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Abstract
Counterfactual explanations have become a very popular interpretability tool to under-
stand and explain howcomplexmachine learningmodelsmake decisions for individual
instances. Most of the research on counterfactual explainability focuses on tabular and
image data andmuch less onmodels dealingwith functional data. In this paper, a coun-
terfactual analysis for functional data is addressed, in which the goal is to identify the
samples of the dataset from which the counterfactual explanation is made of, as well
as how they are combined so that the individual instance and its counterfactual are
as close as possible. Our methodology can be used with different distance measures
for multivariate functional data and is applicable to any score-based classifier. We
illustrate our methodology using two different real-world datasets, one univariate and
another multivariate.

Keywords Counterfactual explanations · Mathematical optimization · Functional
data · Prototypes · Random forests

Mathematical Subject Classification 90C90 · 62H30

1 Introduction

Machine learning models are increasingly being used for high stakes decision-making
settings such as healthcare, law or finance. Many of these machine learning models
are black-boxes and therefore they do not explain how they arrive to decisions in a way
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that humans can understand. Nowadays, there is an increasing number of laws and
regulations (Goodman and Flaxman 2017) coming into place to enforce the decisions
of algorithms to be interpretable (a.k.a. transparent) (Du et al. 2019; Eiras-Franco et al.
2019; Fu et al. 2022;Miller 2019; Zhdanov et al. 2022). Interpretability is enhanced by
selecting the features that have the greatest impact on the model as a whole (Benítez-
Peña et al. 2021; Bertsimas et al. 2016; Zheng et al. 2021), but also knowing these
locally for the decision made for each individual (Lundberg and Lee 2017; Lundberg
et al. 2020; Ribeiro et al. 2016).

In this paper, we specifically address the problem of interpretability when data are
functions. This type of data arises in important domains such as econometrics, energy,
marketing (Jank and Shmueli 2006; Sood et al. 2009; Sunar and Swaminathan 2021).
There is rather extensive literature on the use of machine learning to analyse functional
data, e.g., adapting Support VectorMachinemodels to functional data (Blanquero et al.
2019; Chaovalitwongse et al. 2008), using regression trees to detect critical intervals
(Blanquero et al. 2023) or novel forms of intepretability when dealing with functional
data (Carrizosa et al. 2022;Martín-Barragán et al. 2014). See alsoAneiros et al. (2022),
Ramsay (2006) for an overview of methods for functional data analysis.

A specific type of interpretability tools is the counterfactual explanation (Carrizosa
et al. 2023; Martens and Provost 2014; Wachter et al. 2017) where one seeks the
minimum cost changes that can be made to an instance such that the given machine
learning model would have classified it in a different class. For instance, in a credit
score application one may be interested in knowing how the debt history of a person
should have been to change the prediction to loan should be granted. See Guidotti
(2022), Karimi et al. (2022), Verma et al. (2020) for recent surveys on Counterfactual
Analysis.

Apart from the advantages mentioned above to finding counterfactuals for a given
instance, in terms of guidance on how to change the predicted class to desired one,
there are others to the stakeholder. First, it allows us to know how robust the prediction
is, i.e., how much should the record be perturbed to make the classifier label it in a
different class. Second, imposing some sort of sparsity in the process of building
counterfactuals allow us to identify the most relevant features, i.e., those that, for this
particular instance, are forcing the classifier to classify it in the desired class.

While the literature on machine learning to analyse functional data is extensive,
this is not the case for counterfactual analysis. Most of the work on counterfactual
explanations focuses on tabular, image data or text data (Karimi et al. 2022; Ramon
et al. 2020; Tolkachev et al. 2022), and much less on functional data. In principle,
one could apply the methods developed for tabular data also to functional data, just
by considering that each feature is the measurement of the function at a time instant.
However, doing so, fundamental information such as the autocorrelation structure
along consecutive time instants would be lost. For this reason, some works on coun-
terfactual explanations exploiting the functional nature of data have been suggested,
e.g., Ates et al. (2021), Delaney et al. (2021), but, as far as the authors know, none of
them uses the structure and properties of the machine learning model.Moreover, when
working with functional data, other types of distance measures may appear, such as
the Dynamic TimeWarping distance (Xing et al. 2010), which, with our methodology,
we can consider.
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An instance x ∈ X ⊂ F J is defined as a vector of J functional features. The
counterfactual explanation x ∈ X 0 ⊂ X of the instance x0 is a hypothetical instance
generated by combining existing instances in the dataset, heareafter prototypes, so
that the cost C(x, x0) of perturbing the features in x0 to yield x is minimal. With
this, we achieve certain interpretability goals. First, we can deal with multivariate
functional data, i.e., our data are functions taking values in some R

J . Second, we
are able to identify the instances from the dataset that generate the counterfactual for
each instance, controlling how sparse the counterfactual explanation is, in terms of
both the number of prototypes used to create the counterfactual x and the number
of functional features changed to move from x0 to x. Third, we can model the cost
function C by means of different distance measures, including popular distances in
functional analysis such as the Dynamic Time Warping distance. We will show that,
under mild assumptions, obtaining counterfactual explanations reduces to solving a
Mixed Integer Convex Quadratic Model with linear constraints, which can be solved
with standard optimization packages.

The remainder of the paper is organized as follows. In Sect. 2, wemodel the problem
of finding counterfactual explanations when data are functions through an optimiza-
tion problem. In Sect. 3, we focus on counterfactual analysis for additive tree models.
In Sect. 4, a numerical illustration using real-world datasets is provided. Finally, con-
clusions and possible lines of future research are provided in Sect. 5.

2 Counterfactual analysis for functional data

In this section, wewill detail themathematical optimization formulation for generating
counterfactual explanations when dealing with functional data. To do this we need to
model the structure of the counterfactual instances, the constraints associated with
them, as well as the cost function C. This will be done in what follows. We postpone
to the next section the analysis of the case in which a state-of the-art score-based
classifier, namely, an additive classification tree, is used as classifier.

Recall that an instance x ∈ X ⊂ F J is defined as a vector of J functional features.
Hence, x = (x1(t), . . . , xJ (t)), where x j : [0, T ] → R, j = 1, . . . , J , are Riemann
integrable functions defined in interval [0, T ]. Notice that x j (t) may be a static fea-
ture, e.g., birth date, defined then as a constant function. Note also that, for a given
time instant t ∈ [0, T ], x(t) is a vector in R

J components, which may represent J
measurements of independent attributes, or they may be related, e.g., one can include
an attribute x j , some of its derivatives to provide information also on e.g., the growth
speed or the convexity of function x j .

As mentioned in the introduction, the construction of counterfactual solutions
depends on the (multiclass) classifier used. Assuming a score-based classifier, we
are given a function f : X ⊂ F J → {1, . . . , K } based on score functions
( f1, . . . , fK ), where K is the number of classes. Given an instance x0 ∈ X , let
f (x0) ∈ argmaxk fk(x0) denote the class assigned by the classifier to x0. For a fixed
class k∗, the counterfactual instance of x0 is defined in this paper as the feasible x
obtained with a minimal cost of perturbation of x0 and classified by the score-based
classifier in class k∗. This yields the following optimization problem:
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⎧
⎨

⎩

minx C(x, x0)
s.t. fk∗(x) ≥ fk(x) ∀k = 1, . . . , K k �= k∗

x ∈ X 0.

(1)

The objective function C(x, x0) is a cost function that measures the dissimilarity
between the given instance x0 and the counterfactual instance x. In the feasible region,
we have two types of constraints. In the first one, we ensure that the counterfactual x
is classified in class k∗ by imposing that the score fk∗(x) is the maximum across all k.
In the second type of constraint, we ensure that the counterfactual is in X 0 ⊂ F J , the
set defined through the actionability and plausibility constraints (Mohammadi et al.
2021; Wachter et al. 2017), i.e., constraints ensuring that a counterfactual does not
change immovable features, and that guarantee that counterfactual explanations are
realistic.

2.1 Counterfactual instances and constraints

Let us discuss the constraints on x in Problem (1). First, we need to ensure that the
counterfactual explanation x is realistic. In the case of functional data, this yields an
infinite-dimensional optimization problem. To enhance the tractability of this require-
ment, we propose the use of instances of the dataset, i.e., prototypes, to generate the
counterfactual explanation. Let xb, b = 1, . . . , B, be all the instances that have been
classified by the model in class k∗ and are close enough to x0 so that they can be seen
as references for x0. For an instance x0 = (x01 , . . . , x

0
J ), feature j of the counterfactual

explanation x j is defined as the convex combination of the original feature x0j and the

feature j of all B prototypes xbj . Thus, the counterfactual explanation x is defined for

each feature j as x j = α0 j x0 + ∑B
b=1 αb

j x
b
j , where

∑B
b=0 αb

j = 1, ∀ j = 1, . . . , J .
In order to gain interpretability of the so obtained counterfactual explanation x, we

want to use as few prototypes xb as possible in the construction of x. For this reason
we will impose a maximum of Bmax prototypes to be used, where Bmax is a parameter
defined by the user.

InX 0 wemay also impose the unmovable constraints or other constraints like upper
or lower limits on the static variables.

2.2 Cost function

Recall that C(x, x0) is the cost of changing x0 to x, which can be measured by the
proximity between the curves defining x and x0.

The proximity between curves can be measured in several ways. One can use for
instance the squared Euclidean distance:

‖x − x0‖22 =
∫ T

0

J∑

j=1

(x j (t) − x0j (t))
2dt (2)
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Needless to say, different weights can be assigned to each feature in the expression
above.

Another popular distance used in the literature (Esling and Agon 2012; Xing et al.
2010) is the Dynamic Time Warping (DTW) distance, which measures the dissim-
ilarity between two functions that may be inspected at different speed, see Fig. 1.
More explicitly, suppose we have x and x′, discretised in two sequences of length
n, so that the J-variate functions x and x′ are replaced by (x(t1), . . . , x(tn)) and
(x′(t1), . . . , x′(tn)). Observe that each x(t), x′(t) are vectors in R

J . A warping path
π is a chain of pairs of the form π = (q11, q21) → (q12, q22) → . . . → (q1Q, q2Q)

of length Q, n ≤ Q ≤ 2n − 1, satisfying the following two conditions:

1. (q11, q21) = (t1, t1), and (q1Q, q2Q) = (tn, tn)
2. q1r ≤ q1(r+1) ≤ q1r + 1, and q2r ≤ q2(r+1) ≤ q2r + 1, r = 1, 2, . . . , Q − 1

Let W denote the set of all warping paths. Then, the DTW distance DTW(x, x′)
between x and x′ is the minimal squared Euclidean distance between pairs of the form
(x(q11), . . . , x(q1Q)) and (x′(q21), . . . , x′(q2Q)) when (q11, q21) → (q12, q22) →
. . . → (q1Q, q2Q) is a warping path, i.e.,

DTW(x, x′) =min
Q∑

r=1

J∑

j=1

(
x j (q1r ) − x ′

j (q2r )
)2

s.t. π = (q11, q21) → (q12, q22) → . . . → (q1Q, q2Q) ∈ W (3)

Observe thatDTW canbe efficiently evaluated usingdynamic programming (Berndt
and Clifford 1994).

Additionally, C may contain, on top of the distance-based term described above,
other terms measuring, e.g., the number of features altered when moving from x0 to
x. In particular, in Sect. 3 we will discuss in detail the cases

Fig. 1 Comparison between different warping paths between the functions x (in blue) and x′ (in orange)
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C(x, x0) = λ0‖x0 − x‖0 + λ2

∫ T

0

J∑

j=1

(x j (t) − x0j (t))
2dt, (4)

and

C(x, x0) = λ0‖x0 − x‖0 + λ2DTW(x, x0), (5)

where ‖x0 − x‖0 indicates how many components of x0 = (x01 , . . . , x
0
J ) and x =

(x1, . . . , xJ ) are not equal,

‖x0 − x‖0 = |{ j : x0j �= x j }|, (6)

and λ0, λ2 ≥ 0, not simultaneously 0.

3 Additive treemodels

Problem (1) under the modelling assumptions in Sect. 2 can be addressed for several
score-based classifiers. These include, among others, additive treemodels (ATM) such
as Random Forest (Breiman 2001) or XGBoost models (Chen and Guestrin 2016), as
well as linear models such as logistic regression and linear support vector machines.
Below, we focus on ATM, and extend to functional data the analysis for tabular data
described in (Carrizosa et al. 2021).

The ATM is composed of T classification trees. Each tree t has a series of branching
nodes s, each having associated a feature v(s), a time instant ts, and a threshold value
cs, so that records x go through the left or the right of the branching node depending
on whether xv(s)(ts) ≤ cs or not. Moreover, the tree t has associated a weight wt ≥ 0,
so that the class predicted for an instance x is the most voted class according to the
weightswt . The ATM can be viewed as a score-based classifier by associating to class
k the score fk defined as:

fk(x) =
∑

t∈{1,...,T }/t∈Tk (x)

wt , (7)

where Tk(x) denotes the subset of trees that classify x in class k.
To model Problem (1) for functional data and additive tree models, the parameters

and decision variables in Fig. 2 will be used.
Recall that the ATM is already known, i.e., the whole structure, including the

topology of the trees and the feature and threshold used in each split, is given. Thus,
in order to compute the score of the counterfactual instance, the only requirement is
to know in which leaf node it has ended up. When we end up in a specific leaf, the
corresponding branching conditions are activated. For each split s ∈ Left(l, t) if the
condition is true, then xv(s)(ts) ≤ cs , otherwise xv(s)(ts) > cs . To introduce these
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Fig. 2 Parameters and decision variables used to model Problem (1) for additive tree models, when data are
functions

logical conditions, we use the following big M constraints:

xv(s)(ts) − M1(1 − ztl ) + ε ≤ cs s ∈ Left(l, t) (8)

xv(s)(ts) + M2(1 − ztl ) − ε ≥ cs s ∈ Right(l, t). (9)

Due to the impossibility of theMixed-Integer Optimization solvers to model a strict
inequality, a small positive quantity ε is introduced in Eqs. (8) and (9), as is done in
Bertsimas and Dunn (2017). With this, our counterfactual variable xv(s) at point ts is
not allowed to take values around the threshold value in cs at the split s. Please note
that the value of M1 and M2 can be tightened for each split.

The score function in (7) can be rewritten as a linear expression as follows:

T∑

t=1

∑

l∈Lt
k

wt ztl ,

for k = 1, . . . , K .
Recall that one type of sparsity that we wanted was to use few prototypes to build

our counterfactual explanation. To model this, we introduce binary decision variables
ub, which control the number of prototypes that can be used in the convex combination
yielding x through parameter Bmax.

Given instance x0 and a cost function C, the formulation associated with Problem
(1), the problem of finding the minimal cost perturbation that causes the classifier to
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classify it in class k∗ is as follows:

min
x,z,α,u

C(x, x0) (10)

s.t. xv(s)(ts) − M1(1 − ztl ) + ε ≤ cs ∀s ∈ Left(l, t) ∀l ∈ Lt ∀t = 1, . . . , T
(11)

xv(s)(ts) + M2(1 − ztl ) − ε ≥ cs ∀s ∈ Right(l, t) ∀l ∈ Lt ∀t = 1, . . . , T
(12)

∑

l∈Lt

ztl = 1 ∀t = 1, . . . , T (13)

T∑

t=1

∑

l∈Lt
k∗

wt ztl ≥
T∑

t=1

∑

l∈Lt
k

wt ztl ∀k = 1, . . . , K k �= k∗ (14)

x j = α0 j x
0
j +

B∑

b=1

αb
j x

b
j ∀ j = 1, . . . , J (15)

B∑

b=0

αb
j = 1 ∀ j = 1, . . . , J (16)

αb
j ≤ ub ∀b = 1, . . . , B ∀ j = 1, . . . , J (17)

B∑

b=1

ub ≤ Bmax (18)

ub ∈ {0, 1} ∀b = 1, . . . , B (19)

ztl ∈ {0, 1} ∀l ∈ Lt ∀t = 1, . . . , T (20)

αb
j ≥ 0 ∀b = 1, . . . , B ∀ j = 1, . . . , J (21)

x ∈ X 0. (22)

The cost function in (10) is discussed in more detail below, where we measure
the movement from the original instance x0 to its counterfactual explanation x for
functional data. Constraints (11) and (12) control to which leaf the counterfactual
instance is assigned and constraint (13) enforces that only one leaf is active for each
tree. Constraint (14) ensures that the counterfactual instance is assigned to class k∗,
i.e., the score of class k∗ is the highest one among all classes. Constraints (15) and
(16) define for each feature j the counterfactual instance as the convex combination of
x0j and the prototypes xbj . To ensure sparsity in the prototypes, constraints (17)–(18)
restrict the number of prototypes used in the convex combination to Bmax. Constraints
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Fig. 3 Description of constraints (11)–(22), used to model Problem (1) for additive tree models, when data
are functions

(19) and (20) ensure that all ub and ztl are binary, constraint (21) that the coefficients
αb
j are nonnegative and constraint (22) that the counterfactual x is in X 0, the set

containing the rest of the actionability and plausibility constraints. An overview of all
the constraints is detailed in Fig. 3.

Let us now discuss the objective function in (10) for the particular choices of C
introduced in Sect. 2, namely, (4) and (5). In order to model the �0 term defined in (6),
binary decision variables ξ j are introduced. For every feature j = 1, . . . , J , ξ j = 0 if
and only if α0 j = 1, i.e., if x j = x0j . This is expressed as

− ξ j ≤ 1 − α0 j ≤ ξ j j = 1, . . . , J (23)

ξ j ∈ {0, 1}, j = 1, . . . , J . (24)

Moreover, we have that

‖x0 − x‖0 =
J∑

j=1

ξ j .

Thus, for the cost function C in (4), we have the following reformulation of
(10)–(22):

min
x,z,α,u,ξ

λ0

J∑

j=1

ξ j + λ2

∫ T

0

J∑

j=1

(x j (t) − x0j (t))
2dt

s.t. (11) − (22), (23) − (24). (CEF)
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For the particular case of (CEF) where only the �0 distance is considered, i.e.,
λ2 = 0, the objective function as well as the constraints are linear, (assuming X 0 is
also defined through linear constraints), while we have both binary and continuous
decision variables. Therefore, Problem (CEF) can be solved using a Mixed Integer
Linear Programming (MILP) solver. For arbitrary λ2 ≥ 0, taking into account that, by
(15),

(x j (t) − x0j (t))
2 =

(
B∑

b=0

αb
j x

b
j (t) − x0j (t)

)2

,

the second term in the objective can be expressed as a convex quadratic function in
the decision variables αb

j , and thus (again, assuming X 0 is also defined through linear
constraints) Problem (CEF) is a Mixed Integer Convex Quadratic Model with linear
constraints.

Let us address Problem (1) when the cost function C has the form (5), and thus
the DTW distance is involved. As in Sect. 2, the time interval [0, T ] is discretised in
time instants t1, . . . , tn, and thus the DTW distance is the minimal squared Euclidean
distance among the warping paths W , yielding

min
x,z,α,ξ ,u

λ0

J∑

j=1

ξ j + λ2

Q∑

r=1

J∑

j=1

(
x j (q1r ) − x0j (q2r )

)2

s.t. (11) − (22), (23) − (24)

(q11, q21) → (q12, q22) → . . . → (q1Q, q2Q) ∈ W (CEFDTW)

Notice how for a fixed warping path inW , constraints (11)–(24) are all linear, while
we have both binary and continuous variables. Hence, if X 0 is again defined by linear
constraints, since the objective function is quadratic, Problem (CEFDTW) is a Mixed
Integer Convex Quadratic Model with linear constraints, that can be solved using
standard optimization packages. For this reason we propose an alternating heuristic to
solve Problem (CEFDTW):
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Algorithm to calculate counterfactual explanations with the DTW-based cost function (5)

4 Numerical illustration

We will illustrate our methodology in two real-world datasets with functional data,
one univariate and another multivariate, from the UCR archive (Dau et al. 2019). For
a given instance, we are able to identify the individuals of the dataset from which the
corresponding counterfactual is made up and what their contribution is. Furthermore,
we show the two different sparsities that we can obtain with our model, namely, the
number of prototypes used for the counterfactual and the number of functional features
that change. The use of different distances, i.e., the Euclidean and the DTW distances,
is also displayed.

All the mathematical optimization problems have been implemented using Pyomo
optimization modeling language (Hart et al. 2017, 2011) in Python 3.8. As solver, we
have used Gurobi 9.0 (Gurobi Optimization 2021). A value of ε = 1e−6 has been
imposed in (11) and (12). The values of the big-M in (11) and (12) are node dependent,
and they have been tightened following the process described inCarrizosa et al. (2021).
For all the computational experiments, the classification model considered has been
a Random Forest with T = 200 trees and a maximum depth of 4. Our experiments
have been conducted on a PC, with an Intel R CoreTM i7-1065G7 CPU @ 1.30GHz
1.50 GHz processor and 16 gigabytes RAM. The operating system is 64 bits.

Thefirst dataset, ItalyPowerDemand (Keogh et al. 2006), has one functional feature.
There are 1096 instances and each instance is a time series of length 24, representing
the power demand in Italy in sixmonths. The binary classification task is to distinguish
days from October to March (response value −1) from April to September (response
value +1).

The second dataset, NATOPS (Ghouaiel et al. 2017), has 24 functional time series
of length 51 representing the X, Y, and Z coordinates of the left and right hand, wrist,
thumb and elbows as captured by a Kinect 2 sensor. There are 260 instances and we
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chose two classes of the 6 that there are in the dataset. The binary classification task
is thus to distinguish the gesture “All Clear" (response value −1) from “Not Clear"
(response value +1).

4.1 Experimental results

4.1.1 ItalyPowerDemand

We present the counterfactual for an instance x0 of the dataset ItalyPowerDemand
in Fig. 4. In each case, we represent the original curve, the prototypes, and the final
counterfactual.

The first cost model analysed is the squared Euclidean model (4) with λ0 = 0
(since we have only one feature, λ0 > 0 is meaningless). Different values of Bmax

have been used. The smaller the value of Bmax is, the more sparse the counterfactual
is in terms of prototypes, while the larger the value of Bmax is, the higher the freedom

Fig. 4 Counterfactual explanations for x0 of the ItalyPowerDemand data set which has been predicted by
the Random Forest in k0 = −1 and whose counterfactual x has to be predicted in class k∗ = +1. Different
values of Bmax, i.e., the number of prototypes used for the convex combination, have been imposed. The
cost function is model (4) with λ0 = 0, λ2 = 1
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Fig. 5 Distance obtained versus number of prototypes used in a counterfactual explanation x for x0 of the
ItalyPowerDemand data set which has been predicted by the Random Forest in k0 = −1 and it is imposed
k∗ = +1

to use prototypes and therefore the smaller the distances obtained. In Fig. 5a we plot
the relation between the number of prototypes and the distance. It is illustrated how
using more than one prototype may be beneficial, but using more than 4 prototypes
gives us less sparsity without smaller distances.

To show the flexibility of ourmodel, the same experiments have been carried out but
changing the cost based on DTW distances (5), again with λ0 = 0. The counterfactual
solutions have been calculated with the heuristic procedure described in Algorithm 1.
The results are depicted in Fig. 6. As before, one can see how the objective function
decreases as the number of prototypes Bmax increases. However, in this case, it is
sufficient to use 2 prototypes, as 3 or more will not improve much the objective
function, see Fig. 5b.

4.1.2 NATOPS

We present now the counterfactual for an instance x0 of the multivariate dataset
NATOPS. The cost function used has been of the form is the squared Euclidean model
(4) with λ0 = 1, λ2 = 0.005. As we are interested in detecting the critical functional
features to flip the classifier’s decision, we give more weight in the cost function to
the �0 as an illustration.

In Fig. 7 the counterfactual instance x for x0 for Bmax = 1 is shown. As the cost
function C contains as its first term the �0 norm, we obtain a sparse solution in the
sense of the features we need to change to move from x0 to x. Indeed, to change its
class, only three functional features have to be modified. In Fig. 8 the changed features
are presented.

As in the univariate case, we can impose different values of Bmax. In Fig. 9 we
show the counterfactual explanation for Bmax = 2 and for the same cost function.
Note how giving the flexibility to use more than one prototype, results in only having
to change two features, see Fig. 10.
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Fig. 6 Counterfactual explanations for x0 of the ItalyPowerDemand data set which has been predicted with
a Random Forest in k0 = −1 and whose counterfactual x has to be predicted in class k∗ = +1. Different
values of Bmax, i.e., the number of prototypes used for the convex combination, have been imposed. The
cost function is model (5) with λ0 = 0, λ2 = 1

5 Conclusions

In this paper, we have proposed a novel approach to build counterfactual explanations
when dealing with multivariate functional data in classification problems by means of
mathematical optimization. With our method, we ensure plausible and sparse expla-
nations, controlling not only the number of prototypes of the dataset used to create the
counterfactuals, but also the number of features that need to be changed. Our model is
also flexible enough to be used with different distance measures, e.g., the Euclidean
distance or the DTW distance. Moreover, our methodology is applicable to score-
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Fig. 7 Counterfactual explanations for x0 of the NATOPS data set which has been predicted by the Random
Forest in k0 = +1 and whose counterfactual x has to be predicted in class k∗ = −1. Bmax = 1 prototype
has been imposed. The cost function is model (4) with λ0 = 1, λ2 = 0.005

based classifiers, including additive tree models, such as random forest or XGBoost
models, as well as linear models, such as logistic regression and linear support vector
machines. We have illustrated our methodology on various real-world datasets.

There are several interesting lines of future research. First, an extension to other non
score-based classifiers, like k-NN classifiers, deserve some study. Secondly, to define
counterfactual explanations for functional data one could be interested in keeping fixed
a part of the curves defining the features.With our methodwe build the counterfactuals
from scratch using the combinations of prototypes in the interval [0, T ], but suppose
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Fig. 8 Changed features in the counterfactual explanation for x0 of the NATOPS data set which has been
predicted by the Random Forest in k0 = −1 and whose counterfactual x has to be predicted in class
k∗ = +1 with Bmax = 1. The cost function is model (4) with λ0 = 1, λ2 = 0.005
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Fig. 9 Counterfactual explanations for x0 of the NATOPS data set which has been predicted by the Random
Forest in k0 = +1 and whose counterfactual x has to be predicted in class k∗ = −1. Bmax = 2 prototypes
has been imposed. Cost function: model (4) with λ0 = 1, λ2 = 0.005

we have an instance defined in the interval [0, t0), and one might want to find out how
the rest of the curve in the interval [t0, T ] would have to be like to make the overall
curve being classified in class k∗. When constructing the rest of the curve, one would
need to maintain the smoothness and other properties of the curve. Finally, the case in
which other distance, such as the optimal transportation distance are used to measure
closeness, is a topic of interest.
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Fig. 10 Changed features in the counterfactual explanation for x0 of the NATOPS data set which has been
predicted by the Random Forest in k0 = +1 and whose counterfactual x has to be predicted in class
k∗ = −1 with Bmax = 2. The cost function is model (4) with λ0 = 1, λ2 = 0.005
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