
 

                                  

 

 

Organizational Implementation of AI
Craft and Mechanical Work
Hopf, Konstantin; Müller, Oliver; Shollo, Arisa; Theiss, Tiemo

Document Version
Final published version

Published in:
California Management Review

DOI:
10.1177/00081256231197445

Publication date:
2023

License
CC BY

Citation for published version (APA):
Hopf, K., Müller, O., Shollo, A., & Theiss, T. (2023). Organizational Implementation of AI: Craft and Mechanical
Work. California Management Review, 66(1), 23-47. https://doi.org/10.1177/00081256231197445

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1177/00081256231197445
https://doi.org/10.1177/00081256231197445
https://research.cbs.dk/en/publications/a32496a8-a273-499b-ae98-0b24a86d7a8a


https://doi.org/10.1177/00081256231197445https://doi.org/10.1177/00081256231197445

California Management Review
 1 –25
© The Regents of the 
University of California 2023

Article reuse guidelines:
sagepub.com/journals-permissions 
DOI: 10.1177/00081256231197445
journals.sagepub.com/home/cmr

1

Organizational 
Implementation of AI:
Craft and MeChaniCal Work

Konstantin Hopf1, Oliver Müller2, Arisa Shollo3,  
and Tiemo Thiess4

SUMMARY 
Recent years have brought major technological breakthroughs in artificial intelligence 
(AI), and firms are expected to invest nearly $98 B in 2023. However, many AI 
projects never leave the pilot phase, and many companies have difficulties extracting 
value from their AI initiatives. To explain this contradiction, this article reports on a 
study of 55 projects implementing AI in organizations. It shows that organizational 
challenges in implementing AI projects are a result of a paradoxical tension created 
by two different perspectives on data science work: craft and mechanical work. 
Executives, managers, and data scientists should actively manage this tension to 
enable and sustain value creation through AI.

KeYwORdS: artificial intelligence, value creation, organization, workplace, 
implementing innovation

I magine a company that is planning1 cutting-edge artificial intelligence 
(AI)2 applications. What likely springs to mind is a picture of structured, 
predictable, and efficient work: a group of data scientists, highly moti-
vated and perfectly trained, sitting in an office, designing, developing, 

and implementing AI applications that support or automate current or new busi-
ness processes. Through standardized software components for machine-learning 
(ML), large amounts of high-quality data, structured work practices, and fric-
tionless orchestration of internal and external resources, these data scientists can 
come up with and deploy new AI applications in a short time. At the same time, 
the new AI applications are seemingly integrated with transactional systems and 
continuously maintained, upgraded, and released in short cycles.

1University of Bamberg, Bamberg, Germany
2Paderborn University, Paderborn, Germany
3Copenhagen Business School, Frederiksberg, Denmark
4PFA Pension, Copenhagen, Denmark
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This imaginary scene is far from current reality in most firms. Apart from a 
handful of unicorns, organizations are struggling to extract value from their AI 
initiatives.3 Despite several calls from scholars to further integrate AI in business 
processes4 and in decision-making,5 many companies run only ad-hoc pilots or 
apply AI in just a single business process.6 But companies must move from pilots 
to company-wide programs7 to generate sustainable business value from AI.8 In 
current practice, the development of AI applications is characterized by individu-
als or small teams who compensate for their limited resources with a wide range 
of experience, a good dose of creativity, experimentation, passion, commitment, 
and mastery of details.9 Formulation of ideas and their implementation are a con-
stant learning process, and the absence of established standard practices in build-
ing AI applications dominates. Hence, the current reality of AI application 
development work is more like craftwork than structured or plannable work.

To create and sustain business value from AI, data science work is emerging 
as an important function in organizations,10 where data scientists together with 
other actors are responsible for developing and running AI applications. While it 
is highly valued, data science work does not come without challenges. The ques-
tion for corporate leaders is how to manage and overcome the challenges. To nar-
row this knowledge gap, we investigated 55 projects that had the goal to set up 
and operate AI applications based on (ML)—the core technology underlying cur-
rent AI systems. Our main informants were data scientists, the people who carry 
out data science work to create AI applications.11 They are involved in such proj-
ects from start to end, thus, they are key resource orchestrators in AI,12 and they 
know both the challenges and best practices from their day-to-day professional 
lives.

Our inquiry confirmed several challenges of AI development that earlier 
research works have already identified.13 For example, there are false hopes 
toward the technology, data quality and access problems, legal issues, and techni-
cal hurdles in bringing AI into operations. It appears that the challenges persist 
over time. Searching for underlying causes and explanations for the challenges 
led us to identify different perspectives on data science work, namely, craft, and 
mechanical work,14 each having a different take on the process of developing AI 
applications. Our data indicate that management often pursues a mechanical 
work view on AI projects (manifested in the assumptions that AI projects are 
plannable, structured, relying on commoditized resources, etc.), which is encour-
aged by the science label attached to “data science” and the automation goal that 
many AI projects have. Data scientists, in contrast, often have a craftwork per-
spective on their work (manifested, for example, in their all-roundness, mastery, 
and dedication). 

These two partly conflicting perspectives create a tension because managers 
apply (conventional) business management methods and mindsets to manage data 
science work and AI applications (e.g., business proposals, business plans, and 
deliverables). This often clashes with the data scientists’ methods and their mindset 
of exploration and experimentation, iterative work, and unfinished products. For 
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creating business value, however, both mindsets are essential. While data scien-
tists’ craftwork perspective facilitates the skillful use of tools to exploit data as their 
material to effectively create AI applications, mechanical work promotes efficiency in 
the exploitation of AI technologies. The exploration–exploitation tension is a well-
known paradox in the strategic and management literature.15

A paradox is constituted by a tension that places competing demands. 
These demands are contradictory, yet, interdependent and persist over time.16 As 
these tensions cannot be fully resolved, organizations need strategies for engaging 
with and accommodating them.17 Translating the paradox theory to the context of 
our study means managers and data scientists who neglect to consider either per-
spective as important to value creation—and, accordingly, do not develop strate-
gies to address these challenges in planning, developing, and implementing AI 
applications—will fail to deliver value-adding AI applications.

 Our article is intended to inform managers and data scientists about this 
tension and its potential consequences. If firms accept this tension relationship as 
paradoxical and pay attention to the competing demands, they can initiate posi-
tive developments.18 Learning how to actively manage the paradox will help 
managers to overcome their struggles with AI implementation. We find that many 
organizations are lacking managerial strategies to address the paradoxical tension. 
Instead, data scientists are the ones who address it by ad-hoc tactics.

Perspectives on Data Science Work: Mechanical Versus 
Craftwork

Mechanical Work Perspective on Data Science

Following the ideas of scientific and bureaucratic management, organiza-
tions have for a long time pushed for production and organizational forms that 
are trimmed toward efficiency and consistency.19 Hence, since the Industrial 
Revolution, mechanical work has been the dominant approach to organizing 
work. Mechanical work is characterized by a planning mindset,20 a form of work-
ing that is controlled, highly structured, and predictable. In this way, a mechani-
cal approach to work means that “critical aspects of the process are performed 
by machines and remaining areas of human involvement are in the form of pro-
grammable and marketable tasks”21 and “in which the quality of the result is 
beyond the control” of the individual worker.22 Mechanical work is characterized 
by worker skills that are easily obtainable (commodity), narrow, and task-specific 
to support extreme division of labor (specificity). Workers also draw on codifiable 
knowledge (abstract expertise). In terms of attitudes, they expose a utilitarian 
involvement with their work (detachment), have rather transactional attitudes 
to their workplace interactions, and do not follow a strong occupational identity 
(individuality). Mechanical work is also characterized by established structures 
and uncertainty reduction through careful programming of activities (planning). 
We summarize the skills and attitudes of mechanical work in the right part of 
Figure 1.
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Aspects of the mechanical work perspective are evident when looking at 
data science work. At this, it is important to distinguish between the goal of 
deployed AI and the process of deploying AI. Many shiny AI showcases, especially 
end-user applications, create the impression that it is easy to set up corporate 
ones, as well. This standpoint is supported by existing process models for data sci-
ence work,23 which suggest detailed steps and deliverables. They create the 
impression of plannability. Powerful software tools are available as third-party 
services24 and vendors are continuously working to make them easier to use.25 
This leads to the commoditization of resources. In addition, several algorithmic 
developments help to automate data science and ML processes: AutoML, which 
lets algorithms search for ideal parameters and pre-trained models that allow the 
application of predictive tools to operate in wider ranges of applications. This all 
helps

to reduce the amount of time and specialized skills required to generate, deploy, 
and maintain predictive models, by automating the most repetitive steps of the 
data science [work]. This automation could help data scientists to accelerate the 
pace of these steps and focus more on other important aspects of analytics.26

Over time, data science skills also become more available and specified. 
Educational offerings proliferate and expand the pipeline of talent.27 This large 
base of codified knowledge together with tools that automatically extract infor-
mation from data let us interpret the contiguity of abstract expertise. While clear 
evidence has yet to emerge, growing team size and the accompanying specializa-
tion within data science teams (which we see in distinct roles for data engineer-
ing, visualization, collecting, and cleaning data)28 indicate increased individuality 

Figure 1. Contraposition of craft and mechanical work according to Kroezen et al.

Note: Jochem Kroezen, Davide Ravasi, Innan Sasaki, Monika Żebrowska, and Roy Suddaby, “Configurations of Craft: 
Alternative Models for Organizing Work,” Academy of Management Annals, 15/2 (July 2021): 502-536.
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among employees. Similarly, the current high turnover of data scientists (many 
stay less than two years at the same company)29 indicates a detachment of these 
professionals from their employers.

Craftwork Perspective on Data Science

Kroezen et al.30 conceptualize craftwork as an “approach to work that pri-
oritizes human engagement over machine control.” It “implies granting individu-
als—as ‘makers’–—autonomy and control over all facets of a work process, from 
design to execution.”31 Thus, craft relies on refined and difficult-to-obtain skills 
(mastery) in a broad domain of application (all-roundedness) but exhibits valued 
skills and has an understanding of aesthetics (embodied expertise). Crafters have 
a profound and personal commitment to their work (dedication) and are open 
to experimenting, improvising, and learning by doing (experimentation). They 
are engaged with their “occupational identity and felt connection to other work-
ers in the trade” (communality).32 We illustrate the contraposition of craft and 
mechanical work in Figure 1.

While deployed AI applications themself fit perfectly into the world of 
mechanical work, the construction of AI seems to have more craft-like features 
than characteristics of mechanical work. The all-roundedness of data scientists 
becomes visible in their job descriptions, depicting them as a “hybrid of data 
hacker, analyst, communicator, and trusted adviser,”33 but also pointing out that 
“data science is more than analytics/statistics. It also involves behavioral/social 
sciences (e.g., for ethics and understanding human behavior), industrial engi-
neering ... and visualization.”34 Their embodied expertise becomes visible in the pur-
poseful selection of tools to solve problems. Hammerbacher, who created the 
world’s first data science team at Facebook, portrayed a data scientist as

a team member [who] could author a multistage processing pipeline in Python, design 
a hypothesis test, perform a regression analysis over data samples with R, design and 
implement an algorithm for some data-intensive product or service in Hadoop, or 
communicate the results of our analyses to other members of the organization.35

This description illustrates the mastery of their subject. Data Scientists also 
show high dedication with their work, as they engage deeply with data and “often 
spend a great deal of time decorating simple plots with additional color or sym-
bols.”36 Given the unclear path toward a solution to data-driven problems, data 
scientists often need to explore, as it is their daily business to discover, capture, 
curate, design, clean, prepare, and analyze data37 in order to develop AI applica-
tions. Because of the complexity of the to-be-solved problems, “they need close 
relationships with the rest of the business. The most important ties for them to 
forge are with executives in charge of products and services rather than with peo-
ple overseeing business functions.”38 Our interviewed data scientists also frequently 
attended meetups and BarCamps, while they are also active participants in several 
data science communities (online and local industry-based initiatives) where they 
exchange knowledge with others. Thus, communality is important for them.
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Five Challenges and Data Scientists’ Tactics

In our study of 55 ML-based AI projects, we found evidence of the tension 
between the managerial (mechanical work) and the data scientists’ (craftwork) 
perspectives on their work. The tension particularly manifests in five challenges 
that appear along the complete project lifecycle of AI initiatives: During scop-
ing, we found inflated management expectations; during planning, AI projects 
were often treated like traditional IT projects. During the execution of the proj-
ects, missing links to transactional systems and data issues occurred, when initial 
results were discussed the question of “why” is central. Dynamic environments 
finally make it difficult to deploy AI models into operations. In the lack of strong 
organizational strategies to manage the tension, we identify tactics to mitigate 
each challenge. We summarize all challenges in Table 1 with the manifestation 
of managers’ mechanical work perspective and data scientists’ craftwork under-
standing that are spanning the tension, together with identified tactics to cope 
with it. In the appendix, we explain our data collection and research method in 
detail.

Inflated Management Expectations

Many of our interviewees reported that their departments are overrun 
by requests for AI projects. It just seems that nowadays, “a lot of investors and 
board members expect to have AI in the process,” as one of the interviewed data 
scientists from a media company stated. Many of these requests contain unreal-
istic expectations assuming that AI applications consist of distinct parts of pur-
chasable or open-source software that just need to be put together or need to be 
executed (commodity and specificity). Such expectations are being fueled by inno-
vations such as AutoML. A data scientist from a global pharmaceutical company 
complained:

the biggest challenge is the people who want intermediate insights. They [always] 
want to know what you’re up to and what you’re finding ... That would be the man-
agers and project leaders. What we then sometimes do, which is actually bad prac-
tice, is we work for a whole week on solving the real problems and then on the last 
day before the weekly catch-up meeting, we do something that they want to see.

He even went so far to say that

the hardest part in this field is not doing the work [developing the ML algorithm 
and model] ... It is the connection between the Data Scientists and the project 
managers. That is very frustrating for me ... They want to see green check marks. 
They’re not used to this approach.

This view leads to the impression that software components can be put 
together in a structured way, which would make such projects plannable. Thus, 
we found that management seems to often go for “very ambitious AI projects, 
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where they basically say in one sentence what they want, but nothing is clear at 
all about what we really need in detail,” reports a data scientist from a heating 
manufacturer.

Unrealistic expectations of commoditized AI software, a kind of mental 
accounting,39 can lead to disappointments about the return-on-investment of AI 
pilot projects. This, in turn, can lead to too early withdrawal of planned AI invest-
ments—a phenomenon known as de-escalation of commitment40—inhibiting any 
kind of business value to be realized.

The inflated management expectations increase due to misconception of 
what data science work is about. Instead of just using standardized software com-
ponents (detachment), data scientists are deeply involved in creating meaningful 
models and display a high level of dedication. Our interviewees reported that their 
work requires all-roundedness (e.g., creating a wide variety of models and effec-
tively communicating to a variety of stakeholders), mastery (e.g., employing the 
right tool to the problem at hand), and tacit, hard-to-articulate, knowledge to 
make AI applications to work (embodied expertise). A data scientist at a large IT 
software firm explained: “Automation is actually one of the challenges [where we 
have] to manage expectations, because people think much of AI—Fantastic! But 
it is not really like that ... Models come with errors, you cannot do everything, and 
you must explain the limitations.”

We found that data scientists as craftsperson, who master their profession, 
employ the following tactics to manage inflated management expectations:

 • Establish tools for a quick reality check on what AI can or cannot do—Ultimately, 
data scientists are the ones who may decide which parts of an application can 
be supported or automated by AI technologies. They employ their mastery 
of a very diversified toolset, their embodied expertise (their situated knowl-
edge of the culture and business processes), and the holistic approach they 
follow in tackling problems that allows data scientists to come up with these 
decisions. Yet, to avoid burdening busy data scientists with the constant eval-
uation of business ideas for AI suitability, they should develop tools and prac-
tices, like documents containing their learning cycles or interactive templates 
for data quality checks to speed up the decision process whether a problem 
is solvable or not. In addition, managers can use universally accepted check-
lists AI application feasibility, for example, the “Checklist for assessing a task’s 
suitability for supervised ML”41 for initial assessments,

 • Start small, then iterate, and grow—Running AI pilot projects and growing these 
projects in an iterative fashion42 in close collaboration with domain experts is 
another way to manage expectations. It is often more promising to start with 
“low-hanging fruit” projects that incrementally improve business processes 
than to directly go for disruptive “moon shots.”43 One interviewee from a 
global pharmaceutical company described this collaborative and incremental 
AI journey as follows:
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You know, there are problems [AI] can solve, and there are problems it cannot 
solve. So, I think being clear with that from the start, and how [the project] will 
be an iterative learning process also for [business] ... is very important. ... [T]hey 
can’t just say, ‘Build me an algorithm that does this’ and then go away.

 • Engage with external experts to kickstart AI projects—Another approach to prevent-
ing organizations from costly project failures is to consult more experienced  
or specialized AI experts. These experts do not necessarily have to be large and 
well-known consultancies but can be small and specialized firms or research 
institutions that combine AI expertise with deep industry knowledge. We 
talked to data scientists and managers of such organizations who are active, 
for example, in the energy retailing, publishing, or engineering industry. Their 
clients use them to outsource AI tasks that do not belong to their core business 
(e.g., text generation), to purchase industry-standard solutions (e.g., bench-
marks, customer valuation models), enrich their data sets with external data, 
or to learn from the vendor’s project management experience (e.g., in project 
scoping or evaluation of software frameworks).

Managing AI Like Traditional IT Projects

When it comes to the AI development phase, management’s perception 
that AI models are specific computer programs that can be easily created and 
modified leads to another problem. Namely, the impression that AI projects can 
be treated like traditional IT projects, where the focus lies on developing and 
delivering systems on time, within budget, and within scope (following a linear 
and planning-oriented, waterfall-like process model at worst). For example, the 
CEO of a data science company that develops ML-models for the metalworking 
industry depicts this way of business and management thinking about AI models: 
“‘It [the AI model] has got it wrong here, can you program that out?’ I say, ‘No, 
you can’t program that out.’” In this way, management prioritizes a “workman-
ship of certainty,”44 which assumes that the decision rules of computer models 
are under full control of data scientists (i.e., the mechanical work perspective).

AI projects are typically much more iterative, exploratory, and open-ended, 
consisting of steps like framing the problem and asking the right questions, find-
ing, and extracting appropriate data, and running experiments to derive new 
knowledge or support decisions.45 This rather fits the craftwork perspective (i.e., 
exploration). The fuzzy front-end of AI projects, namely the definition of questions 
and hypotheses, seems to be the most critical phase, as an interviewee from an 
international bank told us:

I think the most important thing, sometimes the most challenging, is to exactly 
define the issue business is facing and the outcome they are expecting ... If you 
don’t define the expected outcome very clearly, you can go completely in the 
wrong direction.

One of our interviewees explained that this way of working is often new to 
the business, requiring dedication by all involved stakeholders:
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Business units know how classical IT projects are run: The IT department gets the 
requirements and then iteratively implements them. But data science projects 
require much more interaction between domain experts and data scientists, and it 
is important that the business knows and understands this.

Due to the highly iterative and collaborative nature of AI projects, many com-
panies apply stripped-down versions of agile development practices (e.g., Scrum, 
Kanban boards) to manage the work of data scientists in AI projects. Such agile proj-
ect management approaches allow flexibility in that they account for iterative and 
experimental developments, or project scope changes through new user require-
ments during project execution. This is meaningful in organizing software develop-
ment, and some approaches of agile frameworks are helpful for data science projects, 
as well. Yet, such agile approaches create the illusion of plannability. They also assume 
that at the end of the project (or iteration), a stable release of a software product will 
be delivered to the client, for example, in the form of shippable software packages, 
which is rarely the case with data science projects in their early stages. In addition, 
AI projects face further uncertainties and scope changes due to the nature of the 
data, which is a constantly changing, editable, and interpretable material.46 While 
new wishes from clients are obviously creating additional effort, data issues are invis-
ible to managers and are uncovered during data analysis. AI systems, thus, are learn-
ing agents that are never really finished, and setting them up is rather an exploration 
endeavor. AI applications should be rather seen as a new novice employee or busi-
ness function, requiring close supervision in the beginning, continuous performance 
monitoring, and regular retraining (see also Challenge 5 “Dynamic Environments”), 
which requires dedication by all participants to empower them. Our interviews 
revealed that selecting a too-rigid (agile) project management approach for running 
AI projects can overload data scientists with administrative tasks (e.g., maintaining 
task and feature lists, meetings, and shippable prototypes), reducing the time they 
can spend on actually developing and evaluating data pipelines or ML models. One 
data scientist working on text generation applications reported:

We will probably try to use Scrum when we grow further, but we are not yet quite 
sure, because all the people we know in the field of data science or AI who have 
worked with Scrum have ultimately fallen flat.

Wrong project management tools quickly lead to reduced employee pro-
ductivity and satisfaction, and ultimately, reduced business value, as the project 
outcome might be less innovative than it could have been.

We identified three tactics for organizations to overcome the challenge of 
inflated management expectations and the underlying tension between the 
mechanical and craftwork perspectives on data science work.

 • Data scientists train managers on the job—Many data scientists find the need 
to explain or introduce to managers and business collaborators how ML 
models work or how they should interpret the results. For example, many 
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of the more technical interviewees in our study mentioned the importance 
of being a good, data-driven storyteller and being able to provide convinc-
ing narratives for complex technical issues. Managers often appreciate a brief 
explanation of technical details in ML models (e.g., one explanatory slide in 
a presentation) as it helps them to learn more. Data scientists should keep 
offering these educational services.

 • Basic AI and ML courses for managers—Some companies also started training 
their project managers in ML techniques. Not necessarily to be able to create 
ML models themselves, but to gain a better understanding about the differ-
ences to traditional software development. Similarly, more and more business 
schools start to teach business administration students ML basics to foster 
their AI knowledge. The contents of such training should include (among 
others) the working principle of ML, competencies to assess ML model qual-
ity, and typical pitfalls of AI projects in practice.

 • Appropriate key performance indicators (KPIs)—Successful AI projects also do 
not end with the go-live of a system but when the system generates new 
insights or employees use it to make data-driven decisions. These things are 
hard to monitor and, hence, “it’s necessary to spend a lot of time on defining 
how ... to measure success,” as one interviewee emphasized. An example of 
good measurement comes from an insurance company we interviewed. They 
defined interlinked criteria for the success of its new ML-based churn predic-
tion system (see Table 2) and measured predictive accuracy at the data scien-
tist level, the development of actual churn rates at the business level, and the 
customer lifetime value of prevented churners as KPIs for the project success 
at the executive level.

Missing Data Input and Output Links to Existing Systems

Corporate AI applications heavily rely on data that either is necessary 
to construct models using ML approaches or AI generates data that is further 
used in business processes. Data availability and quality is a serious challenge 
during development to which researchers and practitioners alike have pointed.47 

Table 2. Example of a Set of Interrelated Metrics for Measuring the Success of a Churn 
Prediction System at an Insurance Company.

Stakeholder Key Question Metric

Data scientist How accurately can I predict 
whether a customer will 
churn in the next 3 months?

Predictive accuracy of a machine-learning 
model for churn prediction.

Business unit How can we prevent 
customers from leaving us?

Development of churn rates after 
deployment of the system.

Executive 
management

How can we maximize 
the lifetime value of our 
customers?

Predicted net profit from all future 
transactions with customers who could 
be prevented from churning.
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“Data science is often described as data-driven, comprising unambiguous data 
and proceeding through regularized steps of analysis, ... [which] focuses more on 
abstract processes, pipelines, and workflows.”48 Many firms are seeing their data 
lakes filled and they can also draw on many open data sources. This can create 
the impression of data as a commodity that just needs to be used in a prescribed 
way using bespoke tools (specificity, abstract expertise). Yet, our interviewees under-
lined that data scientists spend significant time identifying, getting access to, and 
preparing the data before they can start with the original AI engineering. They 
also have a hard time getting the results of their efforts integrated into existing 
IT systems so that operational processes can use them. Both are prime examples 
of why AI applications are more exploration than plannable projects and why data 
scientists need a fair amount of dedication but also diverse skills to get there, as 
we exemplify for the input and output side of AI applications.

In practice, creating the data input side of AI applications involves crafting 
data pipelines that associate more with plumbing than engineering as a data sci-
entists involved in natural language processing explains:

For example, the pipeline that we had in mind when we spoke has changed as 
we moved forward. This is where all brainstorming comes after because we run 
into things that we need to reevaluate. So, in the beginning, you have a high-level 
understanding of how it might work, and you think it’s feasible, and then you 
need to read about it and actually improve.

Another problem here is that data stored in IT systems were often not 
recorded against the background of analyzing them to obtain predictions. Thus, 
increasing the quality of AI-based predictions might also require changes to the 
data-generating processes.

The challenge becomes also visible with the output side of AI systems, it 
almost seems that there is an insurmountable barrier between AI systems that 
should support or automate decision-making and those systems that are used to 
execute actions. One of our interviewees phrased it as “Our ERP system is my big-
gest headache in the whole world. It takes six months to get data out of it ... and, 
yeah, we can’t put data back into it.” The problem of information exchange 
between newly developed AI systems and systems in place seems to be simply a 
matter of missing interfaces (specificity). But developing those is usually more com-
plex than initially thought or sometimes not even feasible at all. Often, not only 
the IT systems must change, but whole business processes need to be re-engi-
neered to be able to handle data-driven insights, for example, including (semi)
automatic decision-making. One data scientist from the pharmaceutical industry 
complained:

the first step in embedding it in the processes is getting it embedded in the systems 
that run the processes, and that’s what we can’t do .... we have all these nice mod-
els for when they get a new planning system, and we can deploy our own things 
within it, one day.
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Large international firms are often running their business processes with 
enterprise systems that are ten or 20 years old and have been developed on a 
completely different technology stack. Figuring out necessary changes to such IT 
systems and realizing them is a crafty rather than a mechanical task, given the 
broad and abstract required skill set, experience, and all-roundness.

Data scientists reported on several tactics to handle the challenge of missing 
links to existing IT systems and data scarcity:

 • Bridges between AI and IT—A common solution is to build a bridge between 
new AI systems and legacy IT systems is the implementation of middleware 
infrastructure offering interfaces and adapters to various third-party systems, 
thereby enabling systems to talk to each other. These systems are, however, 
often expensive. A less-immersive, but also less-robust, solution is robotic 
process automation (RPA). RPA systems watch the user executing a business 
process in the graphical user interface of, for example, an enterprise resource 
planning (ERP) system and are then able to automate the process by repeat-
ing the tasks performed by the user directly in the graphical user interface. 
The RPA system could, for example, copy and paste the outputs of an AI sys-
tem into an ERP system, while simultaneously checking simple rules and 
customizing the process execution depending on predictions made by the AI 
system.

 • Process-integrated prescriptions instead of predictions—To overcome the user accep-
tance problem, organizations need to find new ways of presenting the outputs 
of AI systems to end users. For example, predictions or probabilities—that is, 
the raw output of ML models—need to be transformed into actionable pre-
scriptions and presented to employees at the right place and the right point in 
time. In the context of churn prediction, for example, an electricity provider 
fed the churn probability estimates into their call center management sys-
tem. Based on the predicted churn scores, the system suggests different ques-
tions to the call center agent to be asked during the phone call. So, instead of 
showing call center agents static questions, they gave them personalized and 
actionable instructions, which are more digestable but also difficult to work 
around.

 • Learning apprentice approach—Organizations are often faced with limited data 
for ML applications.49 They often need to wait a considerable amount of time, 
sometimes years, before they have collected sufficiently large and repre-
sentative amount of data. In other cases, the tasks to be automated are not 
completely supported by a single IT system, or the performed steps are not 
logged in the required level of detail. In such cases, it is difficult to collect 
the required training data. A strategy to obtain training data in such situa-
tions is the “learning apprentice” approach.50 Here, the AI system acts as an 
apprentice watching the human experts performing their tasks and recording 
all relevant input data and outcomes. After observing several thousands of 
repetitions of the same task, ideally performed by different individuals, the 
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system is then able to learn the function required to correctly transform the 
input data into the outcomes; often better than any human expert did before, 
because ML can learn from many more examples in a short time compared to 
humans.

 • Increase data awareness—Another tactic to overcome this challenge is to start 
creating awareness of the importance of data quality and the willingness to 
share and reuse data across departments. This results from the fact that—
besides technical problems with extracting, transforming, and loading the 
data from the source systems—many informants had problems interpreting 
the correct meaning of existing data. For example, many sales departments 
create sales orders in their ERP systems to make ad-hoc stock reservations 
for customers. Once the customer has ordered the material, or does not need 
it anymore, they cancel these sales orders again. Including such “shadow” 
orders in training sets for recommender systems or price optimization models 
can easily lead to biases in ML models. The problem in such a case is not that 
the required training data do not exist, have missing or wrong values, but 
that the data do not represent what they seem to. Data scientists create data 
awareness by constantly pointing to the relevance of original data points, 
given that employees often do “not imagine that someone else would use the 
data afterward,” as one interviewee explained.

The Question of Why

The latest generation of ML algorithms demonstrates remarkable predic-
tive power. Deep neural networks have already achieved (super-)human per-
formance in tasks as diverse as playing games, performing image-based medical 
diagnoses, or translating texts from one language to another.51 However, in 
many situations, high predictive accuracy alone is not sufficient to convince deci-
sion makers to accept and implement the recommendations of an algorithm. 
Especially in highly uncertain environments and in situations where the stakes 
are high, decision makers often want to understand how or why an AI system 
made a specific prediction. This requirement of ML methods is often referred to 
as interpretability or explainability,52 but practitioners also describe it as transpar-
ency or traceability. For example, they want to see drivers of customer behavior 
(“Why do[n’t] people buy our product?”), the causes of a machine failure, or 
receive an explanation for why an ML model that showed high predictive power 
in a laboratory test underperforms in field use. Especially decision makers trained 
in an engineering or scientific environment demand that the outputs of ML sys-
tems can be comprehended by humans (abstract expertise, planning). After all, one 
core reason to implement AI is to move toward more rational and evidence-
based decision-making processes. If the output of AI applications is opaque, 
however, the goal of more rational decision-making can hardly be realized. The 
need for explanations is also necessary in cases of failures. Managers who are 
accountable for the decisions made by an AI system are unlikely to follow its 
recommendations if they cannot explain why something went wrong (individu-
ality, planning). In addition, legal requirements in several countries require that 
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operators of AI applications can produce easy-to-understand explanations for 
why a model made a specific prediction (abstract expertise, planning). For exam-
ple, the European Union General Data Protection Regulation (GDPR) contains a 
“right for explanation,” obliging data processors who make algorithmic decisions 
about individuals (e.g., online credit application, e-recruiting practices) to pro-
vide them on demand with “meaningful information about the logic involved” 
(Art. 13 and 14 GDPR).53 In the United States, similar rights exist in the context 
of credit scoring.

A data scientist from an insurance company explained how management 
expects that the reasoning of ML models is codifiable: “we cannot provide a black 
box prediction model to our insurance brokers ... brokers need to know which 
data point has which influence on the likelihood of churn.” This opinion was 
echoed by many of our interviewees across industries; when it comes to support-
ing knowledge workers in their decision-making processes through AI, one of the 
interviewees noted that “traceability [interpretability] is the most important crite-
rion” for user acceptance of algorithmic decision-making.

The best-performing predictive models are, however, often black boxes, 
which easily contain millions of internal parameters that jointly define the func-
tion for translating inputs into outputs. It is nearly impossible, even for experts, to 
comprehend and interpret how these models make predictions (mastery). In other 
words, many AI systems have superhuman predictive capabilities but are unable 
to explain the why and how behind their predictions (embodied expertise). Some 
voices advocate putting more effort into model development rather than trying to 
make black-box models explainable afterward.54 To do this, for example, concep-
tual models, expert knowledge, and human cognition could be used to develop 
meaningful input variables for ML models that make good predictions but also 
allow reasoning to be explained, as examples from medicine55 and energy56 dem-
onstrate. The fast life of data science work, however, often does not allow such 
deep digging into the data (see the example cited in the challenge “Inflated man-
agement expectations”). Data scientists, thus, need to carefully balance between 
the requirements and constraints of their work (accuracy versus interpretability 
versus available time). In addition, they require their all-roundness to tune models 
for good predictions, need to know approaches to make models interpretable, 
engineer variables, and do this in a short time.

In addition to the accuracy versus interpretability tradeoff, there is another cru-
cial issue that must be considered when applying ML to model real-world phenomena, 
namely, the difference between correlation and causality. There is no guarantee that 
the variables, which an ML algorithm detects as good predictors of a phenomenon 
(i.e., they are correlated with the target variable), are actually the causes of this phe-
nomenon. If prediction is the primary goal of an AI system, and the system was trained 
on carefully selected training data, it makes accurate and consistent predictions. In 
such a case, the lack of an underlying causal model might not represent a problem. If, 
however, an organization or decision maker wants to place real-world interventions, 
that is, to alter the environment with algorithmically prescribed actions (e.g., lower the 
price for an existing product), a lack of causal relationships in a model can be a major 
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problem. Consider the following example from one of the cases we analyzed in our 
study. A digital marketing agency used deep neural networks to predict the success of 
Instagram posts that involve product placement by Internet celebrities. They found 
that product placement in front of mountain scenery is associated with higher num-
bers of likes and comments by fans. Should they recommend that all their clients shoot 
pictures with mountains in the background? Probably not. It just happened that some 
of their most famous clients specialized in marketing sports and fashion products for 
the winter season. So, the real cause for the success of their posts was their huge base 
of fans and followers, and not the background of the images they posted. This example 
nicely demonstrates that, when it comes to making decisions informed by AI systems 
and translating these decisions into real-life actions, it is indispensable to know whether 
an identified pattern is a real cause-and-effect relationship or just a spurious correla-
tion, as intervening on variables which are spuriously correlated with an intended 
outcome will have no effect. This requires embodied expertise of data scientists as they 
bring technical as well as business knowledge in the AI development process.

We identified three technical tactics to overcome the accuracy versus inter-
pretability versus available time tradeoff.57

 • Post-hoc explainability methods—One solution is to apply methods that try to 
explain the logic of black box predictive models (for an example see Figure 2). 

Figure 2. Example of the outputs of a post-hoc explainability model providing an explanation 
for why a convolutional neural network has classified two animals in a picture as a dog and a cat (the 
pixels that the model relied on are highlighted).

Note: M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’ Explaining the Predictions of Any Classi-
fier,” (Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
2016), doi:10.1145/2939672.2939778.



Organizational Implementation of AI: Craft and Mechanical Work 17

By building an interpretable model on top of a complex black box model, this 
strategy tries to combine the predictive accuracy of modern ML algorithms with 
the interpretability of classical statistical models. However, developing so-called 
post-hoc explainability methods that possess high fidelity and end-user friendli-
ness is still an ongoing research effort.58

 • Push intrinsically transparent models to the max—As noted above, a complex deep 
learning model typically outperforms simple additive and linear models when 
fed with the same raw data. This is due to the ability of deep neural networks to 
automatically discover and represent relevant features and model non-lineari-
ties and interactions. However, experiments59 have demonstrated that in many 
situations, especially those involving structured numerical input data, careful 
modeling, especially feature engineering, informed by high domain expertise 
can result in inherently interpretable models that possess the same predictive 
accuracy as black box ML algorithms. Of course, tuning these models to the 
maximum extent is associated with extra time and costs for understanding the 
problem domain and developing a solution, but it avoids relying on black boxes 
or unfaithful post-hoc explanations in high-stakes decision problems.

 • Causal modeling and rigorous experimental evaluation—The gold standard in 
science for making causal inferences is to conduct randomized controlled 
experiments. In the form of A/B tests, the experimental method is also gain-
ing more and more popularity in industry, especially at Internet companies. 
Uber and Amazon are good examples of how firms can combine ML tech-
niques with classical behavioral science methods to overcome the causality 
challenge.60 Whenever possible, they conduct randomized controlled trials 
to investigate whether hypotheses generated through data science methods 
hold in real life. In many situations, obtaining experimental data through 
randomized and controlled experiments is simply not possible. For example, 
when introducing a product or service innovation, it is often not possible to 
compare its effect to an appropriate control group. In such situations, one 
has no other option than to work with existing observational data. One way 
to investigate causal questions with observational data is to model the causal 
process that has generated the data as thoroughly as possible and use appro-
priate statistical methods and tools to control for confounding factors.61 This 
not only supports modeling, but also a careful formulation of the investigated 
business problem (see Challenge 2 “Managing AI Projects like Traditional IT 
Projects”). Discovering the data-generating causal graph and investigating the 
nature and strength of its relationships requires close collaboration between 
data scientists and domain experts, who have substantive knowledge of the 
business problem in question. Figure 3 shows a possible causal data-generat-
ing graph for the influence marketing example.

Dynamic Environments

ML algorithms learn a function that is able to correctly map inputs into 
outputs; for example, a function to output the correct English translation for a 
given French input text, or a function that can predict the number of likes or 
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comments (output) of an Instagram fashion post (input). Once the function has 
been learned with sufficient accuracy, it can be used to automate tasks that have 
traditionally been performed by human experts such as interpreters or marketing 
managers. This constitutes a manufacturing mindset, where data scientists pro-
duce, implement, and deliver specific software parts in plannable cycles. Following 
the mindset of a software engineering and production process, the devel-
oper would not be involved in the operations of the IT system once it is com-
pleted. This leads to a detachment of the creator from the product. This approach 
assumes, however, that the function to predict outputs based on inputs is stable 
over time.62 In the example of translating French to English, this assumption is 
largely met. In the social media marketing example, however, the factors that 
determine a popular post (i.e., in terms of user reactions) change at least as fast 
as fashion and popular culture trends change. In other words, what used to be 
hip on Instagram six months ago, may not trigger half as many “likes” today. 
Sensing such structural changes and assessing their consequences for predic-
tions and decisions made by ML-based systems is a challenge that is often over-
looked by companies, especially those that are new to ML. Data scientists need 
to have high dedication and continuous involvement to explore the functioning 
of ML-based software artifacts, as one informant from an international jewelry 
manufacturer and retailer explained:

You don’t put something into production and then just keep it running. It’s very 
much about continuous monitoring and figuring out that there’s a drift in the data 
... Traditional software keeps functioning in the same way over time. But the per-
formance of ML models might degrade when the data changes.

The statement highlights two points: First, the importance of continuously 
monitoring the performance of predictive models with a sense for peripheral 
changes that might affect the models’ outcomes in the future—in the language 
of a traditional craftsperson this means that they are conscious about their mate-
rial (i.e., data).63 This is often more difficult than it sounds, as it requires access 
to up-to-date ground-truth data as a benchmark for the algorithmic predictions. 

Figure 3. Example of a possible data-generating causal graph showing the causal relationships 
between variables in the influencer marketing example.

Number of 
likes and comments

Number of 
followers

Posting pictures
with mountains

Famous winter sports
influencer

Note: Being a famous winter sports influencer is causally related to posting pictures with mountains and having many 
followers. Furthermore, a larger number of followers is causally related to the number of likes and comments a 
posted picture receives. If one does not control for the number of followers and being a famous winter sports 
influencer, it seems as if a mountain in a picture causes the number of likes and comments to rise.
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Second, it sets the focus on an important make-or-buy decision. Simply buying 
a standard software package or hiring external consultants to build a predictive 
model (commodity) is often not sufficient.

Successfully employing an ML-based AI system is not a one-time project, 
but a continuous effort that requires specific in-house expertise, dedication, and 
hard-to-specify knowledge (embodied expertise). Even a company like Google 
learned this the hard way, when their famous Google Flu Trend service, which 
was able to predict the spread of the flu based on what users type into Google’s 
search box, started to wildly overpredict flu levels.64 One of the main reasons was 
that Google’s engineers never updated the underlying ML models, although both 
the nature of influenza spread and the logic and usage of its search engine changed 
considerably over the years. The Google Flu Trends example—after an initial 
hype, the service has been turned off after it started overpredicting the flu—illus-
trates how dynamic environments challenge the creation of effective AI applica-
tions. Inaccurate predictions not only lead to suboptimal decisions, but sometimes 
can even damage the reputation of whole companies (external intangible value). 
Crafting machines that learn entails continuous work and adjustments, where 
data scientists remain engaged with the ML model even after production and they 
maintain, improve, renovate—take care of the AI applications—to sustain creat-
ing business value through AI.

Inspired by the practices of interviewees and current research on ML, we 
find two tactics to address this challenge:

 • Monitoring and detection of data drift—Since data are subject to constant change 
(be it that data-generating processes change, e.g., due to the introduction of 
a new IT system, or be it that human behavior changes, for example, human 
habits change due to COVID-19), ML models degrade over time and lose pre-
dictive power. ML research is very active in proposing approaches to detect 
and monitor input data drift. These methods enable to identify occasions 
when productive models need to be updated to avoid a drop in performance.

 • Combining AI development and operations—Beyond the mere monitoring of ML 
models goes the approach of MLOps.65 Inspired by practices from software 
development to reduce the time between committing a change to a system 
and the change being successfully placed into normal production (DevOps), 
MLOps closely dovetails the processes of AI development and AI operation 
to enable rapid updating of ML models in productive AI systems. It aims at 
improving the quality of ML models in production by, on one hand, increas-
ing automation in monitoring and improving the performance of these 
models, and, on the other hand, implementing organizational structures for 
ensuring compliance with business and regulatory requirements. Concrete 
practices include, for example, the use of drift detection techniques, conduct-
ing A/B tests to detect degradation or side-effects in the real-world impact of 
models, or interdisciplinary teams spanning technical and business experts to 
ensure quality and minimize the risk of AI systems.
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Concluding remarks

Organizations continue to struggle with AI value creation. Our analysis of 
55 ML-based AI projects revealed that five challenges (summarized in Table 1) are 
the result of a tension created by two contradictory, yet complementary, perspec-
tives to data science work: craft and mechanical work. The reality of developing 
and maintaining AI applications takes place in a paradoxical situation where both 
perspectives, mechanical work and craft, are necessary. The crafting approach bet-
ter captures the process by which effective AI applications come to be. This approach 
appears to be embraced by skilled data scientists who demonstrate mastery of the AI 
tools, all-roundedness in addressing business problems through AI, and embodied 
expertise when they engage with the data and AI models. They exhibit dedication 
and a strong sense of exploration and communality in producing the best possible 
results. The mechanical approach to data science work, long popular in the man-
agement and software engineering literature, better captures the process by which 
organizations efficiently develop and implement AI applications. This approach to 
data science work is primarily embraced by management that sees data science 
skills as easily obtainable, specifiable, and codifiable while their attitude toward AI 
projects is characterized by expectations of commensurable results, transactional 
interactions among project members, and treating AI projects as plannable entities.

A large portion of the challenges that organizations encounter when trying to 
extract value from AI are caused by ignoring the paradoxical tension inherent in data 
science work. Tensions, if they are paradoxical, are always active. Satisfying only one 
of the two demands exacerbates the need for the other66 and can start what Smith 
and Lewis call a vicious cycle.67 Yet, we see evidence that some experienced organi-
zations manage to industrialize AI development without sacrificing innovation. 
While these organizations engage in standardization (e.g., setting up a standard data 
pipeline, developing ML modeling best practices) and knowledge specialization (e.g., 
specialized data science roles) at the operational level, they—at the same time—try 
to familiarize managers with the craftwork nature of data science work by broaden-
ing the knowledge and skills of mid- and top-level project managers and executives. 
In these organizations, managers across functions and hierarchies know the basics 
about how ML algorithms work, what data are required to train them, and how to 
assess their performance. This is not to enable them to develop AI systems them-
selves but to be able to understand which business processes can be supported by ML 
and to communicate and collaborate with data science teams. Vice versa, senior data 
scientists at these organizations are not only responsible for leading technical teams 
but are actively engaging in innovating business models and processes.

Managing paradoxical tensions means enabling a virtuous cycle that accen-
tuates acceptance rather than defensiveness.68 Built on acceptance and resolution, 
organizational tensions can be considered both as a call for and a source of novel 
creative solutions69 and should correspondingly be nurtured and managed. The 
tactics that we have reported here can be used as a starting point for developing 
more complete strategies in managing the paradoxical nature of data science work 
and creating business value from AI applications.
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appendix

Method

To generate rich data about the challenges companies are facing when 
trying to implement AI applications, we interviewed data scientists—profession-
als with an interdisciplinary background and holistic view on AI and its applica-
tion in organizations,70 but also C-level representatives of small to medium-sized 
firms with data-driven business models. Data scientists are involved from start 
to finish in AI projects and, in many cases, end up leading and driving AI value 
realization.71 As a point of departure, our data collection process included two 
rounds. In the first round (between October 2018 and January 2020), we con-
ducted 40 semistructured interviews. Our interview partners were located 
mainly in Germany and Denmark, but also in other European countries, the 
United States, and Singapore. The interview guide focused on concrete AI proj-
ects (some interviews covered more than one project). We structured our inter-
view guide along a unified model of the process of extracting insights from data 
and translating these insights into decisions and actions.72 All interviews were 
recorded and transcribed. The data from this first phase formed the primary 
foundation for our data analysis and development of findings. A second round of 
data collection (in January and February 2020) focused on the validation of our 
findings. For this, we organized a workshop with data scientists with 13 partici-
pants (seven of them were interview partners, while six were new participants). 
In this focus group, we presented our findings and asked for feedback.

Our qualitative data analysis followed the approach of Gioia et al.73 It 
started with applying open coding on the interview transcripts to identify first-
order concepts, which stay close to the informants’ original statements. We linked 
these original concepts together and formulated second-order themes. Finally, we 
further grouped the themes together and came up with the five challenges that 
we presented here. After this first round of analysis, we realized that the identified 
challenges were similar to challenges mentioned in previous studies of organiza-
tional implementation of AI. This made us wonder why these challenges persist. 
What causes them? Our search for an explanation of the challenges led us to 
appreciate different perspectives on data science work. In our data, we noticed 
that the way data scientists see their work is different from the way management 
sees it. These differences made us take a work perspective. Inspired also by a cur-
rent discourse in organizational science about different approaches to work—such 
as craft and mechanical work74—we performed another round of analysis in cod-
ing to find reasons for these challenges in the way data science work was per-
ceived. This second round of analysis led us to understand that each challenge was 
the result of a paradoxical tension created by two different perspectives on data 
science work: craft and mechanical work.
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