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Abstract. The growing size of wind turbines leads to extremely high tip speeds when the blades are rotating.
The blades are prone to leading edge erosion when raindrops hit the blades at such high speeds, and blade
damage will eventually affect the power production until repair or replacement of the blade is performed. Since
these actions come with a high cost, it is relevant to estimate the blade lifetime for a given wind farm site
prior to wind farm construction. Modeling tools for blade lifetime prediction require input time series of rainfall
intensities and wind speeds in addition to a turbine-specific tip speed curve. In this paper, we investigate the
suitability of satellite-based precipitation data from the Global Precipitation Measurement (GPM) mission in
the context of blade lifetime prediction. We first evaluate satellite-based rainfall intensities from the Integrated
Multi-Satellite Retrievals for GPM (IMERG) final product against in situ observations at 18 weather stations
located in Germany, Denmark, and Portugal. We then use the satellite and in situ rainfall intensities as input
to a model for blade lifetime prediction, together with the wind speeds measured at the stations. We find that
blade lifetimes estimated with rainfall intensities from satellites and in situ observations are in good agreement
despite the very different nature of the observation methods and the fact that IMERG products have a 30 min
temporal resolution, whereas in situ stations deliver 10 min accumulated rainfall intensities. Our results indicate
that the wind speed has a large impact on the estimated blade lifetimes. Inland stations show significantly longer
blade lifetimes than coastal stations, which are more exposed to high mean wind speeds. One station located in
mountainous terrain shows large differences between rainfall intensities and blade lifetimes based on satellite
and in situ observations. IMERG rainfall products are known to have a limited accuracy in mountainous terrain.
Our analyses also confirm that IMERG overestimates light rainfall and underestimates heavy rainfall. Given that
networks of in situ stations have large gaps over the oceans, there is a potential for utilizing rainfall products from
satellites to estimate and map blade lifetimes. This is useful as more wind power is installed offshore including
floating installations very far from the coast.

1 Introduction

Leading edge erosion is a progressive roughening of wind
turbine blades primarily caused by the impact of precipi-
tation with the blade movement through the air. The prob-
lem has emerged with the growing rotor diameter of mod-
ern wind turbines, which leads to higher tip speeds (Kee-
gan et al., 2013). Leading edge erosion is more pronounced
offshore than for wind farms on land because offshore tur-
bines are larger, and the steady state wind speed is higher

over the ocean. The energy of raindrops impinging on tur-
bine blades is therefore also higher. Blade repair or replace-
ment after only 5–7 years in operation has been reported for
several offshore wind farms in the North Sea and the Kattegat
Strait (Ibrahim and Medraj, 2020; Herring et al., 2019) even
though the nominal lifetime of a turbine blade is typically
20–25 years.

A newly installed turbine blade has an incubation time
where little to no damage is detected. Thereafter, initial dam-
age occurs in the form of pitting. Widespread damage will
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follow, and it can be observed as an erosion of material in
the top coating, filler, or substrate. A rough blade has poorer
aerodynamic efficiency, and therefore, leading edge rough-
ness can cause a significant loss of the annual wind power
production (Bak et al., 2020). It can lead to unforeseen op-
eration and maintenance (O & M) costs and, if untreated, to
the replacement of wind turbine blades (Mishnaevsky and
Thomsen, 2020). Ideally, repair of the blade is scheduled
long before structural damage occurs. O & M costs are ex-
acerbated offshore due to vessel costs, and this contributes to
the operational expenditures (OPEX) of a given wind farm.
A strategy to mitigate this financial risk is to operate the tur-
bines in a so-called erosion safe mode in which the blade tip
speed is reduced during events of heavy precipitation (Bech
et al., 2018; Skrzypiński et al., 2020). Another strategy is to
enforce the turbine blades in order to make them more re-
sistant to leading edge erosion. Coatings, tapes, and erosion
shields represent different forms of leading edge protection
that are commercially available (Herring et al., 2019).

In connection with the planning of offshore wind energy
projects, it is essential to predict the lifetime of the tur-
bine blades in order to forecast the OPEX budget during the
project lifetime. To calculate the lifetime of a wind turbine
blade, information about the rainfall intensity and wind speed
at the wind turbine location is needed at the highest possi-
ble temporal and spatial resolution. The temporal coverage
of the rain and wind data sets should ideally be on the order
of 10 years to account for intra-annual variabilities (Hasager
et al., 2021). A wind turbine tip speed curve is also neces-
sary since the movement of the turbine blade relative to that
of the raindrops and the wind direction determines the blade
damage.

Networks of rain gauges and rain radars are established on
land, typically by national meteorological agencies (Kidd et
al., 2017). The rain observations are used for many different
applications, e.g., hydrology, agriculture, health, civil protec-
tion, and climate change monitoring. In contrast, rain obser-
vations over the oceans are very sparse (Herring et al., 2020;
Klepp et al., 2020), and rain information in this setting is typ-
ically obtained through numerical weather prediction (NWP)
modeling or satellite observations (Shaw et al., 2022). Previ-
ous blade lifetime analyses are based on rain gauge obser-
vations (Bech et al., 2022; Hasager et al., 2020, 2021; Law
and Koutsos, 2020; Skrzypiński et al., 2020; Verma et al.,
2021b), disdrometer observations (Tilg et al., 2022; Verma et
al., 2021a), weather radar observations (Letson et al., 2020),
re-analysis data (Prieto and Karlsson, 2021), and mesoscale
weather model outputs (Eisenberg et al., 2018; Visbech et al.,
2022).

The Global Precipitation Measurement (GPM) mission is
a network of satellites delivering global rain observations
since 2014 (Hou et al., 2014). It has a core observatory con-
sisting of dual-frequency precipitation radars operating in
Ku-band (13.6 GHz) and Ka-band (35.5 GHz), as well as the
GPM Microwave Imager, a radiometer operating at differ-

ent frequencies from 10 to 183 GHz. Many other spaceborne
microwave sensors contribute to GPM, and additional obser-
vations from infrared sensors on geostationary satellites are
included. The GPM mission is an expansion of the Tropical
Rainfall Measuring Mission (TRMM), which was in oper-
ation during 1997–2015 (Huffmann et al., 2007). Whereas
TRMM sensed the heavy rainfall associated within the trop-
ics, GPM also senses the light rain, hail, and snowflakes com-
mon to higher latitudes. Here, we hypothesize that rainfall
intensities from GPM can also be useful for the prediction of
erosion damage on wind turbine blades, especially offshore
where other rain observations are limited.

Integrated Multi-Satellite Retrievals for GPM (IMERG)
lead to global rain products with a uniform grid spacing of
0.1◦ latitude and longitude from latitude 60◦ N to latitude
60◦ S. The temporal sampling of these products is 30 min.
The initial sampling of the different satellite sensors con-
tributing to IMERG can be considerably higher or lower,
and therefore, the IMERG validation performance varies for
different scales, periods, and locations on Earth (Chen and
Li, 2016). IMERG products come in three versions: early,
late, and final. The final product is considered the most suit-
able for scientific applications as it is adjusted based on rain
gauge observations from the Global Precipitation Climatol-
ogy Centre (Huffmann et al., 2020a). Therefore, it compares
best with independent in situ observations (Tapiador et al.,
2020). Dezfuli et al. (2017) found that the IMERG final prod-
uct outperforms the previous TRMM Multisatellite Precipi-
tation Analysis. Due to the higher temporal and spatial reso-
lution of IMERG, the product captures mesoscale convective
systems much better.

The objective of this paper is to determine whether rain-
fall intensities obtained from the IMERG final product are
suitable for estimating the lifetime of wind turbine blades.
The idea of using satellite data for blade lifetime prediction
was put forward by Mishnaevsky et al. (2021), and here we
test its applicability in practice for the first time. We evaluate
the performance of IMERG rainfall intensities with respect to
high-quality in situ observations from weather stations. Next,
we use the IMERG and in situ observations of the rainfall in-
tensity as input to a damage model code for the prediction
of blade lifetimes and compare the two types of lifetime es-
timates.

2 Previous evaluations of the IMERG final product

A number of independent studies evaluate the performance
of IMERG final products for different regions, temporal
scales, and applications. Overall, IMERG tends to overes-
timate light rain intensities and underestimate heavy rain in-
tensities. This can lead to seasonal biases for regions where
the rain characteristics vary throughout the year (Bogerd
et al., 2021; Maranan et al., 2020; Tapiador et al., 2020).
Rios Gaona et al. (2016) performed an early evaluation of the

Wind Energ. Sci., 7, 2497–2512, 2022 https://doi.org/10.5194/wes-7-2497-2022



M. Badger et al.: Lifetime prediction of turbine blades using global precipitation products from satellites 2499

IMERG final product against ground-based rain radar obser-
vations in the Netherlands and found that IMERG underesti-
mates countrywide rainfall depths by 2 %.

Based on comparisons with rain gauge data in Brazil,
Freitas et al. (2020) reported that the IMERG product is
a good source of sub-daily rainfall depth data for hydro-
logical and hydroclimatic applications, but they found large
overestimations and underestimations of the IMERG prod-
uct for rainfall duration and intensity properties, respectively.
Cui et al. (2020) focused on mesoscale convective systems
in the US and reported that IMERG overestimates the to-
tal annual precipitation but underestimates the hourly mean
precipitation. They noted that evaporation of light rain un-
der clouds causes frequent falls alarms and positive biases
(i.e., IMERG shows precipitation pixels, but no rain is mea-
sured at the ground stations). A very high number of false
alarms (83 % of all IMERG rain pixels) are also reported by
Maranan et al. (2020) for forested areas in Ghana, whereas
high rain intensities are negatively biased.

A decomposition according to the source of the IMERG
data can give insights into the performance per sensor type.
Based on analyses over the eastern United States, Tan et
al. (2016) found that the detection of rain events is most re-
liable for passive microwave sensors or morphed products,
whereas infrared sensors alone lead to a poorer performance
when it comes to the identification of rain events. Infrared
sensors miss a very large portion of the actual rain events
measured on the ground. Bogerd et al. (2021) found that false
alarm rates are amplified when infrared sensors are included
in an analysis over the Netherlands.

For detected rain events, the performance of rain rate esti-
mates also varies from sensor to sensor (Bogerd et al., 2021).
For all data sources, the intensity of shallow rainfall is the
most challenging to estimate, and work is ongoing to im-
prove the algorithms for the detection and classification of
such events (Arulraj and Barros, 2017). Mountainous terrain
represents another challenge for accurate rainfall detection
from microwave instruments due to rain shadowing (Prakash
et al., 2018).

3 Data

Figure 1 shows the areas of interest for this analysis, which
covers 18 meteorological stations in Germany, Denmark, and
Portugal.

3.1 Satellite observations

Satellite observations of rainfall intensities are obtained from
the product called GPM IMERG Final Precipitation L3 Half
Hourly 0.1◦× 0.1◦ V06 (GPM_3IMERGHH) (Huffman et
al., 2019). We chose the IMERG final product for the estima-
tion of the turbine blade erosion because it is calibrated with
rain gauge measurements. The final product provides more
accurate rainfall intensities in regions with gauge informa-

tion, and it is considered the research-grade product (Huff-
man et al., 2020b).

We investigated the 6-year period from 2014 to 2019 when
collocated IMERG and in situ observations of rainfall inten-
sities are available. GPM data are included in the IMERG
final product from mid-March 2014, but thanks to retrospec-
tive reprocessing and a TRMM satellite calibrator, it is possi-
ble to achieve a consistent product dating back to June 2000
(Huffman et al., 2020b). Our nonparametric tests showed that
IMERG data of January 2014 are consistent with the data
from the month of January in 2015–2019, so we carried out
our analyses for the 6 complete years. We extracted time se-
ries of the parameters precipitationCal (i.e., precipitation es-
timate in millimeters per hour based on multi-satellite with
gauge calibration), together with precipitationQualityIndex
(i.e., a quality index for the precipitationCal field based on
the correlation between the different sensor components con-
tributing to the IMERG products; Huffmann, 2019) and prob-
abilityLiquidPrecipitation (i.e., the probability of liquid pre-
cipitation phase in percent) for the IMERG grid cell over
each meteorological station.

3.2 In situ observations

We obtained observations of rainfall intensity and wind speed
for 12 coastal and 6 inland stations located in Germany
(7 stations), Denmark (9 stations), and Portugal (2 stations).
The locations of the meteorological stations are shown in
Fig. 1. The German data series was obtained from the Ger-
man Weather Service (DWD), the Danish data series was ob-
tained from the Danish Meteorological Institute (DMI), and
the Portuguese data series was obtained from the Portuguese
Institute for Sea and Atmosphere (IPMA). The German and
Danish stations have been used in previous works by Bech et
al. (2022) and Hasager et al. (2021), where detailed descrip-
tions of the data sets are given.

Rainfall intensities are measured by rain gauges at each
meteorological station, and quality control is performed; see
Hasager et al. (2020, 2021) for details. The rainfall intensi-
ties are delivered as 10 min cumulative values. In order to
match the temporal resolution of the rainfall intensities from
IMERG, we calculated the cumulative values over 30 min in-
tervals. Wind speeds and directions at the meteorological sta-
tions are observed at a measurement height of 10 m except at
Grosser Arber and Seehausen where winds are measured at a
15 m height and at Arkona where the measurement height is
24 m. We extrapolated the wind speeds to the hub height of
the IEA 15 MW turbine (Gaertner et al., 2020) using the wind
profile power law with the alpha exponent of 0.143, follow-
ing Hsu et al. (1994). The same method is applied in Bech et
al. (2022) and Hasager et al. (2021). To collocate the in situ
observations with the IMERG product in time, we averaged
the 10 min wind speeds and directions to 30 min intervals.
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Figure 1. Locations of the 18 meteorological stations investigated. (a) Danish and German stations; (b) Portuguese stations (© Stamen
Design).

4 Methods

4.1 Data pre-processing

For the IMERG product, we removed precipitationCal data
whenever precipitationQualityIndex was smaller than 0.4 be-
cause of a high uncertainty due to significant infrared con-
tribution to ensure a sufficient data quality (Huffman et al.,
2019). We only considered the impact of rain on wind turbine
blades, so instances where solid precipitation (hail, sleet, and
snow) occurs are filtered out. We kept values if the parame-
ter probabilityLiquidPrecipitation was larger than 75 %. Em-
pirically, the threshold to classify precipitation as rainfall or
snow is 50 % (Xiong et al., 2022). We increased the threshold
to 75 % to exclude other solid types such as hail and grau-
pel and to make the proportion of liquid precipitation sam-
ples for IMERG and for in situ alike. Solid precipitation was
also removed from the in situ data set. Additionally, only the
precipitationCal values equal to or greater than 0.2 mm h−1

(0.1 mm/30 min) were considered as rainfall (Maranan et al.,
2020). After quality control, we converted the IMERG data
to half-hourly accumulated rainfall. The availability of collo-
cated data for blade erosion estimation is shown in Fig. 2.

4.2 IMERG data evaluation

We evaluated the data quality of the IMERG product by
comparing it with in situ measurements. Referring to the
existing established statistics (Bogerd et al., 2021), the rel-
ative bias (RB), mean absolute error (MAE), and normal-

ized MAE (NMAE) were calculated for each station based
on Eqs. (1)–(3):

RB=

n∑
i=1

(
RIMERG,i −RIn situ,i

)
n∑

i=1
RIn situ,i

× 100%, (1)

MAE=

n∑
i=1

∣∣RIMERG,i −RIn situ,i

∣∣
n

, (2)

NMAE=

n∑
i=1

∣∣RIMERG,i −RIn situ,i

∣∣
n∑

i=1
RIn situ,i

, (3)

where RIMERG,i and RIn situ,i are the 30 min rainfall accu-
mulation for the IMERG product and in situ measurements,
respectively, and n is the sample size over the whole study
period or corresponding to a certain condition, such as rain-
fall intensity.

Contingency metrics, including the probability of detec-
tion (POD) and the probability of false alarm (POFA), were
also quantified based on Eqs. (4) and (5) (Bogerd et al.,
2021):

POD=
hits

hits+misses
, (4)
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Figure 2. Availability of IMERG and in situ data after quality control and collocation.

Table 1. Definition of thresholds for “hit”, “miss”, and “false
alarm” (mm per 30 min).

Item RIMERG Rin situ

Hit ≥ 0.1 ≥ 0.1
Miss < 0.1 ≥ 0.1
False alarm ≥ 0.1 < 0.1

POFA=
false alarms

hits+ false alarms
, (5)

where “hits”, “misses”, and “false alarms” are defined in Ta-
ble 1. The threshold to distinguish whether there is rainfall
during a 30 min interval is 0.1 mm.

In addition to the overall comparisons, the temporal vari-
ability in rainfall intensities was also assessed. Correlation
coefficients (R) based on daily rainfall between the two mea-
surement systems were calculated for each country according
to Eq. (6):

R =

n∑
i=1

(
RIMERG-d,i −RIMERG-d

)(
RIn situ-d,i −RIn situ-d

)
√

n∑
i=1

(
RIMERG-d,i −RIMERG-d

) n∑
i=1

(
RIn situ-d,i −RIn situ-d

) , (6)

where RIMERG-d,i and RIn situ-d,i are the daily rainfall for the
IMERG product and ground-based measurements, respec-
tively, RIMERG-d and RIn situ-d are the mean daily rainfall of a
country for the IMERG product and ground-based measure-
ments, respectively, i is the index of a daily data sample, and
n is the total number of daily data samples during the study
period. The monthly and annual variations in both rainfall in-
tensity and wind speed over the whole study period were also
quantified for each station.

To investigate the performance of IMERG under differ-
ent rainfall intensities, we classify the rain rate into three
categories according to the United Kingdom Meteorological
Office standard (Met Office, 2012): slight (< 0.5 mm h−1),

moderate (0.5–4 mm h−1), and heavy (≥ 4 mm h−1) (Met Of-
fice, 2012). For each category, the relative bias (RB) of each
station is quantified according to Eq. (1).

4.3 Blade lifetime model

The impingement blade lifetime model developed by Bech
et al. (2022) using the soft-sign fit for the rain droplet sizes
was used to estimate blade lifetimes at each of the stations.
The model is based on the correlation between the droplet
size of impinging rain and the damage to turbine blades. The
correlation is found from extensive tests of a specimen in a
rain erosion test (RET) rig spun with several speeds and with
four different droplet sizes. The rain erosion testing is done
with a specimen with topcoat polyurethane based on glass
fiber. The droplet sizes are 0.76, 1.90, 2.38, and 3.50 mm, and
the impact speeds range from 90 to 150 m s−1. For each data
set, the damage progression is observed from photographs
and visual inspection. The observations are plotted in dia-
grams with impingement and impact speed, and the best-fit
empirical curves are established (V H curves: V for velocity,
H for impingement). The slopes of the curves are steeper for
the larger droplets than for the smaller droplets. This corre-
sponds to an increasing exponent of the fitted power law. The
result of the analysis is a droplet-size-dependent empirical
model for impingement to damage as a function of the impact
velocity. The increasing slope with increasing droplet size re-
veals that larger droplets result in shorter erosion life at lower
velocities relevant for wind turbine rotors. The impingement
blade lifetime prediction model for site-specific conditions
is an empirical damage accumulation model with drop-size-
dependent V H curves. Thus, the impingement model is sen-
sitive to the wind turbine tip speed, the rainfall intensity, and
the droplet size. It should be noted that other coating systems
might give other lifetimes dependent upon their properties
and response to impacting speed, rain intensity, and droplet
size. We assumed that an IEA 15 MW turbine is installed at
each of the in situ stations, and we predicted the lifetime of
its blade. The rainfall intensity is observed by IMERG and
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Figure 3. Comparisons between the IMERG and in situ observa-
tions of the average rainfall (mm) during 30 min periods in 2014–
2019.

in situ stations, with both data sets used as input, together
with the in situ wind speed. Wind speeds were extrapolated to
the hub height of the IEA 15 MW wind turbine (150 m) and
converted to tip speeds. The median drop size was estimated
from the function of Best (1950) using the rainfall intensities
from IMERG and the in situ observations. The model output
is a lifetime in years for the blades on the theoretical 15 MW
turbine.

5 Results

5.1 IMERG data evaluation

In the following, we present the results of comparing the
IMERG final product against in situ observations at the 18
stations located in Germany, Denmark, and Portugal.

5.1.1 Overall comparison of IMERG and in situ rainfall
intensities

Figure 3 illustrates the average rainfall over 30 min from
IMERG and in situ observations, and Table 2 shows the com-
parative statistics calculated for the “hits” (i.e., times when
both IMERG and the in situ stations show rainfall). The av-
erage rainfall intensities from IMERG are higher than the ob-
served values for all stations except for Grosser Arber in Ger-
many. Subsequently, we find positive RB values for 17 sta-
tions. Grosser Arber is the only station in our data set which
is located far inland and in mountainous terrain, and these
could be the reasons why it deviates from the other stations.
MAE ranges from 0.7 to 1.3 mm. Considering that the mean
rainfall per station is on the same order of magnitude, this
MAE is high, as also reflected in the NMAE values ranging
from 0.8 to 1.5. Our findings are similar to those reported by
Bogerd et al. (2021) for the Netherlands.

The metric POD is an expression of the number of hits
relative to all hits and misses. It would have the value 1 if
all rain events observed at the in situ stations were detected
correctly by IMERG. For the stations investigated here, POD
lies within the range of 0.4–0.6. POFA, on the other hand, ex-
presses the number of false alarms relative to all hits and false
alarms. It would have the value 0 if all rain events detected
by IMERG were also observed by the in situ stations. POFA
lies within the range 0.4–0.7 in our analysis. POD and POFA
are well correlated (R2

= 0.82), so stations with a high POD
also show a high POFA.

5.1.2 Temporal variability in rainfall intensities

To obtain a deeper understanding of the statistics presented
above, we examined the temporal variability in the rainfall
intensities detected from IMERG and the in situ stations. We
considered the daily, monthly, and annual variability in the
rainfall intensities.

Daily variability

Figure 4 shows hexbin plots of the daily accumulated rain-
fall values from IMERG vs. in situ observations for the pe-
riod 2014–2019. We separated the German, Danish, and Por-
tuguese stations since the in situ data originate from national
weather services in each respective country, and the proce-
dures for quality control and filtering may vary between these
agencies. Further, the climatic conditions may vary from
country to country. All three plots show a clear linear rela-
tionship between IMERG and in situ rainfall intensities with
a positive intercept, which is a direct consequence of the pos-
itive RB values presented in Table 2. We also notice a number
of outliers in each plot where the IMERG data set shows ex-
tremely high rainfall intensities which do not occur in the in
situ data set, and vice versa.

Figure 5 shows a time series of the daily rainfall intensities
per station for the example year 2019. The overall impression
is that peaks in the time series from IMERG mostly coincide
with peaks measured at the in situ stations. This indicates,
once again, that rainy days are detected from both time se-
ries. In the case the rainfall on a given day falls in different
30 min periods for IMERG and the in situ stations, it will
contribute to the POD and POFA statistics given above. The
magnitude of some of the peaks is shown to be very differ-
ent between the two data sets. The time series from Arkona,
Porto/Pedras Rubas, and Viana do Castelo/Chafé show occa-
sional spikes where the rainfall intensity from IMERG ex-
ceeds 80 mm. These high rates are not reflected in the in
situ observations. At Porto/Pedras Rubas we see examples
of rainfall events exceeding 80 mm in the in situ data where
the IMERG data show more moderate intensities.

Wind Energ. Sci., 7, 2497–2512, 2022 https://doi.org/10.5194/wes-7-2497-2022
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Table 2. Overall comparative statistics between the IMERG and in situ observations of the average accumulated rainfall (mm) during 30 min
periods in 2014–2019. RB is the relative bias, MAE is the mean absolute error, NMAE is the normalized mean absolute error, POD is the
probability of detection, and POFA is the probability of false alarms.

Station Location IMERG RB MAE NMAE POD POFA
in situ

Arkona Coastal 0.6 92.2 0.9 1.5 0.6 0.7
Bremen Inland 0.3 48.5 0.8 1.1 0.5 0.6
Fehmarn Coastal 0.3 48.5 0.7 1.1 0.5 0.6
Grosser Arber Inland −0.3 −25.0 0.9 0.8 0.5 0.6
Helgoland Coastal 0.4 56.0 0.8 1.2 0.6 0.6
List Coastal 0.6 88.8 0.9 1.4 0.5 0.6
Seehausen Inland 0.2 23.5 0.7 1.0 0.5 0.5
Aalborg Inland 0.4 61.5 0.7 1.2 0.4 0.5
Anholt Havn Coastal 0.4 70.5 0.8 1.3 0.6 0.6
Billund Inland 0.5 63.7 0.9 1.2 0.4 0.4
Hammerodde Coastal 0.2 39.5 0.7 1.1 0.5 0.6
Hvide Sande Coastal 0.6 92.9 1.0 1.5 0.5 0.6
Karup Inland 0.6 80.4 0.9 1.3 0.4 0.4
Skagen Coastal 0.7 93.5 1.1 1.5 0.6 0.7
Thyborøn Coastal 0.5 64.9 0.9 1.3 0.5 0.5
Vindebaek Coastal 0.3 43.7 0.7 1.1 0.5 0.6
Porto/Pedras Rubas Coastal 0.2 18.4 1.3 1.1 0.5 0.5
Viana do Castelo/Chafé Coastal 0.3 29.5 1.2 1.1 0.5 0.4

Figure 4. Hexbin plots showing the daily rainfall intensities from IMERG vs. the in situ observations during the period 2014–2019 for
(a) German stations, (b) Danish stations, and (c) Portuguese stations. The color of each hexagon indicates the number of samples in it.

Monthly variability

Figure 6 shows accumulated monthly rainfall intensities
and monthly mean wind speeds per station averaged over
2014–2019. Overall, the rain gauges in Germany and Den-
mark show the highest rainfall intensities during the summer
months with peaks in July, August, or September and often
with a secondary maximum during the winter months. At the
two Portuguese stations, in contrast, the summer is very dry,
and the rainfall intensities peak in November.

From Fig. 6 it is also evident that there can be large dif-
ferences between the monthly rainfall from IMERG and the
in situ stations. IMERG overestimates the monthly rainfall
with respect to the in situ observations at all stations except
for Grosser Arber and the two Portuguese stations. At these

stations, the in situ observations show higher monthly rain-
fall intensities than IMERG for certain months during June
to October. The differences between IMERG and in situ rain-
fall vary throughout the year and are most likely related to the
dominant type of rain at a given time of the year (Bogerd et
al., 2021). We find the largest discrepancies between IMERG
and in situ rainfall for the stations Arkona, Helgoland, List,
Anholt Havn, Hvide Sande, and Skagen. These stations are
all within close proximity to the coast, and several of the sta-
tions also showed large peaks in the time series in Fig. 5.

Most of the German and Danish stations show the high-
est mean wind speeds in the winter months, especially in
December and January. The monthly wind speed variation
is most pronounced for stations near the coast (Arkona,
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Figure 5. Daily rainfall intensities from IMERG and in situ observations during the example year 2019 for the 18 stations investigated.
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Figure 6. Monthly rainfall from IMERG and in situ observations (bars) and monthly mean wind speeds from in situ observations (green
curves) averaged over 2014–2019 for the 18 stations investigated.
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Figure 7. Average annual rainfall (mm) during 2014–2019 from
IMERG and in situ observations for the 18 stations investigated.

Fehmarn, Helgoland, List, Anholt Havn, Hammerodde,
Hvide Sande, Skagen, and Thyborøn), whereas the monthly
mean wind speeds observed at the inland stations are lower
and more uniform throughout the year. The inland station
Grosser Arber is an exception as it shows a similar monthly
wind speed distribution to the coastal stations. The reason
for this deviation could be that Grosser Arber is located in
mountainous terrain, so the wind speed observations are in-
fluenced by topography. The two stations in Portugal show
low mean wind speeds (2–4 m s−1) throughout the year, so
the wind climate is significantly different from that of the
German and Danish stations.

Interannual variability

Figure 7 shows the average annual rainfall for the 18 sta-
tions, and Fig. 8 shows the annual rainfall per year, together
with the annual mean wind speed. The annual rainfall inten-
sities reflect the findings for daily and monthly timescales: at
16 stations, IMERG rainfall intensities exceed the intensities
observed on the ground during all the 6 years investigated. At
Grosser Arber, we find that the highest rainfall intensities are
observed at the in situ stations for four of the years (2014,
2016, 2018, 2019), whereas IMERG rainfall intensities are
higher during 2015 and 2017. Viana do Castelo in Portugal
shows a higher rainfall intensity from the in situ measure-
ments during 2015, but for the other years, IMERG shows
the highest intensities.

Figure 8 also shows that fluctuations in the mean wind
speed from year to year are limited during 2014–2019. Mean
wind speeds exceeding 6 m s−1 are found for stations located
near the coast (Arkona, Fehmarn, Helgoland, List, Anholt
Havn, Hammerodde, Hvide Sande, Skagen, and Thyborøn),
whereas inland stations show lower mean wind speeds on the
order of 4–6 m s−1. Grosser Arber is again an exception as
the mean wind speed here is 6–8 m s−1. This is most likely
due to the higher elevation of the station.

5.1.3 Bias of the rainfall intensity according to
precipitation type

Relative biases (RB) on rainfall intensities for different pre-
cipitation types (i.e., slight, moderate, and heavy) are given in
Fig. 9. The figure shows that IMERG overestimates rainfall
at slight and moderate intensities for all stations except for
Grosser Arber, whereas rainfall at high intensities is under-
estimated for all stations except for Skagen. This finding is
well aligned with the literature (Bogerd et al., 2021; Maranan
et al., 2020; Tapiador et al., 2020) and also with the monthly
distributions of rainfall presented in Fig. 6.

5.2 Blade lifetime estimates

In the following, we present the blade lifetimes estimated
with input rainfall intensities from IMERG and the in situ sta-
tions, respectively. One of the 18 stations investigated, Viana
do Castelo in Portugal, is left out of this analysis because the
data availability of wind speeds at the station is only 24 %,
whereas the other stations have a data availability of 70 %–
95 % (Fig. 2).

Figure 10 shows the expected average blade lifetimes in
years per station calculated with input rainfall from IMERG
and the in situ stations. Overall, we see a good agreement
between estimates based on IMERG and in situ rainfall in-
tensities. Biases between the estimates based on IMERG and
in situ rainfall are positive for eight stations and negative
for seven stations. Seven of the stations show lifetimes de-
viating by less than 1 year for the IMERG and in situ in-
puts. The other stations show deviations up to 30 %, and the
deviation for Grosser Arber is exceptionally high (approxi-
mately 100 %) as the lifetime estimates from IMERG and in
situ data are 11.2 and 5.6 years, respectively. This deviation
might be due to challenges associated with microwave sens-
ing and rain shadowing in mountainous terrain (see Sect. 2
and Prakash et al., 2018).

The station Seehausen shows much longer lifetimes than
the other stations (44.5 years from IMERG and 35.5 years
from in situ observations; see Fig. 10). This can be attributed
to the relatively low rainfall intensities in combination with
low mean wind speeds throughout the year at this location.
Two other inland stations, Bremen and Karup, also show
blade lifetimes exceeding 10 years based on the in situ ob-
servations. Overall, the estimated blade lifetimes tend to be
longer for inland stations compared to stations near the coast,
and Grosser Arber is again an exception from this pattern.
Recent work by Bech et al. (2022) supports these findings.

Rainfall intensities from IMERG are given as 30 min ac-
cumulated values, and we have created similar accumulated
values from the in situ observations, whereas previous analy-
ses over the same sites are based on the native 10 min obser-
vations from the in situ observations (Bech et al., 2022). In
order to test the sensitivity of blade lifetime estimates to the
temporal resolution of the input rainfall intensities, we com-
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Figure 8. Annual rainfall from IMERG and in situ observations (bars) and annual mean wind speeds from in situ observations (green curves)
during the period 2014–2019 for the 18 stations investigated.
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Figure 9. Relative biases (RBs) of the rainfall intensity (mm) for
different categories of precipitation (Met Office, 2012): slight (<
0.5 mm h−1), moderate (0.5–4 mm h−1), and heavy (≥ 4 mm h−1).
The orange color indicates overestimation and the blue color under-
estimation of rainfall intensities by IMERG with respect to the in
situ stations.

pare the estimated blade lifetimes based on 10 min in situ
observations with the lifetimes calculated with 30 min accu-
mulated rainfall. The outcome is shown in Fig. 11, which
indicates that the effect of accumulating the rainfall intensi-
ties to 30 min values instead of using the native 10 min values
is small, i.e., ranging from −6 % to 5 % and in absolute val-
ues from −0.4 to 0.7 years. This is excluding Seehausen. At
Seehausen the lifetime is very long, and when we estimate
lifetimes much longer than the length of our time series, the
uncertainty increases.

6 Discussion

This study is the first to use IMERG rain data as input to
predict turbine blade lifetimes. Our blade lifetime estimates
based on the IMERG final product and local rain gauge data
differ very little in spite of large biases of the rainfall rates
at certain stations. Our results suggest that blade lifetimes
are shorter for locations near the coast as compared to sta-
tions located further inland even for stations with similar an-
nual rainfall rates. The damage to turbine blades is caused by
heavy rainfall and strong winds in combination, and there-
fore, the coastal stations with high annual mean wind speeds
are the most prone to damage to the turbine blades. In other
words, the blade lifetime model applied in this study is less
sensitive to rainfall rates than to wind speeds (Bech et al.,
2022). Our findings are aligned with results from the Nether-
lands (Verma et al., 2021a).

IMERG products are available onshore and offshore for
more than 20 years (2000–2022). This could potentially en-
able a regional to global mapping of the expected lifetime
for specific turbines and blade coatings based on the con-
cept applied here. In the context of blade lifetime assess-
ment, the temporal coverage of available input data is impor-

tant since the joint rain and wind variability in northern Eu-
rope is significant (Fig. 6). Around 10 years of data are suffi-
cient to predict blade lifetimes (Hasager et al., 2021). In the
case of shorter time series, there is considerable variation in
the predicted lifetime. Our sensitivity analysis using 10 min
vs. 30 min accumulated rainfall intensities shows little influ-
ence on lifetime estimates at sub-hourly timescales. We see
large differences for the station Seehausen only, which has a
lifetime much longer than the length of our time series.

Our comparisons of rainfall intensities from the IMERG
final product vs. rain gauge observations at ground stations
confirm the findings in previous works (Bogerd et al., 2021).
Light and moderate rainfall is overestimated by IMERG,
whereas heavy rainfall is underestimated. We see this pat-
tern for almost all the 18 stations investigated (Fig. 9), and
because heavy rain contributes more than light rain to lead-
ing edge erosion, blade lifetimes based on IMERG could be
underestimated. We also find that the seasonal variability in
the rainfall type and intensity drives the bias on IMERG rain-
fall rates with respect to in situ observations (Fig. 6). Com-
parisons between IMERG and in situ observations of rain-
fall intensities are therefore only representative of local areas
where the climatic conditions remain similar. Another reason
why validation of the IMERG final product is representative
of local areas only is the nature of the data set in which the
number and the type of satellite sensors, as well as the num-
ber of in situ stations assimilated in the product, are variable
(see Sect. 1).

The stations considered here are primarily located in
northern Europe where the rainfall conditions are similar in
terms of the monthly distribution of rainfall (Fig. 6) and the
total amount of rainfall per year (Fig. 7). We therefore also
find that the bias between IMERG and in situ rainfall is on
the same order of magnitude (Table 2). The two stations in
Portugal and the elevated station Grosser Arber are located
in very different regimes in terms of rainfall. In spite of these
differences, the bias between IMERG and in situ rainfall is
not so different.

A few aspects should be noted about the reference precip-
itation data set used here, as well as in previous works (Bech
et al., 2022; Hasager et al., 2021). Networks of in situ sta-
tions operated by national weather services (here by DMI,
DWD, and IPMA) are primarily established to monitor ex-
treme rain events and to model the hydrological balance of
catchment areas. In connection with these activities, differ-
ent corrections are implemented, but such corrections are not
necessarily included in the in situ data sets we have accessed.
The in situ data set used here represents the best possible es-
timates of the rainfall intensities and wind speeds locally at
the stations, but they are not necessarily representative of the
“ground truth”. For example, strong winds may influence the
amount of rainfall collected by a rain gauge. Such a bias will
vary from station to station depending on the local wind cli-
mate. Likewise, the observations of wind speed may be influ-
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Figure 10. Blade lifetimes estimated using 30 min accumulated rainfall intensities from IMERG and the in situ stations. Note that the
Portuguese station Viana do Castelo/Chafé is left out due to a limited wind data availability.

Figure 11. Blade lifetimes estimated using 30 min accumulated rainfall intensities from the in situ stations and the native 10 min rainfall
intensities observed at the stations. Note that the Portuguese station Viana do Castelo/Chafé is left out due to a limited wind data availability.

enced by sheltering obstacles such as buildings in the vicinity
of the stations.

Precipitation measurements made with rain gauges at
ground stations are very different in nature from remote sens-
ing observations based on microwave or infrared sensors in
space. Firstly, the observations are made at different levels in
the atmosphere where the properties of a given rainfall event
may also differ. Secondly, the sensing techniques are radi-
cally different. Rain gauges collect rain droplets by weight,
whereas remote sensing instruments in this context measure
the properties of a volume of air. As described in Sect. 2, the

capability of microwave sensors when it comes to detection
of rainfall depends on the instrument frequency.

In our analyses, we have considered liquid precipitation
only, as the damage model currently only works for liq-
uid precipitation. Solid precipitation in the form of hail can
cause severe damage to wind turbine blades as well (Let-
son et al., 2020; Macdonald et al., 2016). In the future, it
might be possible to separate different types of precipita-
tion with confidence and analyze their individual effects on
leading edge erosion. Thanks to dual frequency Ku- and Ka-
band radar sensing in combination with passive microwave
sensing, GPM makes it possible to estimate particle size dis-
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tributions within rain clouds (Le and Chandrasekar, 2014;
Tokay et al., 2017). Drop size distributions are essential for
the development and prediction of storms. Tilg et al. (2022)
have shown that the drop size distributions obtained from dis-
drometers (i.e., laser instruments) can also lead to improved
estimates of the kinetic energy, which drives the leading edge
erosion of turbine blades. The kinetic energy model used
by Hasager et al. (2020, 2021), Skrzypiński et al. (2020),
and Tilg et al. (2022) severely overestimates the effect of
larger drops compared to smaller drops in contrast to the
droplet-dependent impingement model used in the present
study (Bech et al., 2022). There is thus an obvious poten-
tial for resolving drop size distributions from GPM and using
them for the prediction of blade lifetimes.

The damage model by Bech et al. (2022) is valid for the
specific coasting system tested and is more weakly depen-
dent upon droplet size than the kinetic energy model. It is
surmised that other coating systems will respond differently
depending on their viscoelastic properties, the thickness of
coating, and adhesion to the substrate. Our focus has been
on the input precipitation data, and despite differences be-
tween GPM and local observations, the lifetime results com-
pare well. Another focus could involve wind speed variation
and impact speed variation on blades with erosion observed
in the field (Prieto and Karlsson, 2021; Visbech et al., 2022).
It would be valuable to assure the methodological reliability
using GPM and different wind speed input and precipitation
data near wind turbine sites with observed blade erosion for
lifetime prediction.

7 Conclusion

The combination of heavy rain and strong winds can cause
leading edge erosion of wind turbine blades and, ultimately, a
need for blade repair or replacement. We have demonstrated
for the first time that rainfall intensities obtained from the
Global Precipitation Measurement (GPM) mission constel-
lation of satellites can be used as input for the prediction of
blade lifetimes at locations in Germany, Denmark, and Portu-
gal. Our analysis is based on precipitation data from the In-
tegrated Multi-Satellite Retrievals for GPM (IMERG) final
product, which contains GPM observations from 2014 on-
wards. The satellite-based rainfall intensities were first com-
pared against in situ observations of rainfall at the daily,
monthly, and annual timescales. In line with previous analy-
ses, we find that heavy rainfall is underestimated by IMERG,
whereas light rainfall is overestimated. The accuracy of an-
nual rainfall intensities from IMERG is thus very dependent
on the rainfall regime at a given point location and on the
type(s) of satellite sensors and the number of ground stations
included in the IMERG final product at that specific loca-
tion. In spite of these challenges, blade lifetimes estimated
from the satellite and in situ observations of rainfall are rather
similar at most of the stations analyzed. We also find that the

30 min temporal resolution offered by IMERG is sufficient
to predict blade lifetimes. Our analyses indicate that there is
a potential for using satellite-based rainfall observations for
the modeling of leading edge erosion, and this represents a
new application of the GPM. The findings are particularly
relevant for the planning of wind farms offshore where net-
works of in situ stations lack coverage. In the future, it might
be possible to refine the analyses presented here by resolving
the drop size distributions based on GPM satellite observa-
tions.
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