

NoC-based Hardware Software Co-design Framework for
Dataflow Thread Management

Mazumdar, Somnath; Scionti, Alberto; Zuckerman, Stéphane; Portero, Antoni

Document Version
Final published version

Published in:
Journal of Supercomputing

DOI:
10.1007/s11227-023-05335-8

Publication date:
2023

License
CC BY

Citation for published version (APA):
Mazumdar, S., Scionti, A., Zuckerman, S., & Portero, A. (2023). NoC-based Hardware Software Co-design
Framework for Dataflow Thread Management. Journal of Supercomputing, 79(16), 17983-18020.
https://doi.org/10.1007/s11227-023-05335-8

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1007/s11227-023-05335-8
https://doi.org/10.1007/s11227-023-05335-8
https://research.cbs.dk/en/publications/29f8ef01-b318-4212-805b-236a1f0fd132

Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:17983–18020
https://doi.org/10.1007/s11227-023-05335-8

1 3

NoC‑based hardware software co‑design framework
for dataflow thread management

Somnath Mazumdar1 · Alberto Scionti2 · Stéphane Zuckerman3 ·
Antoni Portero4

Accepted: 22 April 2023 / Published online: 11 May 2023
© The Author(s) 2023

Abstract
Applications running in a large and complex manycore system can significantly
benefit from adopting the dataflow model of computation. In a dataflow execution
environment, a thread can run only if all its required inputs are available. While the
potential benefits are large, it is not trivial to improve resource utilization and energy
efficiency by focusing on dataflow thread execution models (i.e., the ways speci-
fying how the threads adhering to a dataflow model of computation execute on a
given compute/communication architecture). This paper proposes and implements
a hardware-software co-design-based dataflow threads management framework. It
works at the Network-on-Chip (NoC) level and consists of three stages. The first
stage focuses on a fast and effective thread distribution policy. The next stage pro-
poses an approach that adds reconfigurability to a 2D mesh NoC via customized
instructions to manage the dataflow thread distribution. Finally, a 2D mesh and ring-
based hybrid NoC is proposed for better scalability and higher performance. This
work can be considered a primary reference framework from which extensions can
be carried out.

Keywords Co-Design · Dataflow · Framework · Hardware · Hashing · NoC ·
Software · Thread

1 Introduction

Emerging extreme-scale machines1, and their successors are expected to man-
age many threads that are orders of magnitude greater than in current petascale
machines, with more stringent power and resiliency constraints [1, 2]. In recent

 * Somnath Mazumdar
 sma.digi@cbs.dk

Extended author information available on the last page of the article

1 ORNL’s Frontier supercomputer officially executed more than an ExaFLOP/s. See https:// top500. org/
news/ ornls- front ier- first- to- break- the- exafl op- ceili ng/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05335-8&domain=pdf
https://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
https://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/

17984 S. Mazumdar et al.

1 3

years, communication-centric applications have evolved towards using massively
dynamic and distributed programming models. Such transformations have forced
computer architects to change the hardware accordingly to the requirements imposed
by the applications running at such large scales [3]. Recent CPU and application-
specific accelerator designs favour the integration of a vast number of simple cores
(e.g., single-issue, in-order cores) [4–6] to easily reach the trade-off between perfor-
mance and energy consumption, being also able to increase the number of threads
that can be executed in parallel.

A large part of a processor’s power budget is used to transport data packets from
and to cores and memory modules. Manycore systems aim to improve energy effi-
ciency by increasing parallelism and resource utilization. However, improving
resource utilization without creating contention and workload imbalance is not
trivial. Such a solution should be holistic and must follow a hardware-software co-
design approach. Here, the software should provide flexibility while exploring spe-
cific hardware enhancements that allow for higher performance. Specifically, hard-
ware-based support for explicit multithreading can facilitate the smooth execution
of applications spawning a massive number of threads and offer advantages over
managing them at the software level.

An application consists of multiple sub-tasks which generate multiple threads.
Threads can communicate with each other and may be dependent on input data.
Such scenarios may cause I/O or memory stalls, significantly reducing overall per-
formance. For the smooth and efficient execution of applications, the underlying
system architecture needs to dynamically adapt to the ‘ever-changing’ situations
with minimal commotion to their functionality. In general, the program execution
flow is governed by control or data dependency. In control dependency-based execu-
tion, threads are instantiated when some conditions are met (i.e., generally expressed
with conventional, high-level programming languages). In the data dependency
model, threads start to run when the required input data is available (i.e., this model
is mainly data-driven). Current popular program execution models (PXMs) rely
on von Neumann architectures and exhibit large thread synchronisation overheads.
Their inherent sequential nature makes it tough to guarantee the correctness and race
condition freedom when one considers the execution of multithreaded programs [7].

Since the beginning of the 2010s, and with interest in big data and machine learn-
ing-based applications, dataflow and event-driven models have regained popularity
in high-performance computing (HPC) communities. In particular, as the on-chip
core count has been steadily growing, expected issues come with memory latency,
synchronisation, and the natural expression of parallelism both at the application
and hardware levels. Dataflow models tend to propose simple and efficient mecha-
nisms to tackle these issues [8]. Dataflow PXMs can achieve good performance by
reducing energy consumption by up to 40% [9]. In a dataflow PXM, if input data
is available, the independent portion of the application can be executed in parallel.
Such an approach helps to achieve better spatial parallelisation because the dynamic
form of dataflow can support a higher level of parallelism by supporting data rep-
etitions [10]. Overall, managing threads at low-level have several advantages, such
as fewer hotspots, better performance, and efficient power utilisation. Whilst both
HPC and high-throughput computing applications can significantly benefit from the

17985

1 3

NoC‑based hardware software co‑design framework for dataflow…

adoption of dataflow-oriented PXMs, most of the current implementations are either
generic but software-based or rely on hardware acceleration, but with a specific type
of application in mind (e.g., graphs, neural networks).

Application mapping on manycores is challenging when multiple constraints,
such as limited energy (power) consumption, latency, and throughput, must be satis-
fied. The increased core count offers a higher degree of parallelism. As the chip’s
core count rises, each core can generate enormous (data) traffic inside the chip.
Then, stable performance becomes dependent on the contention of other crucial
functional components, such as interconnections. In this context, the interconnection
subsystem becomes vital for achieving better performance. There is no easy way to
categorise the traffic generated by the applications in the interconnect subsystem of
manycore systems (i.e., also including smaller chip-multiprocessors—CMPs) [11].
However, an inefficient interconnection subsystem can reduce overall system per-
formance and consume a significant portion of the area and power budget of the
chip [12]. Today’s popular interconnection subsystems for manycore systems are
known as Networks-on-Chip (NoCs).

An NoC is an embedded packet-switching network supporting the (data packet)
communication between the processing elements (such as general-purpose cores and
application-specific accelerators) and the primary memory. NoCs have the potential
of offering better scalability and more deterministic performance [13]. NoCs have
a simple organization and mechanism for controlling the data traffic but can con-
sume a significant fraction of energy while connecting many cores. For instance,
Vangal et al. showed that on the Intel TeraFLOPS chip, the NoC uses up to 28%
of the chip’s power [14]. Its routing mechanism and topology influence the perfor-
mance and power consumption of an NoC. Topology impacts the overall network
latency and power consumption. To reduce such issues, for connecting very high
core counts, hierarchical topologies (e.g., bus and 2D mesh based [15], mesh and
ring based [16]) have also been proposed.

Paper contribution In this article, we propose a dataflow-based thread manage-
ment framework (see Sect. 4) which relies on specific features embedded in the
NoC to facilitate the management of a massive number of threads within a many-
core architecture by easing the control of data packets across the interconnection. As
such, the proposed framework aims to improve the energy efficiency of a manycore
system executing applications spawning a very high number of threads. A dataflow-
based PXM is used to efficiently distribute dataflow threads across the available
processing cores by limiting the rise of single hot spots in the communication pat-
terns. It is worth noting that this framework can also be customised for conventional
control-flow programming models. The framework consists of three stages from top
to bottom (refer to Fig. 1). The top stage focuses on fast dataflow thread distribu-
tion on the available cores. In the middle stage, a software-controlled reconfigura-
tion mechanism is added on top of a custom 2D mesh router (actually based on a
custom configuration of interconnection rings). Finally, a hybrid NoC topology (bot-
tom stage) is explored to gain performance when the number of cores to connect
grows. Indeed, the combination of rings and a 2D mesh using routers equipped with
conventional crossbar-based switches provide better performance than standard 2D
mesh architectures. It is worth mentioning that the framework is flexible so that the

17986 S. Mazumdar et al.

1 3

user does not need to use all three stages: any stage can be skipped based on require-
ments. Overall, the contributions of this paper are as follows:

• Top stage (thread distribution policy) We proposed a hash-based thread distribu-
tion scheme that can be very efficient with simple hardware modification to sup-
port the (energy-efficient) distribution of a massive number of concurrent threads
over the available cores (refer to Sect. 4.1) [17].

• Middle stage (software-controlled noc reconfigurability) To let the software layer
control the interconnection topology, we proposed a lightweight mechanism
to extend the router microarchitecture and make the actual NoC topology (i.e.,
called virtual topology) directly controllable through dedicated core instructions
(see Sect. 4.2) [18]. Whilst demonstrated on top of an NoC architecture based on

Fig. 1 The proposed framework with three sequential stages

17987

1 3

NoC‑based hardware software co‑design framework for dataflow…

multiple rings, the proposed mechanism remains general enough to be adapted to
other interconnections, e.g., routers with traditional crossbar switching elements.

• Bottom stage NoC performance improvement via hybrid topology) To improve
the scalability and performance of the NoC infrastructure, a hybrid architecture
combining a 2D mesh and rings is proposed. The results show that it is more effi-
cient compared to the traditional pure 2D mesh topology (see Sect. 4.3) [19]. The
result shows it performs well by efficiently processing local (rings) and global
(2D mesh) traffic. Such configuration allows us to exploit network traffic locali-
sation better, thus facilitating traffic management at a low energy cost.

2 Background and related work

This section presents the two foundations of this work: dataflow-inspired program
execution models (PXMs), and Network-on-Chip (NoC) architectures. Whilst the
large reviewed literature demonstrates some foundational idea captured by our pro-
posed hardware-software co-design framework, no one of the reported works covers
all the necessary aspects, i.e., providing an effective mechanism for managing the
distribution of a large number of threads, while improving performance, adaptabil-
ity, energy efficiency and scaling up capability. Section 3 and Sect. 4 aim to fill this
gap.

2.1 Dataflow models

We will first introduce the concept of dataflow models, and then discuss the use of a
modern dataflow-inspired PXM for our contribution.

2.1.1 Dataflow models: principles

Dataflow models have a long history, from both hardware [20, 21], data structures,
system software, and software perspectives [22–24]. It could be argued they hide
behind superscalar processors’ out-of-order engines; are still actively used for digital
signal processing circuits in embedded systems thanks to variations around data-
flow, such as Synchronous Data Flow [25]; and more recently, explicitly dataflow-
inspired constructs have been added to programming languages, e.g., OpenMP [26].

The original dataflow PXM specifies a firing rule: a dataflow actor is ready to
fire when all of its input data tokens are present, and there are no remaining output
data tokens to be consumed. This rule is relaxed in further iterations of dataflow
PXMs, e.g., to allow for general recursion. A dataflow program can be represented
as a directed graph, called a dataflow graph (DFG). Its vertices are dataflow actors,
and its arcs indicate in which direction data tokens flow from one actor to the other.
DFGs naturally expose parallelism, which both hardware and software systems can
then exploit.

Since the 1990s, several hybrid von Neumann-dataflow PXMs have been pro-
posed to take advantage of more traditional off-the-shelf high-performance

17988 S. Mazumdar et al.

1 3

microprocessors, such as e.g., EARTH-MANNA [27, 28], which combines a com-
piler to write dataflow-inspired programs into C combined with a low-level run-time
system. These hybrid systems provide a ‘macro-dataflow’ programming environ-
ment to express computations, and then map the resulting generated code to the
underlying hardware thanks to a combination of compiler-generated code and run-
time system calls.

The last dataflow-inspired architectures include Cray’s eXplicit Multi-Threading
(XMT) architecture, which introduces an abstract execution model, where switch-
ing from serial to parallel execution is made through explicit spawn/join instruc-
tions [29]. Another dataflow-inspired high-performance hardware system is the
Maxeler processing platform [30]. Readers can refer to the survey for more [31].

2.1.2 Codelet model

With the rise of massively parallel chip multiprocessing systems, i.e., manycore sys-
tems, the early 2010s saw a renewed interest in examining dataflow-based PXMs
to exploit the increasing amount of parallelism contained in a single chip, but also
between CMPs. One of the resulting PXMs is the Codelet Model [32, 33]. Much like
EARTH [28], it is a hybrid von Neumann-dataflow model designed for massively
parallel multicore systems. However, it is event-driven: on top of the data tokens of
dataflow, hardware and software resources may also be expressed as dependencies
to help the system decide how to map the computation on the underlying hardware.
Hence, a codelet may only fire if all of its data and resource dependencies are met.

While they are the quantum of execution of the PXM, codelets cannot be called
directly by the programmer. Instead, they are stored in a Threaded Procedure.
Threaded Procedures are essentially asynchronous functions, and act as a container
for a small codelet graph, and a data frame to hold inputs, outputs, and intermediate
values shared by the threaded procedure’s codelets. A threaded procedure descriptor
can be sent to any cluster of cores, but once it has been assigned to a given cluster
to be executed, its codelets can only run on the cores of the selected clusters. This
helps maintain data locality, e.g., if the cluster features some cache or scratchpad
memory available to all its cores. Codelets have a read-write access to its threaded
procedure’s frame, and rely on the programmer and compiler to have produced a
well-behaved codelet graph.

On top of defining a way to represent a unit of computation, the Codelet model
also defines an abstract machine model. In the model, the target system is comprised
of hundreds of cores, grouped into clusters. Each cluster comprises several compute
units, and a single synchronisation unit. Each compute unit is equipped with a code-
let pool, which can hold one or more codelets ready to run, whereas synchronisation
units are tasked with distributing such codelets to the various compute units of their
cluster. At the same time, synchronisation units are also in charge of tracking local
thread procedure invocations, and must then manage the memory pools tied to them.
They must be software-managed to deal with dynamic memory allocation issues. An
unknown number of thread procedures (in particular, the data frame sizes vary with
inputs, outputs, and intermediate values) will be stored in the pools and can be ‘fed’
with additional thread procedure descriptors from other synchronisation units.

17989

1 3

NoC‑based hardware software co‑design framework for dataflow…

2.2 Network‑on‑Chip architectures

In this sub-section, we will first introduce the concept of ‘virtual’ topology mapping
used in the context of customizing the system interconnection, and later discuss the
related literature.

2.2.1 Primer to virtual mapping

The 2D mesh topology has become popular due to its advantages compared to other
alternatives regarding wiring area, power cost, and fault tolerance [34]. The left side
of Fig. 2 depicts the typical organisation of 2D mesh-based CMP: processing ele-
ments (PEs—white squares) communicate with routers (black squares) which are
connected through a 2D mesh (black lines). In such a topology, the active commu-
nication elements (i.e., the routers) have five input/output channels each, which map
to the four communication directions of the mesh (i.e., north, south, east and west
links) and the local communication link with the PE. The right side of Fig. 2 shows
an example of a virtual topology mapping, with groups of adjacent PEs commu-
nicating through virtual rings (blue lines), which are further connected through a
virtual mesh (purple lines). Mapping the physical topology with the desired virtual
one requires the underlying routers’ architecture to expose additional functionalities.
In particular, links should be enabled/disabled or bypassed, i.e., the traffic flowing
in it is directly injected in another link without passing the switching/routing pro-
cess. In other words, data packets are directly forwarded to the following router. In
the right side of Fig. 2, for instance, routers of PE 3 and PE 5 (PEs are numbered in
the top-left corner) can disable respectively south and north links, while the router

Fig. 2 Mapping between the physical network with a 2D mesh topology and a multi-level virtual topol-
ogy. Links to the physical network are organised into local rings (blue lines) and a global 2D mesh
among rings (purple lines)

17990 S. Mazumdar et al.

1 3

of PE 6 can configure the north link in bypass mode so that its traffic is directly
injected in the south link of PE 8. An example of an NoC architecture supporting
this kind of dynamic mapping is Panther [35]. Although it allows significant power
savings in principle, the entire NoC architecture uses routers based on a conven-
tional microarchitecture, which becomes power hungry (i.e., the majority of the dis-
sipated power is due to the crossbar switch and link drivers) when the number of
PEs to connect grows as in manycore. [36] proposed a method to perform high-level
mapping of cores onto various NoC topologies based on multiple objective func-
tions. Readers can refer to the survey paper [37], which reviews existing routing and
selection techniques for 2D mesh topology considering various NoC-related perfor-
mance parameters.

2.2.2 Hybridizing NoCs

For a small number of cores, ring topology is demonstrated to be very effective,
requiring a low-radix router (i.e., a packet-switching element with a low number of
input/output ports connecting to the other elements of the network). Interestingly, a
ring topology can outperform a mesh topology for moderate to high memory access
locality-based workloads [38]. Various efforts have been made to connect local and
global rings via special routers called bridges to improve scalability together with
performance and better energy consumption [16, 39]. Due to scalability and a high
level of fault tolerance, 2D mesh topology has become very popular to efficiently
connect a moderate number of cores (e.g., Polaris chip [12]). However, 2D mesh
topology suffers from space and power trade-offs for a vast number of connected
cores [12].

Hybridization has been explored as an effective way to exploit the benefits of each
topology at different scales (i.e., when a different number of cores to connect var-
ies). Kim et al. propose using ring-based routers to implement a scalable 2D mesh
topology [40]. Despite the relatively lower cost of the proposed packet-switching
elements, the network’s physical topology remains fixed, with links kept active in
all of these elements, thus leading to low resource usage for lightly used connections
and larger overall power consumption.

In [41], the authors proposed a hybrid NoC architecture with high-speed trans-
mission lines. It uses an adaptive routing technique to send long-distance packets.
Manzoor et al. proposed a deadlock-free congestion-aware routing algorithm for a
2D mesh network while not using any virtual channels [42]. The proposed algo-
rithm fuses deterministic and partially adaptive algorithms. [43] presents a rout-
ing algorithm based on a four-step method for a 2D mesh network. The proposed
method collects the congestion information that enhances the regional traffic infor-
mation. [44] proposed an application-to-cores mapping along with a modified 2D
mesh NoC. Next, the proposed approach implements techniques to determine the
congestion level of the NoC links dynamically and thus adjust the application-to-
cores mapping accordingly. In another work, a Chisel NoC generator is proposed for
enabling design exploration and evaluation of heterogeneous NoCs [45].

Hierarchical rings with deflection is a hierarchical ring-based NoC design for
improved energy efficiency, where buffers within individual rings are avoided while

17991

1 3

NoC‑based hardware software co‑design framework for dataflow…

needing up to four levels of hierarchy to connect a modest number of cores [16].
CSquare proposes a way of clustering routers so that clusters adopt an internal tree-
like organisation [46]. The authors showed that this topological design improves
throughput while lowering the average latency over mesh-like topologies under the
uniform traffic pattern. Transportation network-inspired NoC is another hierarchical
ring topology that employs a hybrid packet-flit, credit-based flow control mecha-
nism for better scalability and priority-based arbitration for better performance [47].
It allocates channels (i.e., links) with flit granularity, while buffers are allocated with
packet granularity to reduce buffer counts. 2D-HERT is a hierarchical expansion of
a ring topology, focusing on optical NoCs [48]. Kilo-NoC is a topology-aware qual-
ity-of-service (QoS)-oriented architecture, adopting a low-diameter (i.e., the largest,
minimal hop count over all pairs of cores) topology [49]. It provides a service guar-
antee for applications with reduced power and area costs. It reduces the extent of
hardware support to portions of the die, reducing router complexity to support large
core counts. In [50], authors present a hybrid architecture where a 2D mesh network
is partitioned into several smaller sub-meshes. Next, the sub-meshes are connected
using a hierarchical ring interconnect for delivering global traffic. This work uses a
bridge module to drive traffic to the different levels of the hierarchy. The addressing
and routing scheme has also been modified to support the proposed topology.

3 Overview of the proposed framework

In recent times energy-awareness has become paramount to keep the pace of gain-
ing performance from one generation of HPC systems to another. Consequently, the
design of microarchitectures considers energy efficiency as one of the main require-
ments. Energy efficiency can be achieved: by increasing the parallelism via increas-
ing the core count or improving the computing capabilities via integrating appli-
cation-oriented features. In manycore platforms, the interconnection and memory
modules are the critical subsystems as they are shared by all cores for data exchange.
With applications exploiting such parallelism, the capability of adequately distrib-
uting threads (which may refer to a hierarchy where OS-level threads map onto
low-level hardware-assisted threads) on the system resources becomes of primary
importance. In particular, the way threads are dynamically spawned and associated
with cores, and how the communication (data exchanged) happens among running
threads are critical aspects to be addressed in the (co-)design of new high-perfor-
mance energy-efficient processors. That said, here the primary research question
is: how can a hybrid NoC-based dataflow-oriented thread distribution mechanism
improve the run-time performance?

Dataflow is mainly intended to explore ‘spatial parallelism’ offered by many-
core CMPs, meaning that threads can execute in parallel if enough resource exists
and all their inputs are available. The proposed framework incorporates a flex-
ible dataflow thread management layer (i.e., resembling the Codelet model that
efficiently distributes dataflow threads across the available processing cores. We
consider the dataflow model as it has fewer management issues, and the available
general-purpose hardware can be used to exploit the inherent parallelism of the

17992 S. Mazumdar et al.

1 3

dataflow applications. Worth mentioning here is the fact that the threads targeted
by this approach are considered the ones lying at the lowest level of the software
stack. In other words, these threads are directly managed with the assistance of
the underlying hardware; as such, higher-level threads [(e.g., OS threads (similar
to [36])] may be mapped on top of them without impacting the operations per-
formed by the proposed approach or on the performance. On the other hand, the
proposed hybrid NoC can support control-driven and data-driven execution mod-
els with better scalability, throughput and improved latency, lower power con-
sumption and area cost.

To answer the primary research question, this paper focuses on a hardware-soft-
ware co-design framework (refer to Fig. 1), which aims at providing mechanisms
to (i) seamlessly distributing (low-level) threads on the available cores, (ii) allow
the interconnection to adapt to map a specific virtual topology to better serves the
application’s data traffic, and (iii) improve the overall performance by exploiting the
hybrid topology of the underlying interconnection. The proposed framework lever-
ages the implementation of a full-fledged dataflow PXM. Three main goals are tai-
lored to provide software support for exposing a data-driven thread spawning mech-
anism connected to a hardware-assisted system that automatically distributes threads
on the available cores while avoiding creating communication hot spots. Also, to
better comply with the application communication patterns, interconnection topol-
ogy can be adapted and controlled via a simple software interface. Such an approach
advocates for better energy efficiency and scalability. More specifically, the pro-
posed framework consists of three stages to answer three sub-research questions.

1. Thread distribution policy How to efficiently distribute the massive number of
concurrent (low-level) threads among available cores in such a way being energy
efficient? To answer this research question, we propose a hardware-assisted hash-
based thread distribution scheme that can be efficiently implemented and inte-
grated into a conventional 2D mesh router microarchitecture. Specifically, the
proposed scheme targets a dataflow execution model and offers abstraction and
flexibility.

2. Software-controlled NoC reconfigurability How to improve the adaptability of
the underlying NoC interconnection to the application communication patterns?
To counter this issue, we propose a scalable software-defined NoC (SDNoC)
architecture, which allows mapping different (virtual) topologies upon a fixed
physical 2D mesh NoC. In the proposed approach, the software layer can directly
control the network topology to accommodate various application requirements
and communication patterns.

3. NoC performance improvement via hybrid topology How to improve network
performance by exploiting traffic localisation? To address this question, a hybrid,
scalable and efficient (physical) NoC topology is designed, which fuses rings and
2D mesh topology to provide higher performance whilst efficiently processing
local (rings) and global (mesh) traffic. The results show that it is indeed efficient
compared to the more traditional full flattened 2D mesh topology, which is dif-
fused in modern HPC processors. Also, it keeps the complexity of the overall
solution lower than the widely used 2D mesh topology.

17993

1 3

NoC‑based hardware software co‑design framework for dataflow…

4 Hardware‑software co‑design framework

As already mentioned in Sect. 3, the proposed hardware-software co-design-
based NoC framework consists of three stages, each of which is presented below.

4.1 Thread distribution policy

We use a PXM directly derived from the Codelet model, where assisting hard-
ware embedded in the packet-switching element (i.e., the NoC router) provides
performance improvements. The applications are divided into a set of fine-grain
threads, each totalling no more than a few tens or hundreds of instructions.
Threads represent the quantum of execution and can exchange data with each
other (if needed).

4.1.1 Added software support for mapping threads

Employed PXM allows the construction of the DFG at compile time, explicitly
showing data dependencies among threads. The thread context includes the (data)
frame and a unique thread identifier. Each thread holds a local storage space
(frame) used to receive input data from producer threads and to write intermedi-
ate results. It also contains a scheduling slot (SS) counting the number of inputs
still required for the execution. To preserve locality and allow for better latency
hiding, threads are grouped into asynchronous functions (AFs). As part of the
hashing mechanism, the framework dynamically groups cores to form virtual
nodes (VNs), forcing threads within an AF to be executed on the same VN. To
expose these characteristics at the programming level, the proposed architecture
extends the core instruction set architecture (ISA) with a reduced set of dedicated
instructions (possibly wrapped by high-level programming language functions,
e.g., C/C++) as follows:

• CreateThread(*code,SS,frame) Creates a new thread context, i.e., the
SS, the type of the thread, a unique identifier, and the required space to hold the
thread’s data frame and allows to schedule the execution of threads belonging to
the same thread pool (TP) within the same VN.

• CreateAF(*code,SS,frame) As the above instruction, but it allows a new
asynchronous function (i.e., a new thread spawned outside the VN).

• ReadData(offset) Reads data from a thread’s frame at a specific offset
within the frame.

• WriteData(TID,frame,offset,data) writes data to a thread’s frame at
a specific offset within the frame (both within and outside the current VN).

• DecreaseSS(TID,dep_cnt): Allows decreasing the SS of a thread by the
number of resolved dependencies.

• DeleteThread() Removes the context of a thread that has completed the
execution.

17994 S. Mazumdar et al.

1 3

• SetVN(N_pe) Sets the number of cores being part of each VN and sends a
broadcast message to all indicating the number of cores (PEs) composing each
VN.

• ConfigRouter(*config,Rd,B) Allows configuring routers by specifying
the memory address where the configuration is stored. The destination router
identifier is contained in the Rd variable, while flag B indicates if the configura-
tion is broadcast to all routers.

The compiler can aggregate multiple writes (e.g., dealing with large loops) and use
a single DecreaseSS signalling operation to update the corresponding SS field to
optimise the execution.

A PE within the current VN is automatically selected and signalled whenever a
new thread is spawned. Similarly, whenever a thread creates a new AF, the desti-
nation PE is selected within the whole chip. Hence, the creation of a new AF is
led back to the scheduling of the root thread of the DFG contained in the AF. Fig-
ure 3 shows an example of a simple kernel application consisting of four AFs, each
with its DFG. Both AFs and threads are directly managed by the compiler, which is
responsible for mapping high-level programming constructs (e.g., #pragma omp
for when using OpenMP) with the correct sequence of CreateAF and Create-
Thread instructions. Figure 3 also shows that AF scheduling requests and writing
operations remain well confined to the local VN. By monitoring scheduling slots,
the hardware unit automatically fires threads that become runnable without explicit
instruction. On the contrary, the execution completion is signalled by the Delete-
Thread instruction that allows freeing resources held by the thread.

4.1.2 Hardware support for thread distribution

The target CMP-based platform comprises many cores tied to lightweight routers
supporting a 2D mesh topology. A core-router complex is referred to as a tile. Fig-
ure 4 shows how a 2D mesh NoC connects a large group of tiles covering the entire

Fig. 3 Application adhering with the proposed PXM and a possible mapping of threads on the PEs

17995

1 3

NoC‑based hardware software co‑design framework for dataflow…

chip area. Routers are augmented with our (fine-grain) dataflow thread distribution
hardware support: a local unit called Thread Dispatcher (TD) manages the threads
during their lifetime. In particular, it allocates internal space for storing thread con-
texts every time new threads are created, removes previously allocated resources
whenever threads are complete, and reads from (respectively writes to) associated
frames. Since the software controls the behaviour of threads through the extended
instruction set, the TD directly interacts with the decoding stage of the PE. We
assume that only one thread at a time can be executed in each PE.

We used hashing for thread distribution in a resource-constrained environment.
The hashing mechanism must avoid creating hot spots (i.e., assigning a large num-
ber of threads to a single PE that can create large resource contention and gener-
ate large traffic towards other PEs) in the chip. An imbalance in the load distribu-
tion quickly and significantly increases the i.e.power and temperature of the more
stressed portion of the chip, thus contributing to a decrease in the overall reliabil-
ity, which may accelerate device ageing. Load imbalance can also create congestion
in the network since some links drive more traffic than others. On the other hand,
the hashing mechanism used to distribute the threads must guarantee the locality of
computations. To this end, our hashing scheme allows placing a group of depend-
ent threads (i.e., asynchronous function) on the same group of PEs (i.e., VN), while
still preserving a fair thread distribution within the VN by randomly selecting PEs.
Similarly, the hashing scheme allows the scheduling of AFs randomly on different
VNs across the whole chip, avoiding the need to explicitly find an allocation of PEs
that minimise the communication distance between producer and consumer threads
(in a minimal amount of clock cycles). Furthermore, our PXM implies more than
one producer thread can generate input data for a single thread, and producers can
be scheduled and executed at different points in time.

Each thread in the system is identified by a unique thread identifier (Tid) over the
whole application execution. It is composed of three main fields: the source field,
the destination field, and a local counter (CNT). The source and destination fields
are in turn, formed by two sub-fields representing the core identifier of the PE (Cid),
and the virtual node identifier (Nid). While the content of the source field is fixed
for each tile (once the number of cores in each VN has been selected), the content

Fig. 4 Chip organization: tiles contain a PE (white box) and router (grey box). The scratchpad substitutes
the traditional L1-data cache

17996 S. Mazumdar et al.

1 3

of the destination field is produced at run-time by the hashing function H(⋅) . These
fields allow the system to generate unique identifiers that are conveniently stored in
a 64-bit register.

The organisation of the Tid is illustrated in Fig. 5. By passing to the H(⋅) mod-
ule both the size of VNs (Npe) and the indication of the executed instruction Iex
(i.e., the CreateThread or the CreateAF instruction), it uniquely identi-
fies the PE responsible for the execution of the newly generated thread (i.e.,
⟨Nid,Cid⟩dst = H(Npe, Iex)). Once selected, the PE is signalled by sending a message
over the network. Since the destination is encoded in the Tid , any subsequent opera-
tion on the thread can easily be forwarded to its corresponding PE without any cal-
culation. This contributes to the overall speedup of the system.

The basis of our system is a 2D mesh NoC implemented with lightweight ring-
based routers (see Sect. 4.2.2). Such routers allow the implementation of a flexible
2D mesh topology on top of four unidirectional rings. An internal table describes
how traffic flows in the links. The internal crossbar switch is substituted with four
ring stations, each capable of driving network traffic in the same direction or steer-
ing it to the opposite dimension. The ring stations are coupled with two additional
modules (inter-ring switch – IRS) that are responsible for ejecting traffic travelling
in one dimension or injecting traffic in the opposite dimension.

Thread descriptor table (TDT) is a data structure used to manage threads organ-
ised in two fixed-size local memory arrays. The total area is comparable to an L1
instruction cache (see Sect. 5.2). It is interesting to note that we may ‘lose’ some
information while having the TDT, but we can reclaim some of it because we use
scratchpads and not actual caches for the thread frames. Input and intermediate data
are stored in the scratchpad memory. Every time the context of a thread is updated,
the Tid is used as a search key within the content-addressable memory. In the case

Fig. 5 Thread Dispatcher module organisation (left) with the internal structure of the H(⋅) function
(right)

17997

1 3

NoC‑based hardware software co‑design framework for dataflow…

of a match, the returned base address of the frame Fb is added to an offset Fo to
determine the location access (i.e., l = Fb + Fo). Finally, a priority encoder selects
the thread with the lowest Tid among those runnable (SS = 0 , see Fig. 5). Every time
the selected PE is devoid of free resources, it can access a larger but slower and less
energy-efficient memory area called Thread Storage, which is implemented as a 3D
stacked DRAM layer2. It is organised by banks (one for each PE) representing a
larger TDT structure. When a PE receives a new thread, it first selects the entry in
the local TDT and compares the SS value of the new thread with the one currently
stored. The thread with the highest SS will be swapped to the DRAM memory bank.

Hash scheduling function H(⋅) is used to map new threads to PEs for their effi-
cient execution and contains a set of maximum-length linear-feedback shift regis-
ters. In our case, the hardware module assigns to the newly created thread the tuple
⟨Nid,Cid⟩dst , depending on the VN size and the executed instruction. To be effective,
the scheduling function H(⋅) has to distribute CreateAF and CreateThread
requests among the available resources fairly. The effectiveness of the hashing func-
tion derives from the ability to avoid collisions, i.e., to limit the number of times
two distinct input values result in the same output value for the hashing. In our dis-
tributed scheduling scheme, this translates into avoiding different PEs selecting the
same destination, given two different Tid . In that case, the PEs’ load (i.e., the num-
ber of threads to execute) is balanced, thus avoiding the formation of hot spots and
increasing the overall system reliability.

A good hash function must provide determinism, meaning that it has to provide
the same set of hash values for the same set of input keys. More importantly, hash
functions must exhibit uniformity: given a set of n input keys and m output buckets,
each bucket must show a load � =

n

m
 . It directly translates to the same probability

for each output bucket to be selected, thus limiting the number of collisions. Finally,
since we are not considering cryptographic applications, it is not strictly required
for the function being non-invertible. Indeed, it is more desirable to keep hardware
implementation efficient regarding area and power consumption.

The mentioned hashing scheme offers good results while maintaining a low area
overhead and preserving the capability of dynamically changing VN sizes (see
Sect. 5 for more details). Another important aspect of our scheme is that it works in
an entirely distributed fashion, meaning that there is no single point of failure, as is
desired in a system potentially equipped with thousands of PEs.

4.2 Software‑controlled NoC reconfigurability

Here, we propose a microarchitecture that tries to merge the benefits of ring-based
NoCs (i.e., performance and energy efficiency) with those brought by dynamic
reconfiguration (i.e., adaptation, fault tolerance) while keeping the hard-wired 2D
mesh topology fixed. To accommodate different application requirements and com-
munication patterns, the proposed interconnect maps different types of topologies

2 Alternatively, 2.5D implementation is possible using a chiplet-based design of the entire target system,
while getting even slower accesses due to the availability of few shared memory controllers.

17998 S. Mazumdar et al.

1 3

(or virtual topologies) over the physical ones. A few customised instructions are
added to the core ISA to allow the software layer to control the network’s topol-
ogy during execution directly. Thanks to the flexibility in managing the underlying
interconnection subsystem at the application level [51], the software can control
every single link with fine granularity using ring-based interconnects as the building
block for implementing the physical 2D mesh topology. As a result, physical con-
nections can be switched off when not in use. Link usage is monitored using internal
hardware counters and accessible through dedicated instructions. This information
can be exploited by the programmer and the optimisation tools or compiler to better
adapt the virtual topology to the application’s communication patterns. It is worth
saying here that, although demonstrated targeting a ring-based physical topology,
the underlying physical layer can be constructed using more conventional routers
based on crossbar switch elements or a mix of the two.

4.2.1 Software interface

The ISA extension we presented in Sect. 4.1.1 has been further extended with a few
instructions to manage the reconfiguration phases and to monitor the links’ traffic.
The combination of both proposed ISA extensions allows us to deal with a SDNoC.
As in the case of instructions used to manage the dataflow thread distribution. Here,
each instruction can be conveniently wrapped by a function in standard high-level
languages (e.g., C/C++) as follows:

• SetRouterCfg(Rd,Rs,B) Sends a configuration request to the routers by
specifying the memory address where the configuration is stored. Variable Rd
specifies the destination router, variable Rs contains the memory address where
the configuration is stored, and flag B (unsigned immediate value) indicates if
the request is sent in broadcast to all routers (B>0), or not (B=0);

• ReadCounter(Rd,Rs1,Rs2) Reads the content of a link’s counter, by
specifying the link to read (one of the four bits starting from the LSB position
in the variable Rs1 must be set), the destination router (variable Rs2), and the
variable where the counter content will be stored (Rd);

• ResetCounter(Rd,Rs,B) Allows to reset traffic statistics by specifying
which links’ counters to reset (four bits starting from the LSB position in the
variable Rs are set if the corresponding links’ counter must be reset), the desti-
nation router (variable Rd), and the flag B that indicates if the request is sent in
broadcast to all routers (B>0), or not (B=0).

Each router is equipped with a 16 × 1 SRAM containing the switch table (ST). It
describes how traffic entering a link can flow into other links. More precisely, the
memory content is logically arranged as a 4 × 4 matrix. Each row of the matrix cor-
responds to an input link, while the four columns in a row represent output links. An
element si,j ∈ ST is set to one if the traffic travelling in the direction i (e.g., west) can
be forwarded on the direction j (e.g., north). The content of the ST, and the values
of bits enabling the bypass and power-gating logic (respectively BP and PG bits),
are stored in memory in the form of a bitstream. Every time the SetRouterCfg

17999

1 3

NoC‑based hardware software co‑design framework for dataflow…

instruction is executed, it generates a corresponding message sent to a specific
router. The destination router directly accesses the memory location (actually, the
PE performs this operation), where the configuration is stored, by adding a fixed
offset to the basic address (Rs). The operation can be parallelized if multiple routers
need to be configured.

4.2.2 Hardware support for virtual mapping

Figure 6 merges the benefits of lightweight and scalable router microarchitecture
with those of dynamic reconfiguration [40, 52]. Four separate rings allow communi-
cation to flow in the north, south, east and west directions, while specific bits control
the status of each link. The communication in each of the four directions (i.e., north
(N), south (S), east (E), and west (W)) is ensured by dedicated ring stations (RSs),
which are essentially responsible for forwarding the traffic coming from the injec-
tion port (inj) to the output port or the ejection port (ejc). An RS manages the traffic
from a physical ring in the same direction. During the configuration phase via the
customised instruction, the links can be set in three different modes: normal, bypass
(BP), or power-gated (PG). Bypass and power-gated modes disable links partially or
fully, thus allowing the network to save power and implement different topologies.

The original router design uses a single inter-ring switch (IRS) to switch traffic
travelling horizontally (i.e., E-to-W, or from W-to-E) to one of the vertical directions
(i.e., N-to-S, or from S-to-N), but prevent the opposite traffic steering (i.e., from

Fig. 6 Lightweight router microarchitecture: ring stations (RSs) have injection and ejection ports, as well
as bypass (blue squares) and power-gating (red squares) ports which are controlled by relative bits. Inter-
ring switches are power-gated depending on the state of the RS (grey circles are AND gates)

18000 S. Mazumdar et al.

1 3

vertical to the horizontal direction) [52]. This choice was imposed by implement-
ing the X-Y routing algorithm on top of the ring-based architecture. Although this
organisation ensures chip-level communication within the physical mesh, it does not
support mapping virtual topologies.

To compensate, we provide a more flexible architecture: two symmetrical IRS,
i.e., an X2Y switch and a Y2X switch allow the traffic to spill from horizontal direc-
tions to vertical ones, and vice-versa. To this end, the design uses the X-Y determin-
istic routing algorithm without the restriction of forwarding traffic first horizontally
and then vertically, i.e., packets can be routed alternatively on the X and Y dimen-
sions as a first routing step. Each IRS is composed of two multiplexers (MUXs).
One is responsible for selecting which of the inputs (e.g., traffic coming from the
local PE, E-to-W direction, or W-to-E direction) has to be transferred to the injection
ports of the RS in the opposite dimension (e.g., the traffic is injected in the N-to-S
or the S-to-N direction). The second one selects which traffic to present to the output
port (i.e., this is the spill point, where traffic coming from the network is presented
to the PE). For instance, the X2Y switch can present to the output port of the traf-
fic coming from the ejection port of the RS-W and RS-E (see Fig. 6). The other
two separate ports in each IRS (highlighted in red) control their state, thus allowing
for selectively power-gating one of the two internal MUXs or both. Considering the
X2Y switch (similar to the Y2X switch), the MUX connected to the output port can
be disabled only when the RS-W and RS-E are in power-gated mode. The MUXs
are responsible for forwarding the traffic in the opposite dimension are power-gated
when both RS-N and RS-S are in power-gated mode. Similarly to IRS, each RS is
provided with two additional ports controlling the station’s state. A power-gated
port (highlighted in red) entirely disables the RS, dropping traffic at the input port.
A bypassed port (highlighted in blue) partially disables the RS, allowing the traffic
arriving at the port of entry to be directly injected into the output link. These ports
are controlled by two corresponding configuration bits: PG and BP. While the con-
figuration of the IRS depends on the state of the RS controlling them, the state of an
RS can be set independently from the others. Furthermore, the power-gated mode
is dominant in the bypass mode, meaning that the configuration ⟨BP,PG⟩ = ⟨1, 1⟩
leads the RS to be set with the power-gated mode.

The internal organisation of an RS is depicted in Fig. 7. Traffic arriving at the
input port (IN) can continue travelling in the same direction or be extracted. This
decision is implemented within the demultiplexer (DMUX) as part of the routing
logic and requires only analysis of the destination field of incoming packets. Every
time input traffic has to be ejected (i.e., extracted by the local PE or deflected in the
opposite dimension), it is temporarily stored in a local buffer (S-BUF). Similarly,
the buffer R-BUF temporarily stores packets that continue to flow in the same direc-
tion. It is worth noting that both buffers can be tiny compared to input buffers in
conventional routers. The limited storage space required by the buffer is mainly due
to the adoption of a traffic prioritisation policy, which allows the RS to privilege
traffic that flows in the same direction as the one coming from the injection port.
This policy is implemented as part of the selection mechanism of the output MUX.
It is also worth noting that multiple R-BUF and S-BUF buffers can be used to sup-
port virtual channels (VCs). Another MUX (i.e., BP-MUX) selects which traffic to

18001

1 3

NoC‑based hardware software co‑design framework for dataflow…

inject on the output link (OUT) when the RS is set in the bypass mode. In this mode,
both the internal buffers, the input DMUX, and the output MUX is disconnected
from the power source (power-gated). At the same time, traffic on the injection port
is directly injected into the output link. In this way, the RS can save energy and limit
the packet traversal delay. Interestingly, in this case, the drivers on the output link
are still fully active. On the contrary, whenever the RS is set to power-gated mode,
all internal components and link drivers are switched off. Four additional OR gates
ensure that BP or PG bits control power-gate and bypass functionality for the inter-
nal components. As already mentioned, the PG bit overrides the BP signal. Finally,
a counter is available for each output link: depending on the granularity at which
traffic is monitored and the frequency of captured events, the size of the counter can
be varied from small (16-bits) to large (64-bits). Every time a packet (flit) traverses
the link, the counter is automatically incremented. A single bit of the control router
logic allows selecting the granularity at which traffic is monitored (i.e. if counters
are updated when packets or single flits traverse the links). Figure 8 shows an exam-
ple of mapping a hierarchical topology (i.e., local rings and a global mesh) upon a
4 × 4 physical 2D mesh.

4.3 NoC performance improvement via hybrid topology

Optimizing the local communication can improve packet latency, throughput,
and energy efficiency [37]. Here, a hybrid interconnection is designed by com-
bining the ring and 2D mesh topology capabilities, thus achieving better scal-
ability while limiting the latency and energy consumption increment. Rings
demonstrated to be very efficient [38] when the number of cores is (relatively)
small. It has been used to create an effective 2D mesh topology (see Sect. 4.2.2).
However, this design encounters a reduced advantage when the number of cores
becomes very high. Indeed, while the area and power cost of RS and IRS (used
to steer traffic between vertical and horizontal dimensions) may slightly reduce,
the latency and throughput are strongly affected. In this case, communication
between distant PEs is influenced by the need to traverse many physical hops.

Fig. 7 The internal structure of an RS with BP/PG bits and the link counter in the network interface
(dashed lines represent selection signals for MUXs/DMUXs, grey circles are OR gates)

18002 S. Mazumdar et al.

1 3

On the contrary, a hierarchical organization of the physical network can signifi-
cantly alleviate the latency for long distant communication patterns while keep-
ing the high throughput experienced for more localized communication patterns.
Moreover, such a hybrid approach (combining a local high-speed topology and a
global one) can still benefit from the integration of the reconfigurability mecha-
nism exposed in the previous section, especially with a very high core count (e.g.,
CMPs with thousands of cores), leading to the possibility of creating even deeper
(virtual) hierarchies.

Figure 9 depicts an illustrative presentation of the proposed architecture. Here,
we propose a network architecture to connect many PEs (with more than 256 PEs)
and use the deterministic and deadlock-free X–Y routing algorithm. Four PEs are
locally connected through a small ring called ringlet. Within a ringlet, one of the
PEs is designated as the master core. It is responsible for injecting/ejecting traffic
towards the global traffic channels. A link between the ring switch and the mesh
router is enabled, along with dedicated buffers. The advantage of this architecture
is the absence of a dedicated bridge component to connect the mesh and the ring-
lets. The proposed NoC is divided into blocks, and a group of four ringlets forms
a block unit. These four ringlets are directly linked to the mesh router, which

Fig. 8 An example of virtual topology mapping: grey structures represent components (i.e., interconnec-
tions, RSs or IRSs) of the router that are power-gated. Red lines correspond to active links used to build
local rings, while green lines show links of the mesh. Furthermore, green boxes represented components
set in bypass mode and used to construct the mesh among the virtual rings correctly

18003

1 3

NoC‑based hardware software co‑design framework for dataflow…

is responsible for moving traffic outside the block. For instance, to support 256
cores, 16 modified mesh routers and 64 ringlets are needed. More complex traffic
management policies can be applied at the block unit level, and multiple blocks
are globally connected through a 2D mesh topology. To support traffic flow in the
mesh network, each router has a high-performance 8 × 8 internal crossbar switch.
Effective packet processing implemented in mesh routers allows decoupling of
global and local traffic, as it is recommended to prioritize the local congestion
management [37]. Every time a packet’s destination is outside the local block, the
packet is forwarded to another mesh router, thus bypassing PEs in the ringlets and
minimizing the overall latency.

Next, we describe the primary components of the proposed NoC microarchitec-
ture. Specifically, the internal organisation of the proposed mesh router and the ring
switch.

4.3.1 Modified 2D mesh router

Figure 10 depicts the internal organisation of the mesh router, while Table 1 pro-
vides its main architectural characteristics. The router employs an 8 × 8 crossbar
switch to support global traffic movement in both dimensions (i.e., N-S and E-W)
and traffic exchange with local ringlets. Four channels are used to drive traffic within
the 2D mesh network (i.e., global traffic). The other four input channels are used to
steer traffic to/from the ringlets (i.e., local traffic). Each ringlet is associated with
a dedicated channel, so the traffic exchange with the master ring switch happens
through this dedicated link. In general, routers can have a significant number of VCs
to hold a large amount of incoming traffic. For each input link, two VCs are intro-
duced, which allow for better QoS support and also prevent deadlocks. In Figure 10,
the path taken by the control information carried by the packet headers is high-
lighted in red, with blue lines showing the control signals activated by the internal
router stages.

Fig. 9 An illustrative presentation of the proposed scalable NoC: 256 PEs organised into 4 × 4 block
units, each connecting four ringlets. Each ringlet contains 4 PEs

18004 S. Mazumdar et al.

1 3

Conversely, output channels do not use VCs, thus contributing to saving power.
Large buffer requirements and QoS overheads reduce the ability to support many
cores with an efficient area and energy usage [49]. Also, a large number of VCs
consume a huge chunk of energy since more input buffers are needed to keep traf-
fic separated. It is worth mentioning that buffers are one of the largest leakage

Fig. 10 Modified 2D mesh router microarchitecture: two groups of local/global channels are used to
manage traffic within the 2D mesh and traffic exchange with local ringlets

Table 1 2D mesh router: primary microarchitectural parameters

Features Parameters

No. of input and output ports 8 each (4 ringlets, 4 mesh)
Width of each port 42-bits (32-bits payload, 10-bits header)
No. of virtual channel 2 per input port
Packet switching Store-and-forward (SAF)
Switch allocator arbitration Round-robin
Packet routing X–Y dimension order routing
Router pipeline stages 4 stages

18005

1 3

NoC‑based hardware software co‑design framework for dataflow…

power sources in the router. Their power consumption can represent up to 64%
of the total router’s leakage power [53], and also a significant amount of dynamic
power [54].

Interestingly, single-flit packets represent a large segment of the network traffic
for real applications [55]. Following this, the router is optimised for managing a sin-
gle flit packet. The design selects a packet length of 42-bits, where 32-bits are used
to transport data, and the remaining 10-bits are devoted to carrying header infor-
mation. The packet size has been chosen considering the performance improve-
ments [56] and also the overhead, i.e., increasing the packet size leads to a quadratic
increment of the internal crossbar switch overhead.

The internal router is organised into a four-stage pipeline: routing stage, flow-
control stage, VC allocation stage, and switch allocation stage. However, to reduce
the latency of the packets to traverse the router, the proposed design has been opti-
mised so that the operations performed by the four stages can happen in parallel,
thus reducing the overall latency to one cycle. The entire packet transfer can be
restricted to a single cycle thanks to the following design choices: (i) the adoption of
the store-and-forward mode; (ii) the optimisation of the routing logic for processing
a single-flit packet with a reduced overall size. These design choices lead to a router
architecture with a latency of one cycle in most cases (see sect. 5.4). Wormhole and
virtual-cut-through are not chosen because, in this case, the routing is parallel, and
the entire packet will be routed out simultaneously. Hence, both of them do not offer
any advantage compared to the store-and-forward approach. The employed rout-
ing mechanism is based on the X-Y dimension order routing (XY-DoR) algorithm
since it provides a simple implementation with a deterministic routing latency. By
decoupling the traffic between local ringlets and 2D mesh, the probability of conges-
tion in the 2D mesh level becomes negligible, so the need for an adaptive algorithm
disappears [37].

In particular, the routing logic with the flow-control module is fused. A specula-
tive allocation technique for both the VC allocation stage (VCA) and the switch allo-
cator stage (SA) has also been implemented. If the pre-arbitration fails, the packet is
buffered while VCA and SA arbitration are performed sequentially. In that case, the
latency increases up to four cycles. The timing of the proposed 2D mesh router in
the event of pre-arbitration success is shown in Fig. 11a, while the event of failure
is represented in Fig. 11b. Every time there is an incoming packet, the following
operations are performed by the router’s modules:

Fig. 11 Timing: (a) best-case (success) and (b) worst-case (failure) of pre-arbitration

18006 S. Mazumdar et al.

1 3

• Routing/flow control module (RF) Extracts the packet header and processes the
information to determine the destination router. Suppose the packet destination is
within one of the four ringlets belonging to the block. In that case, the RF mod-
ule selects the corresponding output channel, reducing the latency of the VCA
and SA modules. A control signal drives the input MUX at the input port.

• VC allocator module (VCA) Is responsible for allocating buffer resources for
incoming packets by selecting one of the VCs. An allocation request signal (i.e.,
reqin) is set, and if the selected VC has space to buffer the incoming packet, an
acknowledgement signal (i.e., ack_ out) is set too. In this case, the selected VC is
also signalled to both the RF and SA modules.

• Switch allocator module (SA) Performs the two arbitration steps. First, multiple
VCs in each input port are arbitrated to select one of the available VCs. Then,
each of the selected VCs is routed to the selected output port.

4.3.2 Ring switch

A bidirectional ring is implemented upon the structure of a ring switch (RSW) to
achieve high performance while keeping power consumption low. An RSW com-
prises two main MUXs that manage the traffic within the ring. An RSW drives traf-
fic within the ring and steers it towards a 2D mesh router or local PE. Figure 12
depicts the microarchitecture of the RSW. The microarchitecture has incorporated

Fig. 12 The microarchitecture of the RSW of the ringlet’s master: horizontal dimension is used to create
the bidirectional ring connection, while the vertical dimension connects the mesh router and local PE of
the ringlet

18007

1 3

NoC‑based hardware software co‑design framework for dataflow…

buffers (similar to VCs), which allow traffic management going to/coming from the
2D mesh router.

To avoid complex control logic, an RSW prioritises the traffic travelling in the
same dimension (i.e., traffic that remains within the ring and moves in the same
direction). Prioritisation also helps to reduce the size of internal buffers (buffers
Buf-1 and Buf-2, see Fig. 12). In particular, one of the two directions is selected
with high priority, thus moving first in the RSW. The prioritisation mechanism is
implemented directly in the control logic of input-output MUXs.

The interface with the local PE is implemented using a dedicated buffer (i.e., Buf-
3), which is written by the PE and read by the RSW (i.e., the PE injects traffic in the
ring). The buffer is accessible by PE within its address space. Similarly, traffic that is
ejected by the ring is collected temporarily in a local output buffer, from where the
PE can extract the payload. The interface with the 2D mesh router is implemented
similarly: traffic injected into the 2D mesh is stored temporarily in a small buffer,
from where it is transferred to the router’s input link. Traffic ejected from the 2D
mesh router is moved within a VC buffer. When the 2D mesh router tries to access
RSW, two VCs are implemented to support resource contention better. From this
viewpoint, the RSW implements a round-robin selection strategy between the two
VCs to keep control logic simple. When packets move within the ring or between
the ring and the 2D mesh router, the following steps are performed by the RSW:

• The MUX of each input port determines the destination based on the packet’s
header information and the arbitration.

• Packets from the ring ports (see Fig. 12, horizontal dimension) have a higher
priority than packets from the processing core or the 2D mesh router. Thus, such
packets are moved first from the input port to the output port with minimal delay.
This arbitration strategy also ensures that packets already in the main ring traffic
flow are quickly routed to prevent the saturation of the network. Specifically, to
enable the transfer, the RSW sets the request signal of the next switch in the ring
(by following the travelling direction of the packets), waiting for the acknowl-
edge signal to be set by the peer switch.

• When the master RSW receives a request from the 2D mesh router to inject pack-
ets into the ring, two available VC buffers are used to store the packets temporar-
ily. If space is available in the selected VC buffer, RSW enables the correspond-
ing acknowledgement signal of the 2D mesh router. Each buffer will take turns
sending out packets via round-robin arbiters to exhibit fairness.

It is worth noting that, to minimise the number of resources used by routing struc-
tures, RSW modules that are not connected to the 2D mesh router have the same
structure depicted in Fig. 12, except for the interface with the router. In that case,
this interface has been removed to save area and power.

18008 S. Mazumdar et al.

1 3

5 Simulation results

5.1 Simulation environment

Dataflow PXM We generated network traces using an in-house function-accurate
simulator and monitored the requests sent to TD units. Activity synchronisation
among simulated tiles is achieved using a small number of mutexes to protect shared
resources, i.e., essentially the frame memory belonging to a specific PE. More than
one thread was able to update it with a new value.

Software-level simulation We used an in-house function-accurate C/C++-based
simulator for simulating thread distribution, where the simulation of each PE is
bound to a specific core of the host simulation machine. The basic idea is to simu-
late the execution of concurrent dataflow threads while relying on a subset of the
RISC-V ISA. A random traffic pattern and a matrix multiplication kernel have been
developed to evaluate the proposed lightweight reconfigurable architecture with a
2D mesh NoC. We have added a small set of custom instructions to that ISA to
implement reconfiguration. The simulated manycore design (for the software level)
comprised 256 PEs implementing a five-stage RISC-V compliant in-order execution
pipeline with 16 KiB I-cache and 16 KiB scratchpad memory. We also integrated a
two-stage lightweight router. Such a customised simulation environment supports
our proposed instruction set extension (mentioned in Sect. 4.1.1 and 4.2.1). Our
tool simulated up to 1024 cores and executed special instructions designed to man-
age dataflow threads and the NoC configuration. Power consumption and area were
modelled by integrating Orion 3.0 [57] and DSENT [58] tools into our simulation
tool.

Hardware-level prototyping We used Xilinx Virtex-7 XC7VX690-3 FPGA device3
(set clock speed to 400 MHz) to implement the proposed hybrid NoC design. The
RTL for the entire VHDL design description of 2D mesh routers and ringlets is syn-
thesised. The proposed routers and ringlets were tested under three statistical traffic
patterns: uniform random, bit-reversal, and transpose [59]. Bit-reversal and transpose
do not support smooth traffic operations. VHDL-based cycle-accurate models for traf-
fic pattern generation have been developed. The network latency (i.e., the time for a
packet to move from source to destination, including the time for a packet to cross the
channel) and the throughput were evaluated. For the experiment, all packets that need
to be independently routed to a dynamically determined destination were syntheti-
cally generated. Four packet injection rates (Ir , measured in packets/cycle): specifically
Ir = {0.25, 0.50, 0.75, 1.00} were used. For Ir < 1.00 , nodes generating traffic were
selected randomly, while with Ir = 1.00 (worst case), all the nodes injected packets
simultaneously. The stress test ensured the functional capability of the proposed NoC
design under both bandwidth and worst/average latency scenarios.

3 Total no. of Lookup Tables (LUTs): 43300, Total no. of flip-flops (FFs): 86600 and Total no. of block
random access memories (BRAMs): 1470.

18009

1 3

NoC‑based hardware software co‑design framework for dataflow…

5.2 Evaluation of thread distribution

Figure 13a shows the performance provided by the proposed hashing function imple-
mentation. The purpose of this experiment is to show how a massive number of input
keys for the H(⋅) module (e.g., thread scheduling requests, write operations) is distrib-
uted among the PEs. We simulated a random traffic pattern in the NoC by allowing
each tile randomly inject a schedule request (injection rate set to Ir = 1.0) towards a
randomly selected VN and PE. This pattern is more effective in showing the capability
of the hashing mechanism since the traffic cannot be predicted. The green line repre-
sents the initial distribution among the PEs of the CreateThread requests, while
the blue line shows the effective distribution of threads as they have been scheduled
by the H(⋅) modules. The high fairness in the assignments of the threads to different
PEs greatly contributes to the high overall performance of the network. Similar results
have been obtained simulating the traffic pattern generated by a block matrix multipli-
cation kernel. Random traffic pattern has also been used to assess NoC throughput and
power consumption. Such traffic patterns effectively show the capability of our hashing
scheme to balance threads’ requests, thus avoiding overloading particular links.

Figure 13b shows the average throughput obtained for different configurations. Irre-
spective of the number of PEs in the system, the throughput grows steadily. Figure 13c
demonstrates the power consumption of the combined 2D mesh router and hardware
structures for managing the threads distribution, which is (relatively) low. Interestingly,
the power consumption (static and dynamic) of such an augmented router microarchi-
tecture remains low compared to that of a basic router based on a crossbar switch. In
general, the area and power consumption for the scheduling logic is very low, while that
of the TDT is in line with that of an L1-data cache (it is worth noting that the scratch-
pad memory substitutes the L1 data cache, and represents the main data exchange point
between routers and PEs). One limitation of our employed dataflow thread model is
that it does not support any jump or allow simultaneous read-write operations.

5.3 Simulating NoC reconfigurability feature

Random traffic represents the worst-case scenario regarding scalability since it uses
software to take advantage of the network reconfiguration capability and maintains
almost all active links. To simulate this scenario, we instantiated a pool of thread
requests serviced by randomly selecting the cores. Also, each core randomly selects
the number of requests to consume (e.g., a request corresponds to the scheduling of

Fig. 13 Distribution of threads on the PEs (a), average throughput (b), and power consumption (c)

18010 S. Mazumdar et al.

1 3

a new thread on a different core). The number of processed requests is directly pro-
portional to the traffic generated by the routers on the network.

Figure 14 shows the traffic distribution for a 1024-core CMP with a pool of 580K
requests. Without loss of generality, a single VC has been used. With this configura-
tion, the overall power consumption of the interconnection is 47.13 W. Traffic gener-
ated by data-driven applications is more deterministic, thus offering a greater oppor-
tunity for power saving. A matrix multiplication algorithm following a data-driven
paradigm using dedicated instructions is implemented (as presented in Sect. 4.1.1
and Sect. 4.2.1). The application has five dynamically scheduled threads, organised
as follows: threads in charge of computing the same output element (Ci,j = Ai × Cj)
exchange data on a local virtual ring, arranged as an 8 × 2 matrix. A global 2D
mesh enforces global communication. The overall power consumption is reduced to
16.20 W while simulating 1024-cores, and the execution time is in line with the exe-
cution on a conventional 2D mesh-based CMP. We can speed up the performance
by increasing the number of available cores. The reconfiguration of the whole chip
requires less than 3000 CPU cycles. When comparing the area occupation, the pro-
posed solution is 39.4% less expensive than conventional routers, offering more
opportunity for design scaling. These preliminary results show the benefits of using
a dynamically configurable and lightweight interconnection for manycore CMPs. In
this configuration, about 37.5% of the links can be switched off while preserving
communications at the chip level. The possibility of using high-speed clocks ensures
performance, thanks to the simplified router microarchitecture. Furthermore, each
link has a counter for tracking traffic statistics whose value is exported to the soft-
ware layer through a minimal instruction set extension.

5.4 Evaluation of hybrid NoC topology

5.4.1 Resource utilisation analysis

In the proposed design, for the implementation of a single block unit (i.e., four ring-
lets and associated modified 2D mesh router), the total number of used Lookup
Tables (LUTs), flip-flops (FFs) and block random access memories (BRAMs) is

Fig. 14 Distribution of random traffic over 1024-based CMP

18011

1 3

NoC‑based hardware software co‑design framework for dataflow…

2434, 2768 and 48 respectively. Specifically, four ringlets consume 1076 LUTs,
1800 FFs and 40 BRAMs. In Table 2, the resource utilisation and power consump-
tion between a standard 2D mesh router and the proposed design are compared.
Unlike a typical router, the modified one can support sixteen cores via four ringlets
with around 2× increment in the resource consumption compared to a traditional
mesh router and with a less than 0.4 W increment of power consumption. Regarding
power consumption, the values of static power (due to leakage currents and which
depend on the manufacturing process) and dynamic power are presented separately.
Results show that the proposed design consumes 1.0 mW and 28.0 mW more,
respectively, regarding static and dynamic power. This result is strictly related to a
large number of internal memory access by the proposed design.

Next, we compare the resource (area) utilisation of our single block (connecting
16 PEs in total) with the publicly available FPGA-friendly NoC generator CON-
NECT [60]. It is worth noting that CONNECT only works in 150 MHz, and CON-
NECT consumed 9600 LUTs, 4576 FFs and 1728 Distributed RAMs (DRAMs), each
64-bits in size to support 16 PEs. In comparison, the proposed model used 2434 LUTs,
2768 FFs and 48 BRAMs, each 36-Kbits in size. It is essential to highlight that such
smaller DRAM elements have a higher cost regarding wires than BRAMs. We can see
our design saves a substantial number of LUTs and FFs compared to CONNECT4.

Furthermore, we used 64 modified mesh routers and 256 ringlets to support 1024
PEs. From Table 3, we can see that our model is very resource efficient compared to
the standard flattened 2D mesh design. The NoC subsystem consumes up to 155776
LUTs, 177152 FFs and 3072 BRAM blocks (four FPGA devices were used, inter-
connected to each other through dedicated links). For connecting sixteen cores (one
block), our design can save (on average) 2% LUTs, 0.7% FFs and 2.2% of BRAM.
It might seem a small saving when the design is scaled to 1024 cores, then the total
average resource-saving (over all the four FPGAs) increases to 129.3% for LUTs,
47.2% for FFs and 139.3% for BRAMs.

5.4.2 Energy cost analysis

Figure 15 presents the power consumption comparison between the proposed
model and the standard 2D mesh. For one topology block (16 PEs), the power

Table 2 Area and power comparison between a standard router architecture and the proposed mesh
router

Router Core support Resources utilization Power (W)

LUTs FFs BRAMs Static Dynamic

2D mesh 1 699 572 5 0.323 0.047
Proposed Mesh 16 1358 968 8 0.324 0.075

4 We used the code available on its official website without any further modification

18012 S. Mazumdar et al.

1 3

consumption is 0.399 W and 0.492 W, respectively, for the mesh router and the
ringlet. However, as the network’s size grows, the ringlets’ total power consump-
tion starts to dominate. For instance, for 16 topology blocks (i.e., 256 cores),
the power consumption of routers is 1.276 W while the 64 ringlets consume
2.703 W, which is more than 2× the total router energy consumption. Following
this trend, for a 1024-core configuration, all the ringlets consume around 2.5× of
the entire router’s power consumption. Apart from that, for a network size of 16

Table 3 Relative resource
utilisation: Values are expressed
in percentage scale

System configuration (No. PEs)

16 32 64 128 256 512 1024

Proposed router design
LUTs 0.31 0.63 1.25 2.51 5.02 10.03 20.06
FFs 0.11 0.22 0.45 0.89 1.79 3.58 7.15
BRAMs 0.54 1.09 2.18 4.35 8.71 17.41 34.83

Ring switch design
LUTs 0.25 0.50 0.99 1.99 3.97 7.95 15.90
FFs 0.21 0.42 0.83 1.66 3.32 6.65 13.30
BRAMs 2.72 5.44 10.88 21.77 43.54 87.07 174.15
Conventional 2D mesh router design
LUTs 2.58 2.11 4.23 20.65 41.31 82.61 165.23
FFs 1.06 2.11 4.23 8.45 16.90 33.80 67.60
BRAMs 5.44 10.88 21.77 43.54 87.07 174.15 348.30

Fig. 15 Total power consumption with increasing network size

18013

1 3

NoC‑based hardware software co‑design framework for dataflow…

cores, the proposed design and the 2D mesh consume almost the same amount
of power. However, as the network grows, the 2D mesh consumes more power.
For instance, with a 16 × 8 cores configuration, the proposed model consumes
2.4 W while the conventional design consumes 4.5 W. The situation worsens
when it touches 32.8 W for connecting 1024 cores, which represents 141.26%
relatively more power compared to the proposed design.

5.4.3 Performance: latency analysis

Figure 16a,b,c show the average packet latency as a function of the four injec-
tion rates when the three different traffic patterns are used. Bars show that the
network latency increases with the increased size of the injection rate, and the
increase of the network size. Overall, the proposed system offers scalable perfor-
mance with increasing network configuration. Because of the low injection rates
(i.e., Ir = {0.25, 0.50}), the latency for each traffic pattern remains very consist-
ent with the others. When increasing the injection rate up to Ir = 0.75 packets/
cycle and using the bit-reversal traffic pattern, the latency is minimised. The
worst case for the packet latency is represented by the transpose traffic pattern
with an injection rate of 1.00 packets/cycle.

When comparing the proposed architecture with conventional 2D mesh, it
was found that for all three traffic patterns, the proposed design outperforms tra-
ditional NoC design (by keeping the latency low) thanks to the traffic localisa-
tion inside the ringlets. Specifically, analysing the behaviour of the 2D mesh
NoC, it is found that the 2D mesh design is very consistent for latency incre-
ments for all the cases. At the same time, it also has its largest latency for the
transpose traffic pattern with the injection rate of Ir = 1.00 packets/cycle (similar
to the proposed). For all three traffic patterns, the proposed architecture outper-
forms the standard 2D mesh by ≈ 10% for the smallest network configurations
(i.e., 16 cores) and ≈ 67% for 1024 cores.

We also compared how the proposed hybrid NoC model performed while scaling
up the network size. We have presented the average latency (averaging over all three
traffic patterns considering four types of injection rates) versus the network size in
Fig. 17. In all cases, standard 2D mesh NoC increases latency, while the latency

Fig. 16 Average packet latency

18014 S. Mazumdar et al.

1 3

increment in the proposed NoC comparatively is very low. The minimum latency
saving is 10% for the smallest network size, and as the network size increases, the
proposed model improves its performance. Proposed hybrid NoC model’s latency
improvements climb up more than 100% for 16x32 and 16x64 network sizes.

5.4.4 Performance: throughput analysis

Figure 18a,b,c show the NoC throughput for all three traffic patterns. Like latency,
the network throughput is consistent with the offered packet injection rate. In the
proposed design, the average throughput increases as the number of PEs increases.
From this viewpoint, by analysing the number of packets delivered per cycle, an
increase of the 2× factor with the increase in the number of PEs in the network
has been observed. For instance, with an injection rate equal to Ir = 1.00 packets/
cycle and a uniform random traffic pattern, the average throughput increases from

Fig. 17 Comparing the average packet latency of the proposed design with increasing network size

Fig. 18 Average network throughput

18015

1 3

NoC‑based hardware software co‑design framework for dataflow…

12 packets/cycle for a single block unit (i.e., 16 cores) to 22 packets/cycle for two
block units (i.e., 32 cores). Similarly, for a configuration with 512 cores, the aver-
age throughput is 344.5 packets/cycle, while it increases up to 680 packets/cycle for
a 1024-core configuration. Again, it represents approximately an improvement of
a 2× factor with the network size doubling. This trend is also followed by the pro-
posed design when other traffic patterns are considered. It clearly shows that the
proposed NoC architecture is capable enough to offer higher performance and scal-
ability compared to traditional 2D mesh. A similar trend in 2D mesh throughput has
also been observed. The proposed design has performed better for the transpose traf-
fic pattern5, when the injection rate is low (i.e., Ir = {0.25, 0.50} packets/cycle). For
an injection rate equal to 0.75 packets/cycle, the proposed design performed well for
all the traffic patterns. The design shows the best throughput for transpose traffic pat-
terns for the largest network configuration (i.e., 1024 cores). However, considering
the worst injection rate case, it is worth noting that the best throughput is achieved
with uniform-random traffic, while the traditional 2D mesh topology did not demon-
strate a similar consistency among the patterns.

These results clearly show that the proposed design can improve the performance
of the NoC regarding higher throughput and lower average latency compared to the
traditional 2D mesh topology. The capability of this design to sustain such perfor-
mance also with high injection rates and random traffic patterns (which represent
a critical pattern) can be mainly ascribed to the hierarchical organisation of the
network.

Fig. 19 Comparing the average network throughput of the proposed design with increasing network size

5 It represents skewed communication.

18016 S. Mazumdar et al.

1 3

Finally, we compared how the proposed hybrid NoC model performs (through-
put) while scaling up the network size. We have presented the average throughput
(averaging over all three traffic patterns considering four types of injection rates)
versus the network size in Fig. 19. It can be seen that in all cases, the proposed NoC
outperform traditional 2D mesh. The advantage can be counted in the percentage
scale from 3.24% for 16x4 network size to 9.95% for 16 x 2 network size. The pro-
posed design has shown robust performance by improving latency and throughput.

6 Conclusion and future work

The framework mainly provides a hardware-software co-design mechanism for
efficiently managing a massive number of concurrent dataflow threads at the NoC
level. To improve the run-time adaptability of the dataflow thread management, the
framework offers thread distribution and related hardware and software support.
First, a hash-based thread distribution mechanism for a data-driven PXM with very
low overheads has been proposed. A more complex thread distribution policy can
also be employed at an added cost, but performance improvements are not guaran-
teed. Next, we move the thread control from the software to the NoC level. In this
case, the underlying NoC infrastructure must be capable of supporting these threads.
Hence, a software-controlled NoC was also proposed. It can reconfigure itself
to provide better support to data-driven PXMs and implement a link between the
dataflow thread and its physical substrate. To further improve the acceptance level
of the framework, we prototype a hybrid NoC design to support both the control-
driven and data-driven PXMs. The hybrid NoC has yet to be customised for data-
flow threads and needs to be compared with other similar NoCs, which are currently
existing limitations. Moreover, the primary aim of this work is to show the possibil-
ity of having such an NoC-based framework to improve the run-time adaptability of
dataflow threads.

Apart from adding dedicated support to the hybrid NoC level for dataflow PXM,
we also aim to integrate one non-intrusive real-time thread distribution monitor that
gives thread mapping information. Such information helps map the threads better
(in future runs). An analytical model that aims to verify the thread-to-core map-
ping issue can also be added as a fourth stage. If the thread mapping is not optimal,
knowing how much the optimality gap is will be helpful. We also aim to port the
hash-based thread distribution mechanism and software-defined NoC model into the
FPGA to benchmark it homogeneously.

Acknowledgements It is worth noting that the current manuscript is based on extended versions of three
previously-published articles, i.e., thread distribution [17], software-defined NoC [18] and hybrid NoC
model [19]. Although the papers are independent, each presents a component of the unified hardware-
software co-design-based framework. Overall, the primary research contribution of this work comes after
combining the three stages, which allows us to answer the mentioned research question holistically and
effectively.

Author Contributions SM: Conceptualization, Software (Validation and Verification), Writing (Origi-
nal Draft, Review and Editing) and Visualisation. AS: Software (Validation and Verification), Writing

18017

1 3

NoC‑based hardware software co‑design framework for dataflow…

(Review and Editing) and Visualisation. SZ: Writing (Review and Editing). AP: Writing (Review and
Editing)

Funding Not applicable. Open access funding provided by Royal Danish Library.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors declare that they have no known conflict financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Shin W, Oles V, Karimi AM, Ellis JA, Wang F (2021) Revealing power, energy and thermal dynam-
ics of a 200pf pre-exascale supercomputer. In: Proceedings of the international conference for high
performance computing, networking, storage and analysis. Association for computing machinery.
New York

 2. Schneider D (2022) The Exascale Era is upon us: the frontier supercomputer may be the first to
reach 1,000,000,000,000,000,000 operations per second. IEEE Spectr 59(1):34–35. https:// doi. org/
10. 1109/ MSPEC. 2022. 96763 53

 3. Sato M, Ishikawa Y, Tomita H, Kodama Y, Odajima T, Tsuji M, Yashiro H, Aoki M, Shida N,
Miyoshi I, Hirai K, Furuya A, Asato A, Morita K, Shimizu T (2020) Co-design for a64fx manycore
processor and “fugaku”. In: SC20: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp 1–15. https:// doi. org/ 10. 1109/ SC414 05. 2020. 00051

 4. Jia Z, Tillman B, Maggioni M, Scarpazza DP (2019) Dissecting the graphcore IPU architecture via
microbenchmarking. arXiv preprint arXiv: 1912. 03413

 5. Louw T, McIntosh-Smith S (2021) Using the graphcore IPU for traditional HPC applications. In:
3rd Workshop on Accelerated Machine Learning (AccML)

 6. Vasiljevic J, Bajic L, Capalija D, Sokorac S, Ignjatovic D, Bajic L, Trajkovic M, Hamer I, Matose-
vic I, Cejkov A et al (2021) Compute substrate for software 2.0. IEEE Micro 41(2):50–55

 7. Lee EA (2006) The problem with threads. Computer 39(5):33–42
 8. Hoffmann M, Lattuada A, McSherry F, Kalavri V, Liagouris J, Roscoe T (2019) Megaphone:

latency-conscious state migration for distributed streaming dataflows. Proc VLDB Endow
12(9):1002–1015

 9. Nowatzki T, Gangadhar V, Sankaralingam K (2015) Exploring the potential of heterogeneous von
neumann/dataflow execution models. In: Proceedings of the 42nd Annual International Symposium
on Computer Architecture. ACM, pp 298–310

 10. Gostelow KP, Plouffe W, et al (1977) Indeterminacy, monitors, and dataflow. In: ACM SIGOPS
Operating Systems Review. vol 11. ACM, pp 159–169

 11. Barrow-Williams N, Fensch C, Moore S (2009) A communication characterisation of splash-2 and
parsec. In: Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on.
IEEE, pp 86–97

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MSPEC.2022.9676353
https://doi.org/10.1109/MSPEC.2022.9676353
https://doi.org/10.1109/SC41405.2020.00051
http://arxiv.org/abs/1912.03413

18018 S. Mazumdar et al.

1 3

 12. Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz mesh interconnect for a tera-
flops processor. IEEE Micro 27(5):51–61

 13. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Design
Automation Conference, 2001. Proceedings. IEEE, pp 684–689

 14. Vangal SR, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Singh A, Jacob T, Jain S
et al (2008) An 80-tile sub-100-w teraflops processor in 65-nm CMOS. IEEE J Solid State Circuits
43(1):29–41

 15. Das R, Eachempati S, Mishra AK, Narayanan V, Das CR (2009) Design and evaluation of a hier-
archical on-chip interconnect for next-generation CMPS. In: 2009 IEEE 15th International Sympo-
sium on High Performance Computer Architecture. IEEE, pp 175–186

 16. Ausavarungnirun R, Fallin C, Yu X, Chang KK-W, Nazario G, Das R, Loh GH, Mutlu O (2016) A
case for hierarchical rings with deflection routing: an energy-efficient on-chip communication sub-
strate. Parallel Comput 54:29–45

 17. Scionti A, Mazumdar S, Zuckerman S (2018) Enabling massive multi-threading with fast hashing.
IEEE Comput Archit Lett 17(1):1–4. https:// doi. org/ 10. 1109/ LCA. 2017. 26978 63

 18. Scionti A, Mazumdar S, Portero A (2016) Software defined network-on-chip for scalable cmps.
In: 2016 International Conference on High Performance Computing Simulation (HPCS). IEEE, pp
112–115

 19. Mazumdar S, Scionti A (2020) Ring-mesh: a scalable and high-performance approach for manycore
accelerators. J Supercomput 76(9):6720–6752

 20. Dennis JB, Misunas DP (1975) A preliminary architecture for a basic data-flow processor. In: ACM
SIGARCH Computer Architecture News, vol 3. ACM, pp 126–132

 21. Papadopoulos GM, Culler DE (1990) Monsoon: an explicit token-store architecture. In: Proceedings of
the 17th Annual International Symposium on Computer Architecture. ISCA ’90. Association for Com-
puting Machinery, New York, pp 82–91. https:// doi. org/ 10. 1145/ 325164. 325117

 22. Dennis JB (1974) First version of a data flow procedure language. In: Robinet B (ed) Programming
symposium. Springer, Berlin, Heidelberg, pp 362–376

 23. Arvind Nikhil RS, Pingali KK (1989) I-structures: data structures for parallel computing. ACM Trans
Program Lang Syst 11:598–632. https:// doi. org/ 10. 1145/ 69558. 69562

 24. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous data flow programming language
LUSTRE. Proc IEEE 79(9):1305–1320. https:// doi. org/ 10. 1109/5. 97300

 25. Bhattacharyya SS, Murthy PK, Lee EA (1999) Synthesis of embedded software from synchronous
dataflow specifications. J VLSI Signal Process 21(2):151–166. https:// doi. org/ 10. 1023/A: 10080 52406
396

 26. Duran A, Ferrer R, Ayguadé E, Badia RM, Labarta J (2009) A proposal to extend the OpenMP
tasking model with dependent tasks. Int J Parallel Program 37:292–305. https:// doi. org/ 10. 1007/
s10766- 009- 0101-1

 27. Nemawarkar SS, Gao GR (1996) Measurement and modeling of earth-manna multithreaded architec-
ture. In: Proceedings of MASCOTS ’96 - 4th International Workshop on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems, pp 109–114. https:// doi. org/ 10. 1109/ MASCOT.
1996. 501002

 28. Theobald KB (1999) Earth: an efficient architecture: for running threads. PhD thesis, McGill Univer-
sity, Montréal Québec

 29. Vishkin U, Dascal S, Berkovich E, Nuzman J (1998) Explicit multi-threading (XMT) bridging models
for instruction parallelism. In: Proceedings of the Tenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures. ACM, pp 140–151

 30. Pell O, Mencer O, Tsoi KH, Luk W (2013) In: Vanderbauwhede W, Benkrid K (eds) Maximum per-
formance computing with dataflow engines. Springer, New York, pp 747–774. https:// doi. org/ 10. 1007/
978-1- 4614- 1791-0_ 25

 31. Yazdanpanah F, Alvarez-Martinez C, Jimenez-Gonzalez D, Etsion Y (2014) Hybrid dataflow/von-Neu-
mann architectures. Parallel Distrib Syst IEEE Trans 25(6):1489–1509

 32. Zuckerman S, Suetterlein J, Knauerhase R. Gao GR (2011) Using a codelet program execution model
for exascale machines: position paper. In: Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era. ACM, pp 64–69

 33. Suettlerlein J, Zuckerman S, Gao GR (2013) An implementation of the codelet model. In: Wolf F, Mohr
B, an Mey D (eds) Euro-Par 2013 parallel Processing. Springer, Berlin, pp 633–644

 34. Bolotin E, Cidon I, Ginosar R, Kolodny A (2004) Cost considerations in network on chip. Integr VLSI J
38(1):19–42

https://doi.org/10.1109/LCA.2017.2697863
https://doi.org/10.1145/325164.325117
https://doi.org/10.1145/69558.69562
https://doi.org/10.1109/5.97300
https://doi.org/10.1023/A:1008052406396
https://doi.org/10.1023/A:1008052406396
https://doi.org/10.1007/s10766-009-0101-1
https://doi.org/10.1007/s10766-009-0101-1
https://doi.org/10.1109/MASCOT.1996.501002
https://doi.org/10.1109/MASCOT.1996.501002
https://doi.org/10.1007/978-1-4614-1791-0_25
https://doi.org/10.1007/978-1-4614-1791-0_25

18019

1 3

NoC‑based hardware software co‑design framework for dataflow…

 35. Parikh R, Das R, Bertacco V (2014) Power-aware NoCS through routing and topology reconfiguration.
In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, pp 1–6

 36. Murali S, De Micheli G (2004) Sunmap: a tool for automatic topology selection and generation for
NoCS. In: Proceedings of the 41st Annual Design Automation Conference. ACM, pp 914–919

 37. Singh R, Bohra MK, Hemrajani P, Kalla A, Bhatt DP, Purohit N, Daneshtalab M (2022) Review, anal-
ysis, and implementation of path selection strategies for 2D NoCS. IEEE Access. https:// doi. org/ 10.
1109/ ACCESS. 2022. 32274 60

 38. Ravindran G, Stumm M (1997) A performance comparison of hierarchical ring-and mesh-connected
multiprocessor networks. In: High-Performance Computer Architecture, 1997, Third International
Symposium on. IEEE, pp 58–69

 39. Hamacher VC, Jiang H (2001) Hierarchical ring network configuration and performance modeling.
IEEE Trans Comput 50(1):1–12

 40. Kim J, Kim H (2009) Router microarchitecture and scalability of ring topology in on-chip networks. In:
Proceedings of the 2nd International Workshop on Network on Chip Architectures. ACM, pp 5–10

 41. Deb D, Jose J, Das S, Kapoor HK (2019) Cost effective routing techniques in 2D mesh NoC using on-
chip transmission lines. J Parallel and Distrib Comput 123:118–129

 42. Manzoor M, Mir RN et al (2022) PAAD (partially adaptive and deterministic routing): a deadlock free
congestion aware hybrid routing for 2D mesh network-on-chips. Microprocess Microsyst 92:104551

 43. Vazifedunn S, Reza A, Reshadi M (2023) Low-cost regional-based congestion-aware routing algorithm
for 2D mesh NoC. Int J Commun Syst. https:// doi. org/ 10. 1002/ dac. 5360

 44. Reddy BNK, Kar S (2022) Performance evaluation of modified mesh-based NoC architecture. Comput
Electr Eng. https:// doi. org/ 10. 1016/j. compe leceng. 2022. 108404

 45. Zhao J, Agrawal A, Nikolic B, Asanović K (2022) Constellation: an open-source SoC-capable NoC
generator. In: 15th IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc),
pp 1–7. https:// doi. org/ 10. 1109/ NoCAr c57472. 2022. 99112 99

 46. Zheng N, Gu H, Huang X, Chen X (2015) Csquare: a new kilo-core-oriented topology. Microprocess
Microsyst 39(4):313–320

 47. Kim H, Kim G, Maeng S, Yeo H, Kim J (2014) Transportation-network-inspired network-on-chip. In:
2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), pp.
332–343. IEEE

 48. Koohi S, Abdollahi M, Hessabi S (2011) All-optical wavelength-routed noc based on a novel hierarchi-
cal topology. In: Proceedings of the Fifth ACM/IEEE International Symposium on Networks-on-Chip,
pp. 97–104. ACM

 49. Grot B, Hestness J, Keckler SW, Mutlu O (2011) Kilo-noc: a heterogeneous network-on-chip architec-
ture for scalability and service guarantees. In: ACM SIGARCH Computer Architecture News. ACM,
vol 39, pp 401–412

 50. Bourduas S, Zilic Z (2007) A hybrid ring/mesh interconnect for network-on-chip using hierarchical
rings for global routing. In: First International Symposium on Networks-on-Chip (NOCS’07). IEEE, pp
195–204

 51. Sandoval-Arechiga R, Parra-Michel R, Vazquez-Avila J, Flores-Troncoso J, Ibarra-Delgado S (2016)
Software defined networks-on-chip for multi/many-core systems: A performance evaluation. In: Pro-
ceedings of the 2016 Symposium on Architectures for Networking and Communications Systems.
ACM, pp 129–130

 52. Lee J, Nicopoulos C, Lee HG, Kim J (2013) Tornadonoc: a lightweight and scalable on-chip network
architecture for the many-core era. ACM Trans Architect Code Optim (TACO) 10(4):56

 53. Chen X, Peh L-S (2003) Leakage power modeling and optimization in interconnection networks. In:
Proceedings of the 2003 International Symposium on Low Power Electronics and Design. ACM, pp
90–95

 54. Wang H, Peh L-S, Malik S (2003) Power-driven design of router microarchitectures in on-chip net-
works. In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, p 105

 55. Ma S, Jerger NE, Wang Z (2012) Whole packet forwarding: Efficient design of fully adaptive rout-
ing algorithms for networks-on-chip. In: IEEE International Symposium on High-Performance Comp
Architecture. IEEE, pp 1–12

 56. Lee J, Nicopoulos C, Park SJ, Swaminathan M, Kim J (2013) Do we need wide flits in networks-on-
chip?. In: 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, pp 2–7

 57. Kahng AB, Lin B, Nath S (2015) Orion3.0: a comprehensive NoC router estimation tool. IEEE Embed
Syst Lett 7(2):41–45

https://doi.org/10.1109/ACCESS.2022.3227460
https://doi.org/10.1109/ACCESS.2022.3227460
https://doi.org/10.1002/dac.5360
https://doi.org/10.1016/j.compeleceng.2022.108404
https://doi.org/10.1109/NoCArc57472.2022.9911299

18020 S. Mazumdar et al.

1 3

Authors and Affiliations

Somnath Mazumdar1 · Alberto Scionti2 · Stéphane Zuckerman3 ·
Antoni Portero4

 Alberto Scionti
 alberto.scionti@linksfoundation.com

 Stéphane Zuckerman
 stephane.zuckerman@cyu.fr

 Antoni Portero
 a.portero@fz-juelich.de

1 Department of Digitalization, Copenhagen Business School, Solbjerg Plads 3,
2000 Frederiksberg, Denmark

2 Department of Advanced Computing, Photonics and Electromagnetics, LINKS Foundation,
Turin 10138, Italy

3 Laboratoire ETIS, UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, 95000 Cergy,
France

4 Institute for Advanced Simulation, Jülich Supercomputing Centre, Wilhelm-Johnen-Straße,
52425 Jülich, Germany

 58. Sun C, Chen C-HO, Kurian G, Wei L, Miller J, Agarwal A, Peh L-S, Stojanovic V (2012) Dsent-a
tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling. In:
Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on. IEEE, pp 201–210

 59. Dally WJ, Towles BP (2004) Principles and practices of interconnection networks. Morgan Kaufmann,
San Francisco, USA

 60. Papamichael MK, Hoe JC (2012) CONNECT: re-examining conventional wisdom for designing NoCS
in the context of FPGAs. In: Proceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. ACM, pp 37–46

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	NoC-based hardware software co-design framework for dataflow thread management
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Dataflow models
	2.1.1 Dataflow models: principles
	2.1.2 Codelet model

	2.2 Network-on-Chip architectures
	2.2.1 Primer to virtual mapping
	2.2.2 Hybridizing NoCs

	3 Overview of the proposed framework
	4 Hardware-software co-design framework
	4.1 Thread distribution policy
	4.1.1 Added software support for mapping threads
	4.1.2 Hardware support for thread distribution

	4.2 Software-controlled NoC reconfigurability
	4.2.1 Software interface
	4.2.2 Hardware support for virtual mapping

	4.3 NoC performance improvement via hybrid topology
	4.3.1 Modified 2D mesh router
	4.3.2 Ring switch

	5 Simulation results
	5.1 Simulation environment
	5.2 Evaluation of thread distribution
	5.3 Simulating NoC reconfigurability feature
	5.4 Evaluation of hybrid NoC topology
	5.4.1 Resource utilisation analysis
	5.4.2 Energy cost analysis
	5.4.3 Performance: latency analysis
	5.4.4 Performance: throughput analysis

	6 Conclusion and future work
	Acknowledgements
	References

