
 

                                  

 

 

Extended Generativity Theory on Digital Platforms

Fürstenau, Daniel; Baiyere, Abayomi; Schewina, Kai; Schulte-Althoff, Matthias; Rothe,
Hannes

Document Version
Accepted author manuscript

Published in:
Information Systems Research

DOI:
10.1287/isre.2023.1209

Publication date:
2023

License
Unspecified

Citation for published version (APA):
Fürstenau, D., Baiyere, A., Schewina, K., Schulte-Althoff, M., & Rothe, H. (2023). Extended Generativity Theory
on Digital Platforms. Information Systems Research, 34(4), 1686-1710. https://doi.org/10.1287/isre.2023.1209

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1287/isre.2023.1209
https://doi.org/10.1287/isre.2023.1209
https://research.cbs.dk/en/publications/aa6753c1-49c1-4331-bd01-fef0e9480029


* Corresponding author. Correspondence may be directed to: daniel.fuerstenau@itu.dk

1

Extended Generativity Theory on Digital Platforms*

Authors: 

Fürstenau, Daniel1 

Baiyere, Abayomi2,3 

Schewina, Kai4 

Schulte-Althoff, Matthias4,5 

Rothe, Hannes6

 IT University of Copenhagen, Department of Business IT, Copenhagen, Denmark 

2 Queen's University, Smith Business School, Canada  

3 Copenhagen Business School, Department of Digitalization, Frederiksberg, Denmark 

4 Freie Universität Berlin, School of Business & Economics, Berlin, Germany 

5 Charité – Universitätsmedizin Berlin, Berlin, Germany 

6 ICN Business School, Berlin, Nancy, Paris, France 

Accepted at Information Systems Research 

January 24, 2023 

Please do not share or distribute without the authors’ permission 



Extended Generativity Theory on Digital Platforms 

Abstract 

The assumption that generativity engenders unbounded growth has acquired an almost taken-for-granted 

position in information systems and management literature. Against this premise, we examine the 

relationship between generativity and user base growth in the context of a digital platform. To do this, 

we synthesize the literature on generativity into two views–social interaction (expansion of ecosystem 

boundaries) and product view (expansion of product boundaries)–that jointly and individually relate to 

user base growth. Both views help us explain how opening a platform relates to the emergence and 

resolution of conflicting expectations in a platform ecosystem that result in new functions and expanded 

usage. We adopt a panel vector autoregressive approach combining data from six large transaction 

platforms that engaged with open source developer communities. We found that the dominant narrative 

of generativity engendering growth, while generally supported by our analysis, obscures the fact that 

the inverse is also true; that is, growth can lead to expansion of product boundaries (inverse 

generativity), and that generativity can be bounded; that is, growth can stabilize ecosystem boundaries 

(bounded generativity). Against this background, we propose an Extended Generativity Theory that 

presents generativity and growth in an integrative view and raises awareness about the limitations of the 

“unbounded growth” claim. We conclude that there is value in separating the two views of generativity 

conceptually and analytically, along with their relationship to user base growth, and we call for research 

on the pathways through which generativity produces growth. 

Keywords: digital platforms; generativity; user base growth; product boundaries; ecosystem boundaries; 

dynamic boundary 



Extended Generativity Theory on Digital Platforms 

1. Introduction

Generativity engenders a system’s capacity to generate unbounded growth (Zittrain 2009, Yoo et al. 

2010; Tilson et al. 2010). Undoubtedly, the view of generativity in relation to unbounded growth has 

gained deep roots in scholarship on digital platforms (de Reuver et al. 2018, Constantinides et al. 2018). 

This proliferation of generativity as the recipe for unbounded growth reflects digital platform’s search 

for growth as they seek to expand their value offerings (Parker et al. 2016, Morgan et al. 2021), expand 

the reach of their ecosystems (Grover and Lyytinen 2022; Thomas and Ritala 2021), and expand their 

user base (Rietveld and Schilling 2021; Taeuscher and Rothe 2021). Prior research has shown that the 

generative capacity of software is rooted in re-programmable functions that leverage input from open 

communities (Yoo et al. 2012). Consequently, the generative capacities of traditional in-house software 

systems are considered limited compared to digital platforms external parties can contribute to (cf. 

Lehman et al. 1997, Lehman and Fernández-Ramil 2004). The quest for growth has led organizations 

to consider opening up in-house systems as digital platforms to leverage generativity. 

The current literature has extended our knowledge about how generativity contributes to growth on and 

of a digital platform. It has shown that there is no single, unified definition of generativity but there can 

be different forms of generativity (Faraj et al. 2011, Yoo et al. 2010, Thomas and Tee 2021). 

Generativity can be viewed from at least two perspectives–the product and the social interaction view. 

In the product view, generativity manifests in the expansion of product boundaries of a platform, i.e., 

adding new categories of content, services, or functions to a platform, such as new genres of games to a 

video game console (Cennamo and Santaló 2019) or new categories of apps to a mobile app store 

(Ghazawneh and Henfridsson 2013). The social interaction view engenders an expansion of ecosystem 

boundaries in that generativity arises from an increase in social interactions between platform providers 

and platform complementors. Both groups’ expectations can conflict, and they need to negotiate (Faraj 

et al. 2011, 2016, Shaikh and Vaast 2016) what functions a platform provides and how. While both 

views consider expanding boundaries, they implicitly assume that generativity engenders growth. 



 

 

In this study, we caveat this unbounded growth claim by highlighting that this is not always the case. 

Unbounded growth is assumed despite the nuanced differences in the forms of generativity explored in 

prior literature. While the literature on generativity has acknowledged the (co-)existence of both, the 

product and the social interaction view (e.g., Faraj et al. 2011), both have been largely considered silos. 

There has been limited investigation and theorizing on how these two views separately and jointly relate 

to user growth. We posit that there is much to uncover in examining how these seemingly disparate 

views of generativity specifically impact growth in digital platforms, i.e., their expansion in a relevant 

measure of size (West 2017). This absence in scholarship is unfortunate because the rapid growth (e.g., 

“growing on steroids”; Huang et al. 2017) of digital platforms is desired but remains elusive. At the 

surface, generativity may seem to overlap with what is referred to as growth of actors or services 

(Zittrain 2009, Tilson et al. 2010). For platform providers, however, an important growth measure is the 

user base (e.g., Rietveld and Schilling 2021; Taeuscher and Rothe 2021), which can be distinguished 

from the aforementioned expansions of ecosystem or product boundaries. Paying attention to how 

different strands of generativity contribute to user base growth is important as organizations increasingly 

recognize the benefits of leveraging digital platforms to access the knowledge of uncoordinated 

audiences also referred to as the “crowd” (Cusumano et al. 2019, Niederer and van Dijck 2010). This 

observation has given salience to the value of “platformization” as a channel for growth and innovation 

(Boudreau 2006, Bygstad and Hanseth 2018), which has spurred many organizations to strive to open 

their systems to external developers. Hence, our study specifically asks: How do different forms of 

generativity on a digital platform relate to user growth?  

We disentangle both views and point out nuances in the interaction between generativity and growth 

that call for caution in this blanket characterization. We propose an integrative view of generativity as a 

conceptual framework that lays out how both forms of generativity explain dynamic boundaries of a 

digital platform. We exemplify this view in the context of platforms that open core functions to joint 

development between professional developers of a platform provider, freelancers, and large 

uncoordinated audiences. From an integrative view, we consider a dynamic set of components 

(expanding product boundaries) that results from a continuous process in which providers and a dynamic 

set of developer complementors (expanding ecosystem boundaries) negotiate conflicting expectations 



on functions at the service layer of a digital platform. By opening up the service layer (Yoo et al. 2012) 

of a transaction platform, not an innovation (e.g., Lyytinen et al. 2016) or product platform (e.g., 

Sandberg et al. 2020) through open source (Parker et al. 2017), providers lay open the inner functionality 

of core components and allow them to be appropriated–a process previously and predominantly under 

the control of corporate employees and contracted in-house IT personnel. The integrative view of 

generativity allows for studying the relationship between generativity, i.e., the expansion of product and 

ecosystem boundaries, and user base growth in new and unprecedented ways. 

Drawing on our integrative view, we employed a panel vector autoregression (PVAR) approach for our 

analysis. By using panel vector autoregression on a combined dataset from 6 large international e-

commerce transaction platform firms, we model the relationship between expansion of product 

boundaries, expansion of ecosystem boundaries, and user base growth. We employ impulse response 

function analyses and Granger causality tests and make two surprising findings. First, we find that 

generativity does not always lead to unbounded growth. While we also find evidence for generativity 

leading to user base growth, we are surprised to see a stabilizing effect on ecosystem boundaries over 

time–we refer to this as bounded generativity. This observation suggests that generativity is not always 

ever-expanding per se but instead can tend towards a dynamic equilibrium. Second, and contrary to the 

dominant narrative that generativity leads to growth, we find that the inverse also holds–i.e., user growth 

can also induce generativity–we refer to this as inverse generativity. Based on these findings, we propose 

an Extended Generativity Theory that captures the main insights of our study in six conjectures. The 

theory contributes to our knowledge of generativity by offering a conceptual bridge for integrating two 

streams of literature that provide insights into the multi-directional relationship between generativity 

and growth. Such a theoretical perspective enables us to shed new light on the “unbounded growth” 

claim that generativity and growth do not interact in unanimously positive and self-reinforcing cycles 

(e.g., Henfridsson and Bygstad 2013). We conclude by presenting boundary conditions and theoretical 

and practical implications that should inform and reorient future scholarship on digital platforms. 



 

 

2. Conceptual Background 

2.1 Two Views on Generativity 

The internet (Hanseth and Lyytinen 2010, Zittrain 2008, 2009), open source online communities (Faraj 

et al. 2011, 2016, Shaikh and Vaast 2016), and digital platforms (Constantinides et al. 2018, Foerderer 

et al. 2018, Hein et al. 2020) are all considered generative systems in that they lead to unbounded growth 

(Zittrain 2009). On platforms, generativity emerges in the relationship between complementors and a 

provider (Hein et al. 2020). Complementors use their knowledge and ideas to produce a variety of 

unforeseen contributions. At the same time, generativity depends on the provider. Platform providers 

allow people to connect and innovate, while preserving the right to control contributions. Choosing the 

right degree of openness to spur generativity from complementors, while avoiding negative externalities 

and identifying threats, is the platform provider’s central challenge (Cennamo and Santaló 2019, 

Constantinides et al. 2018, Parker et al. 2016, de Reuver et al. 2018, Tilson et al. 2010).  

Table 1. Views on Generativity in Digital Platforms 

View Foundational 

sources 

Definition and reference to 

growth 

Relation to dynamic boundary 

Product 

view 

Zittrain 2008 

Yoo et al. 2010 

Yoo 2013 

Generativity refers to the capacity 

of a platform to enable unbounded 

growth of new components that 

expand the product boundaries of 

a platform beyond its initial 

conception and further attract 

more users. 

The emergence of a new category of 

components or the addition of new 

components to existing categories 

leads to an expansion of product 

boundaries. Providers engage in 

configurational boundary work in that 

they govern product categories, such 

as securing boundary resources 

between the platform and 

complements or promoting particular 

complements. 

Social 

interaction 

view 

Faraj 2011 

Shaikh and 

Vaast 2016 

Jarvenpaa and 

Standaert 2018 

Generativity refers to the capacity 

of a platform to produce 

unbounded growth of interactions 

between human and technology 

resources that expand the 

ecosystem boundaries and leads to 

user growth by resolving emerging 

conflicts. 

The emergence of new interactions 

between developers and components 

around conflicts leads to an expansion 

of ecosystem boundaries. Providers 

and complementing developers 

engage in collaborative boundary 

work as they negotiate what conflicts 

to solve, how and by whom. 

Against this background, generativity can be conceptualized from at least two perspectives–the product 

view and the social interaction view (Table 1). Platform providers engage in purposeful efforts to 

influence the boundaries of their platforms, which is considered boundary work (Langley et al. 2019). 



They shape ecosystem boundaries by determining who might become a complementor and can 

participate in the ecosystem (Kretschmer et al. 2022; Gawer 2021). Platform providers shape product 

boundaries through decisions about what complements are added to the platform. 

Product view: The product view of generativity refers to the ability of a platform to expand its product 

boundaries beyond the current categories. This view highlights the technological potential of 

generativity to produce “unprompted change” (Zittrain 2008), “a seemingly infinite number of variations 

and speciations” (Yoo 2013), and “unbounded growth in scale and diversity” of functions (Tilson et al. 

2010; Lyytinen et al. 2017). Yoo et al. (2010) outline how, combining layered and modular architecture, 

platforms create fluid product boundaries. Platforms can be created from (and extended with) product-

agnostic components on content, service, network, or device layers. Innovations on each layer lead to 

cascading effects when layers are loosely coupled (Adomavicius et al. 2008, Boland et al. 2007, Yoo et 

al. 2010). For example, when new social media or video game applications were added to the app store, 

iOS and Apple iPhone became more than a combination of a phone and an operating system. Innovations 

on the service and content layers expanded the product boundaries, and the iPhone became a gaming 

device and a social media tool. Cennamo and Santaló (2019) conceptualized generativity as the 

expansion of game genres at the content level of video gaming consoles, considering the positively 

accumulative effects of generativity on user satisfaction. Pauli and Lin (2020) illustrate how components 

from internal and external developers expand the product boundaries of IoT platforms at the service 

layer. Hukal et al. (2020) explain how new tags are introduced that invite more user-based content on 

platforms like OpenStreetMap. Providers guide what configurations of components they consider 

beneficial for the platform (Hukal et al. 2020) as they ease collaboration with complementors or even 

allow competition among complementors to satisfy user demands (Cennamo and Santaló 2019). 

Together, providers and complementors have many views on what categories of components should be 

added to different layers of the platform architecture. At the service layer, any new component of a 

platform is assessed by third-party and first-party developers against their respective expectations on 

what functions a component of a particular category needs to fulfill and how it is supposed to perform 

its task. Platform providers decide what components are added to a platform, highlight what functions 



 

 

are desirable (Constantinides et al. 2018; Zhang et al. 2020), and promote complementors who meet 

their expectations (Ho and Rai 2017). Similarly, clients have expectations on what functions the platform 

is supposed to provide as they compare it to competing platforms. By adding new components to existing 

categories on a platform or by introducing new categories, providers engage in “manipulating patterns 

of differentiation and integration” of components, which captures configurational boundary work 

(Langley et al. 2019, p. 704). We refer to this as the expansion of product boundaries on a platform. 

Social interaction view: The social interaction view of generativity explains how ecosystem boundaries 

are expanded when complementors become involved in developing components on a platform. Here, an 

ecosystem for transaction platforms refers to communities of actors who provide heterogeneous 

complements to the platform’s service layer to support forming and leveraging transactions between 

buyers and sellers (Kretschmer et al. 2022). According to the social interaction view, platforms are not 

per se generative. Their membership structures are generative in that ecosystems produce innovation 

through meaningful interactions that resolve conflicting expectations between members. When Faraj et 

al. (2011, 2016) conceptualize the “fluid organization”, they note how online communities respond to 

conflicts in a “generative” or “constrained” way, meaning that generative discussions encourage 

productive new outcomes, while constrained discussions cause the dialog to halt and die. Kane et al. 

(2014) study tensions between knowledge change and knowledge retention in social media 

communities. They argue that generative dialogue fosters discussions about conflicting expectations of 

retaining or changing knowledge by engaging multiple perspectives. Similarly, Shaikh and Vaast (2016) 

study developers’ discussions about error messages. They find discussions can be generative by 

“marking the start” from where conflicting expectations are resolved with new digital solutions. 

Similarly, Lyytinen et al. (2016) lay out how innovation platforms facilitate cognitive and social 

translation between heterogeneous actors that resolves conflicts and thereby fosters innovation. This 

view highlights the social interactions and structures which enable digital platforms to produce new 

knowledge (Faraj et al. 2011), new technological components such as enterprise systems (Wareham et 

al. 2014) or smartphones (Boudreau 2012).  



 

 

Actors engaging in generative or constraining discussions become part of an ecosystem through self-

selection (Wareham et al. 2014). Thus, boundaries are not only defined by actors formally governing a 

platform or those employed by an organization but by the voluntary participation of actors who decide 

to join or leave an ecosystem or participate in knowledge exchange (Dahlander and Frederiksen 2012; 

Ren et al. 2007). Generativity on platforms emerges from the interaction between human and 

technological resources who resolve conflicting expectations on how technology helps humans and 

stumble upon conflicts while new components are being designed (Jarvenpaa and Standaert 2018). 

Parker et al. (2017) laid out how developers who are not formal members of a platform provider “invert 

that firm” through these interactions because they become invaluable parts of a platform’s value 

creation. Thereby, ecosystem boundaries expand as new sets of human and technological resources from 

outside the formal provider organization interact to resolve upcoming conflicts on a platform (Barrett et 

al. 2015, Eaton et al. 2015). In the virtual environment of a digital platform, such interactions become 

unbounded from physical constraints, i.e., space and access to these resources (Jarvenpaa and Standaert 

2018), which allows for a greater range and a broader diversity of developers to engage with a platform 

(Grover and Lyytinen 2022; Lyytinen et al. 2016). The social interaction view stresses how platform 

providers and complementors negotiate what conflicting expectations should be resolved on a platform 

and by whom. Platforms are a “trading zone” where diverse actors–both formal affiliates and non-

affiliates of a provider organization–increasingly engage in collaborative boundary work (Langley et al. 

2019) that expands the ecosystem boundary as they strive to address new conflicts.  

2.2 An Integrative View of Generativity and the Dynamic Expansion of Boundaries 

We propose an integrative view as a third view that integrates both the product and social interaction 

views conceptually. While not representing a distinct view of generativity per se, the integrative view 

provides a means to take both views into account concurrently for analytical purposes. It considers both 

views as expanding boundaries and takes into account that extant literature in both streams have 

considered each other as context to their lines of argument. We develop the conceptual and analytical 

utility of this view and its implication in what follows. 



 

 

Platform providers inherently consider both–the product and social interaction view–when controlling 

which conflicts they solve on their own as they consider what components are core of the platform 

(Eaton et al. 2015, Eisenmann et al. 2008). Providers may introduce restrictions at all layers of a platform 

architecture (Lessig 2002, Yoo et al. 2010). For example, the service layer may be restricted in terms of 

who can enter, modify, and delete code underlying the functions (Eisenmann et al. 2008, Tiwana et al. 

2010). The architecture can be more or less inclusive, making access to the network and devices more 

or less difficult. Legenvre et al. (2022) lay out how Google has provided components on the network 

layer as a common resource to open source communities. Baig et al. (2015) provide similar examples 

by turning to the Guifi network infrastructure. Apple aims to “manage the delicate balance between 

generativity and control in the platform“ (Yoo et al. 2012, p. 1400), with oversight as to what content or 

services from developers of their ecosystem are featured. On the service layer, a platform provider can 

spur or constrain developers’ work on peripheral components (Eisenmann et al. 2008), concerning, for 

example, access control (Boudreau 2006, Cennamo and Santaló 2019), version control (Tiwana 2018), 

or interface control (Ghazawneh and Henfridsson 2013). In the case of Apple’s iOS platform, Eaton et 

al. (2015) identified 30 boundary resources, including the distribution of apps, executable code, 

objectionable content, data usage, and in-app subscription payments. Such “code control” concerns how 

developers may download, modify, and upload code to the platform and its components. Similarly, 

Google decided to open boundary resources of their Android platform to their ecosystem while 

restricting access to other services, like machine learning algorithms for advertising, to delimit social 

interaction with derivative components, i.e., ‘forks’ (Karhu et al. 2018). 

Against the two generativity views, we advance the concept of a dynamic boundary as an analytical 

means for integrating both views. Dynamic boundary refers to the dynamic set of components that result 

from a continuous process in which providers and complementors negotiate conflicting expectations for 

functions on the service layer of a digital platform. As shown in Figure 1, the dynamic boundary is a 

‘trading zone’ (Kellogg et al. 2006) on which developers from inside the provider organization negotiate 

with complementors (Langley et al. 2019) about what components ought to be designed and how. 

 



 

 

 

Figure 1. Producing Generativity on the Dynamic Boundary 

From a product view of generativity, the dynamic boundary provides (1) openness and permeability to 

expand product boundaries as more components are added to prevailing categories (Tilson et al. 2010, 

Lyytinen et al. 2017) or as new categories are introduced. The social-interaction view highlights how 

conflicting expectations between platform developers and complementors are solved through interacting 

with components, leading to an expansion of ecosystem boundaries. Internal developers produce 

components in product categories that they consider core. Components that infer effective use of a 

platform, such as computationally inefficient algorithms, might result in conflicting expectations of how 

efficient components ought to be. Components belonging to product categories that are negotiated 

openly with complementors in the ecosystem reside on the dynamic boundary. This might involve a 

transparent design of code or a transparent process to flag and discuss conflicts with complementors, for 

instance, in online communities such as GitHub or StackOverflow.  

There are three ways in which ecosystem boundaries are expanded on the dynamic boundary of a 

platform: (2) Joint negotiations of conflicting expectations reveal how components that have originally 

been created for a platform are modified by complementors applying them for their own needs in the 

outside environment (cf. Andersen and Bogusz 2019, Karhu et al. 2018). Later, platform providers can 

reintegrate these adapted components into the dynamic boundary (cf. Kalliamvakou et al. 2016). This is 
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a generative process as it creates derivative innovation that becomes the basis of new variants of a 

component on the dynamic boundary (Zhang et al. 2014) which might spark platform growth (Kim et 

al. 2018). This process may also be hostile when complementors “exploit” developed platform 

functionality and use it for competitive reasons (Karhu et al. 2018). In product categories at the dynamic 

boundary, complementors’ expectations for the design of a component might be influenced by their 

interest to work with components that are less specific to the platform architecture and allow for more 

general applications outside of the platform (Andersen and Bogusz 2019, Karhu et al. 2018). Thus, 

platform providers need to assess whether proposed changes to components, whether as new code or 

reported issues, meet their expectations on functions of a component and how it relates to the platform 

architecture. This form of direct negotiation of issues represents the main form of social interaction on 

the dynamic boundary. There are at least two variations that implicitly expand ecosystem boundaries. 

Expanding ecosystem boundaries involves negotiation between platform developers and complementors 

when (2a) internal components are used to solve conflicting expectations that third-parties resolve in the 

environment as long as providers remain aware of these solutions. Complementors who use a component 

from the core for purposes outside of the platform inherently relate components that resolved conflicting 

expectations on a platform with conflicts they currently face outside of the context of the dynamic 

boundary. Complementors who adapt platform components in different contexts face more conflicting 

expectations between how a component is built and how it is supposed to operate in this context. This 

provides ample opportunities to revise existing code, find new approaches to solve existing conflicts, 

and eventually help a component become more effective or robust. Adaptations of these derivative 

components (‘forks’) remain open and transparent on code platforms like GitHub, which allows platform 

providers to keep track of these derivatives and monitor changes. As long as platform developers remain 

aware of changes, these derivative components remain part of an ongoing negotiation about appropriate 

solutions to potentially conflicting expectations. Finally, the ability to openly negotiate expectations on 

specific product categories allows (2b) platform developers to solve conflicts raised internally with 

existing solutions from potential complementors. Hereby, internal developers initiate the solution of 

existing conflicts at the core with components from third-party developers. Instead of deeply integrating 



 

 

these components into the core, they remain on the dynamic boundary where adaptations are openly 

presented and can be negotiated with complementors later on. 

From the foregoing, both views–social interaction and product view–should individually and mutually 

contribute to generativity on the dynamic boundary. New product categories added by complementors 

on the service layer of a digital platform expand both the product and the ecosystem boundary. Similarly, 

conflicting expectations that arise from adding new components can attract new complementors who 

specialize in solving such conflicts and expand both boundaries. 

2.3 Effects Between Generativity on the Dynamic Boundary and Growth 

The most important growth measure for platform providers is the user base (e.g., Rietveld and Schilling 

2021; Taeuscher and Rothe 2020), on which generativity is theorized to have a positive impact (Huang 

et al. 2017).  How we understand generativity is informed by two views from prior literature: 

generativity as an expansion of product boundaries and generativity as an expansion of ecosystem 

boundaries through social interaction. Figure 2 shows how expanding product and ecosystem boun-

daries relate to user base growth in our research model. The distinct relationships are theorized next. 

 

Figure 2. Research model for relationships between generativity, i.e., the expansion of product 

boundaries (Prod) and ecosystem boundaries (Ecosys), and user base growth (User) 

Ecosys–User Relationship. Ecosystem boundaries expand when internal and external developers form 

temporal communities to negotiate how to solve conflicting expectations that arise from existing 
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components (e.g., Faraj et al. 2011). When ecosystem boundaries expand, complementors incorporate 

divergent expectations into negotiating what functions are supposed to be at the service layer and how 

they should be developed. As a result, platform developers and complementors coordinate the 

development and openly raise upcoming conflicts of expectations so that solutions can be produced and 

revised more quickly (Parker et al. 2016). Expanding ecosystem boundaries, therefore, allows for 

continuous adaptation of components on the dynamic boundary that lead to alignment between the 

expectation of internal and external actors. This helps to adapt components more quickly on the platform 

to external demand and supports user base growth (Huang et al. 2017). Following prior work, we can 

also assume that user base growth influences ecosystem boundaries. For example, the case studies of 

Ghazawneh and Henfridsson (2013) and Eaton et al. (2017) exemplify that with more and more users 

joining Apple’s iOS platform, new conflicts of expectations between users and developers arise because 

a growing user base could not use their iPhones according to their expectations. This has motivated 

developers to attend to these conflicts with hacks and jailbreaks, suggesting a relation between user base 

growth and expanding ecosystem boundaries.  

Prod–User Relationship. The product view lays out how an increase of components at the content 

(Hukal et al. 2020) or service layer (Parker et al. 2017, Yoo et al. 2010) leads to expanding product 

boundaries that shape the value proposition of a platform from a user’s perspective (Autio and Thomas 

2020). New functions added to the platform reinforce user growth (Henfridsson and Bygstad 2013) as 

long as these complements meet user expectations in how platforms in certain markets operate 

(Cennamo and Santaló 2019). Users, therefore, assess whether components meet their expectations. The 

flexible nature of a platform as a product (Tilson et al. 2010) allows changing components to a wide 

range of “temporal and spatial contexts” to increase the user base (Lyytinen et al. 2017). On the dynamic 

boundary, however, not all components have an equal effect on a user’s perception of a platform because 

users do not directly interact with all components on a service layer. Users can assess whether a 

component they directly interact with meets their expectations, e.g., recommender systems, payment, or 

content delivery. Other components improve efficiencies that users are only implicitly aware of, e.g., 

load balancing of a platform that leads to reduced feedback times. While expanding product boundaries 

has a positive effect on user base growth, it requires users to notice new components that they directly 



 

 

interact with. Alternatively, they need to at least perceive the issues with new components to arise. Both 

may require considerable time for new components on the content layer of a platform (Cennamo and 

Santaló 2019), and potentially even more time at the service layer. A growing number of users will lead 

to more diverse expectations, providing incentives to further add functions through new components, 

thus expanding product boundaries. Complementors of Apple’s iOS platform, for instance, have 

regularly turned to user comments to produce new functions and components (Hoffmann et al. 2023).  

Ecosys–Prod Relationship. With the expansion of ecosystem boundaries, complementors increasingly 

interact with components on the dynamic boundary, allowing issues to be uncovered and resolved. A 

greater diversity of knowledge and goals of developers is brought to the platform by engaging with an 

ecosystem (Boudreau and Jeppesen 2015). This diversity enables more social interactions between 

developers on a platform because a wider variety of expectations will be present (Lyytinen et al. 2016), 

eventually providing room for innovation (Parker 2016). Complementors continuously assess how 

existing components on the dynamic boundary meet their expectations for functions of similar 

components in existing categories. Not meeting these expectations leads to irritation and conflicts 

(Lyytinen et al. 2017) that need to be resolved through collaborative boundary work. New components 

are proposed if existing conflicts cannot be resolved with components. This might, for instance, lead 

complementors to propose new components to existing categories, e.g., adding a “database component” 

that uses a non-relational database like NoSQL instead of a relational database like SQL. While in this 

case, our knowledge about the relationship between expanding product and ecosystem boundaries is 

limited, we assume that both are positively self-reinforcing (Henfridsson and Bygstad 2013). When 

providers highlight what content (Hukal et al. 2017) or what functions they deem desirable 

(Constantinides et al. 2018, Zhang et al. 2021), or when they promote third-party developers (Ho and 

Rai 2017), they influence ecosystem expansion. Ghazawneh and Henfridsson (2013), for instance, 

highlight how Apple's introduction of new SDKs was accommodated by an application review process 

through which providers influenced what components are added and thereby which conflicts are mainly 

being attended to by the ecosystem. Similarly, Legenvre et al. (2022) outline how platform providers 

keep track of complementor’s expectations in order to prioritize investments into components on deeper 

layers of digital infrastructure.  



Finally, platforms underly direct network effects (Boudreau and Jeppesen 2015, Eisenmann et al. 2011). 

We can assume that all three concepts are self-referential: new categories extend old categories, new 

expectations arise as old conflicts are solved, and more users are attracted to a larger user base. Con-

sidering such complex feedback loops requires an endogenous modeling approach, as explained next. 

3. Research Methodology

3.1 Data and Context 

Our paper studies the relationship between generativity and user base growth on digital platforms. We 

select six large transaction platforms in e-commerce with a well-established focus on achieving user 

base growth (e.g., Cennamo and Santaló 2013, 2019, Taeuscher and Rothe 2021): eBay, Groupon, 

Zalando, Otto, Flipkart, and Rakuten. We select the cases as typical examples of transaction platforms 

in e-commerce, for which we explain the within-case variance of generativity and user base growth 

(Gerring 2006). While prior studies (e.g., Lyytinen et al. 2016, Karhu et al. 2018, Sandberg et al. 2020) 

on generativity in platforms have focused on innovation platforms (also product platforms) and hybrids 

between innovation and transaction platforms, we exclude cases that are primarily innovation platforms, 

such as WeChat, and hybrids, such as Amazon or Alibaba (Gawer 2021). Innovation platforms and 

hybrids change strategies for achieving user growth over time and are less likely to delimit access to 

resources or engage in securing boundary resources at the beginning (Ghazawneh and Henfridsson 2013, 

Gawer 2021) while doing so at later stages (Karhu et al. 2018). Within these typical cases, we seek to 

represent geographical diversity by sampling from the three largest e-commerce markets (Americas, 

Europe, and Asia-Pacific). In doing so, we selected two exemplar cases per region to avoid leaving 

individual examples without replication (Yin 2009). The selection of cases within regions was based on 

platform maturity (as represented by age and firm size) and sufficiently meaningful open source 

activities over extended periods. We selected cases that had several years of open source activity and 

operated at least 50 active open source repositories. 

eBay is an Americas-based veteran e-commerce marketplace. It has $10.27 billion in revenue (2020), 

approximately 140,000 employees (December 2018), and $1.9 million spent on IT (2020). Groupon is 

an Americas-based e-commerce platform that offers consumers a marketplace of deals worldwide. It 



 

 

has $1.41 billion in revenue (2020), approximately 4,159 employees (2020), and reports $20.3 million 

in spending on IT (2020). Zalando is a European e-commerce platform provider with €8.2 billion in 

revenue (2019), approximately 13,763 employees, and 31 million active customers. Its IT unit comprises 

approximately 2,000 employees. Otto belongs to the Otto Group, one of the largest e-commerce firms 

globally headquartered in Europe. It has an annual revenue of €3.2 billion (2019), employs 

approximately 4,900 people (2019), and has 7.5 million active customers. Flipkart is an Asia Pacific-

based e-commerce platform based in Bangalore. It offers over 30 million products, has an annual 

revenue of $6.1 billion (2020), and 31,334 employees (2020). Rakuten is an e-commerce and online 

marketing firm. It has an annual revenue of 14.1 billion USD (as of Q4 2020) and employs 23,444 

people. It is based in Tokyo. Rakuten’s customers, as of Q4 2020, are nearly 120 million. It has acquired 

22 companies as of Q4 2020, spanning FinTech to telecom, with 153 million in funding raised in Q1 

2021. 

GitHub repositories for all platforms were created in 2011 or 2012, and no software development kits 

were provided before. We collected data from January 2013 to December 2020, encompassing most of 

the period when platform providers have been active on GitHub. For user base growth (ln User), we 

used the number of unique monthly visitors (Taeuscher and Rothe 2021). Data was collected from 

Semrush, a platform supporting SEO analytics and delivering fine-grained user statistics on traffic and 

clickstream data. Semrush estimates a website's monthly traffic by acquiring clickstream data from over 

200 million users worldwide. To avoid the influence of advertising and excessive search engine 

optimization, we only considered organic traffic data in any month. We aggregated traffic data for all 

local domains of any platform in our sample, e.g., ebay.com and ebay.at. To re-scale variation and reduce 

skew, we construct ln User as the natural logarithm of the number of monthly unique visitors. 

Comparison between our user base measure with usage data from Ahref, another third-party data 

provider, and with first-party data provided as quarterly or annual figures did not indicate distortion of 

the estimated values from using Semrush as a data source. 

We collected data on generativity that stems from the expansion of product boundaries and ecosystem 

boundaries by turning to GitHub. GitHub allows developers to collaborate on software projects via track 



 

 

and trace activity, versioning support, social networking, and several other features (Wu et al. 2014). It 

allows the development of complex artifacts based on a publicly accessible code base (Borges and 

Valente 2018). GitHub encourages the reuse of software code reused beyond the original creator within 

and across internal and external projects (Zhang et al. 2014). Developers write code that is integrated 

into the platform on the level of specific code components (i.e., repositories). We extracted data on the 

entire public organizational accounts of all cases using the GitHub API and aggregated it to platform-

months. We combined multiple accounts by a single organization (e.g., eBay and eBay Classifieds) and 

merged them into a panel dataset. 

Our measures for expanding product boundaries (ln Prod) lean on the work of Cennamo and Santaló 

(2019). They considered the monthly status of populated “product” categories for video games that 

complemented their platforms. We turned to categories of software that complemented e-commerce 

platforms, where we defined 22 component categories (e.g., database tools, testing frameworks, project 

management, or continuous integration). A BERT machine learning model supported the definition of 

these categories (see Appendix 1 for an overview of the detailed procedure and the resulting categories). 

We unambiguously assigned each repository to one category. The coding was performed manually by 

two coders familiar with open source software on GitHub (inter-coder reliability K=0.75). The 

remaining discrepancies were resolved in a personal meeting between the coders and supported by a 

third person. Unlike in Cennamo and Santaló (2019), where users notice component changes at the 

content layer (i.e., video games), users are more unaware of component changes at the service layer of 

a digital platform. This has two important consequences for measuring the expansion of product 

boundaries in digital platforms. First, complementors who provide digital content, like video games or 

educational courses, compete against each other in product categories. They seek to replace each other’s 

complements (Cennamo and Santaló 2013, Taeuscher and Rothe 2021). On the service layer, developers 

seek to complement and not replace each other with components in similar categories. An incremental 

change to content, like versioning a video game (Cennamo and Santaló 2019) from one year to another, 

is unlike an increment of a service-layer component. The latter might imply a significantly new software 

with a potentially different purpose and functionality, even if it remains in the same category. Measuring 

the expansion of product boundaries considers both adding new components to an existing category and 



 

 

introducing components in an entirely new category. To cater to this, we adopted a scale that accounts 

for the marginal increase within as well as between categories. We define Prod as a weighted metric 

with the current size of a category group as a basis: 

𝑙𝑛Prod𝑖,𝑡 = 𝑙𝑛∑
𝑔𝑖,𝑡−𝑔𝑖,𝑡−1

𝑔𝑖,𝑡
𝑗    (1) 

where j is a category group and gi,t is the number of components (i.e., repositories) on the platform i in 

period t.  

We assessed expansion of ecosystem boundaries (ln Ecosys) by measuring the extent to which 

developers resolved existing tensions with changes to components on the dynamic boundary. While in 

an online community setting (Faraj et al. 2011), conversations around issues of a certain topic 

materialize in interactions on discussion threads, we measured the intensity in which external developers 

engage with components on the dynamic boundary by turning to the number of actively maintained forks 

on GitHub. GitHub allows two types of threaded interaction with software code for platforms. Branches 

allow developers from platform providers to interact openly with code. Forks are copies of platform 

code that third-party developers interact with (Andersen and Bogusz 2019, Karhu et al. 2018, Zhang et 

al. 2014). We considered actively maintained forks for our analysis in that we accounted for only those 

forks where originators made changes after fork creation. We summed them up monthly by organization. 

As outlined before, platform providers can also monitor forks and adapt their expectations or even pull 

forks back into the platform core. We tested alternative specifications of Ecosys, which gave no 

indication of an errors-in-variable bias (see Appendix 2).  

3.2 Model Specification  

Estimating the relationship between the expansion of product boundaries, ecosystem boundaries, and 

user base growth over time is difficult because of the endogenous feedback effects between constructs 

at the level of the platform organization. Extant platform research (e.g., Zittrain 2008, Yoo et al. 2010, 

Cennamo and Santaló 2019, Faraj et al. 2011, Shaikh and Vaast 2016, Jarvenpaa and Standart 2018) 

suggests the interplay of three dimensions as a dynamic co-evolving system of interdependent variables. 

This is best described using vector autoregressive (VAR) models. The GMM panel VAR framework 



 

 

sets up a co-evolving system of equations that allows for lagged interdependences, fixed effects, and 

considers the variables to be endogenous. Specifically, the investigation of the relationship between the 

variables across multiple platform organizations requested us to turn to panel VAR as it allowed for 

considering the cases in a combined fashion while accounting for their substantial potential 

heterogeneity. By holding other variables immune to external shocks, the model allows for identifying 

the effect of one exogenous shock by the orthogonalized response. 

As outlined by Adomavicius et al. (2012), the selection of a (panel) VAR model involves three basic 

decisions: (1) variable selection, (2) lag length selection, and (3) model form selection. Because we are 

specifically interested in the interrelationships among product generativity, social interaction, and user 

base growth, we naturally chose these three variables (i.e., the corresponding time series) to make up 

the PVAR system. 

A three-variable panel VAR (PVAR) model is specified as follows: 

Yi,t = A0 + ∑
𝑝
𝑗=1 AjYi,t-j + mi + ei,t     (2) 

Where Yi,t is the three-variable vector (ln Prod, ln Ecosys, ln User) and Aj represents the corresponding 

estimated coefficients. The nonzero off-diagonal coefficients of the A1 matrix represent the feedback 

interdependency of the variables. The number of lags can be determined using the Modified Akaike 

information criterion (MAIC). Based on the results of Stata’s pvarsoc, we choose to report a PVAR 

model with lag length 5 as it minimizes the MAIC. 

In applying the VAR procedure to panel data, we allow for “individual heterogeneity” in the levels of 

variables by introducing fixed effects of the platform organization, denoted by mi in the model, to 

overcome the restriction that the underlying structure is the same for each cross-sectional unit (platform 

organization). We use forward orthogonal transformation (FOD), also referred to as Helmert 

transformation, to preserve the orthogonality condition between lagged regressors and transformed 

variables, hence allowing us to use lagged regressors as instruments and estimate the coefficients by 

system generalized method of moments (GMM, Love and Zicchino 2006). 



 

 

The stationarity of the respective time series is an important consideration that can restrict the 

application of a panel VAR model. We test for stationarity of the original variables using a Levin–Lin–

Chu unit-root test (Levin et al. 2002) demeaned without trend. Based thereupon, we transform the 

variables using first differencing and reject the null hypothesis that the time series is non-stationary. 

Transformed variable time-series graphs are reported in Appendix 3.  

In addition, to control for any seasonality effects in the time series, we include 11 monthly dummies. 

This was done in alignment with previous authors that have used this method in management and IS 

research (e.g., Hu and Bettis 2018). To account for the potential effect that growth strategies might 

change when digital platforms enter new stages (Gawer 2021; Cusumano et al. 2019), we account for 

the age of the platforms.  

We assess multicollinearity to avoid erroneous conclusions by calculating variance inflation factors 

(VIF) on an ordinary least-squares regression replicating our GMM model. We do not find any VIF 

scores above the critical threshold of 5. Co-integration is another serious problem in Panel VAR models 

that can lead to spurious relationships. The Kao test for co-integration was used (Kao 1999). The test 

statistics for the Modified Dickey-Fuller t-test, Dickey-Fuller t-test, Augmented Dickey-Fuller t-test, 

Unadjusted Modified Dickey-Fuller t-test, and Unadjusted Dickey-Fuller t-test are assessed and indicate 

no co-integration problems. We assess the stability condition of the final PVAR estimates. We use 

Stata’s pvarstable command (Abrigo and Love 2016). Specifically, pvarstable checks the eigenvalue 

condition after estimating the parameters of a panel VAR. We find that all the eigenvalues lay inside the 

unit circle; thus, the panel VAR satisfies the stability condition. 

However, it can be difficult to understand the dynamic evolution of a vector across time through 

coefficients alone (Hu and Bettis 2018). This is because estimated coefficients only show the total 

reduced-form effects of a past increase in one variable of our model while implying shared feedback on 

other variables in a recursive form (ibid.). These coefficients demonstrate how a past increase in one 

variable affects the value of other variables over time. The dynamics between variables over time can 

be assessed via impulse response (IRF) functions, which allow for determining the effect of one unit 

increase in one variable on the future values of all variables in the system. Thus, impulse response 



 

 

function simulations are reported as a standard practice in the panel VAR analysis (ibid.). IRF 

simulations allow us to examine the temporal response of one variable (e.g., product boundary 

expansion) to one standard deviation, onetime shock (referred to simply as a “shock”) in another variable 

(e.g., user base growth) over time while holding the remaining variable(s) constant. IRF simulations 

present the estimated distorting feedback on a generativity/growth dimension caused by a shock to 

another dimension over sequential lags, using the coefficient estimates from the reduced form VAR 

analysis of the sampled data. Thus, IRFs are more informative than coefficients when revealing 

interdependencies between variables over time (ibid., Enders 2008, Stock and Watson 2001). 

4. Results 

4.1 Empirical Analysis with the PVAR Model 

Descriptive Statistics. Table 2 displays the descriptive statistics and Appendix 4 correlations among 

variables and their five lagged values. The number of observations for these variables is 576, resulting 

in a balanced panel data set that comprises 6 companies and 96 platform-months. The average monthly 

increase in ln User is 0.1. This corresponds to an increase of 1.3M users per month with a similar growth 

rate among all 6 platforms. The average number of active forks each month that accounts for expansion 

of ecosystem boundaries (ln Ecosys) is 1.88 (with mean ln Ecosys of 0.63), ranging between 5.03 forks 

per month for Zalando and 0.35 forks per month for Otto.de (i.e., in the extreme case, Zalando’s 

repository is forked 25 times in a month). The logged average number of new components each month 

accounting for an expansion of product boundaries (ln Prod) is 3.05. This corresponds to a marginal 

increase of 0.35 per month. In the following, we used the PVAR package in Stata, developed by Love 

and Zicchino (2006), for the GMM estimation. 

Table 2. Descriptive Statistics of Key Variables 

 Obs Mean SD Median Min Max 

1. ln Prod 576 3.05 0.74 3.28 0.69 3.90 

2. ln Ecosys 576 0.63 0.76 0 0 3.26 

3. ln User 576 17.10 1.97 17.51 10.81 19.95 

PVAR Estimates Through GMM Method. We aim to examine whether generativity drives user base 

growth and vice versa after controlling for other factors such as individual effects, time effects, and 

platform age. We estimate a panel VAR model that examines the dynamic interactions among user base 



 

 

growth and two measures of generativity: expansion of ecosystem and product boundaries. Table 3 

presents the system GMM estimates from the PVAR model. Overall, the PVAR model estimates 3 x 15 

coefficients. The effect size of GMM estimates in a PVAR model with multiple lags, however, cannot 

be interpreted straightforwardly (Chen et al. 2015). We, therefore, report on the main observations of 

the GMM estimates but rely on IRF graphs in the next subsection for a more detailed interpretation. 

Table 3. System GMM Results of PVAR Model 

Dep. Var. ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

ln User t-1 0.068† 0.037 0.003 0.004 -0.025 0.139 

ln Prod t-1 0.234 0.296 0.141 0.115 -0.140 0.647 

ln Ecosys t-1 -0.017 0.016 0.007* 0.004 -0.836*** 0.056 

ln User t-2 -0.040 0.038 0.011** 0.004 0.017 0.072 

ln Prod t-2 0.064 0.153 0.058 0.085 -0.525 0.641 

ln Ecosys t-2 -0.022 0.028 0.012** 0.004 -0.558*** 0.079 

ln User t-3 0.046 0.099 0.020*** 0.005 -0.138** 0.044 

ln Prod t-3 -0.072 0.227 0.168** 0.063 -0.601 0.595 

ln Ecosys t-3 -0.039 0.030 0.009* 0.004 -0.402*** 0.078 

ln User t-4 -0.034 0.028 -0.017*** 0.004 -0.072 0.046 

ln Prod t-4 0.521* 0.214 0.174** 0.059 -0.928* 0.463 

ln Ecosys t-4 0.044† 0.026 0.008* 0.004 -0.260*** 0.068 

ln User t-5 0.006 0.025 -0.003 0.004 -0.036 0.046 

ln Prod t-5 0.104 0.190 0.091 0.061 0.141 0.564 

ln Ecosys t-5 0.022 0.017 0.004 0.003 -0.139** 0.049 

Notes. The model coefficients are estimated using the GMM method in the PVAR model, as described by Holtz-

Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation or Helmert 

transformation. First-order differencing is used to achieve stationarity of the variables. The model includes 11 

additional monthly dummy variables and age. The model included six panels. † Indicates p<0.10, * p<0.05, 

**p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal, significant effects. 

The first observation in Table 3 is that the time series for each variable exhibit different self-referential 

patterns. As seen from the diagonals, the effects are complex and show a mixed feedback structure. 

Turning to the core of our interest, the results show interesting interdependencies among generativity 

and growth variables, as indicated by the non-zero off-diagonal effects. The most notable of these effects 

are significant relations between ln Prod and ln User, ln Prod and ln Ecosys, ln Ecosys and  ln User, ln 

Ecosys and ln Prod, ln User and ln Prod, and ln User and ln Ecosys. These effects exhibit a complex 

and mixed feedback structure, and impulse-response simulations will help to entangle these effects. 



 

 

4.2 Impulse-Response Functions  

Figure 3 provides six impulse response functions for the estimated PVAR model with 90% confidence 

intervals generated from Monte Carlo simulations. Each plot in Figure 3 shows the corresponding 

response of a variable over time given a one-unit increase of a “shocked” variable at time t. 

Figure 3. Impulse-Response Simulation Results of the PVAR Analysis 

Notes. We show impulse-response simulations (command pvarirf) with 10 steps and 500 draws Monte Carlo 

sampling of confidence intervals (in grey) with 10%. The graphs show responses in one-standard deviation shocks 

to the first-differenced variables (ln User, ln Prod, ln Ecosys). We used axis rescaling to account for differences 

in variable scales. 
 

A shock to ln Ecosys results in a positive response of ln Prod, as can be seen when considering the lower 

right graph–consistent with GMM estimates. Notably, the response becomes most clearly nonzero after 

two months and touches the zero band again a few months later. Considering the graph in the lower 

center, a shock to expansion of product boundaries (ln Prod) shows no clear nonzero response of ln 

Ecosys. Although the responses spike several times (most clearly after 5 months), the confidence interval 

is broad and not significantly different from zero. Therefore, the IRFs also remind us to be cautious 

when assuming a positive relationship between product boundary and ecosystem boundary expansion. 

Considering the response from shocks to ecosystem boundary expansion to users (upper right graph) 

reveals an increase of ln User at t – 4. There are several spikes within the first months, which we found 

nonzero upon closer scrutiny. A shock to ln Prod is followed by an increase in ln User (upper center 

graph) before the effect on the user base diminishes, suggesting that there is limited evidence in the data 

for a nonzero positive effect from product boundary to user base growth.  



 

 

Considering the inverse relationships from ln User on ln Prod and on ln Ecosys reveals interesting 

patterns. From the impulse-response function at the upper left, we find nonzero positive and negative 

responses of user base growth on product boundary expansion. From the graph in the lower-left corner, 

we also find nonzero positive and negative responses of user base growth on ecosystem boundary 

expansion. Overall, the responses are neither consistently positive nor negative. However, they reveal 

oscillating patterns, indicating a complex and asymmetric relationship. Given that we operate on panel 

data from multiple organizations aggregated over several years, it is natural that the effect can vary over 

time and for different platforms in the panel, as our results corroborate. Taken together, the visualization 

of the IRFs on how the platforms evolve, including the response results at t=4, is consistent with the 

PVAR coefficient estimates shown in Table 3. 

Analysis of Granger-Causality. We analyzed structures of the causal relationships between variables 

by following a Granger-causality approach (Adomavicius et al. 2012). This is a statistical hypothesis 

test to determine whether one time series significantly contributes to the forecast of another (Granger 

1969). We applied five lags to test the null hypothesis that user base growth does not involve Granger 

causality when affecting product boundaries (see Appendix 5). This hypothesis was rejected at the 1% 

level of significance, suggesting that user base growth Granger-causally affects product boundaries (ln 

User → ln Prod). Similarly, we tested user base growth does not involve Granger causality when 

affecting ecosystem boundary expansion. This null hypothesis can be rejected at the 5% level of 

significance, suggesting that user base growth causally affects ecosystem boundaries (ln User → ln 

Ecosys). Furthermore, we found indication at the 10% level of significance of unidirectional causality 

from changes in ecosystem boundaries to changes in product boundaries (ln Ecosys → ln Prod), and 

from changes in product boundaries to user base growth (ln Prod → ln User). 

To further validate our findings, we conduct multiple robustness checks. An alternative specification of 

product boundary expansion (ln Prod) using absolute growth in the number of components is largely 

consistent with the reported effect (see Appendix 6). We also introduced alternative specifications for 

ecosystem boundaries (ln Ecosys) to check for robustness. We, first, weighted our measure of active 

forks by how many commits have been made after the forks have been created. Second, we considered 



 

 

merged “pull requests” from forks and weighted these by their respectively added or deleted lines of 

codes. Both alternative specifications support our main model (see Appendix 2). 

The result of expanding product boundaries leading to user growth was further confirmed by an 

additional random-effect panel regression, as indicated by the Hausman test (see Appendix 7). 

Additionally, to further test the impact of product boundary expansion on user growth, an alternative 

model considers changes to the components in the core. For this purpose, we turned to an alternative 

source of data for constructing our variable representing product boundaries: Built-With1, a public 

repository that tracks the use of frontend and backend technologies for webbased services. Appendix 8 

demonstrates the results for the Built-With model with a lag length of 5, ln User as the dependent 

variable, ln Prod and ln Ecosys as independent variables, and controls using random effects. It indicates 

significant results for a lag of 4 (b=4.637; SD=1.565; p≤0.01), which aligns with our main finding. 

4.3 Summary 

In summary, we reveal nonzero off-diagonal coefficients that represent feedback interdependencies 

among the expansion of product boundaries, expansion of ecosystem boundaries, and user base growth 

in digital platforms. We find supporting evidence (see Table 3 and Figure 3) that some off-diagonal 

coefficients are nonzero, and thus there is feedback interdependency between generativity and user base 

growth with large effect sizes. Specifically, our analysis suggests a positive relationship between the 

expansion of ecosystem and product boundaries and, therefore, a mutual dependency. However, product 

boundaries seem to stabilize ecosystem boundaries over time (negative coefficient). Additionally, our 

results suggest a positive relationship between expansion of product boundaries and user base growth, 

and a positive relationship between ecosystem boundary expansion and user base growth. The analysis 

also indicates a complex but overall positive relationship between user base growth and product 

 

1Built-With (www.built-with.com) contains data on at least 58,000 web technologies (shopping carts, analytics, 

hosting etc.) and includes over 673 million websites. The website’s technology lookup groups web 

technologies into various categories (e.g., analytics and tracking, widgets, payment, content delivery network) 

that are directly detected from the online service, which we used to construct an alternative measure of product 

boundary expansion. The website also reports the date at which these technologies were first and last detected 

and thus allows for dynamic analysis of expanding or compressing product boundaries.  



 

 

boundaries and a stabilizing inverse relation between user base growth and ecosystem boundaries. 

Figure 4 presents the reduced form model, as supported by the analysis. 

 

Figure 4. An Integrative View of Generativity and Growth on Digital Platforms as Supported by the 

PVAR Model 

Relationship between Ecosystem and Product Boundary Expansion. We operationalized two concrete 

expressions of generativity, and our empirical analysis shows that both are interrelated. Specifically, we 

find that expanding ecosystem boundaries drives expansion of product boundaries. Considering the 

weighted nature of our measure, this means that product boundaries are also expanded as we find more 

interactions between complementors and components within the dynamic boundary. New components 

are added to existing categories, or components are added to entirely new categories. This effect is also 

confirmed using an alternative measure of product boundaries (see Appendix 6) and is consistent with 

the Granger-causality analysis.  

Vice versa, we find some evidence for a stabilizing relationship between product and ecosystem 

boundaries. This relationship is less nuanced than the other effects. It is supported by the IRFs and 

suggests that an expansion of the ecosystem boundaries drives the expansion of product boundaries, but 

not the other way around. 

Relationship Between Product Boundary Expansion and User Base Growth. Our analysis provides 

evidence that expanding product boundaries lead to user base growth. The GMM estimates and the 
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impulse-response functions indicate a positive and lagged effect that was confirmed by an additional 

random-effects panel regression (Appendix 7).  Both the Granger-causality analysis (Appendix 5) and 

an alternative operationalization of our product boundary variable (Appendix 6) further substantiate our 

finding suggesting that product boundary expansion drives user base growth. 

Relationship Between Ecosystem Boundaries and User Base Growth. We found evidence that 

expanding ecosystem boundaries leads to user growth. Beyond the IRFs, the effect was supported by 

additional robustness checks that include different specifications of ecosystem boundaries (see 

Appendix 2). Granger-causality analysis supports our findings at a 10% significance level. 

Relationship Between User Base Growth and Generativity. Our results provide evidence for an inverse 

relationship between user base growth and the expansion of product boundaries. The effect is 

pronounced by IRFs in the second and third months after a shock to the user base and switches from 

positive to negative in the fourth month. This suggests that the effect of a growing user base on product 

boundaries is complex. Granger-causality analysis supports our findings that user base growth, overall, 

drives expansion of product boundaries at a 5% significance level. 

Our results also suggest that user base growth and ecosystem boundaries have an inverse relationship. 

The effect is pronounced in the third month after a shock to the user base. Evidence suggests that the 

effect was stabilizing, i.e., a negative directionality on a relationship with an ecosystem boundary 

expansion measure. The Granger-causality analysis supports at the 5% significance level that user base 

growth temporally precedes changes in ecosystem boundaries. 

5. Discussion and Implications 

5.1 Towards an Extended Generativity Theory 

Based on our findings, we revisit the claim that generativity produces “unbounded growth” and propose 

an “Extended Generativity Theory” to reorient our thinking about generativity and its interdependent 

relationship with growth. The proposed theory is laid out in six conjectures and offers a new conceptual 

apparatus for engaging with established views on generativity in future scholarship—see Figure 5. In 

that, it does not refute established theorizing on generativity, as our study provides robust support for 



 

 

existing knowledge on the unilateral relationships between generativity and growth. Rather, the 

Extended Generativity Theory provides a much-needed clarification and recalibration of the nuances 

and boundary conditions for theorizing on generativity. The theory contributes to the literature on 

generativity and growth in digital platforms in several ways.  

Figure 5. The Extended Generativity Theory: Bounded- and Inverse-Generativity on Digital Platforms 

First, our study calls for caution and sensitivity in the dominant assumption of prior literature that 

generativity engenders “unbounded growth” (e.g., Yoo et al. 2010; Tilson et al. 2010; Zittrain 2009). 

We capture this observation with the notion of bounded generativity. Second, our study potentially 

reorients traditional thinking about the directionality between generativity and user base growth by 

indicating the existence of an inverse relationship between these two–what we refer to as inverse 

generativity. Third, in operational terms, the theory recognizes and consolidates prior views of 

generativity into what we call the integrative view. With this view, we bridge siloed discussions where 

one stream of literature on generativity considers the other as context. Based upon this integrative view, 

we can capture a platform’s dynamic boundary in the context of the service layer of transaction 

platforms. We thereby exemplify the role of technical mediation for user base growth, which 

complements the much-accentuated network effects between users and suppliers of products and 

services at the content layer. 
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In essence, our theory, as captured in Figure 5, provides clarity on the relationships between the two 

views on generativity via the integrative view that explains user base growth on digital platforms. In 

what follows, we elaborate on each of these theoretical building blocks and their implications for theory, 

boundary conditions, and future research. 

5.2 Bounded Generativity: When Unbounded Growth Does Not Emerge from Generativity 

A key takeaway by a casual reader of the literature on generativity would be that it undoubtedly carries 

the potential for unbounded growth. This assumption is implicit in the discourse around generativity and 

in fact, part of many of the definitions of generativity (e.g., Yoo et al. 2010, Zittrain 2009). Our study 

lends further credence to this. How then can our result not support this thinking for the social interaction 

view of generativity, i.e., expansion of ecosystem boundaries? We elaborate on this surprising finding 

in what follows. 

In overview, our study calls for sensitivity in the claim that unbounded growth emerges from 

generativity. We align with prior knowledge on the relationship between generativity and growth by 

first validating that both the expanding product and ecosystem boundaries lead to growth (Cennamo and 

Santaló 2019, Lyytinen et al. 2017, Faraj et al. 2011, Yoo 2010, Zittrain 2009). Reproducing conceptual 

remarks found in prior literature on generativity in an empirical setting lends further credence to our 

findings. For this reason, we conjecture that: 

Conjecture 1a: Expanding ecosystem boundaries drive user base growth. 

Conjecture 2a: Expanding product boundaries drive user base growth. 

Conjecture 3a: Expanding ecosystem boundaries leads to an expansion of product boundaries. 

Interestingly, however, our findings also indicate that ecosystem boundaries stabilize as more users enter 

a platform over time. This stands in contrast to the unbounded growth narrative. Stabilization in these 

ecosystem boundaries implies that, after a period of seemingly unbounded expansion, fewer conflicting 

expectations between complementors and providers arise. Considering that the relationship between 

ecosystem boundaries and user base growth is not mutually reinforcing, the user base growth trajectory 

begins to coalesce around a point–it is bounded (see Figure 5). In essence, our study provides a nuanced 



 

 

empirical validation of the “unbounded growth” claim (Tilson et al. 2010, Yoo et al. 2010), and 

simultaneously calls to question the universality of this assumption. 

We offer two explanations for this unexpected finding. First, there might be a dynamic equilibrium for 

the expansion of ecosystem boundaries because user base growth leads to the stabilization of ecosystem 

boundaries. This might be due to the maturing status of the platform. At the onset of a platform, available 

functions and features that complementors would expect diverge more. Various conflicting expectations 

between complementors and platform providers need to be addressed, such as perceived bugs, issues 

mainly known by domain experts (e.g., e-commerce) or technology experts (e.g., machine learning), and 

upcoming ideas to solve emerging problems. At this early point, a platform benefits from an unbridled 

expansion of the ecosystem, because with the increasing interest of complementors and a growing user 

base, new expectations on functions are raised by third-parties. From here, new conflicting expectations 

arise that can be resolved by complementors. However, over time, key conflicts are resolved for the 

various component categories, leading to fewer issues around a platform or in its domain. Together, 

these signal a stabilization of the generative power due to maturing of the platform. This is interesting 

as one would expect that with a growing user base, the number of new conflicts that need to be resolved 

increases. Even if users who are early adopters significantly differ from users entering a platform at later 

stages (Rietveld and Schilling 2021), the change in expected functions does not translate into conflicting 

expectations that are resolved by complementors. Rather, we suggest that, as the platform matures, an 

increase in the numbers of users does not necessarily lead to the expansion of ecosystem boundaries, 

but contributes to its stabilization. 

Second, ecosystem boundaries might be influenced by the limited number of complementors a platform 

can attract. While the growth of the user base attracts more complementors to engage with a platform 

(Boudreau and Jeppesen 2015, Parker et al. 2017), the pool of developers in the environment who can 

be attracted to become complementors is finite. It is important to note that the negotiations around such 

conflicting expectations in themselves have the valence to be both “generative” (i.e., encouraging 

productive outcomes) and “constraining” (i.e., halting dialog) as noted by (Faraj et al. 2011, 2016). For 

most platforms in a domain, most of the developers that are interested in what a platform stands for or 



 

 

what technologies it uses (Jarvenpaa and Standaert 2018) would have joined over time through voluntary 

self-selection (Wareham et al. 2014). Except if a provider fundamentally changes platform positioning 

or the underlying technology, it can further expand boundaries of its ecosystem. This could be a 

worrying realization for managers, as this “stabilizing” finding may explain why lively ecosystems 

might gradually fade into oblivion after periods of high-intensity engagement. In this sense, the 

expansion of an ecosystem boundary is not ever-expanding. On the contrary, ecosystem expansion is 

still bounded even if the entire environment, i.e., the whole developer population, puts all its attention 

on interacting with components of a particular platform.  

Conjecture 1b: Growth of the user base leads to a stabilization of ecosystem boundaries.  

Conjecture 3b: Expanding product boundaries leads to stabilization of ecosystem boundaries. 

It is striking to note that while the expansion of ecosystem boundaries contributes to an expansion of 

product boundaries, the inverse does not hold. On the contrary, the expansion of product boundaries 

only stabilizes ecosystem boundaries. The former relationship suggests that third-party developers who 

engage in solving issues on a platform also produce new components, which leads to an expansion of 

product boundaries (Boudreau and Jeppesen 2015, Lyytinen et al. 2016; Hukal et al. 2020). A plausible 

explanation for the latter lies in the configurational boundary work in which providers take the upper 

hand and weigh their own expectations for the platform against those of their complementors and users. 

When adding new components to existing categories, developers from the platform provider prioritize 

monitoring and integrating those components that reduce conflicting expectations. Over time, and as 

complementors introduce new components, platforms attract multiple components for each category so 

that every expansion of product boundaries leads to a convergence of expectations between platform 

developers and complementors. Adding components in new categories will add new conflicting 

expectations to the platform initially. However, the more important conflicts within each new category 

will be resolved more quickly so that the interest of complementors to engage in further interactions 

diminishes, leading to reduced social interactions. Thus, social interaction is not only limited by the 

diversity of expectations of third-party developers who join the dynamic boundary (Lyytinen et al. 2016, 

2017), but also by the components that are already established in a particular component category. 



 

 

Hence, even if there may be few physical constraints for more interactions on digital platforms 

(Jarvenpaa and Standaert 2018), ecosystem boundaries are affected by product boundaries.  

Our claim here is not to say that prior research is wrong in claiming that generativity leads to unbounded 

growth. The study suggests a need for clarity and precision in describing what growth we are referring 

to and which view of generativity we subscribe to. We thus call for sensitivity in referring to the 

relationship between specific strands of generativity and specific forms of growth rather than unchecked 

statements of “generativity leads to unbounded growth” of actors, services, or components–that is liable 

to fall flat under empirical scrutiny. Our study can be seen as an empirically grounded foundation and a 

call for further validation and exploration of the relationships between generativity and growth of the 

user base on digital platforms. 

5.3 Inverse Generativity: When Growth Leads to Generativity Rather Than Vice Versa 

Reversing the saying “honey attracts bees” to “bees attract honey” would be an apt analogy to our 

counterintuitive observation that user base growth can also lead to an increase in product boundaries. 

By extension, the more users a platform attracts, the more novel component categories will be added to 

the service layer of a digital platform. This contrasts with the mantra that generativity leads to growth, 

as in this case, growth can also lead to generativity.  

Conjecture 2b: Growth of the user base leads to an expansion of product boundaries.  

Although this inverse directionality is not intuitive, it suggests complex inner workings between 

generativity and user base growth on the dynamic boundary, as our findings suggest. Even more so, our 

results show that inverse generativity precedes the positive impact of generativity on user base growth. 

At the onset, ecosystem boundaries typically contribute to expanding product boundaries. Platform 

developers become increasingly aware of issues being raised and solved by third-parties. Eventually, 

this leads to expanding product boundaries as new components within and across product categories are 

added. Interestingly, user base growth affects further expansion of product categories because platform 

developers might learn from emerging usage data what component categories need further expansion. 

This exemplifies how developers of platform providers continuously notice new issues while using that 



 

 

information to expand their product boundaries. This inverse generativity finding suggests the potential 

of the dynamic boundary as a strategic tool that an organization can wield for innovation on its platform. 

Taken together, inverse and bounded generativity indicate generativity is not ever-growing but presents 

a dynamic equilibrium. Ecosystem boundaries stabilize and expansion of product boundaries becomes 

mainly affected by user base growth. The six conjectures of our “Extended Generativity Theory” (see 

Figure 5) posit that generativity and growth do not interact in unanimously positive and self-reinforcing 

cycles. Instead, the contribution from expanding ecosystem boundaries to user base growth seems to be 

complemented by an expansion of product boundaries. The contribution of ecosystem expansion to user 

base is a frequently ignored pathway for attracting users to a platform, but one that exemplifies the 

importance of considering both views of generativity. Our results emphasize the importance of 

community building and generative discussions as a prerequisite for the “unfolding” of successful 

growth (Faraj et al. 2011, 2016, Shaikh and Vaast 2016). Like Cennamo and Santaló (2019), who argue 

that there is an optimal point for generativity affecting user satisfaction, we conjecture that more user 

base growth is not necessarily an indication of ecosystem expansion on a digital platform. Our study 

shows that, while the expansion narrative is supported for product boundaries at the service layer of a 

digital platform, it is bounded for the expansion of ecosystem boundaries. This finding calls for caution 

on claims in how interactions between developers unilaterally expand product boundaries in platforms 

to increase the user base (Grover and Lyytinen 2022, Lyytinen et al. 2017) or where the relationship 

between complementors and the range of services on a platform is considered unanimously self-

reinforcing (Henfridsson and Bygstad 2013, Koutsikouri et al. 2018). Instead, expansion of product 

boundaries might be impacted more by user base growth than by expansion of ecosystem boundaries. 

Here, we see a resurfacing of the chicken and egg dilemma that new platform businesses often face (e.g., 

Parker et al. 2016)–i.e., whom do platforms dedicate most effort to attracting first–users or 

complementors? Our findings suggest that attending to user base growth could lead to innovation on the 

platform via stimulating expansion of product and ecosystem boundaries generativities through inverse 

relations (see Figure 5), but more research would be needed to fully unravel this. This is important 

because prior research has already highlighted that the challenge for organizations opening up their core 



 

 

is a two-sided challenge of how to attract users and complementors to the platform (Constantinides et 

al. 2018, de Reuver et al. 2018, Parker et al. 2016). While learning from users has been highlighted as 

an important determinant of improving digital infrastructures (e.g., Huang et al. 2017; Henfridsson and 

Bygstad 2013), it is a continuous task that shapes product boundaries. 

5.4 An Integrative View of Generativity 

Much of the literature on generativity has adopted singular views in which generativity is seen either 

from a social interaction view or from a product view. While this is not necessarily a problem and there 

remain valid reasons to adopt such undiluted views, we acknowledge that the uniqueness of our findings 

stems from the vantage position offered by adopting the integrative view. The integrative view offers a 

conceptual bridge that facilitates an engagement with different streams of literature on generativity and 

allows for insights into the dynamic and complex relationships between generativity and user base 

growth. We exemplify this by turning to our notion of a dynamic boundary, where generativity plays 

out on the service layer of a digital platform.  

By pointing out how generativity at the service layer engenders growth, we present a complementary 

perspective to other studies that have focused on producing generativity from complements on the 

content layer (e.g., Hukal et al. 2020, Cennamo and Santaló 2019) or at deeper layers of the digital 

infrastructure (Legenvre et al. 2022). Organizations that open core functions (Tiwana et al. 2010) via 

platformization (Boudreau 2006, Bygstad and Hanseth 2018) produce a dynamic boundary. Here, user 

base growth is attained through boundary work (Langley et al. 2019) between complementors and 

platform providers as the latter decides to produce new components in a platform ecosystem. 

Complementors and platform providers reveal their expectations for functions of a platform and 

negotiate how to address conflicting expectations. These negotiations are knowledge flows (Faraj et al. 

2011) that materialize in lines of code for new or for changed components. Thereby both parties jointly 

engage in collaborative boundary work (Comeau-Vallée and Langley 2020) that stabilizes or expands 

of ecosystem boundaries. This speaks to the role of social and cognitive translations between platform 

providers and complementors (e.g., Lyytinen et al. 2016). Together, both parties seek to reduce emerging 

conflicts over time (Jarvenpaa and Standaert 2018). We lay out how platform providers and 



 

 

complementors simultaneously engage in different forms of boundary work (Langley et al. 2019) as 

they change or add component categories on a platform and set rules (e.g., Eaton et al. 2015) for whether 

and how categories can be amended. Changes to component categories not only shape the platform as a 

product (Yoo et al. 2010; Tilson et al. 2010), it also impacts what functions users and complementors 

might expect from a platform. Together, both types of boundary work change what component 

categories are offered on the dynamic boundary of a platform and how these emerge from negotiation 

of conflicting expectations.  

By considering both views on generativity–product and ecosystem view–as boundary work, the 

integrative view provides a conceptual bridge. It highlights how the dynamic boundary of a platform 

becomes a ‘trading zone’ for functions that providers and complementors expect from a platform. This 

is important, because the individual expectations might depend on platform types or even domains. We 

lay out that transaction platforms are considered cleverly tuned (Eaton et al. 2015) if internal and external 

contributions afford user base growth–see Figure 5. We stress the point that on the service layer of a 

transaction platform, complementors do not directly compete (cf. Cennamo and Santaló 2019). Other 

than on hybrid or innovation platforms, the ecosystem might also be less affected by negative effects of 

multihoming (e.g., Karhu et al. 2018). In comparison to such platforms like iOS, users, complementors 

and platform providers are also more likely to differ in their expectations for functions of that platform. 

It would be up to future research to investigate whether these distinct expectations help platform 

providers leverage generativity from different stakeholders by other means than user base growth, such 

as through capturing value from divergent monetization strategies (Parker et al. 2016), through securing 

the platform (Ghazawneh and Henfridsson 2013) or by opening deeper layers of the architecture while 

producing proprietary services on top (Sandberg et al. 2020).  

5.5 Boundary Conditions and Limitations 

Multiple boundary conditions are worth noting. We study digital transaction platforms where providers 

invite third-parties to contribute components to the service layer of their platform and where they allow 

them to use components outside of the platform and for their goals. These complementors engage with 



 

 

the platform and resolve issues by changing the software code of components on the dynamic boundary. 

Changed components can be integrated into the platform core or used outside the platform context.  

Our theorizing does not concern how generativity and growth relate on the content layer. Here, changes 

can be easily perceived by users and complementors compete against each other within categories 

(Cennamo and Santaló 2019). Complement exclusivity, complementor multihoming (Cennamo and 

Santaló 2013), or complementor attributes like status (Taeuscher and Rothe 2021), play important roles 

in explaining user base growth. In our setting, platform providers learn from expanding ecosystem 

boundaries about issues and how they can be solved. These learnings can be translated into new 

functions for components provided on the dynamic boundary of a platform. In addition, we assumed 

that interactions between complementors and providers in the ecosystem and interactions with users are 

distinct. This assumption might not apply to content, where users can more easily become comple-

mentors themselves. These assumptions, however, provide rich opportunities for future research seeking 

to explain prerequisites for platform governance and whether strategies such as envelopment are 

determined by the nature of a component. Expanding product boundaries assumes that components on 

the dynamic boundary entail categories beyond the initial conception of the platform provider. Thus, 

providers may not be aware of changes to components when these changes are being made (Zittrain 

2008; Cennamo and Santaló 2019). Faraj et al. (2011) speak to an expansion of ecosystems where actors 

“may not be aware of the others’ ideas” (p. 1235). In our context, interactions on the dynamic boundary 

materialize in software code, where changes and their originators are transparent to the public. We 

assume that developers from platform providers engage in boundary work in that they notice changes to 

components on the dynamic boundary and compare these to their own expectations of what functions 

their platform is supposed to provide and how. In other contexts, platforms continuously track and assess 

changes to components on the dynamic boundary, for instance, by introducing a review system for 

components (e.g., Ghazawneh and Henfridsson 2013) or a reputation system for new content (e.g., Hukal 

et al. 2020).  

In addition, an important boundary condition is that developers engaging in ecosystem expansion are 

substantially distinct from platform users. In our empirical context, developers raise and resolve 



 

 

conflicting expectations regarding components on the dynamic boundary. Users are suppliers or buyers 

of products on a transaction platform. These actors have distinct intentions to engage with the platform 

and potentially diverging expectations on what components are necessary and how they should operate. 

Engaging with an expanding ecosystem and observing user base growth gives providers opportunities 

to incorporate potentially different learnings for further development of their platform. 

It is important to note that because PVAR analysis controls the individual platform organization and 

monthly fixed effects, our results represent interdependency between three constructs representing 

generativity and user base growth at the average level of all platforms across time rather than at the 

individual platform or month level. The interdependency structure will probably vary across and/or 

within individual platforms across time. One would expect that, sometimes, platform- and/or month-

level analyzes would find some other types of feedback interdependency, contemporaneous, and/or 

lagged. Even for the same type of feedback interdependency, interdependency may vary across 

platforms or across time. For example, user base values for two platforms were lower for several months 

at the beginning of the observation period. We learned Semrush changed a data collection technique for 

Eastern Asian domains during that time, which is why some user data was unobserved. While this data 

can be considered completely random, we performed a complementary robustness test by imputing 

values using linear transformation and an added stochastic component. After comparing our final 

measure for user base growth with user data from another third-party data provider and with first-party 

data, we consider this measure reliable. 

While we selected a sample that spans major regions and represents platforms at different stages, 

limitations might arise from sampling. We did not include innovation platforms and hybrids, which 

include leading platforms like Amazon or Alibaba. Because of their extensive engagement in building 

innovation platforms like infrastructure-as-a-service platforms (AWS, AlibabaCloud) these providers 

have access to broad open source initiatives. In addition, we assumed that complementors only create 

and actively maintain forks when they face considerable issues between platform providers and 

themselves. However, our data did not allow us to observe problems that arise from mismatches between 

platform providers and complementors directly, because those would entail cognitive and social 



 

 

dimensions (Lyytinen et al. 2016). Some of the limitations carry important boundary conditions for the 

Extended Generativity Theory. We invite future work to investigate different platform designs or 

regional contexts to further carve out these conditions. 

5.6 Practical Implications  

As managers contend with the realization that the in-house expertise and resources at their disposal are 

limited, the drive to consider opening their systems to access these external value contributors is likely 

to rise (Morgan et al. 2021). This study provides such managers with a key insight that informs them 

about activities around a platform’s dynamic boundary that might lead to user growth. Specifically, our 

study raises awareness that investments into more generativity do not necessarily translate into user 

growth. This makes management of generativity an inherently economic task where managers who 

stimulate the expansion of ecosystem boundaries consider further investments in light of potential 

learnings from the ecosystem. Digital platform providers that intend to achieve user growth and leverage 

external knowledge resident within the crowds need to focus on how that learning translates into 

expanding product boundaries, i.e., new components in new categories. This is likely not going to be 

just a challenge of selecting between expanding product boundaries or expanding ecosystem boundaries, 

but one that embraces an integrative view and considers the interrelationship between these two views 

on generativity. 
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Appendix 

Appendix 1: Scheme for Expansion of Product Boundaries 

Category 

1. Database Tools 

2. Monitoring Tools 

3. Testing Frameworks 

4. Platform-as-a-Service 

5. Frameworks (Full Stack) 

6. Java Tools 

7. Machine Learning Tools 

8. User Management and Authentication 

9. Code Review 

10. JavaScript Utilities and Libraries 

11. Logging Tools 

12. Microservices Tools 

13. Load Balancer / Reverse Proxy 

14. Continuous Integration 

15. API Tools 

16. Project Management 

17. Cluster Management 

18. Container Tools 

19. Search Tools 

20. Git Tools 

21. Mobile 

22. Other 

Notes. BERT: Bidirectional encoder representations from transformers (Devlin et al. 2019) was used in the creation 

of the category scheme. It is a natural language processing model that is pre-trained on Wikipedia. We fine-tuned 

the model to our domain by feeding it over 5,000 descriptions of technology products (e.g., “MySQL is…”, “Java 

has…”, “JavaScript…”) from StackShare (2021), a public repository for considering technology products used 

within companies, and their respective Stackshare categories (e.g. database tools, machine learning tools). We then 

applied the fine-tuned model to GitHub repository descriptions and titles to assign Stackshare category suggestions 

to the repositories. Based on these suggestions, two coders manually assigned a category to each repository and 

merged categories with less than ten occurrences, with more frequent ones by collective agreement. Reference: 

Devlin J, Chang M-W, Lee K, Toutanova K. (2018) BERT: Pre-training of deep bidirectional transformers for 

language understanding. arXiv:1810.04805.  



 

 

Appendix 2: Robustness Checks Ecosystem Boundaries 

Alternative GMM Coefficient estimates of PVAR Model using alternative specification of the 

ecosystem boundaries variable (ln Ecosys) through active forks weighted by number of commits after 

diverting from the original component 

Dep. Var. ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 
ln User t-1 0.067† 0.036 0.002 0.004 0.001 0.242 

ln Prod t-1 0.250 0.303 0.142 0.115 0.815 1.744 

ln Ecosys t-1 -0.002 0.005 0.002† 0.001 -0.800*** 0.056 

ln User t-2 -0.040 0.034 0.010** 0.003 0.180 0.281 

ln Prod t-2 0.090 0.155 0.053 0.085 0.126 1.678 

ln Ecosys t-2 -0.009 0.010 0.003† 0.001 -0.548*** 0.072 

ln User t-3 0.043 0.098 0.020** 0.006 -0.314* 0.139 

ln Prod t-3 -0.056 0.236 0.159* 0.063 0.686 1.755 

ln Ecosys t-3 -0.013 0.012 0.002 0.001 -0.410*** 0.072 

ln User t-4 -0.032 0.026 -0.017*** 0.004 -0.109 0.124 

ln Prod t-4 0.552* 0.238 0.167** 0.059 -1.153 1.381 

ln Ecosys t-4 0.010 0.008 0.003* 0.001 -0.249*** 0.069 

ln User t-5 0.008 0.023 -0.004 0.004 -0.075 0.122 

ln Prod t-5 0.118 0.195 0.083 0.061 2.138 1.570 

ln Ecosys t-5 0.002 0.004 0.001 0.001 -0.142* 0.056 

Notes. The model coefficients are estimated using the GMM method in the PVAR model as described by Holtz-

Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation or Helmert 

transformation. First-order differencing was used to achieve stationarity of the variables. Model included 11 

additional monthly dummy variables and age. The model included six panels. † indicates p<0.10, * p<0.05, ** 

p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal significant effects.  

Alternative GMM Coefficient estimates of PVAR Model using alternative specification of the 

ecosystem boundaries variable (ln Ecosys) through merged pull requests coming from forks, weighted 

by their respective additions and deletions in lines of codes (logged) 

DV: ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 
ln User t-1 0.060† 0.035 0.000 0.003 0.050 0.280 

ln Prod t-1 0.264 0.330 0.147 0.114 1.319 3.030 

ln Ecosys t-1 0.010 0.007 -0.001† 0.001 -0.566*** 0.056 

ln User t-2 -0.036 0.031 0.010** 0.003 0.212 0.218 

ln Prod t-2 0.059 0.156 0.058 0.084 0.997 3.263 

ln Ecosys t-2 0.010 0.009 0.000 0.001 -0.375*** 0.060 

ln User t-3 0.048 0.099 0.021*** 0.005 -0.500 0.361 

ln Prod t-3 -0.008 0.221 0.162** 0.062 2.176 2.888 

ln Ecosys t-3 0.002 0.004 0.000 0.001 -0.281*** 0.056 

ln User t-4 -0.030 0.028 -0.019*** 0.004 -0.724** 0.234 

ln Prod t-4 0.486* 0.216 0.167** 0.056 -1.463 2.169 

ln Ecosys t-4 -0.005 0.005 0.000 0.001 -0.196*** 0.055 

ln User t-5 0.018 0.027 -0.005 0.004 -0.435† 0.257 

ln Prod t-5 0.205 0.232 0.082 0.061 -2.372 2.503 

ln Ecosys t-5 -0.010 0.009 0.000 0.001 -0.123* 0.050 

Notes. The model coefficients are estimated using the GMM method in the PVAR model as described by 

Holtz-Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation 

or Helmert transformation. First-order differencing was used to achieve stationarity of the variables. Model 

included 11 additional monthly dummy variables and age. The model included six panels. † indicates p<0.10, 

* p<0.05, ** p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal significant effects. 



 

 

Appendix 3: Time Series Analysis 

Time Series Plot of First-Differenced Variables of the Panel VAR System, (A) ln User, (B) ln Prod, (C) 

ln Ecosys 
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Appendix 4: Correlation Table 

Correlations among key variables and their lagged values 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. ln Prod 1                  

2. ln Ecosys 0.28 1                 

3. ln User 0.48 0.40 1                

4. ln Prod t-1 0.99 0.28 0.47 1               

5. ln Ecosys t-1 0.30 0.71 0.40 0.30 1              

6. ln User t-1 0.48 0.40 0.99 0.47 0.41 1             

7. ln Prod t-2 0.99 0.28 0.47 0.99 0.30 0.47 1            

8. ln Ecosys t-2 0.31 0.75 0.41 0.31 0.71 0.41 0.31 1           

9. ln Usert-2 0.47 0.40 0.98 0.47 0.41 0.99 0.47 0.41 1          

10. ln Prod t-3 0.99 0.28 0.47 0.99 0.30 0.47 0.99 0.32 0.46 1         

11. ln Ecosys t-3 0.32 0.71 0.41 0.33 0.75 0.42 0.33 0.72 0.42 0.33 1        

12. ln Usert-3 0.47 0.40 0.97 0.47 0.41 0.98 0.47 0.42 0.99 0.46 0.42 1       

13. ln Prod t-4 0.99 0.28 0.46 0.99 0.98 0.46 0.99 0.32 0.46 0.99 0.33 0.46 1      

14. ln Ecosys t-4 0.33 0.71 0.42 0.36 0.41 0.41 0.34 0.75 0.42 0.34 0.72 0.42 0.34 1     

15. ln Usert-4 0.47 0.41 0.96 0.47 0.97 0.97 0.46 0.42 0.98 0.46 0.43 0.99 0.45 0.42 1    

16. ln Prod t-5 0.98 0.28 0.46 0.99 0.46 0.46 0.99 0.32 0.45 0.99 0.33 0.45 0.99 0.34 0.45 1   

17. ln Ecosys t-5 0.34 0.70 0.42 0.34 0.42 0.42 0.35 0.72 0.42 0.35 0.75 0.42 0.35 0.72 0.42 0.35 1  

18. ln Usert-5 0.46 0.41 0.96 0.46 0.97 0.97 0.46 0.42 0.97 0.46 0.43 0.98 0.45 0.43 0.99 0.45 0.43 1 

 



 

Appendix 5: Granger Causality 
Granger Causality Tests with Stata command pvargranger, displayed are p-values 

 ln User ln Ecosys ln Prod 

ln User - 0.038* 0.000*** 

ln Ecosys 0.514 - 0.061† 

ln Prod 0.093† 0.336 - 

† indicates p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 

 

  



 

Appendix 6: Robustness Checks Expansion of Product Boundaries 

GMM Estimates  

Alternative GMM Coefficient estimates of PVAR Model using alternative specification of Expansion 

of Product Boundaries (ln Prod) through number of product categories that have at least one technology 

Dep. Var. ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 
ln User t-1 0.060† 0.035 0.008 0.006 -0.037 0.136 

ln Prod t-1 -0.296 0.184 0.162 0.116 -0.194 0.533 

ln Ecosys t-1 -0.013 0.015 0.011* 0.004 -0.839*** 0.057 

ln User t-2 -0.035 0.038 0.006 0.007 0.010 0.074 

ln Prod t-2 -0.104 0.178 0.077 0.085 -0.167 0.555 

ln Ecosys t-2 -0.015 0.025 0.017** 0.005 -0.560*** 0.082 

ln User t-3 0.060 0.106 0.015*** 0.004 -0.149** 0.044 

ln Prod t-3 -0.015 0.190 0.083 0.064 -0.570 0.483 

ln Ecosys t-3 -0.028 0.025 0.012** 0.005 -0.409*** 0.079 

ln User t-4 -0.021 0.029 -0.009* 0.004 -0.066 0.048 

ln Prod t-4 0.664* 0.322 0.159* 0.067 -0.962* 0.384 

ln Ecosys t-4 0.054† 0.030 0.009* 0.004 -0.269*** 0.069 

ln User t-5 -0.002 0.020 -0.003 0.003 -0.043 0.047 

ln Prod t-5 0.195 0.242 0.049 0.066 0.349 0.469 

ln Ecosys t-5 0.029 0.018 0.005 0.003 -0.140** 0.049 

Notes. The model coefficients are estimated using the GMM method in the PVAR model as described by 

Holtz-Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation 

or Helmert transformation. First-order differencing was used to achieve stationarity of the variables. Model 

included 11 additional monthly dummy variables and age. The model included six panels. † indicates p<0.10, 

* p<0.05, **p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal significant effects. 

Alternative GMM Coefficient estimates of PVAR Model using alternative specification of Expansion 

of Product Boundaries (ln Prod) through number of technologies 

Dep. Var. ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 
ln User t-1 0.072† 0.039 0.001 0.006 -0.018 0.142 

ln Prod t-1 0.420 0.362 0.123 0.084 -0.080 0.611 

ln Ecosys t-1 -0.021 0.017 0.006 0.004 -0.833*** 0.055 

ln User t-2 -0.036 0.036 0.020** 0.007 0.012 0.072 

ln Prod t-2 0.332 0.239 0.005 0.064 -0.759 0.594 

ln Ecosys t-2 -0.025 0.029 0.008† 0.005 -0.557*** 0.077 

ln User t-3 0.037 0.097 0.018*** 0.004 -0.132** 0.044 

ln Prod t-3 -0.165 0.204 0.236** 0.077 -0.374 0.607 

ln Ecosys t-3 -0.041 0.031 0.007 0.004 -0.400*** 0.077 

ln User t-4 -0.046 0.033 -0.005 0.004 -0.063 0.049 

ln Prod t-4 0.248† 0.148 0.177** 0.066 -0.716 0.503 

ln Ecosys t-4 0.041 0.026 0.008† 0.004 -0.257*** 0.068 

ln User t-5 0.001 0.025 -0.004 0.005 -0.036 0.044 

ln Prod t-5 -0.041 0.209 0.105† 0.061 -0.253 0.577 

ln Ecosys t-5 0.021 0.017 0.004 0.003 -0.141** 0.049 

Notes. The model coefficients are estimated using the GMM method in the PVAR model as described by 

Holtz-Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation 

or Helmert transformation. First-order differencing was used to achieve stationarity of the variables. Model 

included 11 additional monthly dummy variables and age. The model included six panels. † indicates p<0.10, 

* p<0.05, ** p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal significant effects. 



 

Appendix 7: Panel Regression with DV ln User 

Panel regression (Stata command xtreg) results for lag length 5 with ln User as dependent variable, ln 

Prod and ln Ecosys as independent variables and controls using random effects as indicated by Hausman 

test 

 DV: ln Usert 

IV: b (SE) p-value 
ln Prod tt -0.524 

(0.282) 

0.063 

ln Prod tt-1 0.196 

(0.276) 

0.478 

ln Prod tt-2 0.025 

(0.259) 

0.924 

ln Prod tt-3 -0.119 

(0.248) 

0.632 

ln Prod tt-4 0.547 

(0.239) 

0.022 

ln Prod tt-5 0.126 

(0.231) 

0.587 

ln Ecosys tt -0.020 

(0.024) 

0.416 

ln Ecosys t-1 -0.033 

(0.032) 

0.291 

ln Ecosys t-2 0.034 

(0.034) 

0.316 

ln Ecosys t-3 0.051 

(0.034) 

0.134 

ln Ecosys t-4 0.036 

(0.032) 

0.264 

ln Ecosys t-5 0.025 

(0.025) 

0.321 

11 monthly dummies 

and age included 

 

R² within 0.076  

R² between 0.000  

R² overall 0.074  

Wald χ²(24) 41.05*  

N 540  

Notes. Bold indicates p-values < 0.1. We used first-differenced variables. 11 binary monthly variables and age 

were included in the model as controls.   



 

Appendix 8: Alternative Data Source for Product Generativity 

Built-With is a public repository for web technologies used by companies on their respective website. 

Their database contains at least 58,000 web technologies (shopping carts, analytics, hosting, widgets, 

frameworks etc.) and lists over 673 million websites. Built-With lists both the first detection and the last 

detection of a web site’s web technologies, hence we could acquire the detailed technology profile for 

the six companies of our panel in a time series.  

GMM Coefficient estimates of PVAR Model using an alternative data source (Built-With) for Product 

Boundary Expansion (ln Prod) 

Dep. Var. ln User ln Prod ln Ecosys 

 Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 
ln User t-1 0.065† 0.038 -0.016** 0.005 -0.027 0.139 

ln Prod t-1 -0.011 0.025 0.317*** 0.043 -0.411† 0.212 

ln Ecosys t-1 -0.016 0.016 0.001 0.003 -0.835*** 0.058 

ln User t-2 -0.042 0.039 -0.002 0.004 0.007 0.074 

ln Prod t-2 -0.009 0.031 -0.077** 0.028 0.304* 0.134 

ln Ecosys t-2 -0.017 0.027 0.000 0.004 -0.571*** 0.087 

ln User t-3 0.049 0.104 -0.016 0.011 -0.139 0.042 

ln Prod t-3 0.006 0.056 0.094** 0.033 -0.501* 0.216 

ln Ecosys t-3 -0.033 0.028 -0.003 0.004 -0.414*** 0.084 

ln User t-4 -0.035 0.028 -0.006 0.004 -0.082 0.052 

ln Prod t-4 -0.048 0.045 -0.058* 0.025 -0.005 0.106 

ln Ecosys t-4 0.047† 0.028 -0.001 0.005 -0.272*** 0.073 

ln User t-5 0.002 0.023 -0.004 0.005 -0.061 0.049 

ln Prod t-5 0.065† 0.037 0.038* 0.019 -0.240 0.156 

ln Ecosys t-5 0.024 0.018 0.003 0.003 -0.148** 0.050 

Notes. The model coefficients are estimated using the GMM method in the PVAR model as described by 

Holtz-Eakin et al. (1988). The panel-specific fixed effects are removed using forward orthogonal deviation 

or Helmert transformation. First-order differencing was used to achieve stationarity of the variables. Model 

included 11 additional monthly dummy variables and age. The model included six panels.. † indicates p<0.10, 

* p<0.05, ** p<0.01, *** p<0.001; grey indicates diagonals; bold indicates non-diagonal significant effects. 
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