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Abstract 

This paper investigates price volatility and spillover effects in the Nordic electricity 
wholesale markets, comprising Sweden, Finland, Denmark, and Norway. Utilizing both the 
Time-Varying Parameter Vector Autoregressive (TVP-VAR) and Rolling Window-based 
VAR (RW-VAR) approaches, we analyze the integration dynamics among these regional 
markets and the impact of carbon prices on volatility spillovers. The study employs a rich 
dataset of 107,352 hourly prices spanning from January 2010 to March 2022. The novelty 
of this research is three-fold. Firstly, we adopt a connectedness approach to explore 
volatility interactions among the four Nordic markets, contributing to the scarce literature 
on volatility in this market. Secondly, we segment the Norwegian market into southern and 
northern regions, revealing differences in volatility spillover patterns. Lastly, we 
investigate the influence of carbon prices on volatility spillovers, shedding light on its role 
in market dynamics. We find significant connectedness between the Nordic markets, with 
an average volatility Total Connectedness Index of 52.4% and 50.9%. Sweden emerges as 
the sole net volatility spillover transmitter, while Denmark experiences the largest shocks 
from the system. We further find that carbon prices exert a 5% significant impact on the 
volatility spillover index, as estimated by the 200-days rolling window VAR. 

 

Keywords: Electricity Markets, Price Volatility, Nord Pool, Carbon Market, Renewable 
Energy 

JEL Classifications: D0, D5, L1, L9 
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Highlights 

 

Investigates price volatility and spillover effects in Nordic electricity wholesale markets across 
four countries and 12 bidding areas from 2010 to 2022. 

Uses time-varying parameter VAR and rolling window VAR to analyse market integration, 
offering novel insights into Nordic electricity volatility connectedness. 

Sweden is the main net volatility spillover transmitter, while Denmark experiences significant 
shocks from the system, showing distinct market behaviours. 

Dynamics of total connectedness index respond to EU ETS transitions, market coupling events, 
and public health crises, highlighting market sensitivity to external factors. 

Findings reveal a positive relationship between carbon prices and total volatility spillovers, 
impacting electricity market risks in the Nordic region. 
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1. Introduction 

Electricity is a critical service and infrastructure for economic development (Cramton, 2017). 
Due to the relative non-storable nature of electricity, markets find it is more difficult to match 
supply and demand than in other commodity markets (Ma et al., 2022; Uribe et al., 2020). With 
its vulnerability to weather and climate-related conditions, the growing shares of renewables, 
and increasing price of carbon for electricity generation, the price of electricity has become one 
of the most volatile financial instruments in liberalized markets (Do et al., 2020). 

Electricity market integration can reduce idiosyncratic exposure to volatility risk and limit the 
probability of energy crises and energy shortages in national or regional markets. The US 
Energy Policy Act of 1992 promoted electricity wholesale markets by requiring utilities to open 
the transmission systems, which was followed by formation of a regional network spanning 11 
separate spot markets (De Vany and Walls, 1999; Park et al., 2006); since then the price 
dynamics and integration among 11 US markets have been extensively discussed (see e.g, 
Mjelde and Bessler, 2009). In the same vein, Australia established the National Electricity 
Market (NEM) in 1998, made up of five regional markets (Han et al., 2020; Nepal and Foster, 
2016). In order to remove cross border barriers between member states, European Union 
electricity market integration was considered and discussed as early as in 1986 (Do et al., 2020; 
Jamasb and Pollitt, 2005; Pollitt, 2019), and was put into practice in 1990.1  

Market integration has been an objective in geographically and economically linked areas, as 
in the Nordic region. The Nordic electricity market — Nord Pool — is believed to be the best-
functioning market in the world (Amundsen and Bergman, 2006; Haugom et al., 2020; 
International Energy Agency, 2023; Sousa and Soares, 2020; Uribe et al., 2020). The 
generation mix in the Nordic region is dominated by renewables. The share of electricity from 
low carbon sources in Denmark, Norway, Finland, and Sweden, is 72.4, 100, 69.0 and 88.7%, 
respectively. Even with high levels of clean energy, the Nordic region is expected to experience 
faster growth in renewables in the future (Bertrand, 2020; Jan, 2019). Integration of national 
electricity markets is characterized by a variety of renewables (e.g., wind power in Denmark, 
hydro power in Norway, and nuclear power in Sweden and Finland) and non-renewable (e.g., 
fossil fuels in Finland) generation mixes. Renewable energy, such as wind power and 
hydropower, is inherently intermittent due to climatic conditions that, exacerbates price 
volatility in the absence of feasible storage (Uribe et al., 2020). Actors in Nord Pool are exposed 
to the risk of price fluctuations in merchant power prices. The volatility of wholesale electricity 
prices is therefore a key issue. The Nordic market can shed some light on dynamics of price 
fluctuations in future integrated renewable-dominant electricity markets. 

 
1 Council Directive 90/377/EEC of 29 June 1990 concerning a community procedure to improve the transparency 
of gas and electricity prices charged to industrial end-users. Retrieved from: https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:31990L0377. 

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0377
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31990L0377
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This paper analyses volatility spillovers across the four Nordic countries and examines how 
carbon prices influence those spillover effects. The present study focuses on two research 
questions: What is the volatility connectedness level among the Nordic countries and regions? 
Whether and how do changes in carbon prices drive volatility spillovers in the integrated 
Nordic electricity market? 

The Nordic electricity market is formed by Denmark, Finland, Norway, and Sweden and 
includes 13 bidding areas, with price differences among them. Price movements in these 
markets enhance the arbitrage opportunities, and spillover effects appear among markets. Price 
fluctuation (e.g., volatilities) in the same type of market typically has a mutual spillover effect, 
which implies that the volatility of one market can be passed to another. Cross-spillovers 
between markets facilitate international risk-sharing. In integrated markets, changes in one 
local market can affect not only the local consumption and wholesale prices, but also markets 
of other countries via cross-border trade, as markets aggregate a large amount of interconnected 
financial transactions. For instance, the wholesale electricity price in Norway is affected by 
weather conditions, wind generation, and hydro output, as well as climate change policies, and 
shocks are passed on to the Swedish market. As a result, power companies in Sweden may bear 
the impact caused by non-local shocks contributed by Norway. Furthermore, the climate 
policies of, for instance, the European Union emissions trading system (EU ETS), as a well-
established carbon market of EU, will increase electricity price levels in general (Aatola et al., 
2013). The power enterprises are the most active traders in the EU ETS, and thus the interaction 
between the Nordic wholesale electricity markets and EU ETS is important. 

The novelty of our approach is three-fold. First, we use the connectedness approach based on 
the time-varying parameter VAR (TVP-VAR, thereafter) and rolling window-based VAR 
(RW-VAR, thereafter) models to analyse integration in the Nordic electricity markets, 
contributing to the scarce literature in the volatility connectedness in this region. Second, we 
split the Norwegian market into two price regions to reflect the observed difference in 
electricity prices between the northern and southern regions. Thirdly, we examine how carbon 
price influences those spillover effects since the literature examining the impact of carbon price 
on electricity market integration is scant. Do et al. (2020) suggests that adoption of carbon price 
floor improves market integration in physically interconnected markets but lacks sufficient 
empirical evidence to support. 

To the best of our knowledge, this is the first study to examine the role of carbon price on 
volatility spillovers among Nordic electricity markets. Understanding these issues is important 
for market participants (e.g., electricity producers, retailers, investors, and users) not only in 
Nordic electricity markets but globally adopt appropriate risk management strategies to hedge 
against the negative effects of electricity price volatility since the Nordic electricity market is 
at the heart of Europe’s energy transition. It is also important for the sector regulator to devise 
measures to avoid excessive price volatility. 
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The remainder of the paper is organized as follows: Section 2 reviews the literature. Section 3 
presents the methodology to estimate volatility spillover effects among regional ETS. Section 
4 describes the data and sample. Section 5 discusses the empirical results. Section 6 concludes 
and provides policy implications. 

2. Background 

Renewable energy (RE) penetration has been increasing globally in the last ten years (BP, 
2022). Advanced economies, e.g., the European Union, have generally higher share of 
renewables, with 39% of gross electricity consumption (International Energy Agency, 2022). 
However, the source mix of power generation differs across Europe. For instance, Italy, Poland, 
and Netherlands sectors are dominated by fossil fuels, in France nuclear power is the main 
source of power generation, and the Nordic region largely relies on renewable energy (Eurostat, 
2022). The Nordic countries de-regulated and introduced competition in their power markets 
in the early 1990s, merging their national markets into a common market – Nord Pool (Flatabo 
et al., 2003; Bye and Hope, 2005). Market integration is also progressing in the Baltics and the 
rest of Europe. Hence, power from different sources and countries that enter the grid can 
potentially cause volatility. 

Nord Pool is transitioning to a system fully based on sustainable energy resources. Specifically, 
Denmark, as a leading country in wind energy with a long tradition of integrating renewable 
energy in its electricity sector. The electricity from renewable sources reached 72.4% of the 
electricity supply by the end of 2020, to which wind energy contributed around 50% and 
biomass 21.2% (Danish Energy Agency, 2021). In Norway, 100% of the electricity is from low 
carbon sources, with 98% hydropower, wind, and thermal energy (International Energy 
Agency, 2022; Ministry of Petroleum and Energy, 2016). Precipitation and inflows to dams 
and reservoirs are critical due to hydropower's role especially in the Norwegian system. In 
Finland and Sweden, the share of low carbon sources in power generation is 69.0% and 88.7%, 
respectively, while the share of renewable energy is 48.8% and 66.3%. In the absence of viable 
electricity storage, electricity price in Nord Pool is relatively volatile (Ketterer, 2014; Kyritsis 
et al., 2017; Uribe et al., 2020). 

The coupling of electricity markets has been extensively investigated (e.g., Amundsen and 
Bergman, 2006; Bunn and Gianfreda, 2010; De Vany and Walls, 1999; Do et al., 2020; Gugler 
et al., 2018; Han et al., 2020; Ma et al., 2022; Nepal and Foster, 2016; and Park et al., 2006). 
Most studies have focused on the European and Australian electricity markets (Bunn and 
Gianfreda, 2010; Gugler et al., 2018), using daily spot or forward price data. The volatility 
spillover effects across different markets is well documented in the literature (e.g., Do et al., 
2020; Han et al., 2020; Ma et al., 2022; Uribe et al., 2020). Han et al. (2020) studied the 
volatility spillovers between prices across five regions in the Australian National Electricity 
Market (NEM) and found volatility connectedness in this market to be 35.9%. Connectedness 
is typically more pronounced between physically interconnected markets. In the same vein, Do 
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et al. (2020) investigated the volatility connectedness between the Irish and Great British 
markets. They found around 5% volatility connectedness between the two markets over the 
2009-2018 period, i.e., lower than the Australian NEM. The low connectedness was believed 
to be due to inefficient flows across the two interconnectors between Britain and the Irish 
Single Electricity Market (SEM). Hasan et al. (2021) investigated time-frequency 
connectedness between Asian electricity sectors and showed that geographically connected 
markets such as China mainland, India, and Hong Kong are more connected than the 
geographically distant markets. Table 1 Panel A summarizes the literature on electricity market 
integration using connectedness methods. These studies generally find that physically and 
economically interconnected markets exhibit larger spillovers across the systems, hence larger 
market risks. In such systems, the risk propagates more easily, allowing for a decrease of 
idiosyncratic market risks, thus reducing the energy shortages in the domestic markets. 

Past studies have focused on the price mechanism in Nord Pool (Haugom et al., 2018; 
Hellström et al., 2012; Sotiriadis et al., 2016; Souhir et al., 2019), the linkage between Nord 
Pool electricity price and other energy or emission market prices (Chuliá et al., 2019; 
Daskalakis and Markellos, 2009; Ma et al., 2022), and electricity spot-forward price 
relationships in Nord Pool (Botterud et al., 2010; Weron and Zator, 2014). Table 1 Panel B 
summarizes these. Few studies examine the linkages within the Nord Pool market (Ma et al., 
2022; Uribe et al., 2020). The Nord Pool market gives an opportunity to study a highly 
integrated market with a high share of renewables. We aim to fill this gap by analysing the 
cross-spillover between prices in the Nord Pool interconnected electricity wholesale market 
with a variety of renewables. 

Table 1. Relevant literature on electricity market integration and Nord Pool electricity prices 

Panel A: Summary of studies on connectedness in electricity markets 

Reference Study area 
Study 
period 

Model type Data 

Ma et al. 
(2022) 

12 European day-
ahead wholesale 
spot electricity 

markets 

Sep 2009 - 
Aug 2020 

Time-frequency volatility 
connectedness 

Hourly price 

Naeem et al. 
(2022) 

Australian National 
Electricity Market 

(NEM) 

May 2005 - 
Dec 2020 

RW-VAR, time and 
frequency, and asymmetric 

connectedness 
Daily price 

Hasan et al. 
(2021) 

Electricity sector of 
10 Asian 

jurisdictions 

Apr 2007 - 
Aug 2020 

RW-VAR connectedness 
and frequency 

connectedness (Baruník 
and Křehlík, 2018) 

Daily stock price 

Han et al. 
(2020) 

Australian NEM 
Jan 2010 - 
Dec 2017 

RW-VAR connectedness Daily price 
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Do et al. 
(2020) 

Irish and Great 
Britain markets 

Oct 2009 - 
Oct 2018 

Asymmetric 
connectedness based on 

RW-VAR 
 

Half hourly price 

Panel B: Summary of studies on Nord Pool electricity markets 

Reference Topic 
Study 
period 

Model type Data 

Souhir et al. 
(2019) 

Electricity market 
variations on the 

Nordic stock market 
returns 

Jul 2017 - 
Dec 2017 

VaR, c-DCC-FIGARCH, 
CVaR and ΔCVaR 

Hourly spot 
electricity price 

Sotiriadis et 
al. (2016) 

Price and volatility 
interrelationships in 

five European 
electricity markets 

Jan 2009 - 
Aug 2012 

A novel VAR model, CCC-
MGARCH model, DCC-

MGARCH 
 

Daily spot 
electricity price 

Chuliá et al. 
(2019) 

Links between 
energy markets in 
Europe (including 

Nord Pool) 

Nov 2008 - 
Jun 2016 

RW-VAR 

17 forward price 
covering 

electricity, gas, 
coal, and carbon 

Daskalakis 
and 

Markellos 
(2009) 

Links between 
emission and 

electricity markets 

Sep 2006 - 
Oct 2007, 

Mar 2005 - 
May 2007 

Regressions 
Daily electricity 
and carbon price 

Hellström et 
al. (2012) 

Possible causes 
behind electricity 
price jumps in the 

Nord Pool 

Jan 1996 - 
Feb 2006 

A mixed GARCH–EARJI 
jump model 

Daily spot 
electricity price 

Weron and 
Zator (2014) 

Relationship 
between spot and 

futures prices in the 
Nord Pool 

Jan 1998 - 
Dec 2010 

Regression models with 
GARCH residuals 

Weekly price 

Botterud et 
al. (2010) 

Spot and futures 
prices relationships 

in Nord Pool 
1996 - 2006 

Descriptive statistics 
and simple regression 

analysis 
Weekly price 

Haugom et 
al. (2018) 

Forward premium 
of futures contracts 

in the Nord Pool 

Jan 2004 - 
Dec 2013 

Regressions Weekly price 

Nomikos 
and 

Soldatos 
(2010) 

Major risks (e.g., 
spike risk, short-

term risk) in power 
prices in Nord Pool 

Jan 1993 - 
Feb 2004 

Three-factor spike 
model 

Daily system 
prices 
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The methodological frameworks employed in electricity market integration literature ranges 
from standard cointegration and autoregressive distributed lag analysis (ARDL) (see, e.g., 
Gugler et al., 2018; Böckers and Heimeshoff, 2014), to time-varying cointegration tests (de 
Menezes and Houllier, 2016; Nepal and Foster, 2016). However, these techniques (e.g., 
cointegration) have not considered the dynamics of volatility connectedness in the markets, 
which is a necessity for assessing the progress toward higher degrees of wholesale power 
markets integration. 

The connectedness strand of literature, developed recently by Diebold and Yilmaz (2009, 2012, 
2014), is relevant for our study (hereafter DY method). The DY method constructs the spillover 
index by forecast error variance decomposition of the VAR model. A notable feature of the 
DY method is that can describe the direction and dynamics of spillovers. The DY method 
overcomes not only the problem of fixed parameters assumed in cointegration tests, but also 
the drawbacks of multivariate GARCH models in capturing time-varying features of spillover 
effect (Do et al., 2020; Han et al., 2020; Liu and Gong, 2020; Ma et al., 2022). The DY method 
has advantages, but also drawbacks, namely, i) estimation based on a rolling window VAR 
(hereafter, RW-VAR) induces loss of observations, ii) arbitrary in selecting window size, and 
iii) loss of observations in first window. We first analyse connectedness in Nord Pool by DY 
rolling window VAR, then extend the model to a time-varying parameter VAR (TVP-VAR), 
following Antonakakis et al. (2020). The TVP-VAR-based approach has advantages such as : 
(i) insensitivity to outliers due to the underlying Kalman filter, (ii) no need to arbitrarily choose 
the rolling-window size, (iii) no loss of observations, and (iv) it can be used with low frequency 
data (Antonakakis et al., 2020; Koop and Korobilis, 2013). We compare the results from both 
methods. 

The methodologies adopted in this study have several adantages. First, by employing a rolling-
window technique, the applied methodology may track the degree of spillover effects over time 
without specifying a set of breakpoints or situations in advance. Second, we extend the DY 
connectedness to a dynamic approach based on TVP-VAR, which allows the variance-
covariance matrix to vary via a Kalman filter estimation with forgetting factor2. Third, the 
spillover measure can be simply aggregated by both RW-VAR and TVP-VAR, allowing for 
the quantification of diverse spillover effects. Both measures enable differentiating between 
net shock transmitters and net shock receivers, which in turn helps obtain a better knowledge 
of the underlying dynamics and improves the formulation of policy implications. 

 
2 Kalman filter methods have several desirable properties, e.g., they are fast because state space models 
encapsulate the Markov property and reduce to a set of recursions. Also, the forgetting factor approaches 
have been commonly used with state space models; they do not require the use of Markov Chain Monte 
Carlo, which can be computationally demanding (Antonakakis et al., 2020; Koop and Korobilis, 2013; 
Dangl and Halling, 2012). The detailed algorithm of the TVP-VAR with Kalman filter and forgetting 
factors can be found in Koop and Korobilis (2013). Different measures — e.g., the rolling window VAR 
analysis, are provided in the robustness checks. 
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A recent paper related to our study is Uribe et al. (2020). The paper examines the integration 
and propagation of shocks in the Nord Pool market, covering seven countries. Uribe et al. (2020) 
's study examined the period from January 2013 to December 2018. 

Our study complements and extends the findings of Uribe et al., (2020) by focusing on the 
integrated Nordic electricity market, and addresses the unique challenges posed by climate 
change, increasing renewable energy shares, and carbon pricing. To the best of our knowledge, 
this is the first study to analyze price volatility spillovers and the impact of carbon prices in the 
Nordic region. Our study covers a longer period, spanning from January 2010 to March 2022, 
which provides a more comprehensive understanding of market dynamics and allows us to 
capture a broader range of events that have influenced the electricity market. The extended 
timeframe in our study enables us to investigate and analyze a more diverse set of market 
conditions and events, such as the transition of EU ETS from Phase II to Phase III in 2012, the 
crude oil crisis in 2014 the market coupling of the GB-Irish market in 2018, and the Covid-19 
pandemic. Also, due to network congestion between southern and northern Norway, the 
Norwegian bidding prices should be separated into southern and northern prices (see also 
Section 4).  

Furthermore, we examine whether carbon price can explain connectedness which is ignored by 
Uribe et al. (2020). Our results indicate that Finland acted as a net transmitter of volatility 
shocks to Norway between January 2010 and June 2012. However, from June 2012 to June 
2018, Finland became a net spillover receiver, primarily from Sweden and Norway. This 
observation contrasts with Uribe et al.'s conclusion that Finland received volatility shocks from 
Norway during 2013 and 2015. Since 2018, Finland has returned to being a spillover 
transmitter to Denmark and Norway, although the effect is less pronounced than during the 
2010-2012 period. Notably, Sweden consistently transmits net spillover to Finland throughout 
the sample, likely due to its role as a net electricity importer from Sweden. These differences 
in methodology, time period, and findings underscore the unique contributions of our study in 
providing a deeper understanding of volatility spillovers and market dynamics in the integrated 
Nordic electricity market.  

3. Methodology 

The central research question of our study is how volatility connectedness (also known as 
spillover) in Nordic electricity markets responds to carbon price changes. Following the recent 
connectedness literature (e.g., Apergis et al., 2017; Do et al., 2020; Han et al., 2020). In the 
following, we provide a brief overview of the approach. Section 3.1 applies Diebold and 
Yilmaz (2009, 2012) spillover method to estimate volatility spillover effects in Nord Pool. 
Section 3.2 constructs the TVP-VAR to estimate the volatility spillover effects. The two 
methods are based on forecast error variance decomposition from the VAR model. Section 3.3 
displays the spillover measures. Section 3.4 investigates the impact of carbon price on this 
volatility connectedness. 
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3.1 Rolling window VAR model 

Diebold and Yilmaz (2012, 2014) utilized a generalized VAR approach to investigate 
interdependence across variables. This approach overcomes the Cholesky-type VAR in their 
earlier study, Diebold and Yilmaz (2009). The connectedness approaches are built from the 
variance decomposition matrix of an N-variable VAR(p) approximating model; see Equation 
(1) below. 

𝑋𝑋𝑡𝑡 = ∑ Φ𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝑋𝑋𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡,  𝜖𝜖𝑡𝑡 ~𝑁𝑁(0, Σ𝜖𝜖)   (1) 

Φ𝑖𝑖 is 𝑁𝑁 × 𝑁𝑁 matrix of polynomial coefficients. 𝜖𝜖𝑡𝑡 is a vector of independently and identically 
distributed error terms, where Σ𝜖𝜖 is the variance-covariance matrix for 𝜖𝜖𝑡𝑡. In our study, N=5 
for five regional markets and t refers to date (i.e., daily time series). The VAR(p) should be 
covariance stationary. The DY connectedness is based on generalised impulse response 
functions (GIRF) and generalised forecast error variance decompositions (GFEVD), developed 
by Koop et al. (1996) and Pesaran and Shin (1998). The important step to calculate the GIRF 
and GFEVD is to transform the VAR to its moving average representation – VMA. The moving 
average coefficients are important to a VAR system’s dynamics, since the variance 
decompositions rely on transformation of these original parameters, hence the key to 
understanding the dynamics of the system (Diebold and Yilmaz, 2012). We transform the 
VAR(p) model to its VMA and show in Equation (2). 

𝑋𝑋𝑡𝑡 = ∑ 𝐴𝐴𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖∞
𝑖𝑖=0 ,    (2) 

where 𝐴𝐴𝑖𝑖  are 𝑁𝑁 × 𝑁𝑁  coefficient matrices, and subject to the recursion 𝐴𝐴𝑖𝑖 = 𝜙𝜙1𝐴𝐴𝑖𝑖−1 +
𝜙𝜙2𝐴𝐴𝑖𝑖−2 + ⋯+ 𝜙𝜙𝑝𝑝𝐴𝐴𝑖𝑖−𝑝𝑝 , and where 𝐴𝐴𝑜𝑜 = 𝐼𝐼𝑁𝑁  (𝑁𝑁 × 𝑁𝑁  identify matrix) and 𝐴𝐴𝑖𝑖 = 0  for 𝑖𝑖 < 0 . 
These moving average coefficients measure the effects of shocks on variables 𝑋𝑋𝑡𝑡 at different 
points in time. 

The variance decompositions allow us to assess the fraction of the H-step-ahead error variance 
in forecasting 𝑋𝑋𝑛𝑛  that is due to shocks to 𝑋𝑋𝑚𝑚 , ∀ 𝑛𝑛 ≠ 𝑚𝑚, for each 𝑛𝑛. Specifically, for each 
variable 𝑋𝑋𝑛𝑛, (𝑛𝑛 = 1,2, … ,𝑁𝑁) we can analyze which fraction of the error variance in forecasting 
𝑋𝑋𝑛𝑛 can be attributed to shocks to variable 𝑋𝑋𝑚𝑚. However, the decomposition of forecast error 
variance prerequisites isolated shock, yet energy market data often display contemporaneously 
associated shocks or innovations. Diebold and Yilmaz (2012) adopted the generalized VAR 
framework of Koop et al. (1996) and Pesaran and Shin (1998). This approach allows for 
correlated shocks but accounts for them appropriately using the historically observed 
distribution of the errors, circumventing the variables ordering problem of the identification 
schemes based on Cholesky factorization. As the shocks to each variable are not orthogonalized, 
the sum of contributions to the variance of forecast error is not always equal to one. Denoting 
the H-step-forecast error variance decompositions by 𝜃𝜃𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻) , for 𝐻𝐻 = 1,2, … ,𝑁𝑁  (the 
contribution of variable m’s shocks to n’s generalized forecast error variance, 𝜃𝜃𝑛𝑛𝑛𝑛

𝑔𝑔  (H)), we 
have Equation (3). 
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𝜃𝜃𝑛𝑛𝑛𝑛
𝑔𝑔 (𝐻𝐻) = 𝜎𝜎𝑚𝑚𝑚𝑚

−1 ∑ (𝑒𝑒𝑛𝑛′ 𝐴𝐴ℎΣ𝜖𝜖𝑒𝑒𝑚𝑚)2𝐻𝐻−1
ℎ=0

∑ (𝑒𝑒𝑛𝑛′ 𝐴𝐴ℎΣ𝜖𝜖𝐴𝐴ℎ
′ 𝑒𝑒𝑛𝑛)𝐻𝐻−1

ℎ=0
,     (3) 

and normalized as 

𝜃𝜃�𝑛𝑛𝑛𝑛
𝑔𝑔 (𝐻𝐻) =  𝜃𝜃𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻)
∑ 𝜃𝜃𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻)𝑁𝑁
𝑚𝑚=1

× 100%,     (4) 

where 𝑔𝑔  refers to the generalized variance decomposition method. Σ𝜖𝜖  is the variance 
covariance matrix for 𝜖𝜖𝑡𝑡 . The moving average coefficient matrix corresponding to lag h is 
denoted as 𝐴𝐴ℎ. 𝜎𝜎𝑚𝑚𝑚𝑚 is the m-th diagonal element in Σ𝜖𝜖, which denotes the standard deviation 
of the shocks for the variable m (error term for the mth equation). 𝑒𝑒𝑛𝑛  and 𝑒𝑒𝑚𝑚  are both the 
selection vectors; both the n-th entry for 𝑒𝑒𝑛𝑛  and m-th entry for 𝑒𝑒𝑚𝑚  are equal to 1, and 0 
otherwise. Then we normalize each entry of the variance decomposition matrix by the row sum 
as Equation (4), where the decomposition 𝜃𝜃�𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻) measures the spillover from 𝑋𝑋𝑚𝑚 to 𝑋𝑋𝑛𝑛 (𝑋𝑋𝑡𝑡 
is a vector of volatility series for one of the Nordic electricity markets). Note that 
∑ 𝜃𝜃�𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻)𝑁𝑁
𝑚𝑚=1 = 1 and ∑ 𝜃𝜃�𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻)𝑁𝑁
𝑛𝑛,𝑚𝑚=1 = 𝑁𝑁 by construction. The denominator represents the 

cumulative effect of all the shocks, while the numerator illustrates the cumulative effect of a 
shock in variable i.  

3.2 TVP-VAR model 

This section follows the approach of Antonakakis et al. (2020). The objective is to provide a 
flexible framework for the estimation and interpretation of time variation in the systematic and 
non-systematic parts of carbon prices and their effect on the rest of the markets. The TVP-
VARs are state space models; one advantages is that statistical methods for state space models 
(based on the Kalman filter) are available. To describe the dynamics of volatility spillovers, 
the baseline TVP-VAR model is set as follows: 

𝑋𝑋𝑡𝑡 = 𝑍𝑍𝑡𝑡−1B𝑡𝑡 + 𝜖𝜖𝑡𝑡,    𝜖𝜖𝑡𝑡|Ω𝑡𝑡−1~𝑁𝑁(0, Σ𝑡𝑡),    (5) and 

𝑣𝑣𝑣𝑣𝑣𝑣(B𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣(B𝑡𝑡−1) + 𝜉𝜉𝑡𝑡, 𝜉𝜉𝑡𝑡|Ω𝑡𝑡−1~𝑁𝑁(0,Ξ𝑡𝑡),    (6) 

where  𝑍𝑍𝑡𝑡−1 = �

𝑋𝑋𝑡𝑡−1
𝑋𝑋𝑡𝑡−2
⋮

𝑋𝑋𝑡𝑡−𝑝𝑝

� , and B𝑡𝑡 = �

𝐵𝐵1𝑡𝑡
𝐵𝐵2𝑡𝑡
⋮
𝐵𝐵𝑝𝑝𝑝𝑝

�. 

In the above models, 𝑝𝑝 is the lag order, 𝑡𝑡 is the sample length of the model, and 𝑡𝑡 = 𝑝𝑝 + 1,𝑝𝑝 +
2, … ,𝑇𝑇.  Ω𝑡𝑡−1  represents all information available until  𝑇𝑇 = 𝑡𝑡 − 1 . 𝑋𝑋𝑡𝑡  is an 𝑁𝑁 × 1  vector 
containing observations on N time series variables. 𝑍𝑍𝑡𝑡−1  represents 𝑁𝑁 × 𝑝𝑝  matrix.  B𝑡𝑡  are 
𝑁𝑁 × 𝑁𝑁𝑁𝑁 dimensional coefficient matrices while B𝑖𝑖𝑖𝑖  are 𝑁𝑁 × 𝑁𝑁 matrices. 𝜖𝜖𝑡𝑡  and Σ𝑡𝑡  are 𝑁𝑁 × 1 
and 𝑁𝑁 × 𝑁𝑁 matrix, respectively. In equation (6), 𝑣𝑣𝑣𝑣𝑣𝑣(𝐵𝐵𝑡𝑡) is the vectorisation of 𝐵𝐵𝑡𝑡, which is 
an 𝑁𝑁 × 𝑁𝑁𝑁𝑁  dimensional vector. The 𝜉𝜉𝑡𝑡  is an N2𝑝𝑝 × 1  dimensional vector. Moreover, Ξ𝑡𝑡 
are N2𝑝𝑝 × N2𝑝𝑝 time-varying variance-covariance matrices; 𝜖𝜖𝑡𝑡 and 𝜉𝜉𝑠𝑠 are independent of one 
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another for all s and t. Equation (6), which models the evolution of 𝐵𝐵𝑡𝑡, can be interpreted as a 
hierarchical prior for 𝐵𝐵𝑡𝑡. 

For the initialization of Kalman filter, we utilize an uninformative prior for parameters Σ𝑜𝑜 and 
𝐵𝐵𝑜𝑜. The mean and the variance of 𝐵𝐵0 are chosen to be the OLS point estimates (𝐵𝐵�𝑂𝑂𝑂𝑂𝑂𝑂) and its 
variance Σ𝑂𝑂𝑂𝑂𝑂𝑂𝐵𝐵  in a time invariant VAR. Consequently, the Kalman filter technique relies on a 
forgetting factor that regulates the variation of estimated parameter coefficients with time. As 
proposed by Koop and Korobilis (2014), the forgetting factor is set at 0.99 given that our 
parameters do not change considerably across periods. The time-varying coefficients and error 
covariances are used to estimate the generalised connectedness procedure of DY’s spillover 
index. We transformed Equation (7) to its VMA,  

𝑋𝑋𝑡𝑡 = ∑ Υ𝑖𝑖,𝑡𝑡∞
𝑖𝑖=0 𝜖𝜖𝑡𝑡−𝑖𝑖,     (7) 

where Υ𝑖𝑖,𝑡𝑡 = 𝐶𝐶1,𝑡𝑡Υ𝑖𝑖−1,𝑡𝑡 + 𝐶𝐶2,𝑡𝑡Υ𝑖𝑖−2,𝑡𝑡 +  … + 𝐶𝐶𝑝𝑝,𝑡𝑡Υ𝑖𝑖−𝑝𝑝,𝑡𝑡 . Υ𝑡𝑡 = �Υ1,𝑡𝑡,Υ2,𝑡𝑡,Υ3,𝑡𝑡, … ,Υ𝑝𝑝,𝑡𝑡�
′

 and 𝐶𝐶𝑡𝑡 =

�𝐶𝐶1,𝑡𝑡,𝐶𝐶2,𝑡𝑡,𝐶𝐶3,𝑡𝑡, … ,𝐶𝐶𝑝𝑝,𝑡𝑡�
′
.  Both  𝐶𝐶𝑖𝑖,𝑡𝑡 and Υ𝑖𝑖,𝑡𝑡  are N × N  dimensional matrices. The H-step-

forecast error variance decompositions process can be referred to Equations (3) and (4) above.  

3.3 Spillover measures 

Using the GFEVD (Equations (3) and (4)), we construct the following spillover measures: 

Total connectedness index (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡(𝐻𝐻)): 
Σn,m=1,n≠m
𝑁𝑁 𝜃𝜃�𝑛𝑛𝑛𝑛,𝑡𝑡

𝑔𝑔 (𝐻𝐻)

Σn,m=1
𝑁𝑁 𝜃𝜃�𝑛𝑛𝑛𝑛,𝑡𝑡

𝑔𝑔 (𝐻𝐻) × 100,     (8) 

Directional spillovers to (𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻)): ∑ 𝜃𝜃�𝑛𝑛𝑛𝑛
𝑔𝑔 (𝐻𝐻)𝑁𝑁

𝑛𝑛=1,𝑛𝑛≠𝑚𝑚 ,     (9) 

Directional spillovers from (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻)):  ∑ 𝜃𝜃�𝑛𝑛𝑛𝑛
𝑔𝑔 (𝐻𝐻)𝑁𝑁

𝑚𝑚=1,𝑛𝑛≠𝑚𝑚 ,     (10) 

Net spillovers (𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛,𝑡𝑡):  𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻)- 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻),     (11) 

Net pairwise spillovers: (𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛(𝐻𝐻)): ( 𝜃𝜃�𝑛𝑛𝑛𝑛
𝑔𝑔 (𝐻𝐻)

Σk=1
𝑁𝑁 𝜃𝜃�𝑛𝑛𝑛𝑛

𝑔𝑔 (𝐻𝐻) −
𝜃𝜃�𝑚𝑚𝑚𝑚
𝑔𝑔 (𝐻𝐻)

Σk=1
𝑁𝑁 𝜃𝜃�𝑗𝑗𝑗𝑗

𝑔𝑔 (𝐻𝐻)) × 100.    (12) 

3.4 The effect of carbon price on volatility spillovers 

Next, we build a regression model to analyze the relationship between carbon price and the 
volatility spillovers across the Nord Pool market. Other potential effects on volatility spillovers 
are controlled, namely, natural gas price and oil price. Since gas and crude oil prices are often 
highly correlated with carbon and electricity prices (Aatola et al., 2013; Chang et al., 2018; 
Duan et al., 2021), we controlled the potential effect on volatility spillovers in the Nord Pool 
market. 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 + 𝛽𝛽2𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 + 𝜐𝜐𝑡𝑡,   (13) 

𝑦𝑦𝑡𝑡  denotes the total connectedness index (TCI) as calculated in Equation (8). The TCI 
represents the cumulative effect of all the shocks, while the numerator illustrates the cumulative 
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effect of a shock in variable n. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 denotes the European Union Allowances spot prices, 
under the European emission trading scheme (EU ETS). 𝜐𝜐𝑡𝑡 denotes the error term in the 
regression model. 

4. Data 

We first examine price volatility and its spillover effects across Nordic markets. The considered 
markets are in four countries, with 12 bidding areas, which are Denmark (DK1-Western 
Denmark, DK2-Eastern Denmark), Norway (NO1-Oslo, NO2-Kristiansand, NO3-Trondheim, 
NO4-Tromsø, NO5-Bergen), Sweden (SE1-Lulea, SE2-Sundsvall, SE3-Stockholm, SE4-
Malmo), and Finland. We use a rich sample of 107,352 hourly prices for each region, from 1 
January 2010 - 31 March 2022, collected from Nord Pool3. All prices are quoted in EUR/MWh 
and aligned with time zones. 

Uribe et al. (2020) identified an at-least-80% correlation between the prices of each area per 
country (Denmark, Sweden, and Norway), hence restricted their analysis to a single area and 
their sample range (2013 – 2018) is shorter than our sample. Electricity prices in our sample 
period may have different characteristics, so we first perform correlation tests across bidding 
areas within individual countries. The correlations between the hourly prices in areas of 
Denmark, Norway, and Sweden are 83, 66 (average), and 77% (average), respectively. 4 
Specifically, DK1 and DK2 are highly correlated, so we calculate the average hourly price as 
a proxy of price in Denmark. Similarly, we average four prices across Sweden as a proxy for 
the Swedish electricity price.5 

For Norway, the price difference between southern and northern/central Norway is rather large, 
due to (i) low water reservoir in southern Norway, (ii) southern Norway has exported large 
amounts of energy to the continent, resulting in the supply being unable to meet demand, and 
(iii) the low transmission capacity from the north to the south. A price bottleneck as well as the 
differences appeared. Hence, we average the NO1, NO2, and NO5 (which are 98% correlated), 
and NO3 and NO4 (which are 97% correlated) as two representatives of the Norwegian 
(southern and northern) prices, respectively. In sum, as an extension to the literature of Nordic 
market integration (e.g., Uribe et al., 2020), we use five regional wholesale prices in the 
following model. Table 2 presents the descriptive statistics of the calculated prices for the five 
areas – Denmark, Finland, Norway South, Norway North, and Sweden. 

 

 

 
3 Intraday electricity prices are obtained from Nord Pool website, 
https://www.nordpoolgroup.com/services/power-market-data-services/.  
4 Tables for correlation tests can be found in Tables A2-A4 in Appendix A. 
5 Note that series of SE1- Lulea and SE2- Sundsvall have 98,315 identical hourly prices, hence the 
correlation between these two is almost equal to 1. 

https://www.nordpoolgroup.com/services/power-market-data-services/
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Table 2. Descriptive statistics – Hourly price of five study areas 

 Mean Minimum Maximum Std.Dev Skewness Kurtosis Obs 
Denmark 43.06 -200.00 1052.50 36.65 6.24 78.36 107,339 
Finland 43.18 -1.73 1400.11 31.46 9.52 228.41 107,339 
Norway South 38.40 -0.88 667.92 28.80 3.93 34.48 107,339 
Norway North 34.01 -0.01 1400.11 21.12 16.20 810.27 107,339 
Sweden 38.11 -1.97 1400.11 24.37 11.68 459.67 107,339 

Source: Own elaboration based on data from Nord Pool. Note: Sample includes electricity wholesale 
prices series from Denmark, Finland, Norway, and Sweden from January 1, 2010 - March 31, 2022.  

Daily realized volatilities (RV) are estimated based on the hourly electricity spot price. 
Following Frömmel et al. (2014), the realized variance is defined as the summation of the 
squared price changes over day t (see, e.g., Andersen et al., 2001; Do et al., 2020). Hence, the 
RV is defined as Equation (14): 

𝑅𝑅𝑅𝑅𝑡𝑡 = �∑ 𝑟𝑟𝑡𝑡,𝑖𝑖
2𝑀𝑀

𝑗𝑗−1 ,     i = 1, … M, t = 1, … , T,     (14) 

where 𝑟𝑟𝑡𝑡,𝑖𝑖 denotes the log price change from hour i-1 to i on day t. The sampling frequency is 
1-hour and M=24 in our case. Table 3 displays the descriptive statistics of daily volatilities of 
five areas. Figure 1 plots the daily volatilities of the five market areas studied. 

As shown in Table 3 and Figure 1, price volatility in Norway is generally lower than in the 
other three countries, while volatility in Denmark is the highest. Around 95% of Norway’s 
electricity generation is from hydropower, and this has given Norway a stable access to 
inexpensive clean energy. However, for electricity Denmark relies largely on wind power, 
which is a highly intermittent energy resource and easily affected by weather conditions; hence, 
higher volatility is expected. All five series are tested stationary, by the Augmented Dickey 
Fuller test (Dickey and Fuller, 1979). 

Table 3. Descriptive statistics – Daily volatilities of five study areas 
 

Mean Minimum Maximum Std.Dev Skewness Kurtosis ADF Obs 

Denmark 0.758 0.039 10.726 1.013 4.649 26.917 -24.69*** 4473 
Finland 0.668 0.029 6.558 0.625 2.533 10.552 -14.65*** 4473 
Norway South 0.222 0.007 4.150 0.298 4.707 34.438 -22.83*** 4473 
Norway North 0.261 0.014 5.065 0.316 4.673 36.287 -19.62*** 4473 
Sweden 0.459 0.018 6.234 0.515 3.530 19.039 -17.80*** 4473 

Source: Own elaboration based on data from Nord Pool. Note: Daily realized volatility is measured by 
Equation (14) above. The electricity daily volatilities from five regions – Denmark, Finland, Norway South, 
Norway North, and Sweden from January 1, 2010, to March 31, 2022, include 4473 daily observations. 
The hypothesis of the Augmented Dickey Fuller (ADF) test is 𝐻𝐻0: non-stationary against 𝐻𝐻1 : stationary. 
The lag length is determined by BIC criterion. * denotes significance at 10% level, ** denotes significance 
at 5% level, *** denotes significance at 1% level. 
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Figure 1. Plots of daily volatilities of five study areas 

 

Source: Own elaboration based on data from Nord Pool. Note: Daily realized volatility is measure by 
Equation (10) above. The electricity daily volatilities from five regions – Denmark, Finland, Norway South, 
Norway North, and Sweden cover the period January 1, 2010 – March 31, 2022, including 4473 daily 
observations. 

5. Results 

In this section we report the results of empirical analysis by the methods presented in Section 
3.3. In the following empirical model, we use fourth-order VARs (p=4) (selected by Schwarz 
information criterion), with 10-step-ahead forecasts 6  (H=10). We define the total 
connectedness index (TCI) by summing all non-diagonal elements of the generalized variance 
matrix. We define that if this TCI rises, so does network member dependency, therefore higher 
market risk. On the other hand, if the TCI decreases then the dependence between the members 
decreases and in turn the market risk decreases. 

5.1 Time-Varying Parameter – Vector Autoregressive Model estimation  

5.1.1 Total connectedness index 

This section reports the results by the TVP-VAR method. The outcomes corresponding to 
methodology provided in Sections 3.2 and 3.3 are summarized below. Table 4 presents the 
averaged spillover effects among the markets, estimated by TVP-VAR model. Figures 2–7 
present dynamic total volatility connectedness, net volatility spillover connectedness, and net 
pairwise volatility spillovers, estimated by both methods, respectively. 

 
6 A different choice of forecasting horizon, H from 2 to 9, is assessed in the robustness check in Appendix 
B. Following most of the literature (e.g., Yilmaz, 2009), we use 10-step-ahead horizon in the main text. 
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The main diagonal of Table 4 shows own-variance shares of shocks, while the off-diagonal 
elements reflect the interaction across five markets. The number in the bottom right corner 
represents the Total Connectedness Index (TCI) of the system. The average volatility TCI is 
52.4%, indicating that 52.4% of future volatility in Nord Pool is attributed to volatility shocks 
spreading across the markets. The internal cross-contribution due to individual shocks is the 
major driver of future performance across five regions in Nord Pool. Except for Denmark, all 
the “From Others” directional spillovers (Finland, Norway South, Norway North, and Sweden) 
are larger than 50%. The largest value, 60.7%, is for Sweden, which means that the electricity 
price in Sweden bears the largest shocks from other markets, while the Danish electricity 
market receives on average the smallest shocks, 39.9%, from other markets in the system. As 
for volatility spillover “To Others,” Sweden transmitted 77.5% of shocks to the system while 
Denmark transmitted 28.8%. The last row of Table 4, “Net Total,” shows Sweden was a net 
transmitter to the system, at 16.8% of volatility spillovers, while the other four prices, as 
volatility spillover receivers, show negative values. Denmark as a net spillover receiver, bore 
11.1% volatility spillovers from the system.  

Ma et al. (2022) reported a 44.2% static volatility spillover in the European electricity market, 
which is lower than our result of volatility spillovers in Nord Pool. Their study included, for 
instance, United Kingdom, France, Poland, Nord Pool, etc., electricity day-ahead markets. The 
lower volatility connectedness is explained by insufficient grid interconnections across Europe, 
while Nord Pool is an integrated market with larger non-local risks transmitted by other 
markets. Ma et al. (2022) concluded that Denmark received the largest (40.5%) shocks from 
the system among countries in the Nord Pool. Their result differs from ours, where Denmark 
(Sweden) received the smallest (largest) shocks from the Nord Pool. In their study, Denmark 
and Finland are both net shock receivers while Norway and Sweden are net shock transmitters. 
In our study only Sweden is a shock transmitter.  

Table 4. Average connectedness matrix of the system – estimated by TVP-VAR 

 Denmark Finland Norway 
South 

Norway 
North Sweden From 

Others 
Denmark 60.13 11.33 7.02 6.48 15.04 39.87 
Finland 7.81 45.21 10.82 11.45 24.70 54.79 
Norway 
South 6.21 11.38 47.04 18.02 17.35 52.96 

Norway 
North 5.35 11.15 16.77 46.30 20.41 53.70 

Sweden 9.41 20.92 13.35 17.04 39.28 60.72 
To Others 28.78 54.78 47.97 53.00 77.52 

TCI=52.41 Net Total -11.10 -0.01 -4.99 -0.70 16.80 

Source: This spillover table is generated from 10-step-ahead generalized VAR forecast error variance 
decomposition estimated from TVP-VAR. The 𝑛𝑛𝑛𝑛𝑡𝑡ℎ entry estimates the fraction of 10-step-ahead error 
variance in forecasting market n due to exogenous shocks to market m (the spillover from market m to 
market i:  𝑑𝑑𝑛𝑛𝑛𝑛

𝐽𝐽  ). According to Equation 11 (𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻)  - 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻)), we obtain the net total 
directional connectedness,𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛,𝑡𝑡. 
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In most previous studies, the evolution of price and volatility spillovers over time in electricity 
spot markets is attributed to changes in physical conditions that induce supply and demand 
shocks. The extent of price integration across European electricity markets is proved to be 
determined by market-specific factors and shocks in the short term, such as congestion 
(interconnector capacity) and extreme weather, surges in demand, and changes in electricity 
market structure in the long run, such as changes in renewable energy shares, total generation 
capacity, and market reforms, as well as external shocks from the financial market, geopolitical 
events, etc. (Frömmel et al., 2014; Han et al., 2020; Kyritsis et al., 2017, Chuliá et al., 2019). 
Hence, we plot the dynamic volatility spillover evolutions to relate to the spillover changes to 
specific market events and policies (see Figure 2). 

Figure 2 shows that the dynamic of the TCI fluctuates significantly, between 20.2% and 79.6%, 
which confirms the necessity of using the TVP-VAR. Significant fluctuations of the TCI 
correspond to a series of local and global events: the transition of EU ETS from Phase II to 
Phase III in 2012, the European debt crisis in 2012, the crude oil crisis of mid-2014 to 2015, 
the surge in the EU emission allowances price in 2018, market coupling of the GB-Irish market 
in 2018, and the COVID-19 pandemic.  

Figure 2. Dynamic total volatility connectedness – estimated by TVP-VAR 

 

Specifically, we observe that the first plunge of the TCI happened in the second half of 2012 
from July to September, falling from 65.2% to 24.8%, and returned to around 55% in 
November. Intuitively, the fluctuation is contributed by the European debt crisis and the EU 
ETS transition, which was transiting from Phase II (2008-2012) to Phase III (2013-2020) 
during the second half of 2012. Due to a large surplus of allowances from phase two, the 
demand for ETS allowances decreased, which caused a fall in EUA prices, from 30 
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Euro/emission allowance to 5 Euro/emission allowance. The TCI is found to respond to this 
event, reflecting a lower market risk when there was a surplus of emission allowances. 

We observed a slight trend of increase in 2018, followed by a large spike in September 2018. 
Upon investigation, in September 2018, the Nord Pool launched the GB-Ireland power market 
coupling, having played a key role in ensuring the islands of Ireland’s coupling with the rest of 
Europe. The joining of a new market typically induced more competition in Nord Pool, as well 
as in the GB-Ireland market, hence the rising market risk in the Nord Pool. 

The outburst of COVID-19 in the spring of 2020 increased the risk level among Nordic 
electricity markets; TCI surged from 27.2% in April 2020 to 73.5% in October 2021. Moreover, 
there was an increase in TCI from mid-2020 to the end of 2021. In the post-COVID-19 
economic recovery period, prices of natural gas, electricity, and carbon steeply increased when 
energy demand rose. The surge in demand was not matched by increased supplies, and the 
importing regions competed with one another in the global energy market. The economic 
consequences of an electricity supply shortage worsened as the 2021 winter arrived, confirming 
that COVID-19 and the post-COVID economic recovery increased market risk. However, from 
the end of 2021, Nordic electricity recovered from the pandemic as wind generation rapidly 
rose there, and Norway had more rainfall, so that eventually some of its reservoirs reached their 
highest point since 2015 (Matt, 2022). There was no acute risk of shortages or supply 
disruptions in the electricity supply in the four countries when 2022 began. 

5.1.2 Net directional spillover analysis  

To investigate the directional dynamic spillovers for each market in the Nord Pool, Figure 3 
plots the net spillovers with regard to Equation (11) in Section 3.3 (𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛,𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻)- 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻)) and corresponding to the last row of Table 4, “Net Total.” Figure 4 plots the 
net pairwise volatility spillover that corresponds to Equation (12) in Section 3.3. The net 
pairwise volatility spillover between market n and m is the difference between gross volatility 
shocks transmitted from market n to m and gross volatility shocks transmitted from m to n 
(Diebold and Yilmaz, 2012). 

We start with Denmark. Figure 3 indicates Denmark is net volatility spillover receiver over the 
sample, except for relatively short episodes, for example, briefly being a volatility transmitter 
at the end of 2016. This is consistent with the averaged results in Table 4, which shows 
Denmark is the largest receiver of volatility spillover. Figure 4 further indicates Sweden as a 
net transmitter of shocks to Denmark (Figure 3, Denmark-Sweden). From 2010 to early 2014, 
Denmark is net spillover receiver shocks from Finland, Norway south, Norway north, and 
Sweden. There are, however, exceptions to when Denmark is a volatility spillover transmitter. 
For instance, it transmitted shocks to Finland in 2016 and to Southern Norway at the end of 
2016. Denmark has the largest share of wind power in generation mix and the effect of 
intermittent wind power on price volatility is higher. The country imported hydropower from 
Norway and Sweden, hence the evidence of shock receiver holds reasonably. 
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The second largest volatility spillover receiver is Southern Norway (Table 4). Southern Norway 
is an interesting case in Nord Pool as, in the summer of 2022, its water reservoir level became 
incredibly low and it exported large amounts of electricity to the rest of Europe, resulting in 
supply and demand unbalance. It is also connected to western Denmark, where the power 
generation is based on wind while Southern Norway relies on hydropower. Southern Norway 
benefits from the flexibility of being a hydro producer while being connected to Danish wind 
power, Southern Norway imports wind electricity when the cost of import is lower than the 
opportunity cost of using own water in the reservoirs. Figure 3 shows that Southern Norway 
was a net spillover receiver from 2010 to 2013 and 2016 to 2022. 

Figure 3. Net volatility spillovers - estimated by TVP-VAR 

 

Northern Norway was a small net receiver of volatility spillover at an aggregated level. As 
shown in Figure 3 panel A4, from the second half of 2011 to 2014, Northern Norway was a 
shock transmitter to the system, as well as during 2015 and 2018. In the rest of the sample 
period, Northern Norway was a significant shock taker; it received 93.8% volatility from the 
Nord Pool on 27 Oct. 2014, for instance. As for net pairwise spillovers in Figure 4, Northern 
Norway was mainly the shock transmitter to Southern Norway from 2010 to 2015 and Finland 
from 2012 to 2018. In the meantime, net spillovers received by Northern Norway mainly came 
from Sweden (2010-2015), Southern Norway (2015-2016), and Finland (2019-2020). 
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Figure 4. Net pairwise volatility spillovers - estimated by TVP-VAR 

 

Finland is a net volatility spillover transmitter as it received 54.8% spillover effect from the 
system and transmitted 54.8% to the system (Table 4), showing that Finland is a net break-
even, with receiving and transmitting just one hundredth of a percentage point apart. The 
dynamic plots of net spillovers in Figure 3 and net pairwise spillovers in Figure 4 indicate that 
the net position changed through the sample. Finland was a net transmitter between January 
2010 and June 2012, mainly to Norway, then it was a net spillover receiver from June 2012 to 
June 2018, mainly from Sweden and Norway. The view is slightly different from Uribe et al. 
(2020), who concluded that Finland received volatility shocks from Norway during 2013 and 
2015. Since 2018, Finland went back to being a spillover transmitter to Denmark and Norway; 
however, the effect was lower than that of 2010 to 2012. It is noteworthy that Sweden 
persistently transmits net spillover to Finland throughout the sample likely due to being a net 
importer of electricity from Sweden. 

5.2 Rolling window VAR estimation  

This section follows the Diebold and Yilmaz (2012)’s rolling window five-variable VAR 
model to estimate the volatility connectedness in Nord Pool markets. According to the Schwarz 
information criterion (SIC), the optimal lag length is set as p=4. Horizon is set to 10-step-ahead 
forecasts and rolling window size 200. 
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5.2.1 Total connectedness index estimated by RW-VAR 

Table 5 shows the variance decomposition matrix. The main diagonal of Table 5 shows own-
variance shares of shocks, while the off-diagonal elements reflect the interaction across five 
markets. Table 5 shows that the total connectedness index (TCI) is 50.9%, slightly lower than 
the TCI estimated by TVP-VAR. At aggregate level, Sweden transmits the largest, 11%, net 
volatility spillovers to the system. The Swedish electricity market produces and receives the 
most volatility spillovers to other markets (72.4%) and from other markets (61.4%) at an 
aggregated level. Compared to the TVP-VAR estimation, Sweden transmitted 5.1% less net 
spillover to the system in an RW-VAR. Danish electricity market produces and receives the 
least volatility spillover from (33.6%) and to (22.3%) the system; the view is consistent with 
the TVP-VAR measure.  

Table 5. Average connectedness matrix of the system –  

estimated by 200-days rolling window 

 Denmark Finland Norway 
South 

Norway 
North Sweden From Others 

Denmark 66.37 8.24 7.5 6.12 11.77 33.63 
Finland 6.26 45.53 10.85 13.43 23.93 54.47 
Norway 
South 4.67 10.64 48.45 19.25 16.99 51.55 

Norway 
North 4.06 12.35 17.44 46.46 19.68 53.54 

Sweden 7.31 19.85 15.32 18.89 38.62 61.38 
To Others 22.31 51.08 51.12 57.69 72.38 

TCI=50.92 Net Total -11.32 -3.39 -0.43 4.15 10.99 

Source: This spillover table is generated using 10-step-ahead generalized VAR forecast error variance 
decomposition estimated from 200 days rolling window VAR. The 𝑛𝑛𝑛𝑛𝑡𝑡ℎ entry estimates the fraction of 10-
step-ahead error variance in forecasting market n due to exogenous shocks to market m (the spillover from 
market m to market i: 𝑑𝑑𝑛𝑛𝑛𝑛

𝐽𝐽  ). According to Equation 11 (𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻) - 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻)), we obtain the 
net total directional connectedness,𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛,𝑡𝑡. 

In terms of net volatility spillover, Denmark is a net receiver (-11.3%). The estimated value is 
almost the same as the TVP-VAR’s result for Denmark. Southern Norway receives 51.6% 
volatility spillover from other markets and produces 51.1% volatility spillovers to the system, 
making it a net volatility spillover receiver in an averaged measure (-0.43%). However, 
Northern Norway is classified as a net volatility spillover producer; this result differs from the 
estimate by TVP-VAR, which shows Northern Norway is a net receiver of spillover. Finland 
receives the second most significant value of spillover, 54.5% from the other four markets, and 
has the second largest net volatility spillover in an aggregated level (-3.4%). 

Figure 5 presents the dynamic total connectedness measures of the 200 days rolling-window 
VAR approach. We observe that the pattern of the TCI is less volatile than that estimated by 
the TVP-VAR. TCI fluctuates between 77.7% and 27.1%. 
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Two major patterns are evident from the time variations: 

First, a trend of decrease in TCI is observed from July 2010 to May 2015. It shows, in general, 
the volatility spillovers within Nord Pool gradually decreased after the 2008-2010 financial 
crisis and the 2010-2012 European debt crisis. Three spikes were found during this period. The 
first (77.7%) was observed on 25 August 2011, following the European debt crisis. The second, 
reaching 60.3% on 1 October 2013, appeared after a large fall in price of emission allowances 
under the EU ETS. The fall in emission prices promoted thermal production of fossil fuel 
resources and affected the value of hydropower negatively. Since thermal power is the 
opportunity cost of flexible hydropower, the decline in emission prices drove the power prices 
down. It raised the short-term volatility spillover level in the Nord Pool (NordREG, 2014). The 
third spike appears on 26 October 2014, reaching 68.9%, corresponding to the plunge in crude 
oil prices during 2014. Intuitively, we can state that the dependence on the Nord Pool wholesale 
electricity market increased when the crude oil market price plunged, but TCI decreased to 27% 
on 14 May 2015 after the crisis had eased.  

Second, during the second half of the sample, the TCI mainly fluctuates around 40–60%, with 
a few exclusions. The launch of the GB-Ireland market coupling in September indeed raised 
the spillover effect in Nord Pool. We observed a steep increase from September 2018 and a 
spike of 68.3% on 22 November 2018. Again, the COVID-19 outburst did not affect the 
volatility spillover effects in Nord Pool immediately but raised the level of spillovers from 
September 2020, which peaked at 66.1% in April 2021, during the post-pandemic economy 
recovery. 

Figure 5. Dynamic total volatility connectedness –  

estimated by 200 days rolling window DY2012

 
 



24 
 

5.2.2 Net directional spillover analysis  

Next, we investigate the net spillover for each market using RW-VAR connectedness. Figure 
6 plots the net volatility spillover in the Nord Pool network with regard to Equation (11) in 
Section 3.3 (𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛,𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑛𝑛→𝑚𝑚,𝑡𝑡(𝐻𝐻)- 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛←𝑚𝑚,𝑡𝑡(𝐻𝐻)), and corresponding to the last row of 
Table 5, “Net Total.” Figure 7 thus plots the net pairwise volatility spillover. We find: 

Denmark receives net volatility spillover from the system throughout the sample period. The 
volatility spillover mostly comes from Sweden and Southern Norway. As for the net volatility 
transmitter, Sweden is a net spillover producer to the system, especially to Denmark and 
Finland. However, the net pairwise volatility spillover between Sweden and Northern Norway 
changes from time to time. Between 2010 and 2018, Northern Norway was the main 
contributor of the volatility spillovers that Sweden received; however, from 2018 to 2020 
Sweden transmitted relatively large volatility spillovers to Northern Norway.  

Figure 6. Net volatility spillovers – estimated by 200 days rolling window 

  
For Finland, the overall evolution pattern is similar to the TCI pattern measured by TVP-VAR. Finland 

was a net volatility transmitter from July 2010 to December 2011 and from August 2018 to January 

2019. However, the position of a net transmitter was less powerful than that estimated by TVP-VAR 

from 2010 to 2011. For instance, the net volatility spillover transmitted by Finland to the system reached 

66% in May 2010 (by TVP-VAR); however, due to the loss of sample in the rolling window, we cannot 

observe that value in May using the RW-VAR. 
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Figure 7. Net pairwise volatility spillover – estimated by 200 days rolling window  

 

5.3 Effect of carbon price on volatility spillovers 

The power industry is the first regulated sector in the EU ETS and is the sector with the highest 
CO2 emissions and the most significant carbon trading participant. Higher carbon prices 
encourage investment in clean power generation and less carbon-intensive technologies, 
whereas lower carbon prices revive the attractiveness of fossil fuel power generation. 
Electricity price volatility and spillover effects across the integrated electricity market depend 
on the EU’s carbon price change. 

This section analyses the impact of the carbon price on the volatility of connectedness in Nord 
Pool wholesale electricity markets. Applying Equation (13) in Section 3.4, Table 6 reports the 
result of carbon price impact on volatility spillover in Nord Pool electricity markets. Following 
the literature, electricity prices can easily be affected by other energy prices, such as gas and 
crude oil prices; hence we control the gas and oil prices in the model. All data are used on a 
monthly frequency, from January 2010 to March 2022. The rolling-window estimation causes 
a loss in observation in the first window. We report the results from both 200-days rolling 
window VAR and 100-days rolling window VAR. 

The results show that the carbon price does not have a significant impact on TCI estimated by 
TVP-VAR and 100-days rolling window VAR. However, the carbon price has 5% significant 
impact on TCI estimated by 200-days rolling window VAR. We find a positive relationship 
between carbon price and total volatility spillovers estimated by RW-VAR. Meanwhile the 
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crude oil price also has positive effect on TCI estimated by the longer 200-days rolling window 
VAR, significance in 1% level. The insignificant effect of price of gas on volatility spillover 
can be explained by the low share of gas power in the Nord Pool market.  

Table 6. Impact of carbon price on volatility spillovers in Nord Pool  

 Dependent Variable 

 TCI (TVP) TCI (RW-200) TCI (RW-100) 

Carbon 0.175 
(1.033) 

0.164 ** 
(0.058) 

1.309 
(1.025) 

Gas 3.603 
(2.192) 

-0.031 
(0.150) 

1.626 
(2.173) 

Oil -1.594 
(3.197) 

0.100 *** 
(0.029) 

4.963 
(3.168) 

Constant 51.045 *** 
(11.624) 

39.269*** 
(2.373) 

26.515* 
(11.519) 

Observations 147 141 144 
R2 0.028 0.206 0.081 

Adjusted R2 0.008 0.189 0.061 
Residual 
Sta.Err 

9.659 
(df=143) 

8.274 
(df=137) 

9.569 
(df=140) 

F statistics 1.381 11.860*** 4.090** 
Note: *p<0.1; **p<0.05; ***p<0.01. The table presents the estimates of the impacts of carbon prices 
on total volatility connectedness index across five Nord Pool wholesale electricity prices. The 
dependent variables are disaggregated monthly total volatility spillovers estimated from both TVP-
VAR and RW-VAR. Standard error is reported in the parentheses. 

6. Conclusion 

This paper examines price volatility and its spillover effects across Nordic electricity wholesale 
markets. The four Nord Pool countries studied comprise 12 regional markets.  Denmark (DK1-
Western Denmark, DK2-Eastern Denmark), Norway (NO1-Oslo, NO2-Kristiansand, NO3-
Trondheim, NO4-Tromsø, NO5-Bergen), Sweden (SE1-Lulea, SE2-Sundsvall, SE3-
Stockholm, SE4-Malmo), and Finland. We use a rich sample of 107,352 hourly prices for each 
of the region, ranging from 1 January 2010 to 31 March 2022, collected from Nord Pool. The 
novelty of our approach is threefold. First, we use the connectedness approach based on both 
the TVP-VAR and RW-VAR models to analyse integration in Nordic electricity markets, 
contributing to the scarce literature in the electricity volatility connectedness across four 
countries (Sweden, Finland, Denmark, Norway). Second, we divide the Norwegian market due 
to observed differences between northern and southern electricity prices. Third, we examine 
how changes in carbon price influence those spillover effects. 

Our results show that the average volatility TCI estimated by TVP-VAR (RW-VAR) is 52.4% 
(50.9%), indicating that 52.4% (50.9%) of the future volatility in Nord Pool is attributed to 
volatility shocks spreading across the markets. As for TVP-VAR measure, our results show 
that Sweden is the only net volatility spillover transmitter while Denmark bears the most 
significant shocks from the system. The dynamic evolution of total connectedness index 
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responded to the EU ETS’s transition from Phase II to Phase III, indicating that the decrease 
of market risk in Nord Pool corresponds to a surplus of emission allowances in EU ETS. In 
addition, the launch of GB-Irish power market coupling into Nord Pool increased the market 
risk in Nord Pool. The RW-VAR connectedness shows that both Sweden and Northern Norway 
are net volatility spillover transmitters at an aggregated level. The Danish market produces and 
receives the least volatility spillover from (33.6%) and to (22.3%) the system; the view is 
consistent with the TVP-VAR measure. A spike in total connectedness index appeared after a 
large price fall of emission allowances under EU ETS in 2013. The fall in emission prices 
promoted the thermal production of fossil fuel resources and affected the value of water 
negatively. Since thermal power is the opportunity cost of flexible hydropower with a reservoir, 
the decline in emission prices drove the power prices down. It raised the short-term volatility 
spillover level in the Nord Pool. The result further shows that carbon price does not have a 
significant impact on TCI estimated by TVP-VAR and 100-days rolling window VAR. 
However, the carbon price has 5% level significant impact on TCI estimated by 200-days 
rolling window VAR. The positive relationship between carbon price and total volatility 
spillovers estimated by RW-VAR is observed. 

The findings of our study are beneficial for electricity market participants. Our results show 
that volatilities in integrated Nordic wholesale electricity markets are affected by carbon prices, 
market coupling, public health events, and the production of neighboring regions. 

Rolling window-based VAR connectedness estimation is defined in the literature as being 
sensitive to the choice of rolling-window size. Further research can be controlling more 
variables when testing the impact of carbon price on volatility spillovers in Nordic markets — 
for instance including economics policy uncertainty and extreme weather conditions in the 
control variables. Another possibility is to test at different frequencies of the model to obtain a 
more conclusive result. 
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Appendix A 

 

Table A1. Descriptive statistics - Hourly price of 12 bidding areas in four countries 
 

Mean Minimum Maximum St.Dev. Skewness Kurtosis Obs. 
DK1 42.00201 -200 2000 37.58594 10.3154 341.4854 107,339 
DK2 44.12143 -200 2000 38.96399 8.750168 218.682 107,339 
NO1 38.73736 -1.97 667.92 29.28268 3.871317 33.03959 107,339 
NO2 38.26797 -1.97 667.92 28.6716 4.021594 35.54512 107,339 
NO3 34.72078 -0.01 1400.11 21.38077 15.64688 770.2175 107,339 
NO4 33.30415 -0.01 1400.11 21.14664 16.1768 807.6549 107,339 
NO5 38.20615 -0.09 667.92 28.73403 3.929935 34.55545 107,339 
SE1 35.34896 -1.97 1400.11 21.54276 15.34869 745.5188 107,339 
SE2 35.35997 -1.97 1400.11 21.55098 15.33141 744.3542 107,339 
SE3 39.6184 -1.97 1400.11 30.64654 8.989079 219.0297 107,339 
SE4 42.12483 -1.97 1400.11 33.46208 7.729993 159.2808 107,339 
FI 43.18087 -1.73 1400.11 31.45592 9.520567 228.4092 107,339 

Note: Some data is missing in the original data file from Nord Pool. On 28 March 2010, wholesale prices 
at 03:00 am were missing for all areas, resulting in a total of 13 NA entries in our sample. Since we have 
a large dataset, we kept 13 NAs in our hourly data. 
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Table A2. Correlation test across bidding areas in Denmark 

 DK1 DK2 

DK1 1  

DK2 0.834 1 

 

 

Table A3. Correlation test, bidding areas in Norway 

 NO1 NO2 NO3 NO4 NO5 

NO1 1     

NO2 0.988 1    

NO3 0.441 0.390 1   

NO4 0.427 0.374 0.972 1  

NO5 0.989 0.994 0.403 0.388 1 

 

 

Table A4. Correlation test, bidding areas in Norway 

 SE1 SE2 SE3 SE4 
SE1 1    
SE2 1 1   
SE3 0.697 0.697 1  
SE4 0.624 0.625 0.949 1 
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Table A5. Average connectedness matrix of the system –  

estimated by 100 days rolling window 

 Denmark Finland Norway 
South 

Norway 
North Sweden From Others 

Denmark 56.33 10.33 10.09 9.20 14.05 43.67 
Finland 8.79 43.84 10.95 13.52 22.90 56.16 
Norway 
South 7.08 11.14 46.61 18.88 16.28 53.39 

Norway 
North 7.00 12.19 17.21 44.42 19.18 55.58 

Sweden 10.27 19.19 14.84 18.48 37.22 62.78 
To Others 33.14 52.84 53.09 60.08 72.41 

TCI=54.31 Net Total -10.53 -3.32 -0.30 4.50 9.64 

Source: This spillover table is generated based on 10-step-ahead generalized VAR forecast error variance 
decomposition estimated from 200 days rolling window VAR. The 𝑖𝑖𝑖𝑖𝑡𝑡ℎ entry estimates the fraction of 10-
step-ahead error variance in forecasting market i due to exogenous shocks to market j (the spillover from 
market j to market i: 𝑑𝑑𝑖𝑖𝑖𝑖

𝐽𝐽 ). From Equation 16 (𝐶𝐶𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽) − 𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽)), we obtain the net total 
directional connectedness, 𝐶𝐶𝑖𝑖𝑖𝑖,𝑡𝑡. 
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