimators and inference procedures are very accurate. Moreover, we il-
lustrate the use of the new methods by examining the volatility of, as well as the coher-
ence between, stocks and bonds from January 2005 through December 2020, showing
that bonds have provided an effective hedge during the global financial crisis in 2008,
but lacked protective ability during the COVID-19 pandemic stock sell-off. Finally, our
(bootstrap) methods provide useful information for risk measure forecasting.

Appendix A: Additional assumptions

Assumption B′ . The volatility, σjt , j = 1, 2 are Itô semimartingales, defined by

σ1t = σ10 +
∫ t

0
ã1s ds +

∫ t

0
v1s dW1s +

∫ t

0
v′

1s dW2s
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+
∫ t

0
v′′

1s dW
′
s +

∫ t

0

∫
R

δ′
1(s−, x)μ̃′

1(ds, dx),

σ2t = σ20 +
∫ t

0
ã2s ds +

∫ t

0
v2s dW1s +

∫ t

0
v′

2s dW2s +
∫ t

0
v′′

2s dW
′
s +

∫ t

0
v′′′

2s dW
′′
s

+
∫ t

0

∫
R

δ′
2(s−, x)μ̃′

2(ds, dx),

where (W ′, W ′′ ) is a 2-dimensional standard Brownian motion, independent of W, μ̃′
1,

μ̃′
2, are compensated homogeneous Poisson measures with Lévy measure dt ⊗ ν′

1(dx),
dt ⊗ ν′

2(dx), respectively, having arbitrary dependence with μ1 and μ2, and δ′
1(t, x),

δ′
2(t, x) are mappings from R+ ×R →R, and are càdlàg in t. In addition, for every t, s > 0

and some ι > 0, it is required that

E

(
|ajt |3+ι + |ãjt |2 + |σjt |3+ι + |vjt |3+ι + ∣∣v′

jt

∣∣3+ι +
∫
R

∣∣δ′
j

∣∣3+ι
ν′
j(dx)

)
<C,

E

(
|ajt − ajs|2 + |vjt − vjs|2 + |ρt − ρs|2 + ∣∣v′

jt − v′
js

∣∣2
+

∫
R

(
δ′
j(t, x) − δ′

j(s, x)
)2
ν′
j(dx)

)
<C|t − s|,

for j = 1, 2, where C > 0 is some constant that does not depend on t and s.

Appendix B: Macro finance model parameters

The parameter values for Model 3 are borrowed from the estimates in Campbell et al.
(2018, Table 1):

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.221
−0.016
0.155
0.001
0.194
0.147

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.041 0.335 −0.042 −0.810 0.010 −0.051
−0.002 0.441 0.005 −0.021 0.004 0.001
0.130 0.674 0.961 −0.399 −0.001 −0.024
0.002 −0.084 0.001 0.948 0.001 −0.001

−0.293 11.162 −0.118 4.102 0.744 0.175
0.069 2.913 −0.017 −0.253 −0.004 0.932

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and � is their unscaled covariance matrix subject to a small adjustment to ensure posi-
tive definiteness:10

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0609 0.0089 −0.0149 0.0092 −0.0103 −0.0032
0.0089 0.1423 −0.1697 0.1328 −0.1849 −0.0011

−0.0149 −0.1697 0.4992 −0.4087 0.6346 −0.0794
0.0092 0.1328 −0.4087 0.4770 −0.6794 0.1209

−0.0103 −0.1849 0.6346 −0.6794 1.1905 −0.2276
−0.0032 −0.0011 −0.0794 0.1209 −0.2276 0.1336

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Finally, we set the initial value as X0 = [log(100) 0.2 − 0.03 0.111 − 0.113 0.004].

10For the adjustment, we simply replace the negative eigenvalues with the smallest positive eigenvalue.
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Appendix C: The failure of standard wild bootstrap procedures

This section examines the asymptotic properties of two wild bootstrap procedures for
the RLT. Specifically, we show that adaptations of the Gonçalves and Meddahi (2009) as
well as and Wu (1986) and Liu (1988) bootstrap procedures to the present setting deliver
inconsistent inference.

Since the sequence (ξ(u)ni )ni=1 is uncorrelated and heteroskedastic, the wild boot-
strap inference procedure represents a natural alternative to the feasible limit theory in
Section 2. This section adapts the procedures by Gonçalves and Meddahi (2009) as well
as Wu (1986) and Liu (1988), labeled the GM and WL bootstrap, respectively, and studies
their asymptotic (in)validity.

GM bootstrap

Following Gonçalves and Meddahi (2009), we define wild bootstrap pseudo observa-
tions (ξ(u)n∗

i )ni=1 as

ξ(u)n∗
i = ξ(u)ni η

∗
i . (C.1)

Then, as it trivially follows that E∗(RLT∗
n(u)) = μ∗

1 RLTn(u) and

C∗
n(u, v) = (

μ∗
2 − (

μ∗
1

)2)
�n

n∑
i=1

ξ(u)ni ξ(v)ni ,

we use these moment results to formally establish that the GM bootstrap fails to con-
sistently estimate the covariance function of the RLT,

∫ T
0 F(

√
ucs ,

√
vcs )ds for some

u, v ∈R+.

Proposition 3. Suppose Assumptions A and B hold, and that ξ(u)n∗
i is generated as in

(C.1). Then it follows that

C∗
n(u, v)

P→ (
μ∗

2 − (
μ∗

1
)2) ∫ T

0
G(

√
ucs ,

√
vcs )ds,

as �n → 0, with

G(x, y ) ≡ e−(x+y )2 + e−(x−y )2

2
, for x, y ∈R+.

Note that by (4) and Proposition 3, we may write

G(x, y ) = F(x, y ) + e−x2−y2
, for x, y ∈R+.

Hence, there exist no choices of μ∗
1 and μ∗

2 such that

(
μ∗

2 − (
μ∗

1

)2)∫ T

0
G(

√
ucs ,

√
vcs )ds =

∫ T

0
F(

√
ucs ,

√
vcs )ds

holds true, showing that the GM bootstrap inference is inconsistent. The main reason for
this inconsistency is that the bootstrap observations, defined by (C.1), are not centered
appropriately.
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WL bootstrap

To alleviate bias issues for wild bootstrap procedures, Wu (1986) and Liu (1988) propose
to augment the resampling scheme with a delete-one jackknife bias correction. Hence,
following their analyses, we define wild bootstrap pseudo observations (ξ(u)n∗

i )ni=1 as

ξ(u)n∗
i = 1

n

n∑
i=1

ξ(u)ni +
(
ξ(u)ni − 1

n

n∑
i=1

ξ(u)ni

)
η∗
i . (C.2)

That is, in contrast to (C.1), the WL bootstrap resampling scheme in (C.2) centers the
observations around the sample mean. As above, it is straightforward to show that

E
∗(RLT∗

n(u)
) = RLTn(u) +�n

n∑
i=1

(
ξ(u)ni − 1

n

n∑
i=1

ξ(u)ni

)
μ∗

1 and

C∗
n(u, v) = (

μ∗
2 − (

μ∗
1
)2)

�n

n∑
i=1

ξ(u)ni ξ(v)ni

− (
μ∗

2 − (
μ∗

1

)2)�n

n

(
n∑

i=1

ξ(u)ni

)(
n∑

i=1

ξ(v)ni

)
,

which is then used to establish the following inconsistency result.

Proposition 4. Suppose Assumptions A and B hold, and that ξ(u)n∗
i is generated as in

(C.2). Then, as �n → 0, it follows that

C∗
n(u, v)

P→ (
μ∗

2 − (
μ∗

1

)2)∫ T

0
G(

√
ucs ,

√
vcs )ds

−
(
μ∗

2 − (
μ∗

1

)2)
T

(∫ T

0
e−ucs ds

)(∫ T

0
e−vcs ds

)
.

Note that, for the WL bootstrap, we have

1
T

(∫ T

0
e−ucs ds

)(∫ T

0
e−vcs ds

)
=

∫ T

0
e−(u+v)cs ds (C.3)

if and only if the volatility is constant, that is,

σt = σ > 0. (C.4)

In this special case, Proposition 4 demonstrates the WL bootstrap can achieve con-
sistent inference for the RLT by selecting the external variables (μ∗

2 − (μ∗
1 )2 ) = 1 (i.e.,

V
∗(η∗ ) = 1), similar to the recommendations in Liu (1988). More generally, however,

when allowing for stochastic volatility and leverage effects in Assumption B, the equality
in (C.3) no longer holds, implying that there exist no choice of external variables that will
render the bootstrap procedure consistent.
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