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ABSTRACT
In this paper, I consider the problem of how to estimate the density in a subgroup when some of the
subgroup indicators are missing at random. Four different imputation estimators are compared to each other
and to an inverse probability weighted estimator suggested previously. An optimal estimator is derived. I
also provide expressions for the asymptotic variance of the imputation estimators including terms of order
1/(nh) and 1/n.
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1. Introduction

Missing data is a problem in many applications of statistics.
Observations are incompletely observed either by accident or
intentionally, and failure to take the incompleteness into account
in the statistical analysis may bias the results. Strategies for ana-
lyzing incomplete data range from ad hoc methods to principled
methods. The focus in this paper is on imputation, i.e., filling in
suitable values for the missing observations. This leads to a com-
plete data set, which allows us to use the estimator we would have
used had we had complete data. The disadvantage of imputation
is that the estimation of standard errors is complicated by the
fact that the imputed data does not give the same information
as the original data. Hence using the formula for the standard
error of the complete data estimator will typically underestimate
the uncertainty.

The problem considered in this paper is how to estimate
the density of a subgroup of the sample, when it is not known
for some of the observations, if they belong to the relevant
subgroup or not. If the reason for the missing group membership
is related to the variable for which we wish to estimate the
density, then a complete case estimator—a density estimator
based on observations known to be in the group of interest—
will be biased. A typical example of such data comes from
medical statistics, where it may too costly or too difficult to
ascertain the disease status of all patients. As a consequence
disease status will be more likely to be known for patients
that are more likely to be ill. If we are interested in the
distribution of a measurement in the diseased sub-population,
those known to be ill will then be a biased sample. A proxy
measurement may be available for all patients allowing us to
impute the missing disease status. In business economics, data
with partially missing group information occurs for instance
in auditing and rejection inference. Not all records are audited,
and in many cases the records selected for audit are not chosen
completely at random but based on dollar amount (“sampling

CONTACT Søren Feodor Nielsen sfn.mes@cbs.dk Center for Statistics, Copenhagen Business School, Frederiksberg, Denmark.

proportional to size”) or perceived likelihood of being flawed
(“non-statistical” sampling). If we are interested in e.g., the
distribution of the dollar amount among the flawed records,
the inspected records may be a biased sample. When applying
for a loan, the application is granted or denied based on
the applicant’s credit status and other information. Rejection
inference aims at improving credit scoring by incorporating
information from rejected applicants who would have repaid the
loan had it been granted. But whether an applicant would have
repaid their loan is obviously missing for rejected applicants,
and the non-rejected applicants will typically be a biased
sample.

The problem of estimating a subgroup density with missing
group membership information has previously been considered
by Tang, He, and Gunzler (2012), who use inverse probability
weighted kernel density estimation to get a consistent asymptot-
ically normal estimator of the unknown density. Imputation—
replacing missing group membership information with suitable
predictions or simulations—is an obvious alternative approach.
In this paper, I will consider a number of imputation estimators
and compare them to the estimator suggested by Tang, He, and
Gunzler (2012).

The remainder of this paper is structured as follows. In Sec-
tion 2, I define notation and specify the regularity assumptions
that will be used to derive the main asymptotic results, which
are given in Section 3. The following section gives results from
a small simulation experiment, and the estimators are then
applied to data in Section 5. In Section 6, I present higher-order
expressions for the asymptotic variance of our estimators, before
I conclude in Section 7. Proofs are deferred to the Appendix.

2. Set-up

Let Y1, . . . , Yn be iid real random variables with an unknown
density f . Let D1, . . . , Dn iid 0–1 variables, such that Di = 1 if
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and only if the ith observation belongs to the group of interest.
Hence, I am interested in estimating the conditional density, f1,
of Yi given Di = 1.

Let

p(y) = P{Di = 1|Yi = y}
and note that for all y ∈ R

p(y)f (y) = f1(y)p with p = P{Di = 1}.

I assume that p(y) > 0 whenever f (y) > 0, so that the marginal
distribution of Yi and the conditional distribution of Yi given
Di = 1 share support.

I will assume that the Di’s are missing at random (MAR), i.e.,
that the probability that Di is missing does not depend on Di
but only on observed data. As Tang, He, and Gunzler (2012) do,
I will allow this probability to depend not only on Yi but also
on additional variables Xi. If Ri denotes the “response indicator”
such that Ri = 1 if and only if Di is observed, the assumption of
MAR is that

π(x, y) = P{Ri = 1|Xi = x, Yi = yi}
= P{Ri = 1|Xi = x, Yi = y, Di = d}, d = 0, 1.

(1)

I let πi denote π(Xi, Yi).
As mentioned in Section 1 a complete case estimator of the

unknown conditional density will in general be biased if the
probability that Di is missing depends on Yi. Estimating the
density using inverse probability weights requires that we can
estimate the πi’s; the assumption of MAR makes this feasible.
Estimating the density using imputation requires on the other
hand that we can estimate the distribution of Di given Yi and Xi.
A consequence of MAR is that

p(x, y) = P{Di = 1|Xi = x, Yi = y}
= P{Di = 1|Xi = x, Yi = y, Ri = 1}.

(2)

Thus, the conditional probability of belonging to the group of
interest can be estimated from the complete cases, i.e., observa-
tions with Ri = 1. I put pi = p(Xi, Yi). I will assume through-
out this paper that the vectors (Yi, Di, Ri, Xi), i = 1, . . . , n,
are iid.

As a model for the conditional probability p(x, y) of Di = 1
given Xi = x and Yi = y I will assume a generalized linear model
with linear predictor Z�

i β , where β is an unknown parameter
and Zi is a vector of explanatory variables constructed from
Yi and Xi. Assuming that the components of Zi have second
moments, it follows that

√
n(β̂ − β) = 1√

n

n∑
i=1

Si + oP(1)

where

Si = Ri
Di − pi

pi(1 − pi)
p′

i I(β)−1Zi (3)

with I(β) equal to the expected information matrix (given Ri =
1) and p′

i is the derivative of the inverse link function taken at the
ith linear predictor, i.e., d

dβ
pi = p′

i · Zi. The factor Ri in (3) is due
to the fact that the estimation is based on complete cases only.
I will assume that the inverse link function of this generalized

linear model has a bounded derivative. Commonly used link
functions, such as logit and probit, satisfy this assumption. I
let p̂i equal the fitted probabilities at (Xi, Yi). I will refer to
the assumptions on the distribution of the data made so far as
assumption A.

I choose a kernel function, K, such that:∫
K(u)du = 1

∫
uK(u)du = 0∫

u2K(u)du = 1
∫

K2 ≡
∫

K(u)2du < ∞
(4)

These assumptions, which I will refer to as assumption B, are
satisfied for instance if the kernel K is a bounded symmetric
probability density with variance equal to 1. Finally, I need some
smoothness of various functions of y: f (y), f1(y), p(y), E[p2

i |Yi =
y], E[πipi|Yi = y], E[πip2

i |Yi = y] are all assumed to be twice
continuously differentiable with a second derivative which is
locally Lipschitz so that for each y ∈ R there is a constant
(possibly depending on y) such that for f1(y)

|f ′′
1 (y) − f ′′

1 (y + δ)| ≤ const · δ

for δ sufficiently small (possibly depending on y) and similarly
for the other functions. I do not need smoothness of all of these
functions for each result. Consequently I will let assumption C1
be the assumption about f (y), C2 the assumption on f1(y), and
so on. For completeness I have listed the assumptions in the
Appendix.

3. Asymptotic results

With complete data, the kernel density estimator for f1 is given
by

f̂1(y) =
∑n

i=1 DiK
(

y−Yi
h

)
/h∑n

i=1 Di
. (5)

Provided that n → ∞ and h → 0 such that nh → ∞

f̂1(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y),

f1(y)
pnh

∫
K2

)
.

With missing data, a complete case estimator, i.e., replacing Di
by DiRi in (5), will be biased with an asymptotic mean equal to

1
E[π1p1]

(
E[π1p1|Y1 = y]f (y) + h2

2
d2

dy2
(
E[π1p1|Y1 = y]f (y)

))
+ o(h2),

the density of Yi given that Di = 1 and Ri = 1 plus O(h2)-terms.
One way of eliminating this bias is to weight each observed Di

with the inverse probability of observing it, i.e., replace Di in (5)
by DiRi/π̂i, where π̂i is an estimator of πi. Tang, He, and Gunzler
(2012) show that the asymptotic distribution of the resulting
estimator is

N
(

f1(y) + h2

2
f ′′
1 (y), E[1/π1|Y1 = y] f1(y)

pnh

∫
K2

)

as n → ∞ and h → 0 such that nh → ∞ for y in
a bounded set using a logistic regression for estimating π . It
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seems that they implicitly assume that p(x, y) only depends on
y. They also consider the case where πi is known and show
that the weighted estimator using the known πi’s has the same
asymptotic distribution as when the πi’s are estimated.

In the following subsections, I will consider the asymptotic
distribution of the density estimator (5), when missing Di’s are
replaced by imputations.

3.1. Single imputation

The simplest imputation estimator is obtained by replacing miss-
ing Di’s by simulated 0–1 variables where the success proba-
bilities are given by p̂i = p̂(Xi, Yi), the fitted value from the
generalized linear model. Hence, the estimator is given by

f̂1,SI(y) =
∑n

i=1 D̃iK
(

y−Yi
h

)
/h∑n

i=1 D̃i
(6)

with

D̃i = RiDi + (1 − Ri)1{Ui≤p̂i}

where (Ui)i=1,...,n is a sequence of independent uniformly dis-
tributed random variables, independent of the observations. For
this estimator, I obtain the following result:

Theorem 1. Under assumptions A, B, C1, C2, C4–C6, then for
any y in the interior of the support of Yi

f̂1,SI(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y),

f1(y)
pnh

∫
K2

)

as n → ∞ and h → 0 such that nh → ∞.

I only give results for y’s in the interior of the support. At
boundary points the bias of the kernel density estimator may be
considerably larger. I conjecture that using a boundary kernel in
this missing data set-up will give results similar to those found
in complete data cases but proving this is beyond the scope of
this paper. Alternatively, boundary effects can be mitigated using
transformation as I do in Section 5.

The proof of Theorem 1 may be found in the Appendix.
The asymptotic variance may be consistently estimated by
f̂1,SI(y)/(h

∑n
i=1 D̃i) · ∫

K2.
It is somewhat surprising that not only does the asymptotic

distribution of the imputation estimator f̂1,SI(y) not depend on
the missing data mechanism in any way, it is in fact the same
asymptotic distribution as that of the complete data estimator
(5). In particular, it is more efficient than the inverse probability
weighted estimator considered by Tang, He, and Gunzler (2012).
This is due to the fact that the rate of convergence of β̂ is

√
n

whereas the rate of convergence of the kernel density estimator is
only

√
nh. Therefore the estimation uncertainty regarding β may

be ignored asymptotically, and the imputations may be treated as
if they were the actual (missing) observations. As I will discuss
later, the estimation of β may well influence the precision of the
imputation estimator (6) in finite samples.

3.2. Multiple imputation

Multiple imputation (Rubin 1987) is a popular alternative to the
single imputation considered in the previous subsection. Rather
than just generate one set of imputations (D̃i for i such that
Ri = 0), B > 1 sets of imputations are generated, B imputation
estimators similar to (6) are calculated and then averaged to
obtain the estimator

f̂1,MI(y) = 1
B

B∑
j=1

f̂1,j(y)

where

f̂1,j(y) =
∑n

i=1 D̃i,jK
(

y−Yi
h

)
/h∑n

i=1 D̃i,j

with

D̃i,j = RiDi + (1 − Ri)1{Ui,j≤p̂i,j}

where (Ui,j)i=1,...,n,j=1,...,B are independent uniformly distributed
random variables independent of the data; p̂i,j will be discussed
below. Apart from decreasing the simulation noise, multiple
imputation is attractive because—under suitable regularity
assumptions—the variance of the estimator may be estimated
by a combination of the average of the “complete data variance
estimators” and the empirical variance of the B imputation
estimators:

1
B

B∑
j=1

f̂1,j(y)
h

∑n
i=1 D̃i,j

∫
K2 (7)

+
(

1 + 1
B

)
1

B − 1

B∑
j=1

(
f̂1,j(y) − f̂1,MI(y)

)2
.

Rubin (1987) suggests that a requirement for the suitability of (7)
as an estimator of the asymptotic variance of the multiple impu-
tation estimator f̂1,MI(y) is that the imputations are generated at
least “approximately” from a Bayesian model. Thus, p̂i,j should
be the predicted probability of Di = 1 given (Xi, Yi) using β̃j as
the value of the unknown parameter, where β̃j, j = 1, . . . , B are
independent draws from the posterior distribution of β given
the observed data. This is my assumption D.

In the present case I obtain the following result:

Theorem 2. Under assumptions A, B, C1, C2, C4–C6, and D,
then for any y in the interior of the support of Yi

f̂1,MI(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y),

(
v1(y) + 1

B
v2(y)

)
f (y)
p2nh

∫
K2

)

with

v1(y) = E[π1p1 + (1 − π1)p2
1|Y1 = y]

v2(y) = E[(1 − π1)p1(1 − p1)|Y1 = y]
as n → ∞ and h → 0 such that nh → ∞. Moreover, the
variance estimator (7) estimates

f1(y)
pnh

∫
K2 +

(
1 + 1

B

)
v2(y)

f (y)
pnh

∫
K2 .
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The asymptotic distribution of f̂1,MI(y) does not depend on
whether the β̃j’s are from a Bayesian posterior distribution or are
all equal to the MLE β̂ . As in the previous section, this is due to
the faster rate of convergence. In fact, the Bernstein-von Mises
theorem says that given the observed data

β̃j ∼ approx N(β̂ , I(β̂)−1/n). (8)

This means that the difference between β̃j’s and β̂ is negligible
compared to the

√
nh-rate of convergence of the kernel density

estimator.
Note that v1(y) + v2(y) = p(y) so that when B = 1 the

asymptotic variance of f̂1,MI(y) equals the asymptotic variance
of f̂1,SI(y) as it should. Furthermore, the asymptotic variance
of f̂1,MI(y) is strictly decreasing as B increases. Note also that
the variance estimator (7) is biased. This is due to the fact that
the imputations asymptotically may be treated as if they were
actual observations and not simulations. An simple asymptoti-
cally unbiased estimator may in principle be obtained by

1
B

B∑
j=1

f̂1,j(y)
h

∑n
i=1 D̃i,j

∫
K2

+
(

1
B

− 1
)

1
B − 1

B∑
j=1

(
f̂1,j(y) − f̂1,MI(y)

)2
.

In practice, however, this estimator will be negative with positive
probability as the first term is asymptotically a constant divided
by nh, and the second term is asymptotically χ2-distributed
with B − 1 degrees of freedom, with a scale parameter inversely
proportional to nh. A consistent estimator may be obtained
for instance by kernel regression of Rip̂i + (1 − Ri)p̂2

i and
(1 − Ri)p̂i(1 − p̂i) on Yi to obtain estimates of v1(y) and v2(y),
respectively, combined with a kernel density estimator of the
marginal density f (y).

3.3. Fixed imputation

The multiple imputation estimator is asymptotically equivalent
to a “single imputation” estimator based on the average of the
imputations, i.e., (6) with D̃i = 1

B
∑B

j=1 D̃i,j. Generating the
imputations using β̂ instead of β̂j and letting B tend to infinity, I
obtain the estimator

f̂1,FI(y) =
∑n

i=1
(
RiDi + (1 − Ri)p̂i

)
K

(
y−Yi

h

)
/h∑n

i=1
(
RiDi + (1 − Ri)p̂i

) .

This is often called a fixed imputation estimator. In many cases,
“random imputations” (as used in the two previous sections) are
preferable to “fixed imputations”, as “fixed imputations” may lead
to biased estimators if a nonlinear transformation is applied to
the imputations. However, “fixed imputations” do not lead to
biased estimation of the density here:

Theorem 3. Under assumptions A, B, C1, C2, C4–C6, then for
any y in the interior of the support of Yi

f̂1,FI(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y),

E[π1p1 + (1 − π1)p2
1|Y1 = y] f (y)

p2nh

∫
K2

)

as n → ∞ and h → 0 such that nh → ∞.

As in the previous subsection, the asymptotic variance may
be estimated from a kernel regression and a marginal density
estimate.

3.4. Optimal estimation

So far I have shown that if the distribution of Di given (Xi, Yi)
can be modeled parametrically then imputed data is asymptot-
ically as good as observed data for estimating the conditional
density of Yi given Di = 1. Improvements in the form of lower
asymptotic variances are obtained by multiple imputation and
fixed imputation schemes. As fixed imputations are better than
random imputations and random imputations are as good as real
data, it would be natural to suppose that imputing all the Di’s
(using fixed imputations) regardless of whether they are missing
or not will lead to an even better estimator:

f̂1,RB(y) =
∑n

i=1 p̂iK
(

y−Yi
h

)
/h∑n

i=1 p̂i
.

Indeed, I obtain:

Theorem 4. Under assumptions A, B, C1–C4, then for any y in
the interior of the support of Yi

f̂1,RB(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y), E[p2

1|Y1 = y] f (y)
p2nh

∫
K2

)

as n → ∞ and h → 0 such that nh → ∞.

As such the result—that the estimator is improved if the
group indicators are replaced by estimates of the conditional
probabilities—is not surprising. The faster rate of convergence
ensures that the estimated pi’s may be treated as known, and then
the improvement is just an example of a “Rao-Blackwellization”.
This phenomenon occurs in other missing data examples, too.
For instance, Müller (2009) shows that what she calls “full impu-
tation” (replacing observed data with imputations) is efficient in
her model, a semi-parametric regression with outcomes missing
at random, when the imputations are chosen optimally. She does
not consider smoothing, so her results are not directly applicable
to the problem considered in this paper.

The question is if there are further improvements that may be
easily obtained? I restrict attention to estimators of the form

f̂1,d(y) =
∑n

i=1 diK
(

y−Yi
h

)
/h∑n

i=1 di
(9)

with di = d(Yi, Xi, Ri, Di, Ui), where Ui is a (simulated) uni-
formly distributed random variable (so that random imputation
estimators are included), such that

d(Yi, Xi, 0, 1, Ui) = d(Yi, Xi, 0, 0, Ui)

E[di|Yi = y] = p(y).

The first of these restrictions ensures that the estimator only
depends on observed data, i.e., does not depend on Di when Ri =
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0. The second ensures that the estimator (9) is asymptotically
unbiased. The imputation estimators belong to this class if p(x, y)
is known as does the estimator considered by Tang, He, and
Gunzler (2012) when π is known. The asymptotic variance of
an estimator of this form is E[d2

1|Y1 = y] f (y)
p2nh

∫
K2 and as

E[d2
1|Y1 = y] = Var [d1|Y1 = y] + p(y)2 ≥ p(y)2

with equality if and only if di = p(Yi) almost surely, the optimal
estimator (within the specified class) is given by

f̂1(y) =
∑n

i=1 p(Yi)K
(

y−Yi
h

)
/h∑n

i=1 p(Yi)
.

In practice, p(y) is typically unknown, making the optimal esti-
mator infeasible. If, however, we are able to correctly specify a
parametric model satisfying the regularity conditions listed in
Section 2 for this conditional probability, then Theorem 4 shows
that the estimator has the same asymptotic distribution as the
infeasible optimal estimator:

f̂1(y) ∼ approx N
(

f1(y) + h2

2
f ′′
1 (y), p(y)2 f1(y)

pnh

∫
K2

)
.

However, estimating p(y) may be complicated in our set-up. If
the missingness depends on Xi as well as on Yi, then a regression
of Di on Yi using complete cases only will give a biased estimator
of p(y). One option could be to use inverse probability weighting

1
n

n∑
i=1

Ri
π̂i

S̃i(γ ) = 0

where S̃i(γ ) is the score function for a binomial regression of
Di on Yi. With suitable regularity assumptions (see Robins, Rot-
nitzky, and Zhao 1995), the fitted p̂(Yi) will be

√
n-consistent,

and we will obtain the asymptotic result outlined above.

3.5. Bandwidth selection

It is well known that the performance of a kernel estimator is
highly dependent on the chosen bandwidth. For their estimator,
Tang, He, and Gunzler (2012) suggest choosing the bandwidth
that minimizes the mean integrated squared error derived from
the asymptotic distribution, and obviously this would be a pos-
sibility for the estimators considered in this paper as well. More
computationally demanding methods such as cross validation
or Ruppert’s (1997) EBBS-method could also be considered.
These methods make the choice of bandwidth data-driven, and
it should be considered to what degree this influences the asymp-
totic results given above. Doing this is however outside the scope
of this paper. Note however that the bandwidths used in the
simulations in the next section are random, as they depend on
the sample standard deviation. The effect of this seems to be
minor compared to the effects of the kernel estimator itself and
the effect of estimating the parameters of the regression of Di on
(Yi, Xi).

4. Simulations

I will now present some simulation results aimed at comparing
the four estimators—the single imputation estimator, the mul-
tiple imputation estimator, the fixed imputation estimator, and
the “Rao-Blackwellized” estimator—discussed in the previous
section to each other as well as to the complete data estimator
and the weighted estimator considered by Tang, He, and Gunzler
(2012). Note that I present results for the complete data estima-
tor, not for the complete case estimator, as I am interested in the
comparison of different (asymptotically) unbiased estimators,
not in how they improve on a biased estimator, such as the
complete case estimator. The multiple imputation estimator is
based on 5 sets of imputations. I have on purpose chosen a small
number of imputations to make differences between the mul-
tiple imputation estimator and the single and fixed imputation
estimators stand out. The simulation results are based on 2000
replications.

In the simulations, the distribution of Y given D = d is
a normal distribution with mean equal to d − 1 and standard
deviation equal to 1. Hence, the density I am trying to estimate
is a standard normal density. I simulate D such that P{D = d} =
1/2 for d = 0, 1. Thus, the two groups are of approximately equal
size, and the distribution of D given Y = y is given by a logistic
regression. The sample size equals 400.

As “response mechanism” I use π(y) = 1/(1 + exp(−2 −
2y)). Hence the probability of D being unobserved decreases
with y, and the distribution of Y given that D is observed to
be equal to 1 is a right-skewed distribution. With this missing
data mechanism, approximately 22.5% of the observations with
D = 1 have missing data; overall approximately 15% of the
observations have missing group indicators.

I use a standard normal kernel function and Silverman’s rule
of thumb based on the complete data in the D = 1-group to
choose the bandwidth. This will probably give the advantage to
the complete data estimator. I estimate the density in 21 equally
spaced points between −2 and 2. Over this grid, π(y) decreases
from 0.88 to 0.12. The results of the simulations are presented in
Figures 1 and 2. In Table 1, I present the results for the estimates
of the density at y = −1, 0, 1.

Figure 1 shows that all estimators are behaving as expected:
they have similar biases, and the largest bias is found at y =
0, where the underlying normal density has the largest curva-
ture. The weighted estimator has considerably larger standard
deviation for small values of y where π(y) is small and more
data is missing. The Rao-Blackwellized estimator has noticeably
smaller standard deviations than the other estimators.

Figure 2 provides a closer look at the bias and the standard
deviations of the six estimators. The weighted estimator has
smaller bias when y is small than the other estimators, but
otherwise the estimators seem to have the same bias as the
asymptotic results suggest. Indeed, the bias of the weighted
estimator is too small compared to what the asymptotic results
predict when π(y) is small. When it comes to the standard devia-
tion, the imputation estimators clearly outperforms the weighted
estimator, in particular when π(y) is small. For small y, the
four imputation estimators have essentially the same standard
deviation as the complete data estimator, but as y increases the
standard deviation of the Rao-Blackwellized estimator becomes
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Figure 1. Simulation results. The points are the averages of 2000 simulated estimators, the vertical lines represent ±1 times the standard deviations of the estimators. The
grey curve is the density we are trying to estimate.

Figure 2. Simulation results. The first panel shows the absolute bias of the estimators, the second the standard deviations of the estimators. The final panel shows the bias
of the estimators of the standard deviations of the estimators.

considerably smaller than the standard deviations of the others.
This is due to the fact that for small y almost all the observations
belong to the D = 1-group and consequently p̂(y) ≈ 1 when y is
small. As y increases the Rao-Blackwellized estimator begins to
take advantage of the observations in the second group, and this
lowers the standard deviation of the estimator. There is very little
difference between the four other estimators, but where there is a
discernible difference the ordering of the imputation estimators
is as expected: the fixed imputation estimator has smaller stan-
dard deviation than the multiple imputation estimator which is
slightly better than the single imputation estimator. Contrary to
what the asymptotic results suggest, the standard deviations of
the single imputation estimator differ from the standard devia-
tions of the complete case estimator. Hence, it seems that in finite
samples there may well be an effect of estimating the probability
of D given Y = y; I will investigate this in Section 6. It seems that
the complete data estimator has larger standard deviation than
the single imputation estimator for y close to 0. It is difficult to see
from the graph, but when y is further away from 0, the complete

Table 1. Simulation results for y = −1, 0, 1.

y Complete Weighted Single MI Fixed Rao-Blackwell

0.2420 0.2438 0.2418 0.2419 0.2420 0.2421
−1 0.0252 0.0331 0.0256 0.0249 0.0247 0.0239

0.0305 0.0436 0.0305 0.0377 0.0373 0.0354

0.3751 0.3754 0.3752 0.3753 0.3751 0.3750
0 0.0291 0.0352 0.0287 0.0283 0.0281 0.0246

0.0381 0.0405 0.0381 0.0418 0.0416 0.0336

0.2405 0.2410 0.2404 0.2406 0.2404 0.2402
1 0.0249 0.0276 0.0252 0.0249 0.0249 0.0195

0.0305 0.0308 0.0304 0.0263 0.0263 0.0162

For each value of y, the first line is the mean of the estimates, the second the standard
deviation of the estimates, and the third the average of the asymptotic standard
deviations.

data estimator has smaller standard deviations than the single
imputation estimator.

The right-most panel of Figure 2 shows the bias of the estima-
tors of the standard deviations of the six different estimators. As
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the bias is quite large compared to the true standard deviation,
the variance estimators derived may be quite misleading in finite
samples. I will investigate this aspect further in Section 6.

5. Application to rejection inference data

As an illustration of the difference between the weighted estima-
tor and the imputation estimator as well as the effect of incorpo-
rating the missing data on the results, I look at an example from
rejection inference.

I use data from the online peer-to-peer lending market Lend-
ing Club previously used by Li et al. (2020). The data set contains
information on 233318 loan applications of which 27157 were
approved. This means that for 88.4% of the observations the
information regarding whether the loan would have been repaid,
had the loan been granted, is missing. The data set contains
information on debt-to-income ratios, a Fair Isaac Corporation
score (“FICO”), employment length and a categorized bad risk
rate based on geography for each loan application. I will focus
on the distribution of the FICO score for those who would repay
their loan. The FICO score is one of the variables used to decide
whether at loan is granted, so its distribution for those who repay,
had the application been granted, will differ from its distribution
among those who has been granted a loan and repaid it.

A little more than half the applications have a FICO score
below 660 even though a FICO score above 660 is a requirement
for a loan. Without any accepted applications with FICO scores
below 660 the weighted kernel density estimator is not able
to estimate the density of the FICO score below 660 in any
reasonable way. The imputation estimator can, but the estimate
will be based on extrapolations from the imputation model, so
I remove loan applications with FICO scores below 660 and
effectively estimate the density of the FICO score conditional
on this being at least 660 in the group of applicants who would
repay their loan. I end up with 114679 loan applications, of which
76.4% were turned down.

As the density of the truncated FICO scores is supported on
the interval [660; ∞[ I estimate the density of the logarithm of
the scores minus 660 to mitigate the boundary bias and then
transform my estimate to get an estimate of the density that I
am interested in.

For the imputations I use a generalized linear model with
a complementary log-log link using all the explanatory vari-
ables. The debt to income ratio is log-transformed and both

this variable and the FICO score are included as second order
polynomials. As a model for the missing data mechanism I again
use a generalized linear model with a complementary log-log
link and all the explanatory variables. In this model the FICO
score, the log-transformed debt to income ration and the loan
amount are included as second order polynomials whereas I use
a linear spline with a knot at 2 for the employment length. Both
models appear to fit the observed data.

An important assumption for the weighted estimator is that
the probability of response is bounded away from 0. A gener-
alized linear model with a standard link function will not have
this property unless the covariates are bounded, but in many
real data examples the estimated probability of response will be
sufficiently far away from 0 for this to cause any problems. In
this example, however, the missing data model gives estimated
probability of response very close to zero, which makes the
weighted density estimator highly unstable. It spikes at the lowest
FICO scores, and it is essentially zero everywhere else. As an ad
hoc fix, I replace all estimated probabilities of response smaller
than a cutoff by the cutoff value. The results of this are shown in
Figure 3 next to the imputation estimator.

Compared to the complete case estimator (the grey curve)
the imputation estimator puts more distribution mass on smaller
FICO scores. This is what we should expect: low FICO scores
lead to rejection, so the unapproved applications have smaller
FICO scores. We only show the single imputation estimator here
as all the imputation estimators are visually indistinguishable.
The three following graphs show weighted kernel estimators
with smaller probabilities of response replaced by a cutoff value.
A cutoff value of 0.001 seems too little, and a cutoff value of 0.1
is probably too much: here the weighted density estimator is too
close to the presumably biased complete case estimator. With a
cutoff of 0.01 I get a density with more of the mass at very small
and large FICO scores compared to the complete case estimator.

Obviously, the results depend on the chosen bandwidth. I
have used the bandwidth calculated using Silverman’s rule of
thumb based on the complete cases for all estimators. A larger
bandwidth may improve the weighted estimator with a cutoff
value of 0.01. But this example shows how unstable the weighted
estimator is when the probability of response varies as much
as it does here. The weighted estimator also has a much larger
standard error. Again this is particularly bad in this example
due to the low probability of response. The imputation estimator
works well even though most of the data is missing. Compared

Figure 3. Estimated FICO score density. Grey curves are complete case estimates, dashed curves are asymptotic pointwise confidence bands.
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to the complete case estimator, the imputation estimator moves
some of the probability mass to lower values of the FICO score.
It seems that low FICO scores possibly could play a smaller role
in the decision of whether to grant a loan or not.

6. Higher order expressions for the asymptotic
variance

Due to the faster rate of convergence, the estimation uncertainty
in the estimate of β may be ignored asymptotically in the density
estimator. However, as the simulations indicate, it is not ignor-
able in small samples where 1/n may not be negligible compared
to 1/(nh). In this section I will derive an expression for the
asymptotic variance which includes terms of order up to 1/n.

Including terms of order 1/n, the variance of the complete
data estimator (5) can be written as

Var
[

f̂1(y)
]

= f1(y)
pnh

∫
K2 − f ′

1(y)
pn

∫
uK2(u)du − f1(y)2

pn
+ o(1/n).

(10)

With a symmetric kernel K the second term of this expression is
0, and the asymptotic variance of the estimator may be written
as

f1(y)
pnh

∫
K2 ·

(
1 − hf1(y)∫

K2

)
. (11)

If h is larger than
∫

K2/f1(y), this expression is negative, and in
this case the o(1/n)-term in (10) is not negligible. The expres-
sion for the asymptotic variance given in (11) is clearly smaller
than the usual one. For instance, with f1 equal to the standard
normal density, a standard normal kernel, and h = 0.367
(corresponding to using Silverman’s rule of thumb with np =
200), (11) is less than half the usual expression when y = 0. An
unbiased estimator of the variance of a kernel density estimator
(without missing data and with a nonrandom bandwidth) is easy
to obtain: The kernel estimator is an average of iid terms, so
the empirical variance based on these terms divided by n is an
unbiased estimate.

For our imputation estimators, I obtain the following results:

Theorem 5. Under the same assumptions as in Section 3 and the
additional assumptions listed in A.3, the asymptotic variances
may be written as follows:

Var [f̂1,SI(y)] = f1(y)
pnh

∫
K2 − f1(y)2

pn

+ 1
p2n

A1(y)I(β)−1A1(y)�

+ 2
p2n

√
h

A1(y)I(β)−1A2(y) + o(1/n)

Var [f̂1,MI(y)] = 1
p2nh

(v1(y) + v2(y)/B)f (y)
∫

K2

− 1
p2n

2(v1(y) + v2(y)/B)f (y)f1(y)

+ 1
p2n

E[v1(Yi) + v2(Yi)/B]f1(y)2

+ (1 + 1
B

)
1

p2n
A1(y)I(β)−1A1(y)�

+ 1
B

2
p2n

√
h

A1(y)I(β)−1A2(y) + o(1/n)

Var [f̂1,FI(y)] = 1
p2nh

v1(y)f (y)
∫

K2

− 1
p2n

2v1(y)f (y)f1(y) + 1
p2n

E[v1(Yi)]f1(y)2

+ 1
p2n

A1(y)I(β)−1A1(y)� + o(1/n)

Var [f̂1,RB(y)] = 1
p2nh

E[p2
1|Y1 = y]f (y)

∫
K2

− 2
p2n

E[p2
1|Y1 = y]f (y)f1(y)

+ 1
p2n

E[p2
1]f1(y)2

+ 1
p2n

A(y)I(β)−1A(y)� + o(1/n)

where

A1(y) = E[(1 − π1)p′
1Z�

1 |Y1 = y]f (y) − E[(1 − π1)p′
1Z�

1 ]f1(y)
A2(y) = E[π1p′

1Z1|Y1 = y]f (y) − E[π1p′
1Z1]f1(y)

A(y) = E[p′
1Z�

1 |Y1 = y]f (y) − E[p′
1Z�

1 ]f1(y)
v1(y) = E[π1p1 + (1 − π1)p2

1|Y1 = y]
v2(y) = E[(1 − π1)p1(1 − p1)|Y1 = y]

as n → ∞ and h → 0 such that nh → ∞.

An expression for the variance of the weighted estimator
similar to those in the theorem above may be derived from
Tang, He, and Gunzler (2012)’s Theorem 3. Figure 4 provides
a comparison of these formulae and the simulation results from
Section 4. It is clear that the higher order expressions are better
able to capture the true variability of the estimators.

As with the formula (10), the expressions for the variances in
Theorem 5 may give negative values for h sufficiently large. In the
(somewhat uninteresting) case, where π is a constant, it is easy
to see that the sum of the last two terms of the variance of the
single imputation estimator is positive (unless h is large). Thus,
if the missing data mechanism is missing completely at random,
the (infeasible) complete data estimator is more efficient than
the single imputation estimator. In other words, there is a price
to be paid when estimating β . However, the expressions for the
variances given in the theorem above confirm the findings from
the simulations in the previous section: In the set-up from the
simulations, where π depends on y, the variance of the single
imputation estimator (ignoring o(1/n)-terms) is smaller than
the variance of the complete data estimator for y close to 0.

The expressions for the asymptotic variances in Theorem 5
are difficult to compare to each other algebraically. It is however
clear from the proof that the variance of the “fixed imputation”
estimator is smaller than the variance of the single and the
multiple imputation estimators. The single and the multiple
imputation estimators are not easy to compare. Though more
imputations (larger B) clearly decreases the asymptotic variance,
the variance of the multiple imputation estimator is actually
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Figure 4. Standard deviations of density estimators. The open circles are the standard deviations from the simulations in Section 4, the filled circles are asymptotic standard
deviations obtained from Theorem 5.

larger than the variance of the single imputation estimator, when
B = 1. This is due to the extra randomness inherent in simu-
lating from a Bayesian predictive distribution. As B increases,
the asymptotic variance of the multiple imputation estimator
approaches the variance of the fixed imputation estimator and
in particular becomes smaller than the variance of the sin-
gle imputation estimator. Comparing the variance of the “Rao-
Blackwellized” estimator to the variance of the fixed imputation
estimator, note that E[p2

1|Y1 = y] ≤ v1(y). This implies that

1
p2nh

E[p2
1|Y1 = y]f (y)

∫
K2 − 2

p2n
E[p2

1|Y1 = y]f (y)

+ 1
p2n

E[p2
1]f1(y)2

≤ 1
p2nh

v1(y)f (f )
∫

K2− 1
p2n

2v1(y)f (f )+ 1
p2n

E[v1(Y1)]f1(y)2

for h sufficiently small (h ≤ ∫
K2/(2f1(y))). However,

1
p2n

A(y)I(β)−1A(y)� ≥ 1
p2n

A1(y)I(β)−1A1(y)�

in the case where πi is constant, and this will presumably be
the case also when πi is not constant, at least for some values
of y. Hence, comparing these two estimators algebraically does
not seem possible. Eventually, of course, as n increases and h
decreases, the variance of f̂1,RB(y) will be the smaller of the two,
but I am not able to rule out that the fixed imputation may have
smaller variance in small samples.

Even though it is possible to estimate the different terms in
these expressions consistently using kernel regressions, so that
these formulae may be used to get improved estimation of the
variance of the imputation estimators, it seems too complicated
for routine use. Moreover, even if such a plug-in estimator would
be consistent, the finite sample bias in the kernel estimators will

presumably bias the variance estimators to some degree. Boot-
strapping may be a useful alternative way of obtaining accurate
standard errors.

7. Conclusion

In this paper, I have considered four different imputation esti-
mators for estimating the density in a subgroup when group
membership is not known for every observation. The single
random imputation estimator is attractive, because it is eas-
ily implemented and has the same asymptotic distribution as
the complete data estimator. The “Rao-Blackwellized” estimator,
where every subgroup indicator is replaced by its conditional
mean, is more efficient but may require a little more work to
implement and estimating its variance will be somewhat harder,
especially if the estimated probability of belonging to the sub-
group of interest depend on Xi as well as Yi. The other two
estimators—the multiple imputation estimator and the fixed
imputation estimator—are more complicated to work with than
the single imputation estimator and less efficient than the “Rao-
Blackwellized” estimator. Thus for practical applications, either
the single imputation or the Rao-Blackwellized estimator should
be used. As shown, the asymptotic variance ignoring terms of
smaller order than 1/(nh) may be quite misleading in finite
samples, and I have provided more accurate formulae for the
asymptotic variance. These formulae will require more work
to implement in practice, where a simple bootstrap may be an
easier option.

All the imputation estimators are more efficient than the
weighted estimator considered by Tang, He, and Gunzler (2012).
This is due to the weighting with the inverse of potentially
very small probabilities, which inflates the variance. Robins,
Rotnitzky, and Zhao (1995) show how the efficiency of inverse
probability weighed estimators for semi-parametric regression
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models may be improved, and this is probably possible also for
the kernel density estimator considered here. It seems unlikely
that one would be able to obtain better results using weighting
than by using imputation in the situation considered in this
paper, though. In general, a reason for preferring weighting to
imputation is that it is easier to fit a binary regression model for
the response mechanism than it is to fit an imputation model,
but here the imputation model is also a binary regression, and as
imputation leads to more efficient estimators there is little reason
to prefer weighting.

The simplicity of the results are due to the fact that the
faster rate of convergence of the parameters from the imputation
model allows us to treat the imputation model as known. Even
though a parametric binary regression model is a flexible tool,
it would be of interest to see how the asymptotic results would
change if we used a non-parametric or a semi-parametric binary
regression model for the imputation model. I hope to address
this in a future paper.
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Appendix A: Proofs

A.1. Assumptions for the main results

Assumption A
The random variables (Yi, Di, Ri, Xi), i = 1, . . . , n are iid and the

Yi’s are missing at random.
The conditional distribution of Di given Xi = x and Yi = y is

from a generalized linear model with an inverse link function that has
a bounded derivative.

Assumption B
The kernel function satisfies (4).

Assumptions C1–C6
C1: f (y) is twice continuously differentiable with a second derivative

that is locally Lipschitz.
C2: f1(y) is twice continuously differentiable with a second deriva-

tive that is locally Lipschitz.
C3: p(y) is twice continuously differentiable with a second derivative

that is locally Lipschitz.
C4: E[p2

i |Yi = y] is twice continuously differentiable with a second
derivative that is locally Lipschitz.

C5: E[πipi|Yi = y] is twice continuously differentiable with a second
derivative that is locally Lipschitz.

C6: E[πip2
i |Yi = y] is twice continuously differentiable with a

second derivative that is locally Lipschitz.

A.2. Asymptotic distribution

I first consider the centered single imputation estimator

f̂1,SI(y) −
(

f1(y) + h2

2
f ′′
1 (y)

)

=
1
n

∑n
i=1 D̃i

(
K

( y−Yi
h

)
/h − f1(y) − h2

2 f ′′
1 (y)

)
1
n

∑n
i=1 D̃i

.

The denominator converges in probability to p. To see this first note that

1
n

n∑
i=1

RiDi + (1 − Ri)1{Ui≤pi} → p in probability.

Next, note that

E

∣∣∣∣∣ 1
n

n∑
i=1

D̃i − 1
n

n∑
i=1

RiDi + (1 − Ri)1{Ui≤pi}
∣∣∣∣∣

≤ E

[
1
n

n∑
i=1

∣∣∣1{Ui≤p̂i} − 1{Ui≤pi}
∣∣∣
]

= E

[
2
n

n∑
i=1

∣∣p̂i − pi
∣∣] .

This mean converges to 0 as the average is bounded and

1
n

n∑
i=1

∣∣p̂i − pi
∣∣ ≤ const

1
n

n∑
i=1

|Zi| ·
∣∣∣β̂ − β

∣∣∣
which converges to 0 in probability. Similar arguments hold for the
denominators of the other estimators. Thus the denominators may be
treated as known.

To derive the asymptotic distribution I decompose the numerator as
follows:

1
n

n∑
i=1

D̃i
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

= 1
n

n∑
i=1

(RiDi + (1 − Ri)p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

(12)

+ 1
n

n∑
i=1

(1 − Ri)(1{Ui≤p̂i} − p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

(13)

The second term (13) has mean 0 and variance

1
n2

n∑
i=1

(1 − Ri)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)2

p̂i(1 − p̂i)
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conditional on the observed data. Moreover, as∣∣p̂i(1 − p̂i) − pi(1 − pi)
∣∣ ≤ const |Zi| ·

∣∣∣β̂ − β

∣∣∣ = |Zi| OP(1/
√

n)

it follows that unconditionally

h
n

n∑
i=1

(1 − Ri)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)2

p̂i(1 − p̂i)

P−→ E[(1 − πi)pi(1 − pi)|Yi = y]f (y)
∫

K2.

It follows by the central limit theorem for triangular arrays that given
the observed data

√
nh

1
n

n∑
i=1

(1 − Ri)(1{Ui≤p̂i} − p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

D−→ N
(

0, E[(1 − π1)p1(1 − p1)|Y1 = y]f (y)
∫

K2
)

(14)

in probability. As the limiting distribution does not depend on the
observed data, the convergence is also valid unconditionally, and (13)
is asymptotically independent of (12).

Now turn to the term (12), which is decomposed as follows:

√
nh

1
n

n∑
i=1

(RiDi + (1 − Ri)p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2

2 f ′′
1 (y)

)

= √
nh

1
n

n∑
i=1

(RiDi + (1 − Ri)pi)
(

K(
y−Yi

h )/h − f1(y) − h2

2 f ′′
1 (y)

)

+ √
nh

1
n

n∑
i=1

(1 − Ri)(p̂i − pi)
(

K(
y−Yi

h )/h − f1(y) − h2

2 f ′′
1 (y)

)
.

Here the second term is oP(1) as it numerically bounded by a constant
times

√
h

1
n

n∑
i=1

|Zi| ·
∣∣∣K(

y−Yi
h )/h − f1(y) − h2

2 f ′′
1 (y)

∣∣∣ · |√n(β̂ − β)|

= OP(
√

h).

Ignoring the remainder term, it follows that (12) has mean 0 and a
variance that is

E[π1p1 + (1 − π1)p2
1|Y1 = y]f (y)

∫
K2 + o(1).

Thus, I obtain

√
nh

1
n

n∑
i=1

(RiDi + (1 − Ri)p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

D−→ N
(

0, E[π1p1 + (1 − π1)p2
1|Y1 = y]f (y)

∫
K2

)
.

Combining this with (14) I obtain Theorem 1.
The other imputation estimators are handled similarly. The “fixed

imputation estimator” in Section 3.3 corresponds to ignoring (13),
whereas the estimators in Section 3.4 are obtained by letting Ri = 0
in (12) and omitting (13). The multiple imputation estimator is slightly
more complicated. The Ui should be replaced by Ui,j’s, p̂i should be
replaced by p̂i,j in (13) (but not in (12)) and a new term

1
n

n∑
i=1

(1 − Ri)(p̂i,j − p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

(15)

should be included between with (12) and (13). The term (13) may be
handled as in the single imputation case by conditioning on β̃j as well
as the observed data; the term (12) is unchanged. The new term (15) is
handled conditionally on the observed data:

1
n

n∑
i=1

(1 − Ri)(p̃i,j − p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

= 1
n

n∑
i=1

(1 − Ri)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

p̃′
i,jZ

�
i (β̃j − β̂)

where p̂′
i,j is the derivative of the inverse link function at a point between

Z�
i β̃j and Z�

i β̂ . As β̃j−β̂ = OP(1/
√

n) the term (15) is oP(1/
√

nh) and
may be ignored asymptotically. Thus, the multiple imputation estimator
is asymptotically equivalent to the sum of (12) and an average of B
independent copies of (13) divided by p.

A.3. Variances

For Theorem 5 I need a few additional assumptions: I will assume that
the derivative of the inverse link function in the model for p(x, y) is
Lipschitz continuous and that E[p′′

i Zi|Yi = y] and E[πip′′
i Zi|Yi = y]

are twice continuously differentiable (as functions of y) with a locally
Lipschitz continuous second derivative.

Focusing first on the single imputation estimator, the variance of
(13) may be written as

1
nh

v2(y)f (y)
∫

K2 − 2
n

v2(y)f (y)f1(y) + 1
n

E[v2(Y1)]f1(y)2 + o(1/n)

with v2(y) given in Theorem 5.
A little more work is required to obtain a higher order expression

for the variance of (12), as the effect of p̂i − pi which is OP(1/
√

n)

has to be incorporated. Note, however, that (13) and (12) are
uncorrelated. Taylor expanding pi as a function of the linear predictor,
we get

p̂i = pi + p′
iZ

�
i (β̂ − β) + (p̂′

i − p′
i)Z�

i (β̂ − β)

where p̂′
i is the derivative of the inverse link function at a point between

Z�
i β̂ and Z�

i β . Moreover, as

|p̂′
i − p′

i| ≤ const |Z�
i β̂ − Z�

i β| ≤ const |Zi| · |β̂ − β|
I get

p̂i − pi = p′
iZ

�
i (β̂ − β) + op(1/

√
n) = p′

iZ
�
i

1
n

n∑
j=1

Sj + op(1/
√

n).

Hence, I obtain

√
nh

1
n

n∑
i=1

(RiDi + (1 − Ri)p̂i)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

= √
nh

1
n

n∑
i=1

(RiDi + (1 − Ri)pi)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

+ √
hA1(y)

1√
n

n∑
i=1

Si + oP(1)

with A1(y) given in Theorem 5, as

1
n

n∑
i=1

(1 − Ri)
(

K(
y−Yi

h )/h − f1(y) − h2
2 f ′′

1 (y)
)

p̂′
iZ

�
i

P−→ A1(y).
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It now follows that the asymptotic variance of (12) may be written as

1
h

v1(y)f (f )
∫

K2 − 2v1(y)f (y)f1(y) + E[v1(Yi)]f1(y)2

+ A1(y)I(β)−1A1(y)� + 2A1(y)I(β)−1A2(y)/
√

h + o(1/n)

with v1(y) and A2(y) given in Theorem 5 as

E
[
(RiDi + (1 − Ri)pi)

(
K

( y−Yi
h

)
/h − f1(y) − h2

2 f ′′
1 (y)

)
Si

]
=E

[
DiSi

(
K

( y−Yi
h

)
/h − f1(y) − h2

2 f ′′
1 (y)

)]
=E

[
E[DiSi|Yi]

(
K

( y−Yi
h

)
/h − f1(y) − h2

2 f ′′
1 (y)

)]
=I(β)−1A2(y)

since
E[DiSi|Yi] = E

[
RiDi

(1 − pi)
pi(1 − pi)

p′
iI(β)−1Zi|Yi

]

= I(β)−1E[πip′
iZi|Yi].

Noting that v2(y) + v1(y) = p(y) gives the desired result.
As in the proofs of the asymptotic results, the expressions for the

asymptotic variances of f̂1,FI(y) and f̂1,RB(y) follows easily by ignoring

the expression coming from (13) and, in the case of f̂1,RB(y), by formally
putting Ri = 0 and noting that the “covariance term” vanishes as

E[piSi|Yi] = E
[

Ri
Di − pi
1 − pi

p′
iI(β)−1Zi|Yi

]
= 0.

Turning to the multiple imputation estimator, the term corresponding
to (13) contribute

1
B

(
1

nh
v2(y)f (f )

∫
K2 − 2

n
v2(y)f (y)f1(y) + 1

n
E[v2(Yi)]f1(y)2

)
+ o(1/n)

to the variance of the average, whereas the contribution from the term
(12) is unchanged. The term (15) may be written as

1
n

n∑
i=1

(1 − Ri)
(

K
( y−Yi

h

)
/h − f1(y) − h2

2 f ′′
1 (y)

)
p̂′

i,jZ
�
i (β̃i,j − β̂)

= A1(y)(β̃i,j − β̂) + oP(1/
√

n).

As E[p̂i,j − p̂i|data] = OP(1), the correlation between this term and
(12) is negligible. Thus the contribution of this term to the variance is
A1(y)I(β)A1(y)�.
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