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Abstract

We introduce a framework for social welfare evaluation that accommodates multiple dimensions
of individual welfare, permits incorporating value judgements and enables robust social welfare
comparisons. Our framework follows a dominance-based paradigm and utilises non-decreasing
and potentially concave multi-attribute functions to model individual welfare. We describe how
this permits capturing a variety of trade-offs between welfare attributes as well as incorporating
concerns about distributional inequality in social welfare evaluation. We derive theoretical results
which enable the practical implementation of our approach. Our framework incorporates a welfare
measurement scale. This facilitates a richer form of analysis, compared to other dominance-based
methods, from which we can gauge the overall level of social welfare in different populations relative
to some meaningful benchmarks, as opposed to deriving only partial rankings. We illustrate the
application of our framework with a case study investigating social welfare across 31 European
countries based on the EU-SILC dataset.

Keywords: Multiple criteria analysis, social welfare, inequality aversion, value judgements,
multidimensional stochastic dominance.

1. Introduction

Recent decades have witnessed a steady shift in perspectives about what constitutes societal

progress. Across global and national policy arenas, there is now widespread recognition that

progress extends beyond the confines of economic objectives. This is exemplified by the United

Nations’ adoption of the Sustainable Development Goals (UN, 2015), to serve as a broad set of

shared global objectives to foster lasting prosperity for people and the planet. These goals encom-

pass not only material conditions, such as ‘no poverty’ and ‘decent work and economic growth’,

but also health, education, and equality, as represented by ‘good health and well-being’, ‘quality

education’, ‘gender equality’ and ‘reduced inequalities’. This multifaceted approach has spurred a

burgeoning interest in developing multidimensional indices of societal progress, some of which gar-

ner considerable interest from policy makers and the media, such as the UN’s Human Development

Index and the OECD’s Better Life Index (see, e.g., United Nations Development Programme, 2022;

OECD, 2020). Human welfare is a key component of appraising social advancement and identi-

fying inequalities. Both the research community and policy circles now widely acknowledge that

individual well-being is inherently multidimensional, spanning not only material living standards

such as individual income and wealth, but also dimensions such as health, education, social rela-

tionships, work and security (see, e.g., Stiglitz et al., 2009; Fleurbaey and Blanchet, 2013; Stiglitz

et al., 2018). This conceptual framework is known as multidimensional welfare measurement.
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Multidimensional welfare evaluation entails comparing multidimensional distributions of various

welfare measures (referred to as attributes) across several populations and/or over time. For

example, comparing joint distributions of income and health, using metrics such as annual income

and life-expectancy, across different countries. Such comparisons involve a double aggregation:

over different attributes and over different individuals comprising a population. This aggregation

task is fraught with ethical dilemmas but is also of foremost practical relevance: an acceptable

apparatus for evaluating social welfare would be a vital input to public policy formulation and

resource prioritisation (prospectively) and evaluation (retrospectively).

Broadly, approaches to multidimensional welfare measurement fall into two families: aggregative

and dominance-based. Aggregative approaches employ parametric formulas to create a composite

index from different welfare attributes. Their key advantage is that they are decisive: they allow for

ranking all populations considered as well as assessing the level of social welfare using a meaningful

measurement scale. However, their results can be highly sensitive to the choice of aggregation

formula and parameter values. Additionally, many aggregative approaches work with aggregate

(country-level) data, e.g. GDP per capita, which overlooks the issue of inequality within attribute

distributions. These issues have spurred the development of dominance-based approaches. These

seek to identify which populations are deemed superior in terms of welfare (i.e. “dominate” other

populations) across a set of admissible aggregation possibilities. This set is modelled via imposing

structural assumptions on the functions used to measure individual or social welfare, sidestepping

the use of parametric formulas. Further, dominance methods are not restricted to using country-

level data, but can consider the full joint distribution of attributes across a population. Dominance

approaches are therefore a conceptual generalisation of aggregative approaches. A key advantage of

this is that they are able to identify robust conclusions about social welfare across the populations

considered, i.e. not reliant on specific formulas, parameter values, or summary statistics. However

this can come with a significant loss in decisiveness (comparative power): often only a small number

of robust comparisons can be made. Further, no measurement scale is used and so there is no way

of identifying to what extent social welfare in some populations is higher than in some others, nor

how they all fare relative to some meaningful benchmark. Finally, not all dominance approaches

can utilise the cardinal nature of attributes such as income, life-expectancy, quality adjusted health

(relying instead on ordinal attributes such as income quintile, access to healthcare, health quintile),

and those that do require assumptions about global substitutability or complementarity in the

attributes considered, e.g. assuming that the marginal effect on individual welfare arising from

increases in income always increases as health increases.

In this paper we aim to address shortcomings of existing approaches for multidimensional

welfare analysis, by introducing a new approach that bridges the gap between aggregative and

dominance-based methods. This is done by using a framework that: (1) offers a flexible way of

utilising cardinal data; (2) allows the use of a welfare measurement scale; (3) permits incorporating

value judgements in the analysis; and (4) facilitates robust social welfare comparisons.

Our approach follows a dominance paradigm. As such it is designed to identify robust con-

clusions about social welfare in different populations. However, we use a theoretical framework

that allows for utilising cardinal data without imposing global assumptions about the nature of

substitution or complementarity relationships between individual welfare dimensions. Following

Argyris et al. (2014), we accommodate this requirement by considering individual welfare func-

tions that are non-decreasing and, potentially, concave. As we discuss, this allows for a variety of

trade-offs between attributes but also permits introducing inequality aversion in the social welfare

evaluation. A key contribution of this paper is that we introduce theoretical results to characterise

admissible sets of social aggregation possibilities that utilise such functions. Based on these we

derive a computational mechanism that enables the practical application of our approach, based
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on the solution of linear optimisation problems. Our framework can readily incorporate a wel-

fare measurement scale and permits a far richer analysis of social welfare compared to existing

dominance-based approaches. Overall, it enables reaching robust conclusions about the level of so-

cial welfare in different populations, rather than merely comparing ordinally. Our approach offers a

way to extend the decisiveness of the analysis by following the paradigm of Multi-Criteria Decision

Analysis (MCDA; see, e.g., Figueira et al., 2005). This involves restricting the set of admissible

aggregations not only via structural assumptions, but also through incorporating value judgements

(in a similar way to how MCDA approaches use ‘preferences’ to guide decision support). In this

way we can incorporate in the evaluation a wealth of additional information about individual wel-

fare, e.g. about attribute trade-offs or marginal effects, or social welfare, e.g. about the degree of

inequality aversion. As we will see this can serve as an alternative, more flexible way of imposing

additional structural assumptions. More importantly, it permits for accommodating societal views

(and considering the implications of such) in a social welfare evaluation exercise. The versatility

of our approach, both in terms of its theoretical features as well as the incorporation of value

judgements, is illustrated with a case study that investigates welfare across 31 European countries

based on the large and widely used EU-SILC dataset.

The rest of the paper is organised as follows. Section 2 provides a focused review of the related

literature. Section 3 introduces notation and basic concepts. Sections 4 and 5, respectively motivate

and describe the use of structural properties and value judgements in our approach. Sections 6

and 7 respectively introduce and extend our theoretical results. Section 8 describes our case-study.

Section 9 provides a concluding discussion.

2. Related literature

The approach we introduce in this paper intersects a few strands of literature, namely: mul-

tidimensional stochastic orders, multidimensional welfare measurement and MCDA. We provide a

focused review of these in this section.

As mentioned previously, our paper follows a dominance-based paradigm for social welfare

evaluation. As such it adds to the extensive literature on (multidimensional) stochastic dominance

concepts, also known as (multivariate) stochastic orders. For a general mathematical treatment

we refer to the books by Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). More

specifically, our framework and methods are based on the concepts of multidimensional first order

dominance and multidimensional second order dominance.

The multivariate first order dominance concept utilized in this paper is also referred to in the

literature as the usual multivariate stochastic order (e.g. Lehmann, 1955; Levhari et al., 1975;

Østerdal, 2010). A method for verifying first order dominance in the multivariate finite scenario

has been outlined by Mosler and Scarsini (1991) as well as Dyckerhoff and Mosler (1997) via

linear programming.1 Arndt et al. (2012) and other subsequent studies provide computational

implementations and empirical applications of such methods for welfare comparisons. However,

these studies do not make use of value judgements for enhancing the analysis. Moreover, they do

not consider the stronger multivariate second order dominance concept as we do in this paper.

The multivariate second order dominance concept utilized in this paper generalizes the well-

known univariate second order dominance concept widely used in economics to the multivariate

setting. A multivariate distribution second order dominates another if for any non-decreasing and

concave utility function, the expected utility of the former is at least as high as of the other.

In the stochastic dominance literature, it is known as the multivariate increasing concave order

1See Range and Østerdal (2019) for a discussion and a faster algorithm in the two-dimensional case.
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(Shaked and Shanthikumar, 2007, Section 7.A). While the concept has been defined and theoreti-

cally studied, little is known about how to efficiently check second order dominance in two or more

dimensions. To our knowledge, our study is the first to implement and apply a method to check for

multivariate second order dominance. Moreover, as with the multivariate first order dominance,

we make use of value judgements (preference-statements) for enhancing the analysis, which is a

novel feature of our paper.

The use of value judgements considered in our paper strengthens the dominance concept by

allowing more decisive comparisons. In this sense, our paper also relates to the emerging literature

on multivariate almost stochastic dominance (e.g. Tsetlin and Winkler, 2018; Müller et al., 2023),

in which conditions in terms of bounds on marginal utilities are used to strengthen the domi-

nance concept. However, while multivariate almost stochastic dominance introduces restrictions

on the allowed (relative) differences between marginal utilities for each dimension separately, the

conditions we consider in our paper relate directly to comparisons of multivariate outcomes or dis-

tributions. Moreover, the conditions under multivariate almost stochastic dominance are required

to hold generally (i.e. for any pair of outcomes) while we only impose value judgements for specific

pairs of outcomes or distributions.

As mentioned in Section 1, multidimensional welfare measurement approaches fall into two

families: aggregative and dominance-based. Aggregative approaches rely on specific formulas to

combine data on different well-being dimensions into a composite index value (e.g. Nardo et al.,

2008; Alkire and Foster, 2011). Typically, this involves taking a weighted sum, using pre-determined

weights. Their main advantage is the ability to derive complete rankings of comparator populations.

However, there is rarely, if ever, consensus on the “right” parameter values for the aggregation (e.g.

weights) and different values may lead to different conclusions (rankings). This has spurred the

development of a growing literature on dominance-based approaches to multidimensional welfare

evaluation (for a number of references see below). Instead of considering a specific formula, these

approaches identify which populations are deemed superior (i.e. “dominate” the others) across a

range of admissible aggregation possibilities. Typically, admissible aggregation rules are defined

implicitly, by recourse to a set of principles pertaining to how individual well-being is accepted

to vary within and across dimensions – e.g. stipulating that individual well-being increases with

income and that marginal well-being diminishes with income and/or joint increases in income and

health. The advantage of dominance-based methods is that their comparative conclusions are “ro-

bust”, i.e. invariant across a wide set of acceptable aggregation possibilities. However, this comes

with a loss in comparative power: often robust comparisons can be derived for only a few pairs

of population distribution. Some multidimensional dominance-based approaches can (and must)

be used with cardinal data (e.g. Atkinson and Bourguignon, 1982; Bourguignon, 1989; Duclos

et al., 2006, 2007; Gravel et al., 2009; Gravel and Mukhopadhyay, 2010; Muller and Trannoy, 2011;

Duclos and Échevin, 2011; Marling et al., 2018). However, these approaches impose assumptions

about the complementarity/substitutability of different well-being dimensions. For example, as-

suming that the marginal effect on well-being from increases in income always increases as health

increases. This may only be true up to some level of health and has troubling implications about

societal attitudes to inequality: it implicitly dictates a societal preference for income redistribution

from unhealthier to healthier individuals. Other (first-order) dominance-based approaches can be

used also with ordinal data (e.g. Arndt et al., 2012, 2016; Siersbæk et al., 2016; Hussain et al.,

2016, 2020). These impose minimal aggregative assumptions, so their conclusions are most robust.

However, when cardinal data is available, the richer information that this can bring into the anal-

ysis cannot be utilised. In sum, previously applied dominance-based methods can typically derive

only a limited number of robust comparative conclusions and cannot utilise cardinal data without

imposing restrictive assumptions on the analysis.
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As detailed later in the paper, our framework enables calculation, for each population, of mini-

mum and maximum possible values for social welfare, consistent with structural assumptions (and

any value-judgements). This bears resemblance to work by Athanassoglou (2015), considering

weighed aggregation as well as with Anderson et al. (2011), using a data envelopment approach to

also establish lower and upper welfare bounds using weakly increasing and quasi-concave functions.

These however utilise aggregate (country-level) data on several indicators, whereas our research

takes a dominance-based approach so as to enable capturing population distributions across mul-

tiple indicators rather than summary measures.

Finally, as noted our method follows the MCDA paradigm of combining structural assumptions

about utility functions with elicited preference statements in the context of decision support. We

refer the reader to the comprehensive survey volumes by Figueira et al. (2005) and Ehrgott et al.

(2010) and the systematic taxonomy by Cinelli et al. (2020). Our approach builds on the CUT

method by Argyris et al. (2014) based on the use of concave and non-decreasing utility functions

in the context of choice from a set of multi-attribute alternatives. We extend this method to allow

for comparing probability (population) distributions over such alternatives. As previously noted

the structural assumptions of our framework are particularly suited to social welfare evaluation,

allowing for a variety of trade-offs between attributes but also for modelling inequality aversion –

we discuss this in more detail in Section 4. Other MCDA methods utilise different structural as-

sumptions. Of particular note are the methods on Robust Ordinal Regression (see Kadziński, 2022

for a recent survey). Like our approach, these are based on characterising a set of admissible utility

functions compatible with specified structural properties and given preference statements. Original

methods in this family utilised additive multi-attribute utility functions (e.g. Greco et al., 2008),

but later ones (e.g. Greco et al., 2014; Angilella et al., 2016) introduced non-additive frameworks to

capture interaction between attributes. The MCDA literature also intersects the broader literature

on the development of composite indicators, considering both theoretical and methodological issues

(e.g. Greco et al., 2019; Rowley et al., 2012; Lindén et al., 2021; Cherchye et al., 2007). MCDA

methods have been extensively used in applications related to social welfare evaluation, particu-

larly in environmental and sustainability assessments but also in health assessments. General issues

and guidance on the use of MCDA in these settings are discussed in Merad et al. (2013), Cinelli

et al. (2014) and Greco and Munda (2017). Most closely related to our empirical setting are the

applications to compare different regions/countries in terms of sustainable development reported

in Pérez-Ortiz et al. (2014), Pinar et al. (2014), Angilella et al. (2018), Greco et al. (2018), Resce

and Schiltz (2021) and Cinelli et al. (2022). Other related applications include the development of

robust composite measures of healthcare quality (Schang et al., 2016), as well as a composite index

for corporate entities of encompassing financial, social and environmental performance (Gaganis

et al., 2021). Unlike our approach, all these use aggregate data for the compared entities, not

population distributions.

3. Preliminaries

In this section we introduce the notation used and the basic concepts on which our methodology

is built.

3.1. Basic notation

Let I be a set of attributes indexed by i = {1, ...,m}. These consist of indicators that measure

individual welfare across a number of dimensions.2 Let Xi be the domain of each attribute i ∈ I

2For example, the material wealth, health and education dimensions can be respectively measured by use of the
indicators ‘annual equivalised income’, ‘self-assessed health’ and ‘years in education’.
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and X = X1 × ... × Xm be the multidimensional joint domain of the attributes. We assume that

the attributes considered are cardinally measureable on interval scales.3 On this basis we may

assume with no loss of generality that all attribute scales are intervals (bounded or unbounded)

on the positive part of the real line, i.e. Xi ⊆ R+ ∀i ∈ I. For added convenience, we will assume

that the attributes have a common domain, specifically Xi = R+ ∀i ∈ I, so that X = Rm
+ . This

does not affect the validity of our results. We will refer to any element x = (x1, ..., xm) ∈ X as a

multi-dimensional outcome, and any individual component xi of this vector as the outcome level

for attribute i ∈ I.

Let T = {1, ..., q} be a set of populations (of individuals). Each population t ∈ T , will be charac-

terised by a probability mass function pt(x) over a finite subset of X . For convenience but without
loss of generality, we will make two assumptions: (1) that the populations (distributions) considered

have the same finite support, namely a set of distinct reference outcomes X = {x1, ..., xn} ⊂ X ;
(2) that x1 and xn are, respectively, the nadir and ideal outcomes of X.4 We index the set of

reference outcomes X by J = {1, ..., n}. With these in place, each population t ∈ T will be defined

as a finite probability distribution pt = (p1t, ..., pnt). We will use P = {p1, ..., pq} to denote the set

of all such probability distributions considered. Finally, we use 0 = (0, ..., 0) with the dimension of

this vector determined by the context.

3.2. Social welfare evaluation

We consider a setting where a social planner seeks to compare a number of populations in

terms of social welfare, taking into account a number of attributes. The standard concept for this

purpose in welfare economics is the social welfare function, which aggregates individual welfare

levels across a population into an overall measure of social welfare. The most commonly used ag-

gregation formula employed in the literature (see, e.g., Atkinson and Bourguignon, 1982; Siersbæk

et al., 2016) is average utilitarianism, which simply equates social welfare to average individual

welfare. Specifically, if p is a discrete probability distribution over X, then the social welfare of the

population described by p is given by the formula
∑

x∈X p(x)u(x) (for a discussion on the axiomatic

foundation of average utilitarianism see Blackorby and Donaldson, 1984; Blackorby et al., 2002).

Using our set-up of common support set X = {x1, ..., xn} and collection of populations described

by pt, average welfare evaluation takes the more specific form:

Wt =
∑
j∈J

pjtu(xj) ∀t ∈ T. (1)

Here, the function u is the individual welfare function, (commonly also referred to as an in-

dividual utility function) so that u(xj) denotes the welfare of an individual endowed with the

multi-dimensional bundle of outcomes xj . In the ensuing we will use the terms utility and individ-

ual welfare interchangeably. In this framework individual welfare is inter-personally comparable,

both in terms of levels, but also in terms of increments (i.e. welfare differences) and the function

u is unique up to increasing affine transformations5. Note, crucially, that the same function u

is used for all individuals. Thus u(xj) is not the self-reported welfare of an individual endowed

with xj . Instead it reflects the social planner’s view of the welfare level of such an individual. It

may also reflect additional considerations, so that u(xj) may be more accurately described as the

social planner’s assessment of the contribution towards social welfare arising from the welfare of

an individual endowed with xj (see, e.g., Sen and Foster, 1997, p. 39). As we discuss subsequently,

3Such cardinal measurement is required only when utilising second-order but not first-order dominance (formally
defined below).

4Specifically we have ∀i ∈ I : xi
1 = min{xi

1, ..., x
i
n}, xi

n = max{xi
1, ..., x

i
n}.

5v is a positive affine transformation of u if v = au + b for some a > 0, b ∈ R.
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this permits that we encode u not only with properties that reflect individual welfare, but also

properties that reflect desired principles of welfare aggregation (e.g. inequality aversion).

To use the formula in (1) we need to specify, to some degree, the individual welfare function u.

Instead of specifying u fully, or parametrically, we follow a dominance paradigm: we consider a set

of admissible individual welfare functions and seek to determine whether social welfare for some

populations may be deemed superior to that of others for any admissible function u. Formally:

Definition 1. Let U be a set of utility functions and let p and p′ be two discrete population dis-
tributions over X. We will say that p U-dominates p′, denoted p ⊵U p′, if for any u ∈ U it holds
that

∑
j∈J pju(xj) ≥

∑
j∈J p

′
ju(xj).

The dominance relation ⊵U is a quasi-ordering, i.e. a reflexive and transitive binary relation.

Even though its definition uses average utilitarian social welfare comparisons, the quasi-ordering

⊵U is not contingent on this. As shown in Gravel and Moyes (2013), the ordering ⊵U generalises

to the case where a broader class of social welfare functions is used (of which average utilitarianism

is a special case). We discuss this in more detail in Section 7.2.

To use this dominance framework we need to specify the set of admissible functions U . This

will be done implicitly, by specifying: (1) structural properties that any admissible function must

satisfy, combined with (2) value judgements that any such function must reflect. The structural

properties determine what principles should underpin social welfare evaluation, both in terms

of reflecting individual welfare as well as aggregating across individuals. The value judgements

enable incorporating into the evaluation specific views about the welfare of individuals endowed

with different multidimensional outcomes, or even populations of such individuals. We describe

in the ensuing how such judgements permit incorporating a wealth of additional information,

including about trade-offs between different attributes or marginal effects of different attributes

on individual welfare. As already noted this approach is in the spirit of a large family of methods

within the field of Multi-Criteria Decision Analysis (MCDA), where structural information about

utility functions is combined with preference statements elicited from stakeholders in order to

compare multi-dimensional alternatives and provide decision support. For this reason we will also

refer to the value judgements as preference statements, but it should be borne in mind that these

are meant to reflect social rather than individual preferences. In the following two sections we

discuss how we specify U along these lines.

4. Structural properties

We consider two cases of imposing structural properties on u. In the first case, u is only assumed

non-decreasing. In the second case, u is additionally assumed concave.6 The non-decreasingness

assumption is not controversial, especially within the context of social welfare evaluation, and is

standard in the literature; it stands to reason that social welfare evaluation can be predicated by

the assumption that increases in, e.g., income, health, education, ought not to make that individual

worse off for the purposes of the social welfare evaluation exercise.7 The concavity assumption is

perhaps more involved. In the setting of uni-dimensional welfare comparisons, usually related

to income or health, the use of univariate non-decreasing or non-decreasing and concave utility

6Non-decreasing means that u(x) ≥ u(x′) for any two x, x′ ∈ X : x ≥ x′. Concavity means u(λx + (1− λ)x′) ≥
λu(x) + (1− λ)u(x′), for any λ ∈ [0, 1] and any two x, x′ ∈ X .

7One may contend that empirical research does not always link increases in wealth/income or education to greater
subjective well-being. Notwithstanding, social welfare evaluation requires a normative foundation. It is difficult to
imagine a social welfare evaluation context where it is acceptable, ceteris paribus, to assume that individual welfare
decreases after some income/wealth or education level.
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functions, in conjunction with a utilitarian aggregation formula, has a long-standing tradition (e.g.

Atkinson, 1970). This renders the use of their multivariate counterparts an obvious choice in the

multi-dimensional setting. Beyond that, our choice of using concavity is additionally motivated by

two fundamental reasons.

Firstly, we want to allow for interaction effects among different attributes without having to

specify the form of this interaction a priori. As noted by Argyris et al. (2014), concave utility

functions can capture constant, increasing or decreasing marginal rates of substitution between

different attributes; respectively the utility function can be both concave and additive, or super-

or sub-modular. Specifying only that it must be concave, permits all these other structural prop-

erties, and leaves open whether these may be imposed indirectly (through preference statements

as discussed below).

Secondly, we want to allow for introducing inequality aversion in the social welfare evaluation,

as is conventional in the literature on social evaluation. If marginal individual welfare is assumed to

be diminishing in each attribute, then the formula in (1) implies that a progressive re-distribution

of, say, income, from richer to poorer individuals improves social welfare. A similar situation

arises for joint increases in multiple attributes (cf the property of Non-Increasing Intensities, which

characterises the concavity of u as shown in Argyris et al., 2014).

We will, therefore, consider the following two sets of utility functions:

U1 = {u(·) : X → R| u(x1) = 0, u(xn) = 100, u(·) is non-decreasing}, (2)

U2 = {u(·) ∈ U1| u(·) is concave}. (3)

Note that U2 ⊆ U1, so u ∈ U2 is both non-decreasing and concave. The normalisation u(x1) = 0

and u(xn) = 100 may be assumed without loss of generality, as some positive affine transformation

of a concave and non-decreasing utility function can always be constructed to meet these conditions,

and this operation would preserve both properties considered. Given that x1, xn were defined as

the nadir/ideal outcomes respectively, this bounds Wt ∈ [0, 100] ∀t ∈ T , no matter the individual

utility function u.

Using U1 in Definition 1 we derive the dominance relation ⊵U1 , which we refer to as (multi-

dimensional) first order dominance. Similarly we refer to ⊵U2 as (multidimensional) second order

dominance.

5. Incorporating value judgements

We now turn to the issue of utilising value judgements (preference statements) in social welfare

evaluation. This involves restricting the set of admissible individual welfare functions by requiring

that any such function u is compatible with some specified preferences over multidimensional

outcomes in X . Below we first discuss the additional power that this may bring to the social welfare

evaluation exercise. We then detail how specific forms of value judgements can be incorporated.

5.1. Motivation for utilising preference statements

Utilising preference statements can drastically improve the comparative power of the analysis.

As already noted, dominance-based social welfare evaluation approaches may exhibit weak com-

parative power, i.e. many distributions may be incomparable. By introducing value judgements

to a dominance-based analysis, complementary to minimal structural assumptions, we further re-

strict the set of compatible functions U . This can only ever ‘sharpen’ the quasi-ordering ⊵U . This

combination of preferences with structural properties has a long tradition in MCDA, and is a key

aspect of many MCDA approaches for decision support. The results of our case study, reported

later, clearly illustrate the value of this approach.
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Introducing preference statements can be seen as an alternative to imposing stronger structural

properties. Specifically, it permits for enforcing such properties only at specified points/regions of

the multidimensional outcome space. For example, we can use value judgements (we illustrate how

below) to indicate a diminishing marginal effect of income as health improves given that income

and health are low to begin with. This would indicate substitutability of these two attributes for

low attribute levels, but it would leave open the possibility that the relationship may be different

for higher levels of either attribute.

Utilising preference statements can be compelling from an ethical perspective. On their own,

minimal structural properties are insufficient to compare even strikingly different outcomes. Take

for example the comparison of two individuals, where one is very healthy but earns marginally

less income than the second individual who is in much poorer health. No structural property

of the individual welfare function (whether concavity, additivity, sub- or super-modularity) can,

on its own, imply any preference for either of these states. From the perspective of individual

preferences, this may be appropriate. But if we also accept that the two states are incomparable

in the eyes of the social planner, then so would two populations comprising, respectively, only

of individuals in one of the two states. Viewed from this angle, the weak comparative power of

dominance-based social welfare evaluation approaches is simply an artifact of the flexibility they

are designed to accommodate from the perspective of individual preferences. It is hardly surprising

that social welfare evaluation would become meaningless unless we can accept that we can make

some comparisons of individuals in different states. A framework that incorporates preferences

in social welfare evaluation would not dictate to the planner a preference between such states.

Instead it allows them to make a value judgement. Nor would it compel them to compare these

two specific states. Instead it allows them to state value judgements with reference to arbitrary

states they wish to compare. Utilising such judgements can lead to comparative conclusions about

the distributions evaluated that would otherwise be indiscernible. In sum, preferences information

sharpens the ability to make social welfare comparisons in a way that is compatible with the value

judgements that a social planner deems should influence social welfare evaluation.

Finally, preference statements can be used to influence the degree of inequality-aversion of the

social welfare evaluation exercise. As noted previously, this is linked to concavity of the individual

welfare function. In particular, the degree of concavity of individual welfare (i.e. the curvature of

the individual welfare function) dictates the degree of aversion towards distributional inequalities.

While all functions in set U2 are concave, some are more concave than others. Indeed even a linear

function is, by definition, concave and is included in this set; and so are functions that are ever

so slightly curved. In general, U2 may contain utility functions that are not sufficiently curved to

induce the desired degree of inequality aversion in social welfare evaluation, a point that has been

noted by Sen and Foster (1997, p. 21). As we detail in the following sections, it is possible to

influence the degree of inequality aversion in the social welfare evaluation exercise through specific

types of preference statements that involve comparisons of marginal welfare changes or comparisons

of population distributions.

In the following sections we detail the specifics of how different types of value judgements

define constraints on admissible utility functions in U . We will assume that value judgements

involve outcomes from set X or distributions from set P . This is with no loss of generality as

these sets can always be enlarged to include any outcomes or distributions involved in the value

judgements utilised. In practice, the use of hypothetical outcomes or distributions can help making

such comparisons easier. For example, it may be easier to contemplate trade-offs between two

attributes by comparing outcomes that only differ in these attributes. In comparing marginal

utility of income, it may be easier to compare outcomes that only differ in income. Similarly,

in comparing changes of marginal utility of income for different health levels it makes sense to
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compare outcomes that only differ in these two attributes. Finally, in making direct distributional

comparisons, it may be easier to compare hypothetical distributions that only differ in one of

the attributes and, additionally, where the difference of the marginal distributions on that same

attribute can be easily understood (for example, one has higher average income but is spread over

a larger range and with more probability mass at the lower end).

5.2. Ordinal preferences

The simplest case of preference statements involves comparisons of different multidimensional

outcomes. To give a simple (hypothetical) example in a two-dimensional setting, the planner may

consider that the well-being of an individual with income of 50000 EUR and a self-assessed health

status of 5 on a 1-5 scale is no lower than that of an individual with income of 55000 EUR and

health status of 2 on the same scale. We refer to such an ordinal comparison of multidimensional

outcomes as a weak ordinal preference statements, as opposed to a strict one wherein the well-

being of the former bundle would be deemed strictly higher (the same concept is used to distinguish

between weak and strict statements in the all forms of preference statements considered). Formally,

we will use the binary relation ⪰ (resp. ≻) to capture weak (resp. strict) ordinal preferences to be

incorporated in the social welfare evaluation exercise8. Using this we may denote the comparison

of the preceding example denoted by (50000, 5) ⪰ (55000, 2). Imposing this requirement on a set

of utility functions U means that we require that any u ∈ U be compatible with this statement,

i.e. that we have: u(50000, 5) ≥ u(55000, 2). In general, we encode a weak preference statement

involving two outcome bundles xj , xj′ ∈ X as a constraint on utility functions u ∈ U as follows:

xj ⪰ xj′ ⇔ u(xj) ≥ u(xj′ ). (4)

5.3. Cardinal preferences

A second type of preference statements involves cardinal preferences over multidimensional

outcomes (e.g. involving comparisons of marginal utility), also known as preference intensities.9 In

the same two-dimensional setting considered previously, for example, the social planner may feel

that the increase in individual welfare of an extra 1000 EUR for an individual endowed with bundle

(50000, 5) is no less than that for an individual endowed with (55000, 2). Formally, weak (resp.

strict) preference intensities are captured by the quaternary relation ⪰∗ (≻∗). Using this we denote

the comparison of the preceding example by (51000, 5) ← (50000, 5) ⪰∗ (56000, 2) ← (55000, 2).

Imposing this requirement on a set of utility functions U requires that for any u ∈ U we have:

u(51000, 5)− u(50000, 5) ≥ u(56000, 2)− u(55000, 2). In general, we encode a preference intensity

statement involving four outcome bundles xj , xj′ , xk, xk′ ∈ X, as a constraint on utility functions

u ∈ U as follows:

xj ← xj′ ⪰
∗ xk ← xk′ ⇔ u(xj)− u(xj′ ) ≥ u(xk)− u(xk′ ). (5)

5.4. Distributional preferences

A third possibility is to incorporate direct social welfare comparisons as a form of preference

statements. This involves expressing ordinal preferences over population distributions of multidi-

mensional outcomes, which we refer to as distributional preferences. In the same two-dimensional

setting considered previously, for example, the social planner may feel that the social welfare in

a population where 50% of individuals are endowed with bundle (50000, 2) and 50% with bundle

8to be precise, ⪰ and ≻ are a specified quasi-orderings of outcomes in X.
9Arguments for meaningfulness of such preference statements are presented in e.g. Edwards and Von Winterfeldt

(1986) and Harvey and Østerdal (2010).
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(60000, 5) is no higher than social welfare in a population where everyone 100% of individuals

are endowed with (55000, 3). Weak (resp. strict) distributional preference statements are cap-

tured by a binary preference relation ⪰′ (≻′) over probability distributions over X. Using this

we denote the preceding example by ((1, (55000, 3)) ⪰′ 0.5, (50000, 2); 0.5, (60000, 5)). Imposing

this requirement on a set of utility functions U would then require that for any u ∈ U we have:

u(55000, 3) ≥ 0.5u(50000, 2) + 0.5u(60000, 5). In general, we encode a preference involving two

distributions pt, pt′ ∈ P as a constraint on functions u ∈ U as follows:

pt ⪰′ pt′ ⇔Wt =
∑
j∈J

pjt′u(xj) ≥Wt′ =
∑
j∈J

pjt′u(xj) (6)

While the three types of preference statements considered are conceptually distinct, it is possible

to express them in a unified form. Ordinal preferences can be re-cast as distributional preferences

simply by using degenerate probability distributions with a single possible outcome10 Cardinal

preferences can be re-cast as distributional preferences using two-outcome 50%/50% distributions.11

Therefore, with no loss of generality we will consider distributional preferences in our mathematical

formulations.

5.5. Strict preferences

Though not explicitly stated above, strict forms of preference (i.e. given by ≻, ≻∗ or ≻′)

are accommodated by replacing weak inequalities (≥) with strict inequalities (>) in (4)-(6), as

required. For example, the strict ordinal judgement (50000, 5) ≻ (55000, 2) defines the constraint:

u(50000, 5) > u(55000, 2). In practical computations, strict inequalities can only be enforced to

some finite degree of precision, and so we may also model them as weak inequalities using a small

positive threshold ε > 0 as a lower bound for utility differences. For example, the aforementioned

strict preference statement would be modelled by the weak inequality u(50000, 5)−u(55000, 2) ≥ ε.

We can set ε to be positive but as small as the numerical precision permits. In a cardinal framework,

however, the magnitude of the ε threshold is a meaningful concept: it defines a minimal discernible

difference in individual welfare (given the scale). To define this independently of the scale used, we

can specify a minimal proportion of the scale’s range12. This offers an easy way of incorporating

richer value judgements. In the context of preference-guided decision support, Argyris et al. (2014)

additionally cluster ordinal statements based on preference intensities, by asking decision makers to

additionally consider if their stated preference is ‘weak’, ‘moderate’ or ‘strong’, and report notable

gains in the comparative power of the analysis. Similar strategies can be implemented in our

setting. To give a simple example, we could implement a threshold of, say, 10% of the maximal

difference (i.e. set ε = 10) and enforce this for any stronger preferences. In general, using higher

threshold values impose stronger restrictions on the sets of admissible individual welfare functions

and are expected to increase the comparative power of the analysis. Nevertheless, in our case study

we use a smaller value of ε = 1, which corresponds to 1% of the 0-100 scale range.

5.6. Formal set-up

We present here how the aforementioned types of preference statements are used to restrict

the set of admissible individual welfare functions. With no loss of generality, we make three

10xj ⪰ xk ⇔ (0, x1; ...; 1, xj ; ...; 0, x)) ⪰′ (0, x1; ...; 1, xk; ...; 0, xn).
11xj ← xj

′ ⪰∗ xk ← xk
′ ⇔ u(xj) − u(xj

′ ) ≥ u(xk) − u(xk
′ ) ⇔ 0.5u(xj) + 0.5u(xk

′ ) ≥ 0.5u(xj
′ ) + 0.5u(xk) ⇔

(0.5, xj ; 0.5, xk
′ ) ⪰′ (0.5, xj

′ ; 0.5, xk).
12Ratios of welfare differences are constant across positive affine transformations of the individual welfare function.

Therefore, for any two outcomes x, x′ : x ⪰ x′ the ratio u(x)−u(x′)
u(x1)−u(xn)

is constant across all positive affine transfor-
mations of u. Then we can define a meaningful minimum discernible proportion of the maximal welfare difference
u(x1) − u(xn), which in our case has been normalised to 100. Multiplying this value with 100 gives the minimum
discernible welfare difference ε, on a 0-100 scale.
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simplifications for the sake of presenting concise formulations. Firstly, we (equivalently) encapsulate

all preference types of value judgements as distributional preferences, given by the relation ⪰′.

Secondly, we assume that the preferences encapsulated in ⪰′ involve only outcomes from set X and

distributions from set P (we can always enlarge these two sets to satisfy this assumption). Thirdly,

we do not explicitly consider strict preference statements ⪰′ (adding them using the threshold

approach does not affect our results). With these in place we may define U1(⪰′), U2(⪰′), the

subsets of individual welfare functions compatible with ⪰′, as follows:

Ud(⪰′) = {u ∈ Ud|
∑
j∈J

pjt′u(xj) ≥
∑
j∈J

pjt′′u(xj) ∀t′, t′′ : pt′ ⪰′ pt′′}, d = 1, 2. (7)

We are interested in the quasi-orderings obtained by using Ud(⪰′), d = 1, 2, in Definition 1, for

which we reserve the following special notation:

⊵d = ⊵Ud(⪰′), d = 1, 2, (8)

6. Main theoretical results

We now deal with the problem of how to verify whether p ⊵1 p′ or p ⊵2 p′ for two population

distributions p, p′ ∈ P .

For any set of functions U , we define U[X] as the set of images of functions in U restricted to

the set of outcomes X, i.e.:

U[X] = {(u(x1), ..., u(xn)) | u ∈ U} . (9)

We are specifically interested in the sets Ud
[X] and U

d
[X](⪰

′), d = 1, 2. We will derive polyhedral

descriptions for these sets.

Let υ = (υ1, ..., υn) ∈ Rn denote a utility assignment (i.e. an assignment of utility values) to

outcomes in X. We will consider the following two sets of utility assignments:

U1 =

υ ∈ Rn

∣∣∣∣∣∣∣∣∣
υj = wjkxj + βjk ∀j, k ∈ J

υk ≤ wjkxk + βjk ∀j, k ∈ J : j ̸= k

wjk ∈ Rm
+ , βjk ∈ R ∀j, k ∈ J

υ1 = 0, υn = 100

 , (10)

U2 =

υ ∈ Rn

∣∣∣∣∣∣∣∣∣
υj = wjxj + βj ∀j ∈ J

υk ≤ wjxk + βj ∀j, k ∈ J : j ̸= k

wj ∈ Rm
+ , βj ∈ R ∀j ∈ J

υ1 = 0, υn = 100

 . (11)

We may now state our main result which shows13 that Ud = Ud
[X], d = 1, 2 (all proofs are in

Appendix A).

Theorem 1. For d = 1, 2, we have υ ∈ Ud ⇔ υ ∈ Ud
[X].

Now consider the following sets of utility assignments:

U(⪰′) = {υ ∈ Rn|
∑
j∈J

pjt′υj ⩾
∑
j∈J

pj,t′′υj ∀t′, t′′ : pt′ ⪰′ pt′′} (12)

13For the case d = 1 the result is new. For the case d = 2 the result extends the corresponding Theorem in
Argyris et al. (2014) which is restricted to the case where X ⊂ Rm

++ (i.e. excluding the possibility for 0 coordinates
in outcomes of X) and also simplifies some parts of its proof.
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Ud(⪰′) = Ud ∩ U(⪰′) (13)

We refer to the above as sets of compatible utility assignments (i.e. compatible with ⪰′). We

may now state the following generalisation of Theorem 1.

Corollary 1. For d = 1, 2, we have: υ ∈ Ud(⪰′)⇔ υ ∈ Ud
[X](⪰

′).

With this in place it is easy to verify dominance. Specifically, let p′ and p′′ be two population

distributions. We can verify whether p′ ⊵d p′′ by solving a linear-programming problem, according

to the following:

Theorem 2. For d = 1, 2: p′ ⊵d p′′ ⇔ min{
∑

j∈J p
′
jυj −

∑
j∈J p

′′
jυj | υ ∈ Ud(⪰′)} ≥ 0.

Because our framework incorporates a scale for social welfare and explicitly models individual

welfare (utility) values, it enables a richer form of analysis complementary to dominance-based

comparisons. Based on Theorem 1, we can calculate, for each population, minimum (worst case)

and maximum (best case) values for social welfare. This is formally stated in Theorem 3 below.

As we illustrate in our case study, this result enables assessing the level of social welfare in each

population, as well as the degree to which some populations may have higher welfare than others.

Theorem 3. For d = 1, 2 : max{
∑

j p
′
ju(xj)| u ∈ Ud(⪰′)} = max{

∑
j p

′
jυj | υ ∈ Ud(⪰)} and

min{
∑

j p
′
ju(xj)| u ∈ Ud(⪰′)} = min{

∑
j p

′
jυj | υ ∈ Ud(⪰)}.

7. Extensions to theoretical results

In this section we outline how our main results can be extended to capture: strictly increasing

individual welfare functions; and a broader set of social welfare functions.

7.1. Strictly increasing functions

Although we have considered non-decreasing functions in the definitions of U1 and U2 above, our

results can be readily modified to the case where only strictly increasing functions are permitted. In

principle, some non-decreasing functions may be deemed unrealisitic for social welfare evaluation,

in the sense that they do not reflect an adequately positive influence on individual welfare from

increases in some of the attributes. For example, even a function that is flat everywhere except for

the nadir of X is included in U1 and U2. Similarly, both sets include functions that imply almost

zero increase in individual welfare even after substantial increases in any or all attributes. We can

enforce strictly increasing individual welfare functions via a minor modification in (10) and (11):

using strict inequalities wjk > 0 and wj > 0 in these two formulations respectively. In parallel

to Theorem 1, we can establish a connection between these modified formulations and the sets of

strictly-increasing (and additionally concave) functions. This is formally stated in the following.

Theorem 4. Let Ud ⊂ Ud, d = 1, 2, respectively denote the sets of strictly increasing, and strictly

increasing and concave utility functions.14 Let U
d
, d = 1, 2, be defined by respectively restricting

wjk in (10) so that wjk > 0, and wj in (11) so that wj > 0. Then for d = 1, 2 we have υ ∈ U
d ⇔

υ ∈ Ud
[X].

14A function u is strictly increasing if for x, x′ ∈ Rm : x′ ≥ x, x′ ̸= x we have u(x′) > u(x).
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Analogously, we can adapt all results in the previous section to account for the use of only

strictly increasing functions, by replacing Ud with U
d
and Ud

[X] with U
d
[X]. As already commented,

in practice strict inequalities are implemented via a threshold approach. This means using wjk ≥ δ

and wj ≥ δ, i.e. enforcing a positive lower bound δ > 0. These variables define local gradients

of individual welfare functions at various points xj . Because gradients represent marginal changes

(i.e. welfare differences), the value of the lower bound δ is a meaningful concept in a cardinal

framework. By using larger values (possibly enforced only at specific xj points), we can exclude

functions that are deemed insufficiently sensitive to increases in some of the attributes. Such an

approach would be similar to how ‘extreme’ utility functions are excluded using the concept of

‘almost stochastic dominance’ (Leshno and Levy, 2002) in individual choice under risk (see also

Section 2 for references regarding the multivariate case). In our computational trials we found that

using larger values for threshold can have noticeable impact on the dominance instances identified.

Therefore, we have kept the threshold used in our case study low: setting δ = 10−3, which is quite

small (given the 0-100 welfare scale).

7.2. Welfarist social orderings

We elaborate here on a point made previously, about the validity of our results under a more

general social welfare evaluation framework (i.e. not restricted to utilitarianism). Let U be an

arbitrary set of individual welfare functions. For any u ∈ U let ut be the vector of individual

welfare levels according to u for the population described by distribution pt.

Assume for now that all populations in T have the same total number of individuals, denoted

q, so that for any u ∈ U , all ut are of length q. Then instead of comparing averages of individual

welfare across populations we may equivalently compare the sum-totals. The utilitarian quasi-

ordering relative to U , denoted ⪰U is then defined by the pairs of populations where one has

no less total welfare than another across all functions in U . A more general framework would

involve modelling the social welfare in each population as w(ut) t ∈ T , where w(·) is a social

welfare function according to which the individual welfare levels are aggregated. Let W be a set

of admissible social welfare functions. Then the welfarist quasi-ordering, denoted ⊵W(U) consists

of the pairs of populations where social welfare is no less in one than the other for all admissible

individual utility functions u ∈ U and social welfare functions w ∈ W. Various properties are

typically considered in the literature to specify the classW. The property of impartiality is typically

used, to capture the principle that the identities of the individuals involved are immaterial. This

requires symmetry of the welfare function so that w(ut) = w(Πut) for any q × q permutation

matrix Π. Further, a requirement of efficiency is typically imposed, to capture the principle that

an increase in any individual’s utilities, ceteris paribus, cannot decrease social welfare. This requires

that the social welfare function is non-decreasing. We use W1 to denote the set of symmetric non-

decreasing welfare functions. Finally, to introduce an aversion to inequality in the distribution

of individual welfare, the welfare function is usually assumed to be Schur-concave. This means

that w(But) ≥ w(ut) for any q × q bi-stochastic matrix B.15 This property can be shown to be

equivalent to a preference for re-distribution of welfare from a better-off to a worse-off individual.

We use W2 to denote the set of non-decreasing and Schur-concave functions. Note that Schur-

concavity implies symmetry and that sum aggregation (utilitarianism) is included in both W1 and

W2.

Under mild conditions, the generality of considering sets W1 or W2, has no material impact

on the ordering of populations (Gravel and Moyes, 2013). Specifically, the condition that U is

closed under composition with non-decreasing functions is sufficient to guarantee that ⊵W1(U)=⊵U .

15A square matrix is bistochastic if the all its entries are nonnegative reals and each of its rows and columns sums
to 1.
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Further the condition that U is closed under composition with non-decreasing and concave functions

is sufficient to guarantee that ⊵W2(U)=⊵U . In our setting, the composition of a non-decreasing

function with a non-decreasing function is non-decreasing and so we obtain that ⊵W1(U1)=⊵U1 .16

Further, a concave and non-decreasing transformation of a concave and non-decreasing function

is also concave and non-decreasing, so that we also obtain ⪰W2(U2)=⪰U2 .17 Finally, since any

non-decreasing transformation of a utility function represents the same preference ordering as the

original function, then for the special case where ⪰′ consists of only ordinal preference statements,

denoted ⪰ we have ⪰Wd(Ud(⪰))=⪰Ud(⪰), d = 1, 2.

Similar equivalences can be obtained when the sizes of the compared populations differ. This

is because the comparison of two populations of different size based on average individual welfare

is equivalent to the comparison of two different populations of equal size, constructed from the

original two populations, using (sum) total welfare. Let qt be the total number of individuals of

population t ∈ T and qjt be the number of individuals of population t ∈ T endowed with xj , j ∈ J .

Consider two populations t, t′ ∈ T and some u ∈ U . Starting from average utilitarianism we obtain:∑
j pjtu(xj) ≥

∑
j pjt′u(xj) ⇔

∑
j
qjt
qt
u(xj) ≥

∑
j

qjt′

q′t
u(xj) ⇔

∑
j qt′qjtu(xj) ≥

∑
j qtqjt′u(xj).

The left hand side of this inequality can be considered as total individual welfare in a population

constructed by replicating each individual in population t as many times as the number individuals

in population t′, and vice versa for the right hand side, so that both constructed populations are

of size qtqt′ . Comparisons of such constructed populations via a utilitarian based quasi-ordering is

equivalent to comparisons based on a welfarist quasi-ordering in the sense discussed previously.

8. Case Study: Welfare comparisons between European countries

Our framework can be readily applied in practice, to make multidimensional welfare com-

parisons of different populations. Here we report on an application to compare welfare across 31

European countries, using three attributes: Income, Health and Education. The results give a clear

demonstration of the potential of our approach. Comparing with a baseline scenario of first order

dominance (FOD), we find that the discriminatory power of the analysis improves markedly with

the use of the second order dominance (SOD) framework. We also find that utilising value judge-

ments (by means of preference statements) can dramatically improve the discriminatory power

of the analysis. As we will see, enriching the analysis in this way reveals interesting insights.

In particular, clusters of countries emerge from the dominance results, and this gives indications

about the spatial distribution of welfare across Europe. Finally, the analysis of welfare ranges,

made possible by our framework, provides additional valuable insights. As we report below, a

picture about welfare discrepancies across Europe emerges that is entirely indiscernible based on

dominance analysis alone.

8.1. Data

The European Union Statistics on Income and Living Conditions (EU-SILC) is a widely used

data source for empirical analyses. This is a representative survey of households in the European

Union countries as well as some countries in the periphery of the EU. EU-SILC monitor changing

socio-economic conditions across Europe by measuring a range of economic and social indicators,

including demographics, income, taxes and benefits, and labour market status. For most countries

16Strictly speaking, sets U1 and U2 are normalised such that u(x1) = 0 and u(xn) = 100. However this does
not affect the equivalences above, because if v is some positive affine transformation of a non-decreasing (resp. and
concave) function u then v is also a non-decreasing (resp. and concave) function and further for any two t, t′ ∈ T
(1, . . . , 1)vt ≥ (1, . . . , 1)vt′ ⇔ (1, . . . , 1)ut ≥ (1, . . . , 1)ut′ . Thus for d = 1, 2 ⪰Ud is the same ordering, whether we
normalise Ud or not.

17See previous footnote.
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considered, we use the cross-sectional survey conducted during 2019. Unfortunately this round did

not include Iceland and the UK. However these were included in the 2018 round, so only for these

two countries we used data from this earlier round. This practice has been adopted previously (see,

e.g., Hussain, 2022), and is justified by the fact that variation from year to year is not typically

large (bearing in mind that the data were collected before the start of the COVID-19 pandemic).

The age range of individuals included in the sample is 25-81 years. The 31 countries included are

listed in Table 1, along with their abbreviated names (two-letter ISO codes).

Country ISO Country ISO Country ISO Country ISO
Name Code Name Code Name Code Name Code

Austria AT Finland FI Latvia LV Serbia RS
Belgium BE France FR Lithuania LT Slovakia SK
Bulgaria BG Germany DE Luxembourg LU Slovenia SI
Croatia HR Greece EL Netherlands NL Spain ES
Cyprus CY Hungary HU Norway NO Sweden SE
Czechia CZ Iceland IS Poland PL Switzerland CH
Denmark DK Ireland IE Portugal PT United Kingdom UK
Estonia EE Italy IT Romania RO

Table 1: Countries included with ISO codes.

The indicator we use for an individual’s income is equivalized household disposable income,

measured in 1,000 EUR. We calculate this from the EU-SILC variable hy020: ‘total disposable

household income’. This is the sum across all household members of gross personal market and

non-market income components minus personal income and wealth taxes, adjusted for household

composition. The income is made comparable across countries by transforming to a common

currency (EUR) and by taking international differences in purchasing power into account (PPP).

To adjust for household size the new OECD equivalence scale is used, where a single adult counts

1 and subsequent individuals aged 14+ count 0.5, while children aged 0-13 years count 0.3, such

that the household weight (adult equivalents) is 1 + 0.5Ö(Number of Adults - 1) + 0.3Ö(Number

of Children).

The indicator we use for health is the individual self-reported health level as represented by

the EU-SILC variable ph010: ‘self-perceived general health’. The possible answers are: very good,

good, fair, bad, and very bad. We reversed the ordering and coded the scale numerically by using

0 for ‘very bad’ and 4 for ‘very good’ with the other categories coded 1, 2, 3 respectively, in order

of improving health. This, five-point ‘Likert’ scale is categorical in principle, but such scales are

commonly treated as interval scales in the literature (e.g., Van Praag, 1991; Ferrer-i-Carbonell and

Frijters, 2004; Frey et al., 2009; Powdthavee and Van Den Berg, 2011).

The indicator we use for education is the number of years of an individual’s schooling (including

university). This is calculated using EU-SILC variable pe040: ‘highest ISCED level attained’

(International Standard Classification of Education). The levels are: less than primary, primary,

lower secondary, upper secondary, post-secondary but non-tertiary, short cycle tertiary, bachelors

degree, masters degree, and doctorate degree. We convert these to the following corresponding

number of years: 2, 5, 10, 13, 14, 15, 16, 18, and 21 years of education.

The initial sample size was 655,841 individuals. We wanted to focus on individuals who had

completed education, so we excluded any one below the age of 25, which means 494,110 observations

remained. A further 14.2% of observations were excluded due to having an invalid response in one

or more of the three welfare indicators. The final number of observations is still a staggering

423,743 respondents. The reduction is nevertheless sizeable and thus risks introducing bias in the

analysis. But taking the sample as a whole the bias does not seem to be outspoken, since averages
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of central variables are not that different when we compared the initial and final samples. The

gender distribution in the used sample is still close to 50-50, while average age is slightly lower,

average income is slightly higher, average health is almost the same, while average education is a

little higher.18

The sample of individuals is categorised into a number of groups, defined by the possible

combinations of five different levels of each indicator. For health, we use the five levels used in

the survey. For income, we use the five quintiles of the distribution of income across the whole

sample (i.e. all countries). For education we use five levels represented by 2-5, 10, 13, 14, and 15+

years of education. For each of the three attributes, we use the category average in the original

sample, for any individual in that category. The five average levels used for each category are

given in Table 2. For brevity, we will refer to the five levels (in each variable) as: ‘Lowest’, ‘Lower’,

‘Middle’, ‘Higher’, ‘Highest’. With five levels for each of three welfare variables the number of

possible outcome combinations is 125(= 53).

Levels
1: Lowest 2: Lower 3: Middle 4: Higher 5: Highest

Income (1000 EUR) 7.295 13.334 18.36112 24.578 42.824
Health (category) 0 1 2 3 4
Education (years) 4.403 10 13 14 15.149

Table 2: Average variable values in each category

This grouping of individuals is not a requirement of the methodology and can in principle be

skipped altogether. It does, however, help reduce the size of the optimisation problems solved.

The total number of groups (125 in our categorised case) determines the cardinality of set J in

our previous formulations, and so determines the size of the linear optimisation problems that

need to be solved. For this proof-of-concept application, we used a grouping that could be easily

handled on a laptop with a four-core 1.6Ghz processor and 8GB of RAM. All computations used

no more than 500 seconds for a full run (i.e. checking for FOD/SOD dominance across all pairs

of countries given a set of value judgements) using CPLEX v22.1.1.0 as the optimisation solver.

This suggests that much more finely grained groupings could easily be handled even with modestly

stronger computational resources.

8.2. Value judgements

We present below the value judgements considered in different scenarios of our analysis. Al-

though we used judgements that seemed defensible in our view, we stress that our intention is not

to advocate for these specific judgements. Instead we aim to illustrate the potential impact of using

such judgements on the results of the dominance analysis and the derived welfare ranges for all

countries. To that end we used judgements to indicate trade-offs that mostly favour improvements

in health above other attributes, but we also complemented this with a reversal in preference in

specific cases. The full details are given below. In the manner explained in Section 5, each judge-

ment can be incorporated by formulating a number of linear constraints which are then included

in the definition of U(⪰′) as given in equation (12).

We do not mention it explicitly to avoid repetition, but all judgements are stated ceteris paribus:

in any statement, an attribute not mentioned is assumed constant. The term ‘increment’ refers to

18This suggests that any major bias is not seen, although the sample size reduction is very uneven across countries,
e.g., only 0.03-0.05% excluded observations for Serbia, Austria, and Cyprus, and as high as 49.4-57.9% excluded
observations for Finland, Iceland, and Slovenia. But even for the latter three countries the averages of welfare
indicators or demographics such as gender or age are not affected much.
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any increase from a lower to the next higher level in some attribute. For example, the phrase ‘an

increment in income up to middle level’ includes both of two possibilities: a) from lowest (7.295)

to lower (13.334) and b) from lower to middle (18.36112).

The following two (ordinal) judgements are designed to capture a preference for improvements

in health vs any of the other two attributes, except in cases where an individual is already of above

middle health but has relatively low income or education respectively.

Judgement 1 (Trade-offs between Health and Income). An increment in health up to “higher”
level is preferred to any increment in income. An increment in income up to “middle” level is pre-
ferred to an increment in health from “higher” to “highest” level.

Judgement 2 (Trade-offs between Health and Education). An increment in health up to
“higher” level is preferred to any increment in education. An increment in education up to “middle”
level is preferred to an increment in health from “higher” to “highest” level.

The following (ordinal) judgement is designed to capture a preference for improvements in

income vs education except in cases where income is already at higher level.

Judgement 3 (Trade-offs between Income and Education). An increment in income up to
“higher” level is preferred to any increment in education. An increment in education is preferred
to an increment in income from “higher” to “highest” level.

To illustrate the use of cardinal preference statements, we used the following judgement. It is

designed to introduce sub-modularity in the underlying welfare utility function, except that this is

imposed locally and only for increments in income up to higher level.

Judgement 4 (Effects of Health increases). An increment in health leads to a higher increase
in individual welfare when income is lower, provided income is no higher than at “middle” level.

To illustrate the usefulness of SOD and the use of value judgments, we repeated the analysis for

different scenarios where we successively refined the set of admissible individual welfare functions.

For the baseline we used FOD without any additional value judgements, i.e. assuming only that

individual welfare functions are strictly increasing. As a second scenario we considered SOD

without any judgements. We also combined SOD with the Judgements 1-4 stated above, adding

them one at a time in the order they were stated. This gave four additional scenarios which, for

ease of reference, we label by SOD[J1], SOD[J1-2], SOD[J1-3] and SOD[J1-4] respectively.

8.3. Results: dominance identification

The results of the dominance analysis are given in Table 3 and Figure 1. Table 3 shows the

number of pairs of countries where the population distribution of one is found to dominate the

population distribution of the other, across the different scenarios considered. To get a sense of

the strength of the identified quasi-orderings, the percentages (shown in parentheses) can be used.

These are calculated based on a theoretical maximum value of 465 dominance instances that would

be implied by a full ranking of the 31 countries (465 =
(
31
2

)
, i.e. the number of distinct country

pairs). Figure 1 gives the full results of the dominance analysis. A positive number in any cell

indicates that the population distribution of the country in the corresponding matrix row dominates

that of the country in the corresponding column. The values shown indicate the scenario in which

a specific dominance instance was first identified. For example, the dominance instances of scenario

1 (FOD) are indicated by 1; the dominances instances of scenario 2 (SOD) are indicated by 1 or 2,

with 2 being the additional dominance instances attributed relative to the previous scenario, and

18



Scenario Dominance Instances

1: FOD 45 (9.7%)
2: SOD 86 (18.5%)
3: SOD[J1] 132 (28.4%)
4: SOD[J1-2] 239 (51.4%)
5: SOD[J1-3] 410 (88.2%)
6: SOD[J1-4] 426 (91.6%)

Table 3: Dominance Instances (and percentages of maximum possible dominance instances: 465) across Scenarios

Figure 1: Matrix of dominance results

so on. An empty cell implies that the row country is not found to dominate the column country,

but the reverse may be the case if the corresponding cell shows a positive value.

The FOD scenario is the baseline for assessing the value of the SOD approach (with or without

judgements) introduced in this paper. There are few FOD instances identified, but of course these

would be very robust findings, not contingent on any concavity assumptions or value judgements.

Portugal (PT) is dominated by the majority of countries. The Republic of Serbia (RS) is also

dominated by a few countries. At the other end, Switzerland (CH) is found to dominate several

countries.

The use of a SOD framework and the use of value judgements can improve the comparative

strength of the dominance analysis significantly. Just the use of SOD doubles the dominance

instances compared to the baseline. From there, the use of judgements can have a dramatic effect,

leading to identifying between 28%-92% of the maximum number of dominance instances across the

scenarios. Of course the results will, in general, depend on the specific value judgements employed;

nevertheless the potential of incorporating value judgments and SOD stands out clearly. Several

countries are found to dominate or be dominated by many others only when value judgements

are considered. The biggest impact seems to stem from incorporating trade-offs between health
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and education or income and education (scenarios 4 and 5). Lithuania (LT) and Greece (EL),

for example, are not dominated by many countries up to scenario 3 but are dominated by most

countries from scenario 4 onwards. Belgium (BE) and Luxembourg (LU) are found to dominate

most other countries, but only from scenario 4 onwards. The quasi-ordering of Scenario 6 (SOD[J1-

4]) is shown in the graph of Figure 2, in which the nodes indicate countries and the edges indicate

dominance in the direction shown by the arrow. Such graphs can be used to define (ordered) clusters

of countries based on the dominance instances identified. The top cluster includes countries that

are not dominated by any other country. In this case the top cluster only includes Switzerland

(CH). Each subsequent cluster includes countries that are dominated only by countries in preceding

clusters (though not necessarily all such countries). We have drawn the graph such that countries

in the same cluster are on the same vertical level. It is evident that countries around North/Central

Europe populate most of the top level clusters, whereas countries around South/East Europe tend

to populate the lower level clusters.

Figure 2: Induced graph of the quasi-ordering of Scenario 6 (SOD[J1-4]).

8.4. Results: welfare ranges

Although dominance analysis helps identify the relative position of countries in terms of social

welfare, it does not allow us to identify the degree to which some countries may outperform others,

or how all countries perform relative to some benchmark. In Figure 2, we cannot get a sense of how

high welfare is in each country. The graph tells us that welfare in Switzerland is deemed higher

than welfare in, e.g., Portugal; but it does not tell us if welfare in either country should be deemed

high or low. It could well be that it is high for both or high for Switzerland and low for Portugal.

We cannot distinguish between these two possibilities based on the dominance structure identified.

The missing piece of information required for this is a scale on which to measure welfare.

The framework we introduce provides this missing piece of information, thus enriching social

welfare evaluation based on dominance analysis. Recall that any individual welfare function can

20



be normalised by fixing the utility levels of two arbitrary outcomes. In our case we set the utility

levels of the nadir and ideal points (x1 and xn) to 0 and 100 respectively. This defines a 0-100

scale for social welfare (since average utilitarianism simply takes the average of utility levels across

individuals). Further, as indicated in Theorem 3, we can calculate lower and upper bounds for

social welfare in any country t, for each scenario of value judgements considered.

In Figure 3 we illustrate the potential ranges for social welfare across countries, for three of the

scenarios define previously: FOD (scenario 1), SOD (scenario 2), SOD[J1-4] (Scenario 6). Figure

B.4 in Appendix B, provides the full results across all of the six scenarios considered. Countries

are plotted in increasing order of the computed minimum bounds for average welfare. We have

annotated the welfare scale with four intermediate values, defining welfare intervals of length 20,

which we refer to as: low; moderately low; moderate; moderately high; high. The results very

clearly illustrate the value of the introduced approach. The baseline, FOD, scenario provides no

meaningful information about social welfare levels: the welfare range spans almost the entire 0-100

scale for most countries. Moving on from that to simple SOD already provides some meaningful

bounds, particularly lower bounds: we can see clearly that for about one third of countries average

welfare would be at a moderate level or above in the worst case, and almost all countries attain

at least a moderately low level of social welfare in the worst case. Moving on to the scenario

incorporating all value judgements defined previously, we can see a dramatic reduction of potential

welfare ranges for all countries. About a fifth of countries can be seen to comfortably attain a

level of high average welfare. Crucially, with one exception, all countries can be seen to attain at

least a moderate level of average welfare (and in fact also the Republic of Serbia almost attains

this with a minimum of 48). Further most countries attain at least a moderately-high level in

the worst case (lower bound). This paints an informative picture for social welfare across Europe,

which is completely indiscernible based on investigating dominance instances only. Similarly, we

can get a sense of the magnitude of differences in social welfare across countries by looking at the

variation in social welfare ranges. For example, the top 6 countries, as ranked by their lower welfare

bounds, can be seen to attain a worst case welfare level that is higher than the best case welfare

level (upper bound) in the bottom 12 countries, suggesting a prominent gap between these two

groups. Such findings can be very useful to policy makers, for example in appraising the outcomes

of existing spending/policies designed to improve social welfare in different countries, or evaluating

and prioritising future policy initiatives based on needs.

Figure 3: Social welfare ranges across countries for three different scenarios

9. Conclusion

We have introduced a new dominance-based framework to multidimensional social welfare evalu-

ation. Our framework permits, but does not mandate, influencing social welfare evaluation through
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value judgements. Such judgments may encompass a variety of considerations: about attribute

trade-offs, marginal effects or the degree of inequality aversion. This allows for accommodating

societal views, or considering their implications on social welfare evaluation. We have derived

theoretical results that enable the practical application of our approach. We have shown that the

incorporation of such features has the potential to significantly enhance the comparative power of

the analysis. As previously noted, the specific results of such analyses may depend on the value

judgements considered. Notwithstanding, the effects of value judgements is made transparent and

auditable, and the results presented demonstrate the added value of this new form of analysis of

welfare ranges – a distinct contribution of our approach. Moreover, the exploration of different

counterfactual scenarios of value judgements may be pursued and the implications in terms of

social welfare evaluation contrasted. This can inform policy-making by highlighting the connec-

tion between specific values and the implied policy priorities. Such a value-driven approach could

facilitate consensus-building in policy-making process involving multiple stakeholders, by focusing

deliberations on value judgements that demonstrably impact the results of policy appraisal.

We conclude with two suggestions for further research. Firstly, it would be interesting to

consider using alternative forms of preference statements in a more extensive application. This

could involve direct ratings of different attribute bundles on a welfare scale (e.g. 0-100 as we

used in this paper) or employing imprecise evaluations, introducing lower and upper bounds on

ratings. Alternatively, stakeholders could be asked to categorise outcomes into predefined welfare

scale classes (e.g. splitting the 0-100 scale in five intervals). Secondly, our approach can be used

in the context of decision support under risk. Clearly there is a conceptual connection between

the problem of comparing population distributions and that of comparing probability distributions

over a multidimensional domain. The results we introduced can be directly used to derive a

quasi-ordering of risky multidimensional outcomes, as well as refining this via the incorporation

of preference statements. The latter could involve direct comparison of certain multidimensional

outcomes or lotteries of such outcomes. Therefore the exploration of methodological and practical

issues in utilising our results to design decision support frameworks in the risky choice context is

another interesting direction for future research.
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Appendix A. Proofs

We assume throughout the below that Xi = R+ ∀i ∈ I. This does not affect the generality of
our results, because any function u defined over R+ is also defined on any subset of R+.

Proof of Theorem 1. We deal separately with two cases for d = 1 and d = 2. Each will be split
in separate parts, as annotated below.

Case 1 (d = 1).
(1.1) Let u ∈ U1 and define υj = u(xj) ∀j ∈ J . Note that by construction we have υ1 = 0,

υn = 100. We will show the existence of wjk ∈ Rm
+ , βjk ∈ R (for arbitrary j, k ∈ J), such that the

corresponding equality and inequality in (10) are satisfied.
(1.1.1) Suppose, first, that υj ≥ υk. Set wjk = 0, βjk = υj . Then we have:

wjkxj + βjk = 0xj + υj = υj ,

wjkxk + βjk = 0xk + υj = υj ≥ υk,
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i.e. the required inequalities in (10) are satisfied.
(1.1.2) Suppose that υj < υk. Suppose, further, that xj ≥ xk. Then from non-decreasingness

of the utility function u we obtain υj = u(xj) ≥ u(xk) = υk which contradicts the supposition.
Therefore ∃i′ ∈ I : xi

′
j < xi

′
k .

Since we have υk − υj > 0 (by supposition), there must exist a sufficiently small ε > 0 such
that ε(υk − υj) > 0 is sufficiently small so that we have:

xi
′
j < xi

′
k − ε(υk − υj)

⇒ ευk < xi
′
k − xi

′
j + ευj

⇒ υk <
1

ε
xi

′
k + (υj −

1

ε
xi

′
j ),

so that by setting wi′
jk = 1

ε , w
i
jk = 0 ∀i ∈ I, βjk = (υj − 1

εx
i′
j ), we directly obtain that υk <

wjkxk + βjk and also wjkxj + βjk = 1
εx

i′
k + υj − 1

εx
i′
j = υj , i.e. that the respective inequalities in

(10).
(1.2) Let υ ∈ U1. We need to show the existence of a u ∈ U1 : u(xj) = υj ∀j ∈ J .
For any x ∈ Rm

+ define J≤(x) = {j ∈ J | xj ≤ x} and u(x) = maxj∈J≤(x){υj}.
(1.2.1) To show that u is non-decreasing, consider x, x′ ∈ Rm

+ : x′ ≥ x.
Directly from the definition of u, we obtain that ∃j ∈ J : u(x) = υj as well as that: xj ≤ x.

Then we have: x′ ≥ x ⇒ j ∈ J≤(x′) ⇒ u(x′) ≥ υj = u(x). Since also u(x1) = 0 and u(xn) = 100
by construction, we have u ∈ U1.

(1.2.2) To show that u(xj) = υj ∀j ∈ J , consider an arbitrary j ∈ J . By the definition of u
we obtain that ∃k ∈ J : υk = u(xj) and also that xk ≤ xj . In the trivial case that k = j we obtain
the requirement directly: u(xj) = υk = υj . So it remains to consider the case where k ̸= j.

Since it holds, trivially, that j ∈ J≤(xj), we directly obtain u(xj) ≥ υj .
Let wjk and βjk be an arbitrarily chosen set of constants, j, k ∈ J , that satisfy the conditions

of (10). From the corresponding inequality in (10) for the pair (j, k) combined with xk ≤ xj (as
noted above) we obtain:

υk ≤ wjkxk + βjk ≤ wjkxj + βjk = υj

⇒ u(xj) ≤ υj .

Combining the above gives u(xj) = υj as required.

Case 2 (d = 2).
(2.1) Let u ∈ U2. Define υj = u(xj)∀j ∈ J . Note that υ1 = 0 and υn = 100 by construction.

Now consider arbitrary j ∈ J . We will show the existence of wj ∈ Rm
+ , βj ∈ R such that the

corresponding equalities and inequalities in (11) are satisfied.
(2.1.1). Suppose that ∃aj = (a0j , a

1
j , . . . , a

m
j ) with a0j > 0 and (a1j , . . . , a

m
j ) ≤ 0 such that

aj(υj , xj) ≥ aj(υk, xk)∀k ∈ J . 19 Then we may define βj =
aj(υj ,xj)

a0j
and wj = (−a1j

a0j
, . . . ,−amj

a0j
).

From these we may obtain the desired equality as follows:

βj =
aj(υj , xj)

a0j

=
a0j
a0j

υj + (
a1j
a0j

, ...,
amj
a0j

)xj

⇒ υj = wjxj + βj ,

19The notation aj(vj , xj) means the inner product of a and (vj , xj), i.e. a(vj , xj) = (a0
j , a

1
j , . . . , a

m
j ) ·

(vj , x
1
j , . . . , x

m
j ) = a0

jυj + a1
jx

1
j + . . . + am

j xm
j .

23



as well as the desired inequality (for arbitrary k ∈ J) as follows:

aj(υj , xj) ≥ aj(υk, xk)

⇒ aj(υj , xj)

a0j
≥ aj(υk, xk)

a0j

⇒ βj ≥
a0j
a0j

υk + (
a1j
a0j

, ...,
amj
a0j

)xk

⇒ υk ≤ wjxk + βj .

Based on (2.1.1), we will complete the proof of (2.1) by showing that: for any j ∈ J , ∃aj =
(a0j , a

1
j , ..., a

m
j ) with a0j > 0 and (a1j , ..., a

m
j ) ≤ 0 such that aj(υj , xj) ≥ aj(υk, xk)∀k ∈ J .

(2.1.2) Define H = {(υ, x) ∈ Rm+1
+ |υ ≤ u(x)}, the hypograph of u. Consider an arbitrary

j ∈ J . As an intermediary step we will first show that ∃hj = (h0j , h
1
j , ..., h

m
j ) ̸= 0 with h0j ≥

0 and (h1j , ..., h
m
j ) ≤ 0 : hj(υj , xj) ≥ hj(υ, x) ∀ (υ, x) ∈ H.

Since u is a concave function it follows that H is a convex set. Further, point (υj , xj) is a
boundary point of H (if not then for some small ε > 0 we have (υj + ε, xj) ∈ H which, by the
definition of H, leads to the contradiction υj < υj + ε ≤ u(xj) = υj).

From the above we obtain by the Supporting Hyperplane Theorem (e.g. Corollary 11.6.1 in
Rockafellar, 1970) that there exists a supporting hyperplane at point (υj , xj) of H, namely that
∃hj = (h0j , h

1
j , ..., h

m
j ) ̸= 0 : hj(υj , xj) ≥ hj(υ, x) ∀ (υ, x) ∈ H.

Further, we can show that h0j ≥ 0 and (h1j , h
2
j , ..., h

m
j ) ≤ 0.

For the former, let ε > 0. Then υj ≥ υj − ε ⇒ (υj − ε, xj) ∈ H ⇒ h0jυj +
∑

i∈I h
i
jx

i
j ≥

h0jυj − h0jε+
∑

i∈I h
i
jx

i
j ⇒ h0jε ≥ 0⇒ h0j ≥ 0.

Similarly, for arbitrary i′ ∈ I let 1i′ ∈ Rm be a vector with 1 in the i′-th position and 0
elsewhere and define x′j = xj +1i′ε. Since u is non-decreasing we have x′j ≥ xj ⇒ u(x′j) ≥ u(xj)⇒
(u(xj), x

′
j) ∈ H ⇒ hj(u(xj), xj) ≥ hj(u(xj), x

′
j)⇒ hi

′
j xj ≥ hi

′
j (xj + ε)⇒ hi

′
j ε ≤ 0⇒ hi

′
j ≤ 0.

We now return to showing the existence of a desired aj as stated previously. We will do this
separately for three cases: (1) xj > 0, (2) xj ̸> 0 and xj ̸= 0, (3) xj = 0. To avoid cumbersome
notation, onwards from this point onwards we will drop the index j and just write a and h instead
of aj and hj respectively, but it should be borne in mind that a and h are defined for a specific
(though arbitrary) j in remainder of this proof.

(2.1.3) Suppose xj > 0. Set a = h. This means that (a1, ..., am) ≤ 0 and a0 ≥ 0. It remains
to show that a0 ̸= 0. By contradiction, assume that a0 = 0. From the preceding, (u(0),0) ∈
H ⇒ a(υj , xj) ≥ a(u(0),0) ⇒ 0υj + (a1, ..., am)xj ≥ a0u(0) + (a1, ..., am)0 ⇒ (a1, ..., am)xj ≥ 0.
As shown before (a1, ..., am) ≤ 0 and since we have assumed xj > 0 we have (a1, ..., am)xj ≤ 0.
Combining gives (a1, ..., am)xj = 0 and since we have assumed xj > 0 we obtain (a1, ..., am) = 0.
Now if a0 = 0 this would mean that a = (a0, a1, ..., am) = 0 which is a contradiction (recall that
the supporting hyperplane at point (υj , xj) is non-trivial, i.e. a = h ̸= 0). Thus a0 ̸= 0⇒ a0 > 0.

(2.1.4) Suppose that xj ̸> 0 and xj ̸= 0, We may assume for convenience that ∃m̄ < m : xij >

0 ∀i ∈ {1, ..., m̄}, xij = 0 ∀i ∈ {m̄+1, ...,m}. Accordingly we may partition any x ∈ Rm
+ as follows:

x = (x̄, xm̄+1, ..., xm). Note that xj = (x̄j , 0, ..., 0).
Define ū(x̄)) = u(x̄, 0, ..., 0). For ȳ ≥ x̄ we have (ȳ, 0, ..., 0) ≥ (x̄, 0, ..., 0), therefore ū(ȳ) =

u(ȳ, 0, ..., 0) ≥ u(x̄, 0..., 0) = ū(x̄), i.e. ū is non-decreasing. Further, for λ ∈ [0, 1] we have ū(λx̄ +
(1− λ)ȳ) = u(λx̄+ (1− λ)ȳ, 0, ..., 0) = u(λ(x̄, 0, ..., 0) + (1− λ)(ȳ, 0, ..., 0)) ≥ λu(x̄, 0, ..., 0) + (1−
λ)u(ȳ, 0, ..., 0) = λū(x̄) + (1− λ)ū(ȳ), i.e. ū is concave.

Then from the preceding (cf 2.1.2 and 2.1.3) we know that for any j ∈ J : ∃ā = (a0, a1, ..., am̄)
with a0 > 0 and (a1, ..., am̄) ≤ 0 such that ā(ū(x̄j), x̄j) ≥ ā(ū(x̄k), x̄k)∀k ∈ J .

Since xj = (x̄j , 0, ..., 0) we have ū(x̄j) = u(xj) = υj . Further, note that for any x ∈ Rm
+ : x ≥

(x̄, 0, ..., 0) ∈ Rm
+ ⇒ u(x) ≥ u(x̄, 0, .., 0)).

Now consider an arbitrary k ∈ J , let E > 0, and define ϵ = u(xk) − u(x̄k, 0, ..., 0) and a =
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(ā,−E, ...,−E). Then we have:

a(u(xk), xk) = (ā,−E, ...,−E)(u(xk), xk)

= (ā,−E, ...,−E)(u(x̄k, 0, ..., 0) + ϵ, x̄k, x
m̄+1
k , ..., xmk )

= ā(u(x̄k, 0, ..., 0), x̄k) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

= ā(ū(x̄k), x̄k) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

≤ ā(ū(x̄j), x̄j) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

= ā(ū(x̄j), x̄j) + (−E, ...,−E)(0, ..., 0) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

= (ā,−E, ...,−E)(ū(x̄j), x̄j , 0..., 0) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

= a(ū(x̄j), x̄j , 0..., 0) + a0ϵ− E(1(xm̄+1
k , ..., xmk ))

= a(u(xj), xj) + a0ϵ− E(1(xm̄+1
k , ..., xmk )).

Note that (xm̄+1
k , ..., xmk ) ≥ 0. Now consider the case where (xm̄+1

k , ..., xmk ) ̸= 0. Then for E > 0
we have E(1(xm̄+1

k , ..., xmk )) > 0. But since E > 0 is freely chosen, we can chose a value arbitrarily
large so that E(1(xm̄+1

k , ..., xmk ) ≥ a0ϵ no matter what the values a0, xm̄+1
k , ..., xmk may be (and for

any k). Then we would have a(u(xj), xj) ≥ a(u(xj), xj) + a0ϵ−E(1(xm̄+1
k , ..., xmk )) ≥ a(u(xk), xk)

as required. On the other hand when (xm̄+1
k , ..., xmk ) = 0 then E(1(xm̄+1

k , ..., xmk )) = 0. Further
xk = (x̄k, 0, ..., 0)⇒ ū(x̄k) = u(xk)⇒ ϵ = 0 so the above directly gives a(u(xj), xj) ≥ a(u(xk), xk)
as required.

(2.1.5) Suppose that xj = 0. Then xk ̸= 0 for any k ̸= j since all outcomes are distinct.
Recall that u(0) = 0 by assumption and also that h0 ≥ 0 and (h1, ..., hm) ≤ 0. The case where
h0 > 0 is trivial as we may then set a = h and obtain the desired result directly. Consider the case
where h0 = 0. Since h defines a hyperplane it follows that (h1, ..., hm) ̸= 0. Combining the above
we have (h1, ..., hm)(x1k, ..., x

m
k ) < 0 for any k ̸= j. Then there must exist a positive but small

enough ε > 0 : (h1, ..., hm)(x1k, ..., x
m
k ) + εu(xk) < 0, for any k ∈ J (recall u(xk) ≥ u(0) = 0 by

assumption). Set a = (ε, h1, ..., hm). Then we may obtain (for arbitrary k) the desired inequality
as follows:

a(υj , xj) = (ε, h1, ..., hm)(υj , xj)

= (ε, h1, ..., hm)(0,0)

= 0

> εu(xk) + (h1, ..., hm)(x1k, ..., x
m
k )

= (ε, h1, ..., hm)(υk, xk)

= a(υk, xk).

(2.2) Let υ ∈ U2. We need to show the existence of u ∈ U2 : u(xj) = υj ∀j ∈ J . Let wj and
βj be an arbitrarily chosen set of constants, j ∈ J , that satisfy the conditions of (11). Define a
function u as u(x) = minj∈J{wjx+ βj}. We will show that u is concave, non-decreasing, and that
u(xj) = υj∀j ∈ J .

Since u is defined as the minimum of a finite number of affine (thus concave) functions wjx+βj
it follows that u is also concave.

Now consider x, y ∈ Rm
+ with x ≥ y. Then we have: u(y) = minj∈J{wjy+βj} ≤ minj∈J{wjx+

βj} = u(x). This shows that u is non-decreasing.
Finally consider arbitrary k ∈ J . Then we have υk = wkxk +βk ≥ minj∈J{wjxk +βj} = u(xk).

At the same time we have υk ≤ wjxk + βj ∀j ∈ J ⇒ υk ≤ minj∈J{wjxk + βj} = u(xk). This gives
u(xk) = υk∀k ∈ J .
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Proof of Corollary 1. It is easy to see that υ ∈ U(⪰′)⇔ υ ∈ U[X](⪰′). Combining with Theorem

1 we have (for d = 1, 2): υ ∈ Ud(⪰) ⇔
(
υ ∈ Ud

)
∧ (υ ∈ U(⪰′)) ⇔

(
υ ∈ Ud

[X]

)
∧
(
υ ∈ U[X](⪰′)

)
⇔

υ ∈ Ud
[X](⪰

′).

Proof of Theorem 2. p′ ⊵d p′′ ⇔
∑

j∈J p
′
ju(xj) ≥

∑
j∈J p

′′
ju(xj) ∀u(·) ∈ Ud(⪰′)⇔ min{

∑
j∈J p

′
ju(xj)−∑

j∈J p
′′
ju(xj)| u(·) ∈ Ud(⪰′)} ≥ 0 ⇔ min{

∑
j∈J p

′
jυj −

∑
j∈J p

′′
jυj | υ ∈ Ud

[X](⪰
′)} ≥ 0 ⇔

min{
∑

j∈J p
′
jυj −

∑
j∈J p

′′
jυj | υ ∈ Ud(⪰′)} ≥ 0.

Proof of Theorem 3. This is obtained immediately from an application of Corollary 1, to
replace Ud

[X](⪰
′) with Ud(⪰′) (and vice versa).

Proof of Theorem 4.
Case 1 (d = 1).

Let u ∈ U1
. Define υj = u(xj)∀j ∈ J . As in the proof of Theorem 1, note that v1 = 0 and

vn = 100.
To show that υ ∈ U

1
, it suffices to show the existence of wjk ∈ Rm

++ and βjk ∈ R such that:
(A) υj = wjkxj + βjk and (B) υk ≤ wjkxk + βjk, ∀j, k ∈ J .

Note that if u is strictly increasing then it is also non-decreasing, i.e. u ∈ U1. Then, by Theorem
1, υ ∈ U1 and so for any j, k ∈ J , there exists w̄jk ∈ Rm

+ , β̄jk ∈ R: (A’) υj = w̄jkxj + β̄jk and (B’)
υk ≤ w̄jkxk + β̄jk.

Let ϵijk > 0 ∀i ∈ I. Define wi
jk = w̄i

jk + ϵijk,∀i ∈ I, βjk = β̄jk −
∑

i ϵ
i
jkx

i
j . Then, using (A’), we

obtain:

wjkxj + βjk =
∑
i

(w̄i
jk + ϵijk)x

i
j + (β̄jk −

∑
i

ϵijkx
i
j) = w̄jkxj + β̄jk = υj

which establishes (A). For (B) to hold we require:

υk ≤ wjkxk + βjk

⇔ υk ≤ w̄jkxk +
∑
i

ϵijkx
i
k + β̄jk −

∑
i

ϵijkx
i
j

⇔ υk − (w̄jkxk + β̄jk) ≤
∑
i

ϵijk(x
i
k − xij). (A.1)

Now recall that the ϵijk values were restricted to be positive but otherwise freely chosen, and we
can show that they can be chosen to ensure that the inequality (A.1), which is equivalent to (B),
holds. We consider two cases.

Firstly, suppose that xik ≤ xij ∀i ∈ I. Then because u is strictly increasing we obtain υk =
u(xk) < u(xj) = υj . Further, it is easy to see that (A’) and (B’) above can be satisfied by
setting w̄jk = 0 and β̄jk = υj . Thereby the left hand side of the inequality in (A.1) becomes
υk − (w̄jkxk + β̄jk) = υk − υj < 0. From our assumptions xik < xij and ϵijk > 0 ∀i ∈ I we obtain

that the right hand side of the inequality in (A.1) is also negative, i.e.
∑

i ϵ
i
jk(x

i
k − xij) < 0. Recall

however that all ϵijk values are positive but otherwise freely chosen. This means we can chose them

to be small enough so that
∑

i ϵ
i
jk(x

i
k − xij) < 0 is arbitrarily close to 0, i.e. larger than some other

given negative value, which ensures that the inequality in (A.1) is satisfied.
Similarly, for the second case, where xi

′
k −xi

′
j > 0 for some i′ ∈ I, we can choose the value ϵi

′
jk to

be sufficiently larger than all other ϵijk values so as to ensure that
∑

i ϵ
i
jk(x

i
k − xij) > 0 is positive.

Then, combining with (B’) we obtain υk − (w̄jkxk + β̄jk) ≤ 0 <
∑

i ϵ
i
jk(x

i
k − xij) > 0, i.e. that

condition (A.1) is satisfied.

Now let υ ∈ U
1
. We need to show that υ ∈ U1

[X], i.e. that there exists a strictly increasing
function u such that u(xj) = υj ∀j ∈ J .
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Define the function u as follows:

u(x) = max
j∈J≤(x)

{υj + ϵ(
∑
i

xi − xij)},

where ϵ > 0 is an arbitrarily chosen constant. Note that, by definition, j ∈ J≤(x)⇒ ϵ(
∑

i x
i−xij) ≥

0⇒ υj + ϵ(
∑

i x
i − xij) ≥ υj

To show that u is strictly increasing consider y, z ∈ Rm
+ : y ≥ z, y ̸= z. Then ∀j ∈ J :

υj + ϵ(
∑

i y
i − xij) > υj + ϵ(

∑
i z

i − xij) and J≤(y) ⊇ J≤(z). Combining we obtain:

u(y) = max
j∈J≤(y)

{υj + ϵ(
∑
i

yi − xij)}

≥ max
j∈J≤(z)

{υj + ϵ(
∑
i

yi − xij)}

> max
j∈J≤(z)

{υj + ϵ(
∑
i

zi − xij)} = u(z).

To show that u reproduces the utility assignment υ, consider r ∈ J . We need to show that
υr = u(xr). We do this by showing that υr ≤ u(xr) and υr ≥ u(xr).

Since r ∈ J≤(xr) we obtain:

υr ≤ max
j∈J≤(xj)

{υj} ≤ max
j∈J≤(xj)

{υj + ϵ(
∑
i

xir − xij)} = u(xr).

Further, consider k′ = argmaxj∈J≤(xr){υj + ϵ(
∑

i x
i
r − xij)} ∈ J , so that u(xr) = υk′ . Note also

that k′ ∈ J≤(xr)⇒ xk′ ≤ xr. Let wrk′ and βrk′ be an arbitrary chosen set of constants, r, k′ ∈ J ,
that satisfy the conditions of (10). Then we obtain:

u(xr) = υk′ ≤ wrk′xk′ + βrk′ ≤ wrk′xr + βrk′ = υr.

Case 2 (d = 2)

Let u ∈ U2
and define υj = u(xj) ∀ j ∈ J . To show that υ ∈ U

2
, we need to show the existence

of wj ∈ Rm
++, βj ∈ R ∀j ∈ J such that the conditions in (11) are satisfied.

Since U2 ⊂ U2 we know from Theorem 1 that υ ∈ U2 and so ∃wj ∈ Rm
+ , βj ∈ R ∀j ∈ J such

that the conditions in (11) are satisfied. It thus remains to show that wj > 0.
Suppose that wi′

j = 0 for some i′ ∈ I. Consider an arbitrary j ∈ J . From the proof of Theorem
(1), we know that the wj defines a super-gradient of the concave function u at point xj , so that
we have u(x) ≤ wjx + βj ∀x ∈ Rm

+ . Let ϵ > 0 and suppose xi
′
= xij

′
+ ϵ, xi = xij ∀i ∈ I : i = i′.

From the above we have: u(x) ≤ wjx+ βj = wjxj + wi
j
′
xij

′
+ βj = wjxj + βj = υj . However since

x > xj and u is non-decreasing we also have obtain u(x) > u(xj) = υj , which is a contradiction.
Therefore we must have that wj > 0.

Now let υ ∈ U
2
. We need to show that υ ∈ U2

[X], i.e. the existence of a strictly increasing
and concave function u that reproduces υ. We may define u(x) = minj{wjx + βj} exactly as in
the proof of Theorem 1. Then the parts of that proof showing that u is concave and reproduces υ
apply here directly. Finally the corresponding part of that proof can be modified slightly to show
that u is strictly increasing, by assuming further that x ̸= y so that by also taking into account
that wj > 0.
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Appendix B. Additional Figure

In Figure B.4 we provide the potential ranges for social welfare across countries, for all six
scenarios considered.

Figure B.4: Social welfare ranges across countries for all scenarios considered
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