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Motivation

Offshore renewable energy activities

Need to understand and monitor conditions offshore

Wind: resource assessment, forecasts

Waves: loads on structures, wave energy

Sea Surface Temperature (SST): forecasts, wind profiles
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Wind Measurements

Offshore masts expensive

Foundation/maintenance costs
increase (depth, distance from
land)

Alternatives:
Lidars

Satellites

Meso/micro scale models
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QuikSCAT

Scatterometer:
backscatter from small
scale ripples

Operating frequency: 13.2
GHz

SeaWinds on QuikSCAT:
speed & direction

Equivalent Neutral Wind
10 m

2–20 m s−1 –> RMSE
2 m s−1
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Advanced Scatterometer (ASCAT)

On MET-OP (A & B)
Operational since 2007

Radar frequency 5.2
GHZ: less sensitive to
rain

Resolution: 25 km,
12.5 km

Figure: ASCAT instrument on METOP: example of
descending (morning) pass from KNMI
(http://www.knmi.nl/scatterometer/ascat_osi_
25_prod/ascat_app.cgi).
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OCEANSAT-2 Scatterometer (OSCAT)

Operational since 2009
Operating frequency 13.5
GHZ

KNMI releases 50 km
resolution products

10 m Equivalent Neutral
Wind

Wind speed range
0–50 m s−1

Figure: Morning (descending) OSCAT passes on
the 14/02/2013 from KNMI
(http://www.knmi.nl/scatterometer/oscat_
50_prod/oscat_app.cgi).
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Synthetic Aperture Radar

Advanced Synthetic Aperture
Radar on ENVISAT: speed

Operation 2002–2012,
infrequent revisiting time

Very high spatial resolution
(∼150 m on WSM)

Processing & wind retrieval at
DTU Wind Energy

Johns Hopkins ANSWRS
system & NOGAPS model
wind directions

Figure: Wind field retrieved from ENVISAT
ASAR, 01/10/2010
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Synthetic Aperture Radar

RadarSat-2: 2007–now

Sentinel-1 to be launched in
2013

†Images are courtesy of ESA.
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QuikSCAT vs North Sea Masts

†Karagali et al. 2012, Wind Characteristics from the QuikSCAT satellite, Wind Energy, early view
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10-year Mean Wind Speed
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†Karagali et al. 2013, Temporal & spatial variability of 10 m winds, Renewable Energy, 57, 200-210.
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Wind Direction Distributions

†Karagali et al. 2013, Temporal & spatial variability of 10 m winds, Renewable Energy, 57, 200-210.
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Spatial Correlation of Wind Speed
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Correlation coefficient r
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r>.9: 68 grid cells 32*103 km2 (4% North Sea area)
†Karagali 2012, DTU-Wind Energy PhD Thesis 03
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Spectral Properties of SAR, QuikSCAT
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QSCAT

QSCAT NS

SAR 600m

SAR 1.5km

SAR 3km

SAR 15km

SAR 25km

QSCAT

QSCAT NS

SAR 600m

SAR 1.5km

SAR 3km

SAR 15km

SAR 25km

†Karagali 2012, Spectral properties of QuikSCAT & SAR 10 m ocean winds, DTU-Wind Energy PhD Thesis 03
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Wind Class Sampling

†Badger et al. 2010, Wind class sampling of satellite SAR imagery for offshore wind resource mapping, J. Applied

Meteorology & Climatology, 49, 2474-2491
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NORSEWInD ASAR Wind atlas

SAR scenes used for the wind resource assessment atlas. Courtesy: DTU Wind Energy & CLS.

February 2013 19/39



NORSEWInD ASAR Wind atlas

Mean wind speed from the resource assessment atlas. Courtesy: DTU Wind Energy & CLS.

February 2013 20/39



1 Introduction

2 Wind Offshore

3 Waves

4 Sea Surface Temperature

5 Conclusions

6 Perspectives

February 2013 21/39



Altimeters
Radar vertically
transmitting short pulses
towards ocean surface
Receives reflected signal
Time between signals =
distance satellite–Earth
Shape of return signal =
significant wave height
Multiple missions:
TOPEX/POSEIDON,
JASON-1/2, ENVISAT
RA-2, CRYOSAT
Long revisiting times:
10–35 days
Available climatologies:
ESA’s GlobWave

Figure: The TOPEX/POSEIDON principle of function.
Image taken from AVISO
(http://www.aviso.oceanobs.com/es/kiosco/
newsletter/newsletter01/focus-on.html)
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Significant Wave Height

Hs = 4
√

η2

η: wave
height
Average
crest-to-
trough
height of
1
3 largest
waves

Figure: Latest NRT Significant Wave Height merged product, from Aviso
(http://www.aviso.oceanobs.com/en/data/products/wind-waves-
products/mswhmwind.html)
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EU–ORECCA

Roadmap for
research activities on
offshore renewable
energy conversion
platforms for

Wind
Waves
Other
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EU–MARINA

Multi-purpose
platforms for
marine
renewable
energy
Integrated
wind and
wave/current
energy
Site
assessment for
deployment of
deep offshore
renewable
energy
platforms

Figure: Average SWH and Observations histogram, Jason-2, DMI,
COI (http : //ocean.dmi .dk/validations/waves/satellite/2008_07 −
12.ys_new/index .php)
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Definitions of SST

Vertical distribution of SST. From Minett & Kaiser-Weis (2012)
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Satellite Winds & SST
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Wind Profiles

u = u∗
κ

[
ln
(

z
z0

)
− ΨM

]
u: wind speed at height z
u∗: friction velocity
κ: von Kármán constant (∼0.4)
z0: surface roughness
ΨM : stability & height dependent
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Compared to neutral case
- 1°: 39% increase of u100m (167% for wind power density)
+ 2°: 8% decrease of u100m (22% for wind power density)
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Using SST and Bulk Water Temperature
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U 15m

U 10m

U 100m

Measured air & sea temperatures at Horns Rev on the 04/07/2006 (left). Measured wind speed at 15 m (blue),

extrapolated wind speeds at 10 m (solid) and 100 m (dashed), using the T 13 m for the air temperature & either the T

-4 m (black) or the SST (red) for the sea temperature (right).
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SST from Space

Infra-red sensors
Infra-red radiation from “skin”

No measurement through
clouds

High resolution

SEVIRI (Geostationary)

ATSR, AVHRR, MODIS
(Polar)

Microwave sensors

Radiation from “sub-skin”

Measurement through clouds

Low resolution – away from
land
TMI and AMSR

Polar orbiters

February 2013 31/39



Diurnal Warming Thresholds

Figure: Left: Annual distribution of anomalies exceeding the threshold of 1, 2 and 3 K from
June 2004 to October 2009. Right: Temporal distribution of anomalies exceeding 2 K.

†Karagali et al. 2012, SST diurnal variability in the North Sea and the Baltic Sea, Rem. Sens. Environ., 121, 159-170
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Spatial Extend of Diurnal Warming

Figure: Spatial distribution of warming cases exceeding greater than 2 K (SEVIRI)
†Karagali et al. 2012, SST diurnal variability in the North Sea and the Baltic Sea, Rem. Sens. Environ., 121, 159-170
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Modelling the diurnal cycle

SEVIRI (red), the Filipiak et al. (2011) model (black), the Zeng & Beljaars (2005) d1 = 3m (green) and d2 = 6m (blue).

†Karagali & Høyer 2013, Observations and modeling of the diurnal SST cycle in the North and Baltic Seas, J. Geophys.

Res.-Oceans, DOI: 10.1002/jgrc.20320
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Conclusions

Satellite winds applicable for initial resource assessment

QuikSCAT: long temporal & spatial coverage –> mean wind
characteristics

Roadmap for installation of masts, run high res. models

SAR: very high resolution, close to land

Identification of local, small-scale features

Altimeters can be used for climatological wave resource assessment

Validation of wave models vs radar altimeter data

Diurnal SST variability important for certain areas/seasons

Potentially important for atmospheric modelling
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Perspectives

More scatterometers in operation –> longer data sets

Satellite winds lifted to hub heights

Resolving of diurnal warming in NWP models

Using SST when extrapolating measurements

Evaluate impact of SST daily variability on atmospheric models
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Thank you

Questions?
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